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Abstract: Structural system identification is critical in resilience assessments and structural health monitoring, especially following natural
hazards. Among the nonlinear structural behaviors, structural damping is a complex behavior that can be modeled as a multiphysics system
wherein the structure interacts with an external thermal bath and undergoes thermalization. In this paper, we propose a novel physics-informed
neural network approach for nonlinear structural system identification and demonstrate its application in multiphysics cases where the damping
term is governed by a separated dynamics equation. The proposed approach, called PIDynNet, improves the estimation of the parameters of
nonlinear structural systems by integrating auxiliary physics-based loss terms, one for the structural dynamics and one for the thermal transfer.
These physics-based loss terms form the overall loss function in addition to a supervised data-based loss term. To ensure effective learning during
the identification process, subsampling and early stopping strategies are developed. The proposed framework also has the generalization capabil-
ity to predict nonlinear responses for unseen ground excitations. Two numerical experiments of nonlinear systems are conducted to demonstrate
the comparative performance of PIDynNet. DOI: 10.1061/JENMDT.EMENG-7060. © 2023 American Society of Civil Engineers.

Introduction

Structural health monitoring plays a critical role in the life-cycle
assessment and reliability analysis of civil infrastructure systems.
Structural system identification (SSI) is one of the essential com-
ponents of structural health monitoring in which the parameters of
the mathematical model of the structural response are estimated.
These parameters typically include stiffness, damping, mode shapes,
frequencies, and the resulting identified model can predict the
structural response given any excitation (Sirca and Adeli 2012).
SSI can also be used to identify damages in infrastructure sys-
tems, such as buildings (Lee and Park 2011; Abazarsa et al. 2013),
bridges (Yang and Yang 2018; Eshkevari et al. 2020), and tunnels
(Alonso-Rodriguez et al. 2018). Numerous SSI algorithms have
been proposed over the past decades and can be categorized into
time domain versus frequency domain methods, and parametric
versus nonparametric approaches [for theoretical foundation and
comprehensive surveys (see Sirca and Adeli 2012)].

Structural damping modeling posed a challenge in structural dy-
namics. Specifically, the damping force is commonly expressed as
a function of the damping coefficient and velocity. However, the
damping coefficient also depends on complex mechanisms that are
not yet fully quantifiable in the design stage (Adhikari 2013). From
a mechanics perspective, damping is a consequence of energy dis-
sipation when a structural system undergoes vibration. The process
can also be considered as a thermalization process between a

structural system and an external bath. To provide an energy-based
characterization of this process, Louhghalam et al. (2018) formu-
lated the damping and energy dissipation in conjunction with the
Nosé-Hoover thermostat (Nosé 1984; Hoover 1985), originally ap-
plied in the field of molecular dynamics. The structural system ex-
changes heat with the external bath until they ultimately reach
thermal equilibrium. Furthermore, the heat exchange rate between
the structure and the external bath can be characterized as the
damping coefficient, which evolves through time (Louhghalam
et al. 2018). This effectively forms a handshake between classical
structure damping and the statistical thermalization model.

Time-domain SSI methods include restoring forces surface
(RFS), sparse identification of nonlinear dynamics (SINDy), and
Kalman Filter-based approach. RFS is a simple and efficient method
that approximates the surface with a polynomial series or parametric
expression for the nonlinear system (Villani et al. 2020). The draw-
back of the RFSmethod is that it requires more terms for nonsmooth
nonlinear cases (Ceravolo et al. 2013). The sparse identification
approach (SINDy) is a nonparametric identification approach that
approximates the dynamics equation by a sparse polynomial repre-
sentation using the least absolute shrinkage and selection operator
(LASSO) (Quade et al. 2018; Leylaz et al. 2021). SINDy is effective
and efficient in recovering the dynamics, but it requires the synchro-
nous data of displacement, velocity, and acceleration, which is a
strict requirement for measurement (Lai and Nagarajaiah 2019a, b).
The Kalman filter has also been widely used in system identification
and state estimation using incoming measurement data, state equa-
tions, and a noise model (Nguyen and Goulet 2018; Li and Wang
2020; Karimi et al. 2020).

The methods based on artificial neural networks have been re-
cently demonstrated as promising tools in many complex problems
(Gladstone et al. 2022; Liu and Meidani 2022). The data-driven
approaches have demonstrated the ability to capture underlying non-
linear input-output relationships for complex systems. Multilayer
perceptrons (MLP) have been applied in predicting responses
under static and dynamic loading (Eshkevari et al. 2021; Huang and
Chen 2021). Furthermore, the recurrent neural network methods,
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including gated recurrent units and long short-term memory, have
been particularly successful in nonlinear sequence-to-sequence
models and time series forecasting (Gonzalez and Yu 2018). Recent
studies show that recurrent neural network has the potential for
structural dynamic response modeling (Wang 2017; Zhang et al.
2019b).

In training of neural network models, insufficient training data
can pose a significant challenge. One approach to compensate for
data insufficiency is to integrate model-guided constraints. Specifi-
cally, the use of physics-based loss functions in the form of the
residual of the governing differential equations has been proposed
to enable the neural network to account for physical principles in
the modeling process. This idea was first introduced to apply neural
networks for initial value problems (Dissanayake and Phan-Thien
1994). The advances in computing hardware and optimization algo-
rithms have resulted in wide use of neural networks with physics-
based loss function. The physics-informed neural network (PINN)
in particular has been successfully applied to deterministic and ran-
dom differential equations (Lagaris et al. 1998; Raissi et al. 2017;
Nabian and Meidani 2018; Zhong and Meidani 2023). Nonetheless,
the applicability of PINN to high dimensional and high temporal
dependency problems remains an open question that requires further
investigation.

