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Hybrid rocket motors with paraffin-based fuels are of interest due to higher regression rates
compared to other polymers. During paraffin combustion, a liquid layer forms on the fuel surface
that, together with shearing forces from the oxidizer flow, results in the formation of instabilities
at the fuel-oxidizer interface. These instabilities lead to the formation and entrainment of
heterogeneous sized liquid droplets into the main flow and the combusting droplets result in
higher motor output. The atomization process begins with droplet formation and ends with
droplet pinch-off. The goal of this paper is to conduct an uncertainty quantification (UQ)
analysis of the pinch-off process characterized by a pinch-off volume (𝑉𝑝𝑜) and time (𝑡𝑝𝑜).
We study these quantities of interest (QoIs) in the context of a slab burner setup. We have
developed a computationally expensive mathematical model that describes droplet formation
under external forcing and trained an inexpensive Gaussian Process surrogate of the model
to facilitate UQ. We use the pinch-off surrogate to forward propagate uncertainty of the
model inputs to the QoIs and conduct two studies: one with gravity present and one without
gravity effects. After forward-propagating the uncertainty of the inputs using the surrogate, we
concluded that both QoIs have right-skewed distributions, corresponding to larger probability
densities towards smaller pinch-off volumes and times. Specifically, for the pinch-off times, the
resulting distributions reflect the effect of gravity acting against droplet formation, resulting in
longer pinch-off times compared to the case where there is no gravity.

I. Nomenclature

𝐺 = Oxidizer mass flux
GaSP = Gaussian Stochastic Process
LHS = Latin Hypercube Sampling
MC = Monte-Carlo
PDFs = Probability Distribution Function(s)
𝑅 = Port radius
ℎ0 = Inlet radius of a forming droplet
𝑡𝑝𝑜 = Pinch-off time
𝑢𝑙0 = Inlet velocity of a forming droplet
UQ = Uncertainty Quantification
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Fig. 1 Schematic of the solid fuel-liquid oxidizer interface and droplet atomization in a hybrid rocket slab
burner setup [9].

𝑉𝑝𝑜 = Pinch-off volume
𝛾𝑙 = Surface tension of liquid-gas interface
𝜇𝑔 = Oxidizer dynamic viscosity
𝜈𝑔 = Oxidizer kinematic viscosity
𝜈𝑙 = Liquid fuel kinematic viscosity
𝜇𝑙 = Liquid fuel dynamic viscosity
𝜌𝑔 = Oxidizer density
𝜌𝑙 = Liquid fuel density
𝑝𝑔 = Combustion gas pressure

II. Introduction

Hybrid rocket motors are composed of the fuel and oxidizer in two different states, e.g., the fuel is solid and the
oxidizer is a gas/liquid. Operation of hybrid rockets offers advantages as they can provide high energy density

compared to solid bi-propellant systems, but with operational flexibility of liquid-only systems (e.g., shutoff, restart, less
complicated piping) [1]. In terms of solid fuels in hybrid systems, it has been experimentally shown that paraffin-based
fuels have higher regression rates compared to polymers [2]. The higher regression rates result from a different
combustion mechanism of higher alkane solid fuels like paraffin, namely, the formation of a liquid layer on the surface
which together with the formation of instabilities in the fuel-oxidizer interface [3] leads to entrainment of liquid droplets
into the main flow [4]. The combusting droplets result in higher motor output performance. The regression of the fuel
occurs both due to evaporation and atomization [4]. Here we focus on the droplet formation and entrainment and the
uncertainty associated with the droplet formation process. The two main quantities of interest (QoIs) in the droplet
pinch-off process are the pinch-off droplet volume (i.e., how large is the droplet) and the pinch-off time (i.e., how long it
takes for the droplet to pinch-off), and both control fuel availability and thereby combustion. Precise modeling of droplet
pinch-off is very challenging, but has been accomplished under certain assumptions (e.g., see [5] for a formulation on
gravity-driven droplets assuming constant shear force, [6] for a 1D formulation that can simulate up to the first droplet,
[7] for an axisymmetric non-linear atomization model, and [8] for a review). A schematic of the phenomena described
is shown in Fig. 1.

The goal of this paper is to quantify the uncertainty associated with droplet pinch-off and its quantities of interest
(QoIs): the pinch-off volume (𝑉𝑝𝑜) and time (𝑡𝑝𝑜). In recent work [5, 9] have developed a first principles mathematical
model and numerical solution methods that describe droplet formation under external forcing. The model simulates the
formation and pinch-off of a droplet from the liquid paraffin layer, under shearing effects of the fast moving gaseous
oxidizer. Understanding the uncertainty of droplet-pinch off will allow us to better account for the inherent variations in
the droplet sizes that are produced during combustion of paraffin-based fuels, and therefore characterize performance of
hybrid rocket motors more accurately. For this work, we focus on the atomization process as observed in a slab burner
setup [10, 11]. One challenge with uncertainty quantification (UQ) of models that simulate the solid-liquid interface and
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Fig. 2 Overview of the forward propagation of uncertainty using emulators such as Gaussian Processes (GaSP).

