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ABSTRACT

The success of microwave radiometry depends on how
accurately it can measure the natural emission of the Earth
without the effects of unwanted signals. The consequence of
unwanted signals in radiometers is known as radio frequency
interference (RFI). The high intensity of these corrupted sig-
nals, along with wider bandwidth and longer duration, may
jeopardize the overall success of a mission. These reasons
resulted in a need for a robust RFI detection algorithm that
will enable the mitigation of the contaminated portions of
the measurements. Attributes related to RFI could be very
dynamic, making it very difficult to detect with a particular
algorithm. To address this issue, deep learning (DL) could
be an attractive solution to detect RFI with the help of time-
frequency analysis, i.e., spectrograms of the received mea-
surement. This study aims to detect and localize RFI in a
particular time-frequency bin of spectrograms with the help
of DL to retrieve the non-contaminated portion of the mea-
surements.

Index Terms— Microwave Radiometry, SMAP, RFI, Deep
Learning, Radiometer

1. INTRODUCTION
Microwave radiometers are designed to measure natural emis-
sions which are very low power. This is essential to measure
the earth brightness temperature that helps to map numerous
geophysical parameters. This necessitates the importance of
designing highly sensitive passive sensors along with protec-
tion in the spectrum that is conducted through a guarded band-
width such as 1400-1427 MHz. These resolutions alone are
not enough to limit the effects of radio frequency interference
(RFI). Numerous defensive measurements are invented and
implemented to equip microwave radiometers to detect RFI
and mitigate them from final measurements.

Currently, there are RFI detection approaches available in
spaceborne satellites such as NASA’s soil moisture active pas-
sive (SMAP) [1]. These algorithms such as kurtosis, cross-
frequency, and pulse detection, are developed by physical mod-
eling of RFI with a fixed hypothesis. Power level, duty cycle,
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and bandwidth can dynamically change the attributes and fea-
tures of RFI sources, making it very challenging to model the
possible outcome to aid detection. Domain transformation is
essential for the detection algorithm as it enables them to ad-
dress different features of RFI. These transformations can be
divided into frequency, code, space, polarization, and time.
To maximize the performance, multiple domains are aggre-
gated, and among them, the most popular is time-frequency
analysis. Although these algorithms are useful for one partic-
ular type of RFI, combining different algorithms is critical to
increasing efficiency.

Deep learning (DL) has been introduced to coherently de-
tect these different types of RFI with a single algorithm [2,3].
DL-based frameworks in these studies are trained and tested
with the spectrograms of NASA’s SMAP radiometer raw an-
tenna counts. This method’s drawback is that it only identifies
RFI at the spectrogram level and decides if a SMAP spec-
trogram is RFI contaminated or not. If RFI is not detected
at a higher resolution featuring the time-bandwidth coverage
of RFI within the spectrogram then the entire measurement
must be eliminated from the final estimation. Approaches de-
tecting RFI at the spectrogram level might not be well suited
for spectrum co-existence and wide-band radiometers where
spectrum information is crucial. These factors make it crucial
to develop a high-resolution RFI detection method that would
aid in robustness and preserve the uncontaminated portion of
the data. This study will help to address this issue by detect-
ing RFI with higher resolution utilizing DL-based architec-
ture. We frame the RFI detection problem as a binary clas-
sification problem for each time-frequency bin. Simulated
RFI types have been added to no-RFI antenna count spec-
trograms. The proposed DL-based detection model is trained
on this synthetic dataset to detect RFI at each time-frequency
bin. This framework will illustrate how different RFI types,
such as pulsed or sinusoidal, chirp, and wireless communi-
cation waveforms are detected at various signal-to-noise ratio
(SNR) levels. In future studies, the developed framework will
be tested to understand the capability of active-passive spec-
trum co-existence. [4].