Recent studies (Zhang et al. 2019a, 2020; Eshkevari et al. 2021)
show that neural networks with physics-based loss have the poten-
tial to be effectively used for structural modeling and model up-
dating. These works did not treat structural system identification
and structural response prediction simultaneously under the same
framework, and the generalization capability of the trained neu-
ral network for structural response prediction was not studied. To
address the aforementioned issues, we developed PIDynNet, an
ODE-constrained neural network for nonlinear structure system
identification. Specifically, our approach integrates knowledge of
the governing differential equations into the network training pro-
cess, achieving comparable performance with fewer training data.
Our methodology also enables accurate prediction of structural
system response under unseen earthquake scenarios. For numeri-
cal demonstration, we apply PIDynNet to identify the parameters
of thermalizing structural systems under earthquake excitations.

The paper is organized as follows. Section “Methodology”
introduces the basic idea of physics-informed training of neural net-
works and structural system identification with the Nosé-Hoover
thermostat. The next section introduces the formulation of the
identification problem and implementation of PIDynNet and tech-
niques for fast and robust training. Section “Generalization” studies
the generalization capability of PIDynNet under unseen ground
excitations. Section “Numerical Results” presents two numerical
experiments for nonlinear structural system identification imposing
different types of nonlinearity with the Nosé-Hoover thermostat.
Section “Conclusions” includes a summary and conclusions about
the performance of the proposed method.

Methodology

This section includes a brief technical background of physics-
informed deep learning and system identification with the Nosé-
Hoover thermostat, followed by the introduction of the proposed
framework.

Physics-Informed Neural Network

In the context of PINN, the neural network is trained to approxi-
mate the solution of the ODE with given initial conditions. A gener-
ical ODE formulation can be given by

utðx; tÞ ¼ 0; t ∈ ½0;T� ⊆ T ; x ∈ Ω ⊆ Rd

uðx; 0Þ ¼ hðxÞ; x ∈ Ω ⊆ Rd ð1Þ
where uðx; tÞ = solution of the ODE with initial values hðxÞ, Ω,
and T represents the computational domain and time domain, and
x ∈ Rd and t ∈ R = spatial and temporal coordinates of the system,
respectively. This formulation can be easily generalized to higher-
order ODEs because Eq. (1) can be written as the system of first-
order ODEs. Besides, uðx; tÞ and hðxÞ can consist of both linear and
nonlinear terms. The solution uðx; tÞ is then approximated by a neu-
ral network uðx; t; θÞ with additional trainable parameters θ. Two
residual-based loss terms are formed based on Eq. (1) indicating
the discrepancy between the neural network prediction and the ob-
servation. These loss terms are given by

rN ðθÞ ¼
Z
x∈Ω

Z
t∈T

jutðx; t; θÞj2dtdx;

rI ðθÞ ¼ juðx; 0; θÞ − hðxÞj2 ð2Þ
where rN and rI = residuals of governing equations and initial con-
ditions, respectively. In numerical calculation of Eq. (2), collocation
points are sampled from the domain. The PINN ensures that the
neural network solution satisfies the underlying governing equations
throughout the domain by enforcing the governing physics equa-
tions at the collocation points. In that way, Eq. (2) is transformed
into a discrete form

rN ðθÞ ¼ 1

Nb

XNb

i¼1

jutðxi; ti; θÞj2;

rI ðθÞ ¼ juðx0; t0; θÞ − hðx0Þj2 ð3Þ

where Nb = number of collocation points, fxi; tigNb
i¼0 represents the

collocation point of uðx; tÞ, which are in the interior part of the do-
main and on the boundary. The network parameters θ can then be
estimated by minimizing the loss function as the weighted sum of
Eq. (3), which is expressed as follows

θ� ¼ argmin
θ

wN rN ðθÞ þ wIrI ðθÞ ð4Þ

where wN and wI denote the assigned weights for each loss term.
These weights can be considered as hyperparameters and calcu-
lated during the training. This loss function consists of derivatives
with respect to time which is an explicit input to the neural network
approximation of the response. Therefore, these derivatives can be
efficiently calculated using automatic differentiation (Raissi et al.
2017).

Structural System Identification with Nosé-Hoover
Thermostat

Structural system identification is an inverse problem with a for-
ward model typically in the form of a multiple degrees of freedom
(MDOF) linear dynamical systems with the following general form

MẍðtÞ þ KxðtÞ ¼ 0 ð5Þ
where M, K ∈ RN×N denote the mass and interstory stiffness ma-
trices, respectively; and xT ¼ ½x1; : : : ; xn�T and ẍT ¼ ½ẍ1; : : : ; ẍn�T
are displacement and acceleration vectors of the n-degree of free-
dom (DOF) system. For the sake of simplicity, let us consider a
single degree of freedom (SDOF) system in the following discus-
sion. From the Lagrangian mechanics point of view (Goncalves
Salsa et al. 2018), the Euler-Lagrange equation of motion for an
undamped SDOF system is given by
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− ∂
∂t

∂Ls

∂ẋ þ ∂Ls

∂x ¼ 0;