capture the atomization and pinch-off in detail is their computational cost. While costs allow simulating a few scenarios,
it is infeasible for UQ that requires tens if not hundreds of thousands model evaluations to capture the statistics of the
QoIs adequately. On a similar note, if one attempts to include detailed atomization models as components of a full
turbulent combustion flow solver, the computational cost of the coupling is infeasible since we have to generate a very
large number of droplets through these detailed atomization models. To work around these constraints, and before we
proceed with uncertainty quantification of the pinch-off process, we develop a surrogate model (or emulator) for the
shear-driven droplet pinch-off model. The surrogate used in this work is based on a Robust Gaussian Stochastic Process
(GaSP) [12]. We then use the pinch-off surrogate to propagate forward uncertainty in the model inputs to the QoIs (𝑉𝑝𝑜

and 𝑡𝑝𝑜) via Monte-Carlo (MC) sampling methods [13]. Fig. 2 presents a summary of the forward UQ process. “Input
quantities” are inputs and the main sources of uncertainty to the droplet pinch-off detailed model. “Parameters” are also
inputs to the model, but are not considered uncertain, they often reflect some properties that are required by the model,
but are fixed. Identification of inputs for UQ and parameters is often the result of a sensitivity calculation where only
the dominant influences are retained in the input set. “Quantities of Interest” (QoIs) are the observable model outputs
that we want to quantify the uncertainty of with a forward UQ process. Both the inputs and QoIs are represented as
random variables, and their uncertainty is represented and quantified via probability distribution functions (PDFs).

To build the GaSP surrogate, we first generate an ensemble of 512 simulations of the droplet pinch-off model that
cover appropriate ranges for the input quantities identified as the plausible and feasible values for those inputs including
extreme values as appropriate. The inputs are sampled using Latin Hypercube Sampling (LHS) to ensure full exploration
of the possible input space. After the surrogate is trained, we follow the approach demonstrated in Fig. 2 to estimate
the posterior distributions (PDFs) of the pinch-off volume 𝑉𝑝𝑜 and time 𝑡𝑝𝑜. Since the droplet atomization process is
affected by gravity, we carry out 2 case studies to account for different gravity environments: Case (A) corresponds to
a slab burner setup in the lab where the gravity term for the pinch-off model is equal to 𝑎 = −𝑔 = −9.81 𝑚

𝑠2 since the
droplets are formed against Earth’s gravity. Case (B) corresponds to the hypothetical scenario of a slab burner in space
where 𝑎 = 0, which would be applicable for a full hybrid rocket model.

The paper is organized as follows. Section II is an introduction to the droplet pinch-off phenomena in hybrid rocket
motors and serves as the motivation for the work. Section III describes the mathematical model for shear-driven droplet
pinch-off. Section IV presents the detailed process of inferring and computing the appropriate model inputs for the
simulation ensemble used for training the GaSP surrogate. Section V describes Gaussian Processes, their use for UQ,
and their training. Section VI includes the results and discussion. Section VII is the concluding section with directions
for future work.

III. Pinch-off Physics Model
The basics of the droplet formation process can be understood with the example of a pendant droplet under gravity.

Initially, there is a fluid column at the outlet of the nozzle. The fluid column becomes heavier by adding more fluid
and gravity starts to pull it down, creating an elongated structure. Meanwhile, surface tension tries to minimize the
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Table 1 Quantities of the shear-driven droplet pinch-off model.

Quantity Symbol Type Description
Oxidizer mass flux 𝐺 Input The oxidizer mass flux in the combustion chamber in 𝑘𝑔

𝑚2𝑠

Inlet Velocity 𝑢𝑙0 Input Inlet velocity of a liquid droplet in 𝑚/𝑠
Inlet Radius ℎ0 Input Inlet radius of a liquid droplet in 𝑚
Fuel Density 𝜌𝑙 Input Density of the liquid layer in 𝑘𝑔

𝑚3

Fuel Viscosity 𝜈𝑙 Input Kinematic Viscosity of the liquid layer in 𝑚2

𝑠

Fuel Surface Tension 𝛾𝑙 Input Surface tension of the liquid fuel – combustion gas interface in 𝑘𝑔

𝑠2

Port radius 𝑅 Parameter Port radius of the slab burner equal to 0.0254𝑚
Oxidizer Density 𝜌𝑔 Parameter Density of the oxidizer equal to 1 𝑘𝑔

𝑚3

Oxidizer Viscosity 𝜈𝑔 Parameter Kinematic Viscosity of the oxidizer equal to 1.5𝑒−5 𝑚2

𝑠

Pinch-off Volume 𝑉𝑝𝑜 QoI The volume of a droplet that pinched off in 𝑚3

Pinch-off Time 𝑡𝑝𝑜 QoI The time it took for a particular droplet to pinch-off in 𝑠

surface energy by changing the surface curvature. This process creates a neck with a rapidly decreasing radius. The
radius of the fluid column eventually goes to zero and the droplet separates from the original fluid. The mathematical
foundation for this process was laid in 1993 when Jens Eggers established a scaling solution of the axisymmetric fluid
neck that appears in a droplet breakup process [14]. Eggers and Dupont [6] developed a one-dimensional mathematical
model using the asymptotic expansion of the Navier-Stokes equations. Inspired by this previous work, we developed a
one-dimensional (1-D) model to simulate the droplet pinch-off in a quiescent environment with accurate curvature using
mixed finite element formulation and a self-consistent determination of droplet length [5].

In a hybrid rocket combustion process, the droplet formation is driven by a shear force from the fast-moving
combustion gas. We developed a novel mathematical model that is built using a pressure gradient-driven velocity
description of the gas flow velocity. The input quantities and parameters for the shear-driven droplet model are
summarized in Table 1.

The model equations are solved for 𝑢(𝑧, 𝑡) (the velocity of the droplet at the interface) and ℎ(𝑧, 𝑡) (the radius of the
droplet at the interface) and are given as follows.

