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Abstract—Advanced driver-assisted system (ADAS) uses mul-
tiple sensors such as Radar, Lidar, or Cameras in vehicles to
create a robust perception against challenging weather conditions
and individual sensor failures. In typical conditions, Lidar and
Camera can perceive the surrounding much better than the radar
whereas, under low light or extreme weather conditions (fog, rain,
snow) the radar outperforms both as it works independently of
light source. These sensors in the ADAS system help to minimize
driving errors by providing necessary information to the driver
or taking automatic actions based on what it perceives. However,
in some unstructured environments, which do not have any oper-
ational traffic lights present, a person via appropriate gesturing
directs the traffic. The task of autonomous vehicles recognizing
human body language and gestures in traffic-directing scenarios
is significantly difficult. To overcome this challenge, based on
the US traffic system, we present a new dataset collected of
traffic signaling motions using millimeter-wave (mmWave) radar,
camera, Lidar, and motion-capture system. Initial classification
results from Radar microDoppler (µ-D) signature and Lidar
data analysis using Multimodal Neural Network demonstrate
that sensor fusion can not only very accurately (around 98%)
classify traffic signaling motions in automotive applications but
also outperforms the radar-based and lidar-based classification
by around 7% and 4% respectively.

Index Terms—Multimodal Neural Network, autonomy, traffic
gesture classification, mmWave, ADAS, CNN.

I. INTRODUCTION

OVER the last decade, due to the growing number of
advancements in ADAS, modern vehicles are able to

analyze various situations in their surrounding environments
in more depth and detail [1], [2]. The use of multiple sensors
such as lidar, radar, and camera in ADAS helps to create a
robust perception of the surroundings and includes many active
safety features. These features include adaptive cruise control
(ACC) [3], lane departure warning (LDW) [4], blind spot
detection (BSD) [5], forward collision warning (FCW) [6],
automatic emergency braking (AEB) [7], pedestrian detection
[8] etc. These features dramatically increase the effectiveness
of ADAS to save lives. Furthermore, ADAS vehicles are being
trained with machine learning techniques, which allow them to
enhance their effectiveness over time by being exposed to new
circumstances and data [9]. As these vehicles become more
common, they will have access to an increasing quantity of
data on real-world driving circumstances, which will help them
become more competent at functioning in a variety of settings.
However, ADAS vehicles are still in the early stages of devel-
opment and are trained to operate in pristine road conditions.
In our everyday lives, we see several scenarios where traffic
relies on human guidance to navigate. For example, if a vehicle

was going through a construction zone, entering and exiting a
school or other high-traffic locations, or when automatic traffic
signals were not functioning. Under all of these conditions,
it is far more typical for someone to be entrusted with
directing cars, either by signaling with an appropriate sign or
by gesturing. This individual might be a traffic cop, a school
official, or a construction worker. If the AV passes through
any of these zones, it will need to rely on human instructions
to navigate, and it should be able to identify and categorize
human traffic directions autonomously. Moreover, in order to
create a robust perception of the surrounding sensors such
as radar, lidar, camera are being utilized as some of the
main sensing systems. Each of these sensors has different
strengths and weaknesses. For example, cameras can provide
high-resolution images and color information, whereas lidar
and radar are useful for obstacle avoidance, adaptive cruise
control, etc [10]. by providing object detection, speed, and
distance information. However, both the camera and lidar are
affected by poor lighting conditions. On the other hand, the
radar performs consistently as it works independently of the
light source. So, by combining the data from these sensors,
ADAS can create a more comprehensive and accurate view of
the vehicle’s surroundings.

This paper proposes a multimodal neural network architec-
ture to conduct the initial studies toward understanding the
success of varying sensors including mm-wave automotive
radar and 3D Lidar systems in order to recognize gestures from
human traffic directors. We created a novel dataset consisting
of 12 different motions based on the most commonly utilized
to control traffic in the US traffic system (See Section II-B and
Figure 3). First, in order to create a robust dataset, data were
collected from 14 participants in the lab environment using
RGB-Depth cameras, Lidars, mm-wave radars, and a motion-
capture system. In this dataset, only single human directors
using pre-defined classes of directions within the line of sight
of the sensor suite are considered.

For understanding human traffic directions, we first show
the effectiveness of mm-wave radar and Lidar separately.
We transformed time-frequency radar data to micro-doppler
µ-D signature images and converted 3D Lidar point cloud
data into image frames. Afterward, both the processed radar
and lidar data were classified using the developed unimodal
CNN-2D and CNN-3D architectures respectively. Finally, we
implemented two multimodal fusion strategies, data-level, and
feature-level, to observe the classification performance. Us-
ing data-level fusion we observed performance improvement
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around 6% and 3% over the radar-based and lidar-based
classification respectively. Finally, using feature-level fusion,
we further increased the classification accuracy by 1%.