ẍðtÞ þ kxðtÞ ¼ 0 ð6Þ
where Ls ¼ 1

2
ẋ2 − 1

2
kx2 = Lagrangian function for the SDOF

system with unit mass. The formulation in Eq. (6) is for an NVE–
ensemble (Kraska 2006) where the mass is conserved (N is con-
stant), the system size is fixed (V is constant), and the energy is
conserved (E is constant). To consider damping in a structural sys-
tem, whose motion is governed by Eq. (6), we consider the system to
be in contact with an external bath at a prescribed temperature T∞.
The extended system with the external bath is an NVT-ensemble
(Labík and Smith 1994). The Lagrangian of the structure-bath sys-
tem, Lsys, is then given by Lsys ¼ Ls þ Lb. The Lagrangian of the
thermal bath, Lb, is the difference between the kinetic and potential
energy of the bath (Louhghalam et al. 2018). Using the Nosé-Hoover
thermostat, the Lagrangian of the bath thermalized at temperature
T∞, which is the difference between the bath’s kinetic energy and
potential energy, is given by

Lb ¼
1

2
Qc2 − RT∞ ln s ð7Þ

where Q and c = fictitious mass and velocity of the bath, and R =
product of the Boltzmann constant and the degree of freedom, s =
generalized coordinate that defines the stretch in the time scale
between the time of the bath and the structural time, i.e., s ¼ dτ=dt
(Louhghalam et al. 2018), and velocity, c, which measures the ther-
mal transfer between the structure and the external bath, is given by
c ¼ ds=dτ . We can then rewrite the Lagrangian of the structure-bath
system as follows

Lsys ¼
1

2
s2
�
dx
dτ

�
2 − 1

2
kx2 þ 1

2
Qc2 − RT∞ ln s ð8Þ

Using the structural and bath variables, x and s, the Euler-
Lagrange equations of the system are obtained as

− ∂
∂τ

∂Lsys

∂ðdx=dτÞ þ
∂Lsys

∂x ¼ 0;

− ∂
∂τ

∂Lsys

∂ðds=dτÞ þ
∂Lsys

∂s ¼ 0 ð9Þ

based on which, the governing equations of the structure-bath
system with the Nosé-Hoover thermostat are given by

ẍþ cẋþ kx ¼ 0;

ċ ¼ Γ

�
TðtÞ
T0

− T∞
T0

�
ð10Þ

where Γ ¼ RT0=Q represents the bath-to-water ratio and TðtÞ=T0 ¼
ẋ2=RT0 represents the temperature evolution, and c appears as the
damping coefficient in the structural dynamics equation. Eq. (10)
indicates that the structure-bath system introduces nonlinearity into
structural damping and that the structural damping itself evolves
through time and has its own dynamics.

PIDynNet for Nonlinear Structural System
Identification

We first formulate PIDynNet for dynamic systems with rate-
dependent behavior, which is particularly challenging for structural
system identification. This is because the rate-dependent variable is
typically unobserved. A general form for the governing equations
of a N-DOF dynamic system with rate-dependent behavior under
external ground motion is given by

MẍðtÞ þ fðΦðxðtÞÞ;ΨðzðtÞÞ; θpÞ ¼ −M~1ẍgðtÞ;
żðtÞ ¼ gðxðtÞ; zðtÞ; θzÞ;
xð0Þ ¼ x0; ẋð0Þ ¼ ẋ0; zð0Þ ¼ z0 ð11Þ

where M ∈ RN×N = mass matrix, x ∈ RN and z ∈ RN denote the
observable displacement and rate-dependent behavior, Φð·Þ∶RN →
RN and Ψð·Þ∶RN → RN = nonlinear functions mapping taking
displacement and rate-dependent behavior as inputs, respectively.
Also, fð·; ·Þ∶RN × RN → RN = nonlinear function mapping to re-
store force where θp ∈ RNp denotes the properties parameterized
fð·; ·Þ; gð·Þ∶RN → RN = nonlinear differential equation controlling
the rate-dependent and hysteretic behavior where θz ∈ RNz denotes
the system properties that parameterize gð·Þ. The rate-dependent
behavior z is generally a latent variable and cannot be measured
externally. The task of the nonlinear system identification problem
is to identify the unknown parameter θp and θz given the explicit
observations fx; ẋ; ẍg, and external ground motion ẍg.

The framework of the proposed PIDynNet is shown in Fig. 1. It
consists of a response prediction network (RPN) and a latent neural
network (LNN). The RPN and LNN are built with fully connected
networks with skip connections, trying to capture the underlying dy-
namics of function mappings Φ and Ψ, respectively. Without loss
of generality, RPN and LNN are chosen to be fully connected net-
works. Other networks such as recurrent neural network (Zhang et al.
2020) or one-dimensional convolutional neural network (1D-CNN)
(Kiranyaz et al. 2021) can also be used. The model parameters that
need to be identified are constructed as trainable parameters in the
neural networks, which could be optimized by minimizing the ob-
jective function.

The collocation points that serve as inputs for the RPN and LNN
are obtained by sampling from given time intervals and are repre-
sented as I ¼ ½t; ẍg� ∈ R2×1. The input consists of the sampled time
and the corresponding ground acceleration. The input is resampled
and fed into RPN and LNN for each iteration. The ground excitation
corresponding to the sampled time is computed by linear interpo-
lation from the available ground motion record. The task of RPN is
to predict the observable responses by mapping the input vector into
the output vector ~x ∈ RNo×1, e.g., ~x ¼ RPNðI; θRÞ, where θR ∈ RNR

and No ∈ R denote the number of trainable parameters and cardi-
nality of output in RPN. LNN is trained to predict the additional
latent variables in rate-dependent behavior ~z ∈ RNo×1, where the
predictions are ~z ¼ LNNðI; θLÞ, with θL ∈ RNL being the trainable
weights and biases in LNN. Furthermore, the outputs of RPN and
LNN are passed into a graph-based automatic differentiator by tak-
ing the derivativewith respect to time, denoted by S ¼ f ~̇x; ~̈x; ~̇zg. The
differentiation and the unknown structural parameters θp and θz are
then used to calculate the physics-based loss and latent physics-
based loss terms LN and LZ . The system identification is accom-
plished by learning the structural parameters (θp and θz) and neural
network parameters (θR and θL) simultaneously by solving the fol-
lowing optimization problem