𝜕ℎ

𝜕𝑡
+ 𝑢𝑙 𝜕ℎ

𝜕𝑧
+ ℎ

2
𝜕𝑢𝑙

𝜕𝑧
= 0 (1)

𝜕𝑢𝑙

𝜕𝑡
+ 𝑢𝑙 𝜕𝑢

𝑙

𝜕𝑧
+ 𝛾

𝑙

𝜌𝑙

𝜕K
𝜕𝑧

− 6𝜈𝑙

ℎ

𝜕𝑢𝑙

𝜕𝑧

𝜕ℎ

𝜕𝑧

(
1 + 𝜇

𝑔

𝜇𝑙

)
− 3𝜈𝑙

𝜕2𝑢𝑙

𝜕𝑧2

(
1 + 2

3
𝜇𝑔

𝜇𝑙

)
+ 2
𝜌𝑙

𝑑𝑝𝑔

𝑑𝑧
+ 1

2𝜌𝑙 ln(𝐶)
𝑑𝑝𝑔

𝑑𝑧
−
(
1 − 𝜌𝑔

𝜌𝑙

)
𝑔 = 0 (2)

where, the K represents the full curvature, which is given by

K =


1

ℎ

(
1 + 𝜕ℎ

𝜕𝑧

2
)1/2 −

𝜕2ℎ
𝜕𝑧2(

1 + 𝜕ℎ
𝜕𝑧

2
)3/2

 (3)

The pressure gradient term (𝑑𝑝𝑔/𝑑𝑧) represents the pressure drop per unit length in the combustion gas flow. The
parameter 𝐶 depicts a measure of the shear layer thickness at the interface. The pressure gradient can be found using the
oxidizer mass flux (𝐺) and the port radius (𝑅) using the following equation.

𝑑𝑝𝑔

𝑑𝑧
= −8𝜈𝑔𝐺

𝑅2 (4)
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Fig. 3 Approximation of the density of paraffin with temperature from experimental data.

These equations are solved using a mixed finite element approach in order to accurately capture the curvature. We
make use of adaptive mesh refinement, conservative Galerkin projection between moving meshes, and a self-consistent
algorithm to compute droplet length. The implementation makes use of the PETSc library [15, 16].

IV. Derivation of Input Parameters for the Gaussian Process
Some of the input quantities to the pinch-off model (Table 1) are not independent and are derived directly from the con-

ditions in the combustion chamber. More specifically, the temperature of the paraffin liquid layer𝑇 𝑙 defines the density 𝜌𝑙 ,
the viscosity 𝜈𝑙 , and the surface tension 𝛾𝑙 . The wavelength of the formed instability layer𝜆𝑙 defines the inlet radius ℎ0. The
corresponding regression rate for the oxidizer flux𝐺 and the wavelength 𝜆𝑙 both define the droplet formation inlet velocity
𝑢𝑙0. If we were to sample 𝜌𝑙 , 𝜈𝑙 , 𝛾𝑙 independently as inputs, we would be misrepresenting the correct material properties for
the paraffin fuel. For these reasons, the inputs to the GaSP surrogate are the underlying independent quantities for the pinch-
off model: the temperature of the liquid layer 𝑇 𝑙 , the wavelength of the formed instability 𝜆𝑙 , and the oxidizer flux 𝐺.

To derive the input quantities in Table 1 from the underlying independent quantities 𝑇 𝑙 , 𝜆𝑙 , 𝐺, we rely primarily on
experimental evidence from the literature with appropriate approximations. The main challenge with the process is that
experimental data cover a small range for the temperature (up to 135𝑜𝐶) of paraffin, and extrapolation is necessary for
our simulation ensemble (up to 270𝑜𝐶). Therefore, the following approximations are chosen based on the quality of
their extrapolations.

The density of the paraffin is linearly modeled to the temperature based on experimental data collected by [17] and
is shown in Fig. 3. The experimental data include measurements of the density of paraffin from 60𝑜𝐶 to 135𝑜𝐶.

𝜌𝑙 = −6.32𝑒−4𝑇 𝑙 + 0.82 (5)

With 𝑇 𝑙 measured in [𝑜𝐶] and 𝜌𝑙 in [ 𝑔

𝑐𝑚3 ].
The kinematic viscosity is modeled with a regression fit to a modified Arrhenius equation [18] as follows:

log( 𝜈𝑙

𝜈𝑙
𝑟𝑒 𝑓

) = 𝐴 + 𝐵
𝑇 𝑙
𝑟𝑒 𝑓

𝑇 𝑙
+ 𝐶 (

𝑇 𝑙
𝑟𝑒 𝑓

𝑇 𝑙
)2 + 𝐷 (

𝑇 𝑙
𝑟𝑒 𝑓

𝑇 𝑙
)3 (6)

Where𝑇 𝑙
𝑟𝑒 𝑓

= 373.15𝐾 (100𝑜𝐶), and 𝜈𝑙
𝑟𝑒 𝑓

= 4.12𝑚𝑚2

𝑠
the kinematic the viscosity of paraffin at the reference temperature.

Fig. 4 shows the results of the modified Arrhenius fit with the experimental data collected from [17]. The parameters of
the fit are: 𝐴 = 0, 𝐵 = −7.09, 𝐶 = 8.06, 𝐷 = −1.09.