The paper is organized as follows: the experimental setup
and dataset are provided in Section II, data processing steps for
radar and lidar are discussed in Section III, then the unimodal
and multimodal architectures were briefly described in Section
IV followed by the performance comparison discussion in Sec-
tion V. Finally, Section VI concludes the paper and discusses
future works.

II. EXPERIMENTAL SETUP AND DATASET

A. Experimental Setup

The data collection for this study utilizes six different
sensors for kinematic movement and visual data to achieve
the goal of motion analysis and classification. Of the six
sensors used, four are intended for automotive or short-range
automotive applications. These sensors include TI AWR2243
mmWave radar, a TI AWR1642 mmWave radar, an Intel
Realsense L515 LiDAR, and an Intel Realsense D435 camera.
The remaining two sensors are Ouster OS-1 360◦ scanning
LiDAR and MotionMonitor motion capture system with Vicon
motion capture cameras respectively. These six sensors are
managed across three distinct data collection settings. The
AWR2243 sensor collects raw voltage using TI’s mmWave
Studio software; the AWR1642, L515, D435, and OS-1 sen-
sors collect radar scan, RGB, and point cloud information
using the Robot Operation System (ROS); and the Motion-
Monitor device captures three-dimensional positioning data
for important centroids on the participants’ upper bodies, as
well as rotation and flexion of joints and the head. Figure 1
depicts the setup for the automobile sensors as well as the
layout of the laboratory used for data collection, while Figure
2 represents the setup for the four short-ranged sensors utilized
in the experiment.
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Fig. 1: Experimental Setup

All the sensors except the motion capture system were
positioned on top of a table with an elevation of 1 meter prior
to data collection. Participants were placed 3 meters in front
of the radar. A computer monitor was positioned to the left
of the radar, but out of the radar’s field of vision (FOV). The

TI AWR 2243 RadarTI AWR 1642 Radar

Intel Realsense L515 

LiDAR

Intel Realsense D435 

Camera

Fig. 2: Table Setup

display provided prompts indicating which gestures needed
to be articulated. The data was gathered for 155 seconds.
During this period, four distinct motions were done with five
repetitions each. There was a one-second pause between each
iteration. After each gesture, a 10-second interval was allowed
to preview the following motion. Each sample lasted around
5 seconds.

B. Dataset

A dataset of 12 traffic signaling movements based on the US
traffic system is developed for this study. These gestures are
intended to direct an incoming vehicle to stop, move from the
halting point in one of three directions, or have vehicles in any
given place wait for additional traffic to enter the road. The
gestures entail movement of not just the participants’ arms but
also their hands, as well as head rotation to stare in specified
directions. Figure 3 depicts each gesture made by a participant,
as well as a brief description of each motion. Previously, this
dataset were used to measure the effectiveness of automotive
radar for traffic signaling motion classification [11].

Finally, 840 samples were gathered for 12 different gestures,
for a total of 70 samples per gesture from 14 different subjects.
For now, we are only considering classification using TI
AWR2243 automotive FMCW radar and Ouster OS1-32 lidar.
The next sections will briefly discuss the data processing
methods for both of these sensors.

III. DATA PROCESSING

A. AWR2243 Radar Data Processing

The Texas instrument’s (TI) AWR2243 radar is a frequency
modulated continuous wave (FMCW) radar system that oper-
ates between 77 GHz to 81 GHz. This transmits chip signals
in the direction of radar field of view [12]. At first, the
transmitted signal is reflected from the target, in our case
humans. Then the signal received by the radar is a frequency-
shifted, time-delayed version of the transmitted signal. The
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(a) Stop (b) Go (c) Continue (d) Left Turn

(e) Right Turn (f) Stop Left, Go Front (g) Stop Right, Go Front (h) Stop Both Sides, Go Front

(i) Stop Front, Go Right (j) Stop Front, Go Left (k) Stop Front, Go Back (l) Stop Back, Go Front

Fig. 3: 12 traffic signalling motions to control traffic in the US traffic system

kinematic features of each human target gesture result in a
time-varying sequence of Micro-motions [13] e.g. vibrations
and rotations. Each gesture produces its own distinct patterns,
which can be evaluated through time-frequency analysis. The
µ-D spectrogram is then calculated from the square modulus of
the Short-Time Fourier Transform (STFT) of the continuous-
time input signal x[n] and may be described in terms of the
window function, h[n].