θ�R; θ
�
L; θ

�
p; θ�z ¼ argmin

θR;θL;θp;θz

wNLN ðθR; θpÞ þ wSLSðθRÞ

þ wZLZðθR; θL; θzÞ ð12Þ

where wN and wS = weight parameters for the physics-based loss
LN and supervised loss LS , respectively. wZ = weight parameters
for the latent physics-based loss LL for rate-dependent dynamics.
For instance, the physics-based loss term LN for the SDOF system
governed by Eq. (9), where θp ¼ ½m; c; k�, is given by

© ASCE 04023079-3 J. Eng. Mech.
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LN ðθR; θpÞ ¼ EI∼pðIÞ½LN ðθR; θpjIÞ�

≈ XNb

i¼1

km ~̈xiðθRÞ þ c ~̇xiðθRÞ þ k ~xiðθRÞ þmẍigk22 ð13Þ

whereNb = batch size. This physics-based loss encourages the iden-
tified structural parameters and the predicted response to conform
simultaneously to the governing equations. The second term LS in
the loss function, which is the data-driven supervised loss function,
is given by

LSðθRÞ ¼ EI∼pðIÞ½LSðθRjx; ẋ; IÞ�

≈ XNb

i¼1

k ~xiðθRÞ − xik22 þ
XNb

i¼1

k ~̇xiðθRÞ − ẋik22 ð14Þ

This term measures the difference between the neural network
prediction and the ground truth signal and is a function of only the
RPN parameters θR. The third term LZ is given by

LZðθR; θL; θzÞ ¼
XNb

i¼1

k ~̇ziðθLÞ − gð ~xiðθRÞ; ~ziðθLÞ; θzÞk22 ð15Þ

where ~̇zi and other derivatives in gð·Þ, are calculated using auto-
matic differentiation of LNN.

The PIDynNet method is shown in Algorithm 1. The network
makes predictions on ~x and latent variable ~z separately, then aggre-
gates all the variables in the loss function with unknown parame-
ters. Instead of using data from the whole response time period,
PIDynNet seeks to minimize the loss function by sequentially train-
ing the network and structural parameters over consecutive subperi-
ods. Specifically, first, the subperiods are created by equally dividing
the whole response time period. Then, using data from each subper-
iod, PIDynNet is trained sequentially where the structural parameters
are calculated and serve as the initial values in the next subperiod.
Within each subperiod, there are variations in the calculated param-
eters over the iterations of the algorithm. As more subperiods are
used, one expects these variations to reduce. Therefore, after each
subperiod, we require the next structural parameters to be constrained
in the range fp� − 3σp; p� þ 3σpg, where p� = latest estimate for the
parameters, and σp = standard deviation of the parameters that are

estimated through iterations in the current subperiod (calculated us-
ing the second half of the iterations). The rationale behind the inclu-
sion of 3σp is to provide an approximation of the range of variation
for the state variables, which is adaptively updated during the iden-
tification process. This approach is similar to other adaptive updating
methods (Li and Wang 2020; Song et al. 2020), and the range of 3σp
was determined from a parametric study that considered both the
identification accuracy and computational time.

Algorithm 1.
PIDynNet algorithm for structural system identification
Input: x, ẋ, ẍ, ẍg, t;
Separate the time range into ft0; t1; : : : ; tng;
Initialize parameter θR, θp;
for i← 0 to n − 1 do

Generate the sampling pool Ti ⊂ ftjti ≤ t ≤ tiþ1g;
Update uncertainty constrain of θp and θz;
n← 0;
while n ≤ MaxIter do
Generate normalized sample ~T ⊂ Ti;
Compute the ground motion ~̈xg corresponding to ~T;
I← f ~T; ~̈xgg;
~x, ~̇x←RPNðI; θRÞ;
~z, ~̇z←LNNðI; θLÞ;
L←wNLN ðθR; θpÞ þ wSLSðθRÞ þ wZLZðθR; θL; θzÞ;
θR ← θR − αΔLθR ;
θL ← θL − αΔLθL ;
θp ← θp − αΔLθp ;
θz ← θz − αΔLθz ;
if θp and θz meets the stopping criteria then

Go to the next time range;
i← iþ 1;
break;

else
Continue;

Update θp and θz from the identification history;
Output: θR, θp

Furthermore, we implement a subsampling method to extract
samples from the sampling pool to control the size of collocation

Fig. 1. Framework of PIDynNet with RPN and LNN. RPN and LNN predict the response and latent response separately. The parameters of RPN and
LNN are optimized simultaneously. Three type of loss function are included: supervised lossLS, physics-based lossLN , and latent physics-based loss LZ.
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points. The subsampling method utilizes the equivalent amount of
data compared with other identification methods, for instance, the
Kalman filter. It circumvents the situation where the neural network
overuses the training data. To maintain the value of time on a regu-
lar scale, the time vector will be normalized after subsampling. The
parameters of the neural network and unknown structural param-
eters are optimized by stochastic gradient descent. During the iter-
ation in the training process, the value of identified parameters is
checked every Nc iteration, and an early stopping strategy is intro-
duced if the unknown parameters θp do not change beyond the
threshold ϵ for n successive evaluation, i.e.