The surface tension of the paraffin was studied thoroughly by [19] and [20] and they found a linear model of the
temperature is adequate:

𝛾𝑙 = −0.07𝑇 𝑙 + 35.2 (7)
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Fig. 4 Approximation of the kinematic viscosity of paraffin with temperature from experimental data using a
modified Arrhenius equation.

With 𝑇 𝑙 measured in [𝑜𝐶] and 𝛾𝑙 in [𝑚𝑁
𝑚

].
Apart from the material properties for the paraffin wax, the inlet radius ℎ0 and inlet velocity 𝑢𝑙0 for the pinch-off

model are dependent on the wavelength of the instability layer 𝜆𝑙 and/or the corresponding regression rate ¤𝑟 for a given
𝐺. Therefore, the inlet radius is defined as a fourth of the wavelength, assuming the crest of the wave to be a nucleation
site for a droplet to form:

ℎ0 =
𝜆𝑙

4
(8)

Assuming that the width of the slab burner is much smaller than its length (𝑊 << 𝐿), the instabilities are mostly
along its length 𝐿, and that the total volume of droplets exiting the liquid is equal to the volume regression of the solid
fuel, the inlet velocity can be derived as follows:

Droplet pinch-off volume rate = Volume regression rate

No. of pinch-off locations × 𝜋ℎ2
0𝑢

𝑙
0 = 𝑊𝐿 ¤𝑟(

𝐿

𝜆𝑙

)
× 𝜋ℎ2

0𝑢
𝑙
0 = 𝑊𝐿 ¤𝑟

𝑢𝑙0 =
16𝑊 ¤𝑟
𝜆𝑙𝜋

( ∵ ℎ0 = 𝜆𝑙

4 )

The regression rate ¤𝑟 for a given 𝐺 is approximated based on [21].
Given the aforementioned formulations, a design point 𝒙𝒅𝒊 = [𝑇 𝑙

𝑖
, 𝜆𝑙

𝑖
, 𝐺𝑖] in the 512 simulation ensemble has

an equivalent 𝒙𝒊𝒎 = [𝜌𝑙
𝑖
, 𝜈𝑙

𝑖
, 𝛾𝑙

𝑖
, ℎ0, 𝑢

𝑙
0, 𝐺𝑖] as input to the pinch-off model. To generate the ensemble, 𝑇 𝑙

𝑖
, 𝜆𝑙

𝑖
, 𝐺𝑖 are

sampled with Latin Hypercube Sampling (LHS). LHS is defined as a sampling method where each sample is the only
one in each axis-aligned hyperplane containing it. Fig. 5 shows the LHS for our case. After the ensemble simulations
are complete, we used the independent inputs 𝒙𝒅 = [𝒙𝒅1 , 𝒙

𝒅
2 , ..., 𝒙

𝒅
512] and corresponding pinch-off model outputs

𝒚𝒅 = [𝒚𝒅1 , 𝒚
𝒅
2 , ..., 𝒚

𝒅
512]

𝑇 to train the GaSP emulator as described in the following Section V.

V. Uncertainty Quantification with Gaussian Processes
In this section, we provide background into the GaSP used in this paper, and how these emulators are used for UQ.

Our approach here builds on a Gaussian process with robust parameter estimation, as developed by Gu et al. ([12]).
Gaussian processes for UQ are not new, but new adaptations and applications of them on aerospace problems continue
to appear in the literature. Recently for example, Fu et al. ([22]) developed a method for updating a GaSP model in the
augmented space of aleatory and epistemic parameters and demonstrated its use in the dynamic reliability analysis of a
satellite structure. Ignatyev et al. ([23]) presented a sparse online GaSP for flight control. GaSP are preferred to use as
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Fig. 5 Latin Hypercube Sampling (LHS) of inputs temperature (𝑇 𝑙
𝑖
), wavelength (𝜆𝑙

𝑖
), and oxidizer flux (𝐺𝑖) for

the 512 simulation ensemble to generate the training set for the surrogate model training.

emulators because they are fast, and therefore allow for UQ analyses of expensive computational models to be feasible.
As a point of comparison, one full simulation of one output from the detailed pinch-off model we used in this paper
takes on average 5-10 minutes, whereas the GaSP emulator 6.87𝜇𝑠. Training the GaSP takes about 0.15𝑠. GaSP are
also more explainable [24] and can successfully be used for global sensitivity analyses [25], unlike less interpretable
alternatives like neural nets.

GaSP assumes that the likelihood function of the QoI is a multivariate normal distribution (Eq. 9).

[𝑦(𝑥1), 𝑦(𝑥2), ..., 𝑦(𝑥𝑛)]𝑇 ≈ MN([𝜇(𝑥1), 𝜇(𝑥2), ..., 𝜇(𝑥𝑛)]𝑇 , 𝜎2𝑹) (9)

Where 𝑦(·) is the real-valued QoI output, 𝒙𝒅 ∈ X is the input vector of 𝑑-dimension (here 𝑑 = 3), 𝜇(·) is the mean
function, 𝜎2 is the unknown variance, and 𝑹 is the correlation matrix.

The mean function 𝜇(·) of a GaSP is typically modeled as a regression:

𝜇(𝒙) =
𝑞∑︁
𝑖=1

ℎ𝑖 (𝒙)𝜃𝑖 (10)

Where ℎ𝑖 (·) are the mean basis functions and 𝜃𝑖 the corresponding regression coefficients. It is often chosen, as we also
do in this paper, for the mean basis functions to be constant, i.e., ℎ𝑖 (𝒙) = 1.