STFT[x[n]]m,ω = X[m,ω] =
∞∑

n=−∞
x[n]h[n−m]e−jωn (1)

Spectrogram[x[n]]m,ω = |X[m,ω]|2 (2)

Figure 4a visualizes the procedure of generating a µ-D
spectrogram from raw radar data and Figure 4b provides a µ-
D signature example of traffic sign ’Continue’ using an image
of scaled colors. At 0 Hz, positive Doppler frequencies are
depicted above the horizontal axis, whereas negative Doppler
frequencies are represented below the horizontal axis.

B. Lidar Data Processing

For lidar point clouds, spatial resolution changes with
distance. Using the change in distance, distance normalization
on a statistical outlier filter is used to remove the outliers [14].
Then the point cloud dataset was transformed into a voxel
grid [15]. Finally, this voxelized data was projected on a 2D
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(a) Block diagram of radar signal processing for µ-D signature
generation
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(b) A microDoppler Spectrogram example of the traffic sign
‘Continue’

Fig. 4: Block diagram and example of µ-D signature genera-
tion

plane [16]. This is considered as a single frame. A total of 60
frames were captured for a single data sample during 5s of
data collection creating a lidar video.

Lidar Point 
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Outlier 

Removal
2D ProjectionVoxelization

Fig. 5: Block diagram of lidar data processing

IV. THE CNN ARCHITECTURES

Since, we are using µ-D spectrogram images and voxelized
lidar videos for classification, two unimodal 2D and 3D CNN
models were developed respectively. Also, two multimodal
neural network architectures were developed for data-level and
feature-level fusions. For classification, the dataset was split
into 80% training and 20% testing.

A. Unimodal Neural Network Architectures

The CNN-2D architecture for radar µ-D spectrogram clas-
sification has four convolution layers, each with kernel size
3×3, stride 1×1, and comprising of 12, 12, 16, and 16 filters
respectively. A 2×2 max-pooling, batch normalization, and
activation ReLU are performed after each convolutional layer.
Then, the tensor is then flattened, fed into a dense layer with
a size of 64, dropped out by 0.2, and activated with ReLU.
Finally, the model ends with the softmax classifier. 64×64
spectrogram images were used as the input to the model.

The CNN-3D architecture for lidar video shares the same
architectural behavior as CNN-2D. 64×64×60 lidar videos
were used as the input to the model.

B. Multimodal Neural Network Architectures

1) Data-level fusion: For the data level fusion, the spec-
trogram images was added as an additional channel to the
CNN-3D input. So, the combined input dimensions for the
CNN input then becomes 64×64×61. The CNN-3D model
for data-level fusion shares the same architecture as the CNN-
3D model used for lidar video classification.

2) Feature-level fusion: The feature-level fusion architec-
ture was obtained by concatenating the features collected from
the CNN-2D architecture for radar spectrogram and CNN-3D
architecture for lidar video. This was followed by a dense layer
with a size of 64, a relu activation layer, and a dropout layer
of 0.2. Finally, the model ends with a softmax classification.

The developed unimodal and multimodal CNN architectures
are shown in figure 6.
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Fig. 6: Block Diagrams for CNN architectures

V. PERFORMANCE ANALYSIS

For performance evaluation, the dataset was split into 80%
training and 20% training. The spectrogram images and lidar
videos were saved as 64×64 and 64×64×60 respectively. The
comparison results between unimodal and multimodal CNN
architectures are shown in Table I. From the table, it can be
seen that both multimodal CNNs are performing better than
unimodal ones. The feature level fusion architecture is showing
the best testing accuracy of 98.81% which is 7.14% and 4.17%
higher than the CNN 2D and 3D models used for radar-based
and lidar-based classifications respectively. It also outperforms
the data-level fusion architecture by 1%. Though the dataset
was very challenging as performed gestures varied from person
to person, the confusion matrix in Figure 7 shows a very
promising performance for all the classes for feature-level fu-
sion classification. While the radar-based classification showed
some inconsistencies in classifying some of the classes, fusion-
based classifications were pretty consistent throughout. This
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shows a lot of potentials as it might be an important feature
to be included in the ADAS system.