The remainder of the paper is organized as follows: signal
model is detailed in Section 2, while the methodology for RFI
detection is in Section 3. Results and discussions are provided
in Section 4 and finally, a conclusion is drawn in Section 5.
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2. SIGNAL MODEL

2.1. Radiometer Signal Model With and Without RFI
To develop a learning-based RFI detection model, it is criti-
cal to have samples contaminated by RFI and measurements
that are not affected by unwanted signals. Natural emissions
from the Earth (i.e., thermal noise) can be modeled as usu-
ally distributed Gaussian noise with zero mean and variance
equivalent to the noise power. Measurements are converted
into IQ samples to model what is received on the radiometer
receiver side. Considering a Nyquist rate of 96 MHz band-
width for radiometer sampling and 9.6 ms of the integration
period, there will be M = 921600 samples. These measure-
ments are considered to develop a SMAP-like data structure
that has an exact sampling and integration period [1].

Received IQ samples on the radiometer side when there is
no-RFI can be modeled as

x[n] =

√
Pn

2
[I(n) +Q(n)],

n = 0, 1, . . . ,M − 1

(1)

where I(n) ∼ N (0, 1) and Q(n) ∼ N (0, 1) are independent
random variables, Pn corresponds to the total received noise
power in the radiometer integration period. Here N (0, 1)
refers to the standard normal random variable with zero mean
and unit variance that consists of M samples.

Radiometer measurements in the presence of RFI can be
written as [5]

y[n] = x[n] + r[n] (2)

where x[n] is the Earth emission when there is no-RFI and
r[n] is the RFI contamination in radiometer measurements.
The duty cycle of the unwanted signal can be considered as
d = m

M .
RFI sources contemplated in the study are pulsed/sinusoidal

signals, chirp, and wireless communication waveforms. Pulse
RFI can help to portray in-band illegal transmission in a par-
ticular time-frequency bin. Chirp and wireless communica-
tion waveforms will provide the continuous-wave nature of
the RFI. This study will be conducted considering in-band il-
legal transmission. However, out-of-band emissions will also
be modeled for future studies.

2.2. Domain Transformation
Radiometer measurements are converted into time-frequency
analysis utilizing a short-time Fourier transform (STFT). To-
tal M samples are divided into smaller blocks to perform Fourier
transform to complete the domain transformation of the ra-
diometer measurements. STFT is performed by the following
equation [6]

STFT{y[n]} = Y (ω, k) =
∞∑

n=−∞
x[n]w[n−m]e−jωn (3)

where Fast Fourier Transform (FFT) is performed in a partic-
ular segment of the measurement by means of sliding window

Fig. 1: Spectrograms of radiometer measurements (a) High
Resolution (b) Coarse Resolution

w[n]. For this study, FFT length was selected as 1024, and
a particular section has the same amount of measurements.
This leads each sample of radiometer measurements with 900
columns and 1024 rows. By taking the squared magnitude of
STFT, spectrograms can be generated as in

Spectrogram{Y (ω, k)} = |Y (ω, k)|2 (4)

This domain transformation helps to accommodate time-
frequency features to the DL architecture. However, high-
resolution spectrograms achieved in equations (3) and (4) might
prove computationally heavy and will not be similar to the
SMAP data structure. To reduce computational complexity
and be comparable with an active space mission data prod-
uct SMAP, this study has converted the high-resolution spec-
trograms into coarse spectrograms with a reduced dimension
8(time) × 16(frequency). In Fig. 1, the spectrogram of
a pulsed RFI-contaminated sample has been illustrated. Fig.
1b, illustrates the 16× 8 structure and the primary reason for
doing this is to simulate SMAP data structure. Future studies
will aim to incorporate this information with SMAP level 1A
and level 1B data products to verify the algorithm in various
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temporal and spatial resolutions. To help with detection by
aggregating more features, higher-order raw moments have
also been measured that have been proven in previous stud-
ies [2]. The j-th order moment spectrograms is given as in
(5)

Yj(ω, k) = |Y (ω, k)|j (5)

where Y (ω, k) is the STFT derived in equation 3. Higher-
order raw moments are accommodated with a 4-channel con-
figuration at the input of the detection framework.