The elements of the correlation matrix 𝑹 in eq. 9, are the values of a chosen correlation function between observation
vectors 𝒙𝒊 , 𝒙 𝒋 :

𝑐(𝒙𝒊 , 𝒙 𝒋) = Π𝑑
𝑘=1𝑐𝑘 (𝑥𝑖𝑘 , 𝑥 𝑗𝑘) (11)

Where 𝑐𝑘 is the output of the correlation function for the 𝑘 𝑡ℎ coordinate of the two input vectors. There are many
options for correlation functions and here we use the Matérn kernel because its smoothness can be tuned based on the
roughness parameter 𝛼, which allows for more flexibility [26]:

1
2𝛼−1Γ(𝛼)

( 𝑑
𝛾
)𝛼K𝛼 (

𝑑

𝛾
) (12)
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Algorithm 1: Estimation of the distribution of the QoIs of droplet pinch-off
Assume uniform distribution for:
𝑇 𝑙 ∼ U(𝑇𝑚𝑖𝑛 = 66𝑜𝐶,𝑇𝑚𝑎𝑥 = 270𝑜𝐶). 66𝑜𝐶 is the evaporation temperature, and 270𝑜𝐶 is the boiling
temperature.
𝜆𝑙 ∼ U(1/100, 1/300). These are estimates of the instability layer for a 10cm long slab burner.
𝐺 ∼ U(100, 300) 𝑘𝑔

𝑚2𝑠
. Oxidizer flux is picked as such to simulate a range where pinch-off effects are dominant.

While ∥
𝜎

2,𝑛𝑒𝑤
𝑉𝑝𝑜,𝑡𝑝𝑜

−𝜎
2,𝑜𝑙𝑑
𝑉𝑝𝑜,𝑡𝑝𝑜

𝜎
2,𝑜𝑙𝑑
𝑉𝑝𝑜,𝑡𝑝𝑜

∥ > 𝑒−5 do:

Step 1. Draw 𝑁 = 1000 samples from each of the input quantities to create design vectors
𝒙∗𝒊..𝑵 = [𝑇 𝑙∗

𝑖..𝑁
, 𝜆𝑙∗

𝑖..𝑁
, 𝐺∗

𝑖..𝑁
]

Step 2. Pass the new design vector to the GaSP to get the prediction 𝒚(𝑥∗
𝑖..𝑁

) = (𝑉∗
𝑝𝑜, 𝑡

∗
𝑝𝑜)𝑇𝑖..𝑁

Step 3. Append probability distributions 𝑝(𝑉𝑝𝑜) =+ (𝑉∗
𝑝𝑜)𝑖..𝑁 , and 𝑝(𝑡𝑝𝑜) =+ (𝑡∗𝑝𝑜)𝑖..𝑁

Step 4. Update variances 𝜎2,𝑛𝑒𝑤
𝑉𝑝𝑜

, 𝜎
2,𝑛𝑒𝑤
𝑡𝑝𝑜

End While

Where 0 < 𝛼 < 1 is the roughness parameter, 𝛾 is the range parameter, Γ(·) is the gamma function, K𝛼 (·) is the
modified Bessel function, and 𝑑 = |𝑥𝑖𝑘 , 𝑥 𝑗𝑘 |.

Overall, the unknown parameters in the GaSP formulation include the regression coefficients 𝜃, the variance 𝜎2, and
the range parameters from the kernel as a vector 𝜸. In this formulation, the marginal likelihood function after integrating
out (𝜃, 𝜎2) becomes:

L(𝑦𝑑 |𝜸) ∝ |𝑹 |−1/2 |𝒉𝑇 (𝒙𝑑)𝑹−1𝒉𝑇 (𝒙𝑑) |−1/2 (𝑆2)−( 𝑛−𝑞2 ) (13)

Where 𝑆2 = (𝒚𝒅)𝑇𝑸𝒚𝒅 , 𝑸 = 𝑹−1𝑷, and 𝑷 = 𝑰𝒏 − 𝒉(𝒙𝒅) [𝒉𝑇 (𝒙𝒅)𝑹−1𝒉(𝒙𝒅)]−1𝒉𝑇 (𝒙𝒅)𝑹−1. 𝑰𝒏 is the identity matrix
of size 𝑛 = 512, which is equal to the number of simulation observations.

The range parameters 𝛾 are then estimated by the modes of the marginal posterior distribution:

𝜸̂ = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝛾1 ,...,𝛾𝑝 )L(𝑦𝑑 |𝜸)𝜋(𝛾1, ..., 𝛾𝑝) (14)

To train the GaSP, we use the aforementioned design points (𝒙𝒅 = [𝒙𝒅1 , 𝒙
𝒅
2 , ..., 𝒙

𝒅
512]) and the outputs of the pinch-off

model at these points (𝒚𝒅 = [𝒚𝒅1 , 𝒚
𝒅
2 , ..., 𝒚

𝒅
512]

𝑇 ) for the parameter estimation described above. After training, the GaSP
can be used for prediction at a new point 𝒙∗ = [𝑇 𝑙∗, 𝜆𝑙∗, 𝐺∗].

To complete the forward UQ process, which will result in the statistics of the droplet pinch-off QoIs, we used a
Monte-Carlo sampling method after assuming uniform distribution for the inputs (Alg. 1). After the algorithm has
converged, we obtain the resulting probability distribution for the QoIs and therefore, any relevant statistics for the QoIs.

VI. Results and Discussion
After training the GaSP as described in Section V, we studied the overall quality of the surrogate model by

investigating the prediction accuracy at the training points for the two cases (Case A with gravity effects shown in Fig. 6
and Case B without gravity effects shown in Fig. 7).