TABLE I: Performance Comparison

Network Testing
Accuracy Precision Recall F1

Score
CNN-2D (Radar) 91.67 91.68 91.76 91.60
CNN-3D (Lidar) 94.64 95.12 94.64 94.65
CNN-3D (Data-Fusion) 97.62 97.73 97.62 97.59
CNN-2D+3D (Feature
Fusion) 98.81 98.89 98.81 98.81

1 1 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0 0

4 0 0 0 0.93 0 0.07 0 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0 0 0 0

6 0 0 0 0 0 1 0 0 0 0 0 0

7 0 0 0 0 0 0 1 0 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0

9 0 0 0 0 0.07 0 0 0 0.93 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0

11 0 0 0 0 0 0 0 0 0 0 1 0

12 0 0 0 0 0 0 0 0 0 0 0 1
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Fig. 7: Confusion matrix for feature level fusion classification

VI. CONCLUSION AND FUTURE WORK

The purpose of this study is to give an initial study to-
wards understanding the success of sensor fusion in gesture
recognition obtained from human traffic directors. The results
show that in terms of decision-making for ADAS vehicles, the
sensor fusion techniques are much more efficient than sensors
working independently. The feature-level fusion technique
had a testing accuracy of almost 99% even with a limited
number of data samples. Our initial study was performed in
the lab environment and with specific guidance. Also, multi-
stage processing was required to utilize CNN architectures for
classification. Moreover, data collected from the depth camera
and Motion capture are yet to be explored. In future works, we
will try to develop models that can work on raw radar, lidar,
and camera data directly for real-time classification. Real-
time fusion techniques between these sensors should open
more doors to exploration of human body motions used in
automotive applications.
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adaptive cruise control using a customized ecu,” IEEE Access, vol. 7,
pp. 55 305–55 317, 2019.

[4] Y. A. Ahmed, A. T. Mohamed, and A. M. B. Aly, “Robust lane departure
warning system for adas on highways,” in 2022 4th Novel Intelligent and
Leading Emerging Sciences Conference (NILES), 2022, pp. 321–324.

[5] S.-M. Chang, C.-C. Tsai, and J.-I. Guo, “A blind spot detection warning
system based on gabor filtering and optical flow for e-mirror applica-
tions,” in 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), 2018, pp. 1–5.

[6] S. Kumar, V. Shaw, J. Maitra, and R. Karmakar, “Fcw: A forward
collision warning system using convolutional neural network,” in 2020
International Conference on Electrical and Electronics Engineering
(ICE3), 2020, pp. 1–5.

[7] A. Dixit, P. D. Devangbhai, and C. R. Kumar, “Modelling and testing
of emergency braking in autonomous vehicles,” in 2021 Innovations in
Power and Advanced Computing Technologies (i-PACT), 2021, pp. 1–6.

[8] R. Ayachi, M. Afif, Y. Said, and A. B. Abdelaali, “pedestrian detection
for advanced driving assisting system: a transfer learning approach,” in
2020 5th International Conference on Advanced Technologies for Signal
and Image Processing (ATSIP), 2020, pp. 1–5.

[9] A. Moujahid, M. ElAraki Tantaoui, M. D. Hina, A. Soukane, A. Ortalda,
A. ElKhadimi, and A. Ramdane-Cherif, “Machine learning techniques
in adas: A review,” in 2018 International Conference on Advances in
Computing and Communication Engineering (ICACCE), 2018, pp. 235–
242.

[10] M. E. Warren, “Automotive lidar technology,” in 2019 Symposium on
VLSI Circuits, 2019, pp. C254–C255.

[11] S. Biswas, B. Bartlett, J. E. Ball, and A. C. Gurbuz, “Classification of
traffic signaling motion in automotive applications using fmcw radar,”
in 2023 Radar Conference, San Antonio, Texas, USA, 2023.

[12] L. Piotrowsky, T. Jaeschke, S. Kueppers, J. Siska, and N. Pohl, “Enabling
high accuracy distance measurements with fmcw radar sensors,” IEEE
Transactions on Microwave Theory and Techniques, vol. 67, no. 12, pp.
5360–5371, 2019.

[13] V. C. Chen, D. Tahmoush, and W. J. Miceli, Radar micro-Doppler
signatures. Institution of Engineering and Technology, 2014.

[14] X. Wang, P. Ma, L. Jiang, L. Li, and K. Xu, “A new method of 3d
point cloud data processing in low-speed self-driving car,” in 2019 IEEE
3rd Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), 2019, pp. 69–73.

[15] C. Kunert, T. Schwandt, and W. Broll, “Efficient point cloud rasterization
for real time volumetric integration in mixed reality applications,” in
2018 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), 2018, pp. 1–9.

[16] S. Chamorro, J. Collier, and F. Grondin, “Neural network based lidar
gesture recognition for realtime robot teleoperation,” in 2021 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), 2021, pp. 98–103.

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on March 01,2024 at 07:01:24 UTC from IEEE Xplore.  Restrictions apply. 