2.3. Spectrogram Labeling
After generating the spectrograms, we need to label the time-
frequency bins as RFI or no-RFI. The portions that RFI con-
taminates are labeled by comparing the SNR of the sources.
Each bin of 8 × 16 spectrograms is analyzed with a hypoth-
esis, and an RFI map is developed that consists of "1" and
"0". This is illustrated in Fig. 2. If SNR in a particular bin
is above a particular threshold, then it is labeled as RFI ("1"),
and the opposite leads to a no-RFI ("0") scenario. This helps
to map the information of 128 pixels in a specific spectrogram
to develop a multi-label classification problem.

3. METHODOLOGY

3.1. Training and Developing of DL Architecture
In computer vision, DL has successfully detected and clas-
sified objects by learning directly from the data. This study
utilizes a similar kind of architecture to detect RFI within a
spectrogram. Identifying the pixels or time-frequency bins in
a spectrogram, whether these are contaminated by RFI or not,
will be very comparable to multi-label classification problems
in computer vision. In multi-label classification architecture,
datasets have multiple objects within an image, which are
segmented and properly labeled for further training and test-
ing. Previous sections of this study illustrated similar samples
where RFI and no-RFI pixels in a spectrogram are properly
labeled.

Fig. 3 demonstrated the training of DL architecture where
the input spectrogram has a dimension of 16 × 8 × 4. Four-
channel spectrograms make room for the higher-order mo-
ments that helps in accumulating features of RFI for train-
ing. DL architecture has four convolutional layers, each hav-
ing a 3 × 3 kernel with 16, 32, 64, and 128 filers, respec-
tively. Learned features from the convolutional layers are

Table 1: Performance Metrics (%) for RFI detection

SNR Levels Accuracy Precision Recall F1- Score
20 99.80 99.22 99.41 99.31
10 99.70 99.13 99.32 99.23
0 99.45 98.87 99.13 99.03

-10 97.70 97.72 97.93 97.84
-20 95.30 95.63 95.87 95.75

Fig. 2: Labeling of spectrograms (a) RFI contaminated sam-
ples (b) developed RFI map

fully connected (FC) with 256 neurons dense layer. The fi-
nal layer consists of 128 neurons to project the probability of
RFI location in each bin (i.e., 16 × 8 = 128). All the lay-
ers are equipped with a ReLU activation function except the
final layer, which has softmax activation. During training,
the predicted outcome from the DL architecture is compared
with true labels that are RFI maps. The losses are measured
with binary cross-entropy with the help of adam optimizer.
Employing backpropagation, the model parameters are con-
stantly updated until convergence. The model is trained with
50 epochs and 32 batch sizes.

3.2. Performance Metrics
Performance metrics are crucial in a learning-based frame-
work to evaluate performance in terms of robustness and gen-
eralization capability. The overall dataset has been divided
into 80% training and 20% testing. The testing dataset is as-
sessed with performance metrics such as accuracy, precision,
recall, and F1-score. Accuracy helps to understand the over-
all performance. Precision and recall help to understand false
positives and missed detections.
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Fig. 3: Training of DL framework for high-resolution RFI detection

4. RESULTS AND DISCUSSION

4.1. Effects of SNR Levels
The performance of the testing dataset has been shown in Ta-
ble 1. This analysis has been conducted in terms of SNR
levels of RFI sources. SNR values range from -20 dB to 20
dB to illustrate low, medium, and higher-level RFI. Analysis
shows that DL architecture proves to be very useful in locat-
ing RFI-contaminated pixels within a spectrogram. However,
performance is superior during detecting high-level RFI but
metrics show inferior performance at lower SNR levels. This
is an indication that more care needs to be taken during low-
power RFI sources which still can affect the performance of
microwave radiometry.

5. CONCLUSION
This study demonstrates that DL can be utilized to detect RFI
within a spectrogram which will help to preserve the non-
contaminated portions in a measurement. Previous studies in
DL-based RFI detection were able to identify whether RFI is
present in the whole spectrogram or not. But this study can
be seen as a basis for future microwave radiometry, where
learning-based models can detect RFI with higher resolution.
In the next iterations, authors will try to implement this study
in satellite data products to understand the robustness of the
algorithm.
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