For both cases we come up with similar conclusions. Firstly, we observe that the wavelength is the most important
parameter for defining the pinch-off volume as evident by the strong trend, which is expected since the wavelength
defines the droplet size directly based on our formulation. For the pinch-off time, we do observe a trend of larger
wavelengths corresponding to longer pinch-off times, which is expected given that these wavelengths mean larger (and
therefore heavier) droplets. However, for pinch-off time and unlike what we observed for the pinch-off volume, all 3
input parameters are important. Overall, the GaSP appears to be an acceptable surrogate for the underlying expensive
model, evident by the predictions being close to the actual simulation data with some error.

Then, we study the association between the prediction errors at training points as a function of each input variable
(Case A with gravity effects shown in Fig. 8 and Case B without gravity effects shown in Fig. 9). For both cases, we
observe that when predicting pinch-off volume, there is a trend of smaller wavelengths corresponding to higher errors
and all 5 outliers are in that range. Overall, the surrogate reliably predicts pinch-off volume within 10% accuracy, and
the errors appear uniformly distributed throughout temperature and oxidizer flux range. When predicting pinch-off
time, there is some concentration of outliers towards larger wavelengths, but overall the errors are uniformly distributed
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Fig. 6 Case A (with gravity effects): Overall, we find that GaSP produces a good surrogate model for both QoIs.
The pinch-off volume appears to be mostly defined by the wavelength as evident by the strong trend. For the
pinch-off time, all 3 inputs appear to be important.

Fig. 7 Case B (no gravity effects): Overall, we find that GaSP produces a good surrogate model for both QoIs.
Pinch-off volume appears to be mostly defined by the wavelength as evident by the strong trend. For the pinch-off
time, all 3 inputs appear to be important.

9

Remove


Watermark

Wondershare

PDFelement



Fig. 8 Case A (with gravity effects): Further investigation of percentage error between surrogate prediction
and simulation data, for different values of the inputs.
For pinch-off volume: the surrogate predicts within 10% percentage error apart from 5 outlier points at very low
wavelengths. In general, error distributions appear uniform throughout the range of temperatures and oxidizer
fluxes. There is a trend of larger errors at smaller wavelengths.
For pinch-off time: the majority of points are within 5% prediction accuracy with outliers at various ranges of
the inputs. Overall the errors appear uniformly distributed throughout the input range.

throughout the range of all input parameters. The surrogate (excluding 10 outlier points) reliably predicts pinch-off
time within 5% accuracy.

For completion and further comparison, we have randomly selected 12 training points and present the inputs,
surrogate prediction, the true values from simulation, and the corresponding for the two cases and QoIs. For Case A
with gravity effects see Table 4 for pinch-off volume and Table 5 for pinch-off time. For Case B without gravity effects
see Table 6 for pinch-off volume and Table 7 for pinch-off time.

Also, we carried out a validation study where we leave out 10 simulation points to estimate the accuracy of the
GaSP at these points that were not part of the training. The results of this process are shown in Table 2 and 3.

We conclude that overall, the surrogate models are adequate in this case and could be used as emulators of the true
physical model after investigating the outliers at very small wavelengths (for pinch-off volume) and larger wavelengths
(for pinch-off time).

Lastly, we present the resulting probability distributions for the QoIs under the two cases after using the GaSP
surrogate to forward propagate the uncertainty in the inputs (assumed uniform) as described in Alg. 1.

Fig. 10 and Fig. 11 correspond to case A with gravity effects. Both QoIs have right-skewed distributions, with
higher densities at smaller pinch-off volumes and times. Despite the uniformly sampled wavelength being the dominant
factor in pinch-off volume, we observe that model predictions concentrate towards smaller pinch-off volume areas. The
pinch-off time also has a higher probability density towards smaller times, which is also similar to what we observed
during the training of the model with our ensemble(i.e., fewer occurrences of long pinch-off times, mostly corresponding
to large wavelengths in low oxidizer flux environments).

Fig. 12 and Fig. 13 correspond to Case (B) without gravity effects. Both QoIs have right-skewed distributions, with
higher densities at smaller pinch-off volumes and times, similar to Case A. Comparing the two cases, the pinch-off
volume appears to be unaffected by gravity effects, given that it is mostly dependent on the wavelength (Fig. 14).
However, in the absence of gravity effects (Case B) we observe the pinch-off times are shorter (Fig. 15) than when
gravity effects are present (Case A), which is an expected result. Earth’s gravity acts against the direction where droplet
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Fig. 9 Case B (no gravity effects): Further investigation of percentage error between surrogate prediction and
simulation data, based on different values of the inputs. We make the same conclusions as Case A (see Fig. 8).

Table 2 Validation of GaSP for predicting pinch-off volume at 10 simulation points that are withheld from
training (data from Case B).