kθN0þiNc
p − θN0

p k=kθN0
p k < ϵ ∀ i ¼ 1; : : : ; n ð16Þ

Generalization Capability of PIDynNet

After identifying the unknown structural model parameter using the
response time history to a given ground excitation, the neural net-
work may have the generalization capability to predict the response
time history under an unseen ground excitation. Instead of retrain-
ing the PIDynNet from scratch for a new ground motion, we just
retrain the RPN and LNN components for a few fine-tuning steps.
PIDynNet is expected to make an accurate prediction after fine-
tuning, during which the structural parameters, θp, and θz, are kept
fixed, and only the neural network parameters, θR, and θL, are re-
trained. The fine-tuning only uses physics-based loss functions with
the input ground excitations, which is given by

θ��R ; θ��L ¼ argmin
θR;θL

Lfine-tuningðθR; θL; θ�p; θ�zÞ

¼ argmin
θR;θL

wNLN ðθR; θ�pÞ þ wZLZðθR; θL; θ�zÞ ð17Þ

where the weight assignment is the same as Eq. (12). The number of
iterations in the fine-tuning phase is substantially smaller. In our
experiments, this number is more than one order of magnitude less
than the training iterations. The fine-tuning process of PIDynNet is
shown in Algorithm 2.

Algorithm 2.
PIDynNet algorithm for use in generalization cases
Input: ẍg, t, θR, θL, θ�p, θ�z ;
Separate the time range into ft0; t1; : : : ; tng;
for i← 0 to n − 1 do

Generate the sampling pool Ti ⊂ ftjti ≤ t ≤ tiþ1g;
n← 0;
while n ≤ MaxIter do

Generate normalized sample ~T ⊂ Ti;
Compute the ground motion ~̈xg corresponding to ~T;
I← f ~T; ~̈xgg;
~ΦðxÞ←RPNðI; θRÞ;
~ΨðzÞ←LNNðI; θLÞ;
L←Lfine-tuningðθR; θ�pÞ or Lfine-tuningðθR; θL; θ�p; θ�zÞ;
θR ← θR − αΔLθR ;
θL ← θL − αΔLθL ;

Output: θR, θp

Numerical Results

In this section, we consider problems with nonlinear damping
and inelasticity subject to ground excitation. In particular, two non-
linear systems are considered: the cubic stiffness system and the

Bouc-Wen hysteretic system. All experiments are performed using
an Intel E5-2620 CPU and 2 NVIDIATesla A100 GPUs. The neu-
ral network is implemented and trained using the PyTorch (Paszke
et al. 2019).

Cubic Stiffness System

The cubic stiffness system, commonly referred to as the Duffing
system, has been successfully used to model various physical proc-
esses such as stiffening springs, and beam buckling. In this case
study, we consider the Duffing oscillator where a cubic spring is
located between the first mass and the ground. In particular, the
Duffing oscillator can be interpreted as a forced oscillator with non-
linear (3rd order) elastic stiffeners whose governing equation for
story i in the MDOF with DOF equal to N is written as:

miẍi þ ciẋi − ciþ1ẋiþ1 þ kixi − kiþ1xiþ1 þ knlx3i ¼ −miẍg; i ¼ 1

miẍi − ciẋi−1 þ ðci þ ciþ1Þẋi − ciþ1ẋiþ1 − kixi−1
þ ðki þ kiþ1Þxi − kiþ1xiþ1 ¼ −miẍg; i ¼ 2; : : : ;N − 1

miẍi − ciẋi−1 þ ðci−1 þ ciÞẋi þ kixi−1
− ðki−1 þ kiÞxi ¼ −miẍg; i ¼ N

ċi ¼
Γ

RT0

ẋ2i ; i ¼ 1; : : : ;N ð18Þ

where mi, ci, ki ∈ R denote the mass, damping, and linear inter-
story stiffness of story i, respectively; and knl ∈ R represent the
cubic stiffness. The first three equations govern the dynamic re-
sponse of the MDOF system, and the last equation governs the
damping evolution within the Nosé-Hoover thermostat, where the
temperature ratio T∞=T0 between the bath and the structure is as-
sumed to be zero. This represents the evolution of the damping ratio
in time, due to the evolution of the kinetic energy of the structures
compared with its initial kinetic energy. If the cubic stiffness is
positive, stiffness hardening effects are present. On the contrary,
stiffness-softening effects are present if the cubic stiffness is neg-
ative. In our example, a 10-DOF system is considered, and the
structural parameters are set as mi ¼ 1 kg for i ¼ 1; : : : ; 10, ci ¼
1.5 N · s=m for i ¼ 1; : : : ; 4, ci=c1 ¼ 1.25 for i ¼ 5; : : : ; 7,
ci=c1 ¼ 3=2 for i ¼ 8; : : : ; 10, ki ¼ 35N=m for i ¼ 1; : : : ; 3,
ki=k1 ¼ 7=6 for i ¼ 4; : : : ; 6, ki=k1 ¼ 3=2 for i ¼ 7; : : : ; 10,
and knl ¼ 150 N=m3. The structure–to–bath mass ratio is captured
by the kinetic coefficient, set to be Γ=RT0 ¼ 10. The first-mode
period of the system is 1.19 s when the effect of the nonlinear term
is negligible. The Kobe Earthquake ground motion from the NGA-
West2 ground motion database is used as the excitation. A scaled
version of the 40-s ground motion record is adopted to let the re-
sponse spectrum match with the target spectrum within the range
of 0.2T1–1.5T1, where T1 is the first-mode structural period. The
training data, which includes displacement, velocity, and acceler-
ation time histories, are obtained from the third-order Runge-Kutta
method with a sampling frequency of 1,000 Hz. The signal-to-noise
ratio of the response time history is 7.28 dB. The original data are
reshaped to have input sizes of [40001; 10] to be compatible with
the data format for PIDynNet. The architecture of RPN and LNN
is a five-layer MLP with an embedding size of 64. The input and
output dimensions of RPN and LNN are two and 10, respectively.
The batch size Nb is chosen as 500 for the case study, which is
determined from the empirical parametric study to consider both
the identification accuracy and computational time. The weights for
supervised, physics-based, and latent physics-based losses are chosen
as 1, 1, and 10, respectively. The weight for latent physics-based loss
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is higher because there are no observed data for latent state variables,
which forces the LNN to identify the latent state variables.