𝑇 𝑙 (𝑜𝐶) 𝜆𝑙 (𝑚) 𝐺
𝑘𝑔

𝑚2𝑠
GaSP (𝜇, 𝜎) (10−9𝑚3) True 𝑉𝑝𝑜 (10−9𝑚3) ∥𝑉̂𝑝𝑜−𝑉𝑝𝑜 ∥

𝑉𝑝𝑜
(%)

257.893 0.006 266.697 (9.321, 0.539) 9.32 0.011
117.192 0.007 144.728 (10.923, 0.312) 10.9 0.211
117.436 0.008 153.151 (19.507, 0.329) 19.3 1.073
179.064 0.004 263.955 (1.606, 0.674) 1.44 11.528
259.765 0.008 270.816 (15.367, 0.584) 15.2 1.099
176.091 0.007 237.369 (10.586, 0.296) 10.5 0.819
223.412 0.007 100.347 (10.363, 0.590) 10.1 2.604
216.960 0.006 156.580 (8.174, 0.323) 8.33 1.873
220.830 0.004 228.786 (1.739, 0.630) 1.57 10.764
100.137 0.004 107.616 (1.978, 1.009) 1.725 14.667
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Table 3 Validation of GaSP for predicting pinch-off time at 10 simulation points that are withheld from training
(data from Case B).

𝑇 𝑙 (𝑜𝐶) 𝜆𝑙 (𝑚) 𝐺
𝑘𝑔

𝑚2𝑠
GaSP (𝜇, 𝜎) (𝑚𝑠) True 𝑡𝑝𝑜 (𝑚𝑠)

∥𝑡𝑝𝑜−𝑡𝑝𝑜 ∥
𝑡𝑝𝑜

(%)
257.893 0.006 266.697 (3.969, 0.193) 3.830 3.629
117.192 0.007 144.728 (6.400, 0.116) 6.303 1.539
117.436 0.008 153.151 (8.149, 0.122) 8.030 1.482
179.064 0.004 263.955 (1.850, 0.253) 1.852 0.108
259.765 0.008 270.816 (4.963, 0.215) 4.877 1.763
176.091 0.007 237.369 (4.445, 0.107) 4.599 3.349
223.412 0.007 100.347 (7.074, 0.223) 7.902 10.478
216.960 0.006 156.580 (4.711, 0.114) 4.637 1.596
220.830 0.004 228.786 (1.861, 0.225) 1.792 3.850
100.137 0.004 107.616 (3.399, 0.379) 3.319 2.410

Table 4 Case A (with gravity effects): Quality of surrogate fit for pinch-off volume 𝑉𝑝𝑜 at 12 randomly selected
training points. The average percentage error among all training points is 2.266%.

𝑇 𝑙 (𝑜𝐶) 𝜆𝑙 (𝑚) 𝐺
𝑘𝑔

𝑚2𝑠
GaSP (𝜇, 𝜎) (10−9𝑚3) True 𝑉𝑝𝑜 (10−9𝑚3) ∥𝑉̂𝑝𝑜−𝑉𝑝𝑜 ∥

𝑉𝑝𝑜
(%)

117.192 0.006 144.72 (10.922, 0.309) 10.856 0.604
160.431 0.006 205.91 (6.8, 0.296) 6.972 2.462
164.056 0.008 286.38 (23.284, 0.464) 23.367 0.353
150.969 0.007 205.75 (14.217, 0.294) 13.868 2.519
212.952 0.005 275.64 (6.685, 0.386) 6.815 1.907
114.294 0.008 253.8 (17.885, 0.375) 17.581 1.725
211.382 0.008 189.3 (22.376, 0.314) 21.922 2.072
94.572 0.009 134.71 (30.556, 0.715) 31.382 2.633
193.253 0.005 116.62 (4.285, 0.547) 4.447 3.635
128.571 0.008 265.72 (22.987, 0.406) 22.917 0.307
87.893 0.004 104.84 (3.566, 0.736) 3.536 0.841
169.103 0.004 269.24 (2.176, 0.574) 2.094 3.954
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Table 5 Case A (with gravity effects): Quality of surrogate fit for pinch-off time 𝑡𝑝𝑜 at 12 randomly selected
training points. The average percentage error among all training points is 2.65%.

𝑇 𝑙 (𝑜𝐶) 𝜆𝑙 (𝑚) 𝐺
𝑘𝑔

𝑚2𝑠
GaSP (𝜇, 𝜎) (𝑚𝑠) True 𝑡𝑝𝑜 (𝑚𝑠)

∥𝑡𝑝𝑜−𝑡𝑝𝑜 ∥
𝑡𝑝𝑜

(%)
117.192 0.006 144.72 (6.537, 0.13) 6.498 0.602
160.431 0.006 205.91 (3.946, 0.12) 4.105 3.868
164.056 0.008 286.38 (6.4, 0.169) 6.393 0.111
150.969 0.007 205.75 (5.545, 0.116) 5.85 5.212
212.952 0.005 275.64 (3.495, 0.154) 3.434 1.781
114.294 0.008 253.8 (6.973, 0.139) 6.606 5.554
211.382 0.008 189.3 (7.048, 0.132) 7.086 0.539
94.572 0.009 134.71 (12.719, 0.308) 12.438 2.259
193.253 0.005 116.62 (4.497, 0.239) 4.485 0.268
128.571 0.008 265.72 (7.281, 0.141) 7.114 2.34
87.893 0.004 104.84 (5.647, 0.282) 5.421 4.17
169.103 0.004 269.24 (2.236, 0.221) 2.202 1.553

Table 6 Case B (no gravity effects): Quality of surrogate fit for pinch-off volume 𝑉𝑝𝑜 at 12 randomly selected
training points. The average percentage error among all training points is 2.265%.