Due to the unobservability of the latent variable, one can expect
the training of LNN and the identification to be slow. Thus, we
adopt a transfer learning-based initialization, where only the super-
vised loss is used, and the RPN is pretrained. After pretraining the
RPN, we transfer the parameters from RPN into the LNN. The in-
tuition behind this transfer learning-based initialization is that if
random initialization is implemented in LNN, latent variable pre-
diction is also random at the beginning of identification. In this
case, the range of derivatives of latent variables is uncertain or un-
bounded. Thus, the latent physics-based loss decreases very slowly,
which decelerates the identification process. Even though the LNN
still needs to be trained after adopting the transfer learning-based
initialization, the differentiation is now controlled in a bounded
range, which accelerates the identification process.

In the pretraining process and identification process, adaptive
momentum estimation (Adam) (Kingma and Ba 2014) is selected
as the optimizer with a learning rate of 0.001 and a decay rate of
0.1. The number of epochs for the pretraining process and identi-
fication process are 1,000 and 10,000, respectively. The sampling
pool size in each subperiod is 1,000. The parameters are evalu-
ated for Nes ¼ 200 iterations, and the default value of nes ¼ 3 is
chosen in the early stopping strategy. The early stopping threshold
is ε ¼ 10−4. All subsequent case studies use the same hyperpara-
meters as the cubic stiffness case.

The trainable parameters of RPN and LNN are randomly initial-
ized, which introduces uncertainty into the identification process.
Furthermore, the subsampling also introduces uncertainty because
different identification processes might use different sampling pools.
To quantify the uncertainty introduced by the aforementioned issues,
the PIDynNet algorithm is run 10 times with different initializations,
and the mean value and standard deviation over 10 evaluations are
calculated for the identification results of each unknown parameter.
The identification results from the PIDynNet are compared with
the ground truth and also with results from the unscented Kalman
filter (UKF) in Fig. 2 and Table 1. Table 1 compares the identified
modal parameters obtained from PIDyNet and UKF, showing that
PIDynNet offers relatively better prediction. Specifically, the aver-
age estimation error by PIDynNet is 0.94%, whereas the average
error by UKF is 2.94%. The largest average identification error of
PIDynNet is less than 2%. Except for the cubic stiffness term, the
largest standard deviation of error by PIDynNet is less than 1.5%,
indicating the variation introduced by randomized initialization and
subsampling is not significant.

Fig. 2 shows the identification history of PIDynNet for each
subperiod compared with UKF. Both the identification history of
each randomized initialization (gray curve) and the average of all
identification histories are reported. Figures in the left column in-
dicate that the convergence of PIDynNet is faster than that of UKF
for a number of parameters. Also, the figures on the right show
the advantage of PIDynNet in terms of relative errors for different
parameters. Both approaches were not able to identify the param-
eters in the first several seconds because the structural response is
small and has not exhibited nonlinear behaviors. When the system
starts to exhibit nonlinear behavior, the structural parameters in the
identification block of PIDynNet begin to converge to the ground
truth values that minimize the physics-informed loss.

Fig. 3 compares the hysteretic curve under noise-free condi-
tions. The hysteretic curve of PIDynNet is calculated based on
the identified response history and structural parameters. The gray
curves indicate the hysteretic loop of identification results with
different initializations, whereas the red curve is calculated using
the mean value of multiple identification results. To measure the

goodness-of-fit and degree of similarity of the hysteretic loop be-
tween the PIDynNet and the ground truth, we use the Pearson
product-moment correlation coefficient γ, which is given by

γ ¼
Pðxi − x̄Þðyi − ȳÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi − x̄Þ2 P ðyi − ȳÞ2

p ð19Þ

Fig. 2. Convergence of parameter updating and errors on 10-DOF
cubic stiffness system. Ten independent identifications are conducted
with different neural network randomized initialization. The gray curve
represents the identification history of each randomized initializa-
tion, and the red curve represents the average result of all randomized
initialization.

Table 1. The parameter identification and errors of 10-DOF cubic stiffness
system with noise-free data

Parameter
Ground
truth

UKF
value

UKF
error
(%)

PIDynNet
value

(mean� SD)

PIDynNet error
(mean� SD)

(%)

k1ðN=mÞ 35 36.06 3.04 34.33� 0.45 1.90� 1.28
k2ðN=mÞ 35 35.42 1.21 34.88� 0.16 0.34� 0.47
k3ðN=mÞ 35 35.56 1.60 34.74� 0.07 0.73� 0.21
k4ðN=mÞ 30 30.41 1.36 29.67� 0.13 1.09� 0.43
k5ðN=mÞ 30 30.42 1.39 29.59� 0.20 1.38� 0.66
k6ðN=mÞ 30 30.46 1.53 29.67� 0.19 1.10� 0.64
k7ðN=mÞ 25 25.40 1.60 24.80� 0.08 0.79� 0.34
k8ðN=mÞ 25 25.55 2.19 24.88� 0.06 0.48� 0.26
k9ðN=mÞ 25 25.87 3.49 24.87� 0.07 0.52� 0.29
k10ðN=mÞ 25 27.11 8.44 24.90� 0.07 0.41� 0.28
knlðN=m3Þ 150 140.11 6.59 147.55� 5.68 1.63� 3.79

Note: The mean and standard deviation of the PIDynNet identifications are
reported based on 10 different evaluations with different randomized
initializations.
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where fxigTi¼1 and fyigTi¼1 are time series that need to be measured.
The correlation coefficient between PIDynNet prediction and the
ground truth is 0.972. This indicates that the PIDynNet can both
captures the governing dynamics and unknown parameters, and re-
sponse predictions.

The sensitivity analysis of the subperiod is conducted to ac-
celerate the training while maintaining the same level of accuracy.

If the subperiod is set to be too short, more subperiods and more
computational time are required. On the other side, if the subperiod
is too long, the training needs more iterations to converge. The
proper subperiod length should be chosen to reduce the computa-
tional time. To conduct the sensitivity analysis, multiple experiments
are performed with different subperiods. In particular, the chosen
subperiod sizes include 2, 3, 5, 10 s. The PIDynNets with different
subperiod are used on the same response history to identify the un-
known parameter and latent state variable. The identification results
of PIDynNet with different subperiods are shown in Table 2. As the
table illustrates, the identification error increases when the subperiod
range is too short and too long. The average identification error is
minimized when the subperiod is 5 s. As a result, we chose the sub-
period of size 5 s in this and the subsequent case study.

To investigate the robustness of PIDynNet, multiple experiments
with different noise levels are conducted. Zero-mean Gaussian
noises are added to the original signal to investigate the robustness.
In the case study, the standard deviations of added Gaussian noise
are 2.5% and 5% of the standard deviation of the original signal.
The identification results under different noise levels are shown
in Table 3. With the noise level at 5%, the average error of PIDynNet
is only 1.42%, and the average error of UKF is 3.07%, which in-
dicates that PIDynNet can still produce relatively accurate results at
higher noise levels.

From the perspective of computational time, PIDynNet is tested
with cubic stiffness systems of different DOF compared with UKF.
The DOF is chosen as 2, 4, 8, 10, 16, 20, and 32. For each case, a
separated model is trained because the output dimension of RPN

Table 2. Error comparisons in the identified parameters of 10-DOF cubic stiffness system through PIDynNet with different subperiod durations

Parameter

T ¼ 2 s T ¼ 3 s T ¼ 5 s T ¼ 10 s

PIDynNet Error (%) PIDynNet Error (%) PIDynNet Error (%) PIDynNet Error (%)

k1ðN=mÞ 34.64 1.02 34.66 0.98 34.69 0.88 32.87 6.10
k2ðN=mÞ 34.57 1.24 34.78 0.63 34.77 0.65 34.35 1.86
k3ðN=mÞ 34.67 0.95 34.67 0.95 34.86 0.41 34.73 0.78
k4ðN=mÞ 29.63 1.24 29.65 1.18 29.86 0.45 29.51 1.63
k5ðN=mÞ 29.62 1.27 29.58 1.39 29.69 1.02 29.45 1.82
k6ðN=mÞ 29.60 1.35 29.54 1.54 29.91 0.29 29.58 1.41
k7ðN=mÞ 24.76 0.97 24.58 1.68 24.97 0.11 24.66 1.35
k8ðN=mÞ 24.81 0.76 24.65 1.42 24.99 0.04 24.63 1.50
k9ðN=mÞ 24.76 0.95 24.62 1.50 25.02 0.10 24.54 1.82
k10ðN=mÞ 24.78 0.89 24.70 1.18 24.95 0.21 25.06 0.23
knlðN=m3Þ 148.19 1.21 146.33 2.44 152.99 1.99 171.56 14.38
Average 1.08 1.35 0.56 2.99

Fig. 3. Hysteresis diagram at the first story for the identified cubic
stiffness system. The gray curve represents the identification history
of each randomized initialization, and the red curve represents the hys-
teresis diagram with the average of the identified parameters of all ran-
domized initialization.

Table 3. Comparison of computed parameters of the cubic stiffness model identified using UKF and PIDynNet with respect to the ground truth under different
noise levels

Parameter Ground truth

2.5% Noise 5% Noise

UKF Error (%) PIDynNet Error (%) UKF Error (%) PIDynNet Error (%)

k1ðN=mÞ 35.0 35.52 1.48 34.24 2.16 36.52 4.36 34.56 1.25
k2ðN=mÞ 35.0 35.44 1.25 34.52 1.38 35.57 1.64 34.69 0.90
k3ðN=mÞ 35.0 35.66 1.88 34.48 1.49 35.37 1.07 34.56 1.26
k4ðN=mÞ 30.0 30.16 0.52 29.43 1.89 30.53 1.76 29.42 1.94
k5ðN=mÞ 30.0 30.71 2.36 29.36 2.14 30.70 2.33 29.45 1.85
k6ðN=mÞ 30.0 29.66 1.13 29.56 1.46 29.95 0.18 29.55 1.51
k7ðN=mÞ 25.0 25.34 1.36 24.72 1.13 25.43 1.72 24.70 1.21
k8ðN=mÞ 25.0 25.53 2.13 24.69 1.23 26.13 4.51 24.74 1.04
k9ðN=mÞ 25.0 25.14 0.55 24.71 1.16 25.34 1.38 24.72 1.13
k10ðN=mÞ 25.0 26.04 4.14 24.84 0.64 26.71 6.84 24.94 0.26
knlðN=m3Þ 150.0 142.68 4.88 145.98 2.68 137.97 8.02 145.06 3.29
Average — — 1.97 — 1.58 — 3.07 — 1.42
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and LNN is changed. The average error of all the parameters is
reported in Fig. 4. When the system size is small, the computational
time of UKF is less than PIDynNet. However, when the DOF in-
creases to 10 or higher, PIDynNet is more computationally efficient
than UKF. When the degree of freedom is 10, the computational
time for PIDynNet is 432 s, whereas UKF takes 892 s. The average
error of PIDynNet is relatively smaller than UKF, which indicates
that PIDynNet is more accurate and computationally effective than
UKF on large systems.