𝑇 𝑙 (𝑜𝐶) 𝜆𝑙 (𝑚) 𝐺
𝑘𝑔

𝑚2𝑠
GaSP (𝜇, 𝜎) (10−9𝑚3) True 𝑉𝑝𝑜 (10−9𝑚3) ∥𝑉̂𝑝𝑜−𝑉𝑝𝑜 ∥

𝑉𝑝𝑜
(%)

259.764 0.007 270.816 (15.368, 0.556) 15.2 1.105
86.712 0.006 159.396 (9.978, 0.402) 9.94 0.382
164.056 0.008 286.383 (23.28, 0.463) 23.4 0.512
194.379 0.008 247.349 (18.62, 0.292) 18.299 1.754
77.942 0.007 208.632 (13.636, 0.49) 13.5 1.007
233.938 0.008 281.120 (21.6, 0.526) 21.6 0
236.524 0.009 139.178 (27.839, 0.533) 28.299 1.625
71.520 0.008 136.661 (18.948, 0.567) 18.699 1.331
93.367 0.007 128.939 (11.948, 0.411) 11.799 1.262
212.108 0.004 281.570 (3.215, 0.478) 3.309 2.84
242.150 0.005 245.403 (6.452, 0.378) 6.629 2.67
90.730 0.007 212.305 (13.573, 0.405) 13.5 0.54
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Table 7 Case B (no gravity effects): Quality of surrogate fit for pinch-off time 𝑡𝑝𝑜 at 12 randomly selected
training points. The average percentage error among all training points is 2.277%.

𝑇 𝑙 (𝑜𝐶) 𝜆𝑙 (𝑚) 𝐺
𝑘𝑔

𝑚2𝑠
GaSP (𝜇, 𝜎) (𝑚𝑠) True 𝑡𝑝𝑜 (𝑚𝑠)

∥𝑡𝑝𝑜−𝑡𝑝𝑜 ∥
𝑡𝑝𝑜

(%)
259.764 0.007 270.816 (4.949, 0.201) 4.877 1.476
86.712 0.006 159.396 (6.886, 0.141) 6.565 4.889
164.056 0.008 286.383 (6.227, 0.151) 6.244 0.272
194.379 0.008 247.349 (5.647, 0.11) 5.781 2.317
77.942 0.007 208.632 (7.863, 0.183) 8.217 4.308
233.938 0.008 281.12 (5.837, 0.187) 5.712 2.188
236.524 0.009 139.178 (9.116, 0.176) 8.649 5.399
71.520 0.008 136.661 (10.4, 0.201) 10.339 0.589
93.367 0.007 128.939 (7.849, 0.138) 7.575 3.617
212.108 0.004 281.57 (2.456, 0.157) 2.417 1.613
242.150 0.005 245.403 (3.53, 0.135) 3.436 2.735
90.730 0.007 212.305 (7.13, 0.141) 6.873 3.739

Fig. 10 Case A (with gravity effects): Probability
distribution of the pinch-off volume𝑉𝑝𝑜, which appears
to be a right-skewed distribution. Our further analysis
has revealed that despite a direct relationship between
wavelength and pinch-off time, uniformly sampling
inputs result in larger probability density towards
smaller pinch-off volumes.

Fig. 11 Case A (with gravity effects): Probability
distribution of the pinch-off time 𝑡𝑝𝑜, which appears
to be a right-skewed distribution. The result is in
agreement with our expectation, longer than 0.01𝑠
pinch-off times are a rarer occurrence, corresponding
to large wavelengths in low oxidizer flux environments
(smaller shear force).
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Fig. 12 Case B (no gravity effects): Probability dis-
tribution of the pinch-off volume 𝑉𝑝𝑜, which appears
to be a right-skewed distribution.

Fig. 13 Case B (no gravity effects): Probability dis-
tribution of the pinch-off time 𝑡𝑝𝑜, which appears to
be a right-skewed distribution.

formation and pinch-off occurs, resulting in the right-tail of the distribution reflecting longer pinch-off times compared
to the case where there is no gravity.

VII. Conclusions and Future Work
The goal of this paper was to quantify the uncertainty associated with droplet pinch-off and its quantities of interest

(QoIs): the pinch-off volume (𝑉𝑝𝑜) and time (𝑡𝑝𝑜) under different gravity conditions. Case A corresponded to the case
of a slab burner in the lab with Earth’s gravity acting against the droplet formation process, and Case B to a case in
space where gravity is not present. We presented a first principles mathematical model that describes droplet formation
under external forcing. The model simulates the formation and pinch-off of a droplet from the liquid paraffin layer,
under shearing effects of the fast moving combustion gas.

To complete the UQ analysis, we developed a Gaussian Process (GaSP) surrogate for the first principles model,
which we trained on a 512 simulation ensemble by appropriately sampling the underlying input variables: temperature
of the liquid layer 𝑇 𝑙 , wavelength of the instability 𝜆𝑙 , and oxidizer flux 𝐺. We concluded that the GaSP is an acceptable
surrogate for the pinch-off model and reliably predicts pinch-off volume within 10% accuracy and pinch-off time within
5% accuracy at the training points.

After forward-propagating the uncertainty of the inputs using the GaSP surrogate, we found the resulting probability
distributions for the QoIs. We concluded that both QoIs have right-skewed distributions, with higher densities at smaller
pinch-off volumes and times. Specifically, for the pinch-off times, the resulting distributions reflect the effect of gravity
acting against droplet formation, resulting in longer pinch-off times compared to the case where there is no gravity.

In future work, we aim to study whether approximating the pinch-off process with emulators as shown here, and
coupling their output with a turbulent combustion solver (i.e., treating the droplet forming and atomization stochastically),
yields equivalent results to modeling the droplet formation with detailed descriptions at the fuel-oxidizer interface layer,
within a combustion flow solver.
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