As discussed in the section ”Generalization,” a trained PIDynNet
can also be used for structural response prediction, and here we seek
to assess the generalization capability of the response prediction part
of PIDynNet. To achieve this objective, the first step involves

gathering ground excitation records that have not been previously
used in the identification process. These excitations are generated
by selecting ground motions from NGA-West2 that match a target
response spectrum distribution (Baker and Lee 2018). After the
ground motion selection, the input with unseen ground motions
is fed into trained PIDynNet with fixed identified structural param-
eters according to Algorithm 2. The response time history of un-
seen ground excitation is calculated through fine-tuning, which is
shown in Fig. 5. The similarity of predicted responses between the
reference and the PIDynNet predictions is measured with the Pear-
son correlation coefficient according to Eq. (19). The histogram in
Fig. 6 presents the distribution of the correlation coefficient under
different ground motions. We observed that about 90% of the pre-
diction responses have a correlation coefficient γ ≥ 0.95. We can
conclude that for the unseen ground motions, the captured under-
lying dynamics by PIDynNet can still help predict accurate non-
linear responses without any training data from unseen records.

Bouc-Wen Hysteretic System

The Bouc-Wen model is one of the widely used hysteretic models
originally proposed by Bouc (1967) and later developed by Wen
(1976), which involves considering implicit, latent hysteretic dis-
placement to calculate the restoring force. The latent hysteretic dis-
placement in the restoring force has dynamics which is governed by

Fig. 4. Computational time and error analysis under different sizes of cubic stiffness system: (a) figure compares the running time between UKF and
PIDynNet under systems with different DOF; and (b) figure compares the average identification error between UKF and PIDynNet under systems
with different numbers of DOF.

Fig. 5. Prediction of first story nonlinear displacements of cubic stiff-
ness system under unseen ground motions.

Fig. 6. Distribution of correlation coefficient under unseen ground
motions. The ground motions are selected from NGA-West2, and the
number of ground motions is 30.
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a nonlinear differential equation that depends on the structure’s
velocity. The hysteretic dynamics equation of the Bouc-Wen model
for a N-DOF system can be expressed as:

miẍi þ ciẋi − ciþ1ẋiþ1 þ kizi − kiþ1ziþ1 ¼ −miẍg; i ¼ 1

miẍi − ciẋi−1 þ ðci þ ciþ1Þẋi − ciþ1ẋiþ1 − kizi−1
þ ðki þ kiþ1Þzi − kiþ1ziþ1 ¼ −miẍg; i ¼ 2; : : : ;N − 1

miẍi − ciẋi−1 þ ðci−1 þ ciÞẋi þ kizi−1
− ðki−1 þ kiÞzi ¼ −miẍg; i ¼ N

ċi ¼
Γ

RT0

ẋ2i ; i ¼ 1; : : : ;N

żi ¼ ẋi − βjẋijjzijn−1zi − γẋijzijn; i ¼ 1

żi ¼ ðẋi − ẋi−1Þ − βjẋi − ẋi−1jjzijn−1zi − γðẋi − ẋi−1Þjzijn;
i ¼ 2; : : : ;N ð20Þ

where N - number of stories, and mi, ci, ki lumped mass, damping,
and interstory stiffness at story i, respectively; xi and zi represent
the observed displacement and the latent hysteretic displacement,
respectively; and β, γ, and n = dimensionless parameters that con-
trol the hysteretic behavior and can generate a large variety of hys-
teretic loops.

PIDynNet is applied on the 3-DOF Bouc-Wen system. The nor-
malized masses are set as m1 ¼ m2 ¼ m3 ¼ 1 kg, and the struc-
tural parameters are c1 ¼ 1.5 N · s=m, c2=c1 ¼ 1.0, c3=c1 ¼
0.8, k1 ¼ 50 N=m, k2=k1 ¼ 0.9, and k3=k1 ¼ 0.9, and the system
parameters are set as β ¼ 2.0, γ ¼ 2.0, and n ¼ 1.0. The damping
history and latent hysteretic displacements are unobserved, and
thus are predicted through LNN. The initial structural displace-
ments and initial hysteretic displacements in each subperiod are
computed from its previous subperiod. The hyperparameters in
the identification process are identical to the previous case study.
Table 4 and Fig. 7 compare the accuracy using PIDynNet and UKF.
Similar to the same setting in the cubic stiffness model, 10 experi-
ments with different randomized initialized parameters are con-
ducted to quantify the uncertainty of randomness introduced by
random initialization and subsampling. The average identifica-
tion error by PIDynNet is 1.58 %, and the average error by UKF
is 4.53 %. Additionally, the largest estimation error by PIDynNet
is 2.98%, whereas the largest error by UKF is 12.86%, underscor-
ing the overall better performance of PIDynNet.

The hysteretic displacement z of the Bouc-Wen model could
be predicted from the LNN during the identification stage. Fig. 8
demonstrates the identification results of hidden displacement by
PIDynNet. Even though no training data and observation are avail-
able for the latent variable, the neural network can still successfully

identify and capture its dynamics. The average correlation coeffi-
cient of hysteretic displacement between PIDynNet identification
and the ground truth of all three stories is 0.992. Additionally, the
hysteretic diagram could be plotted with the identified displace-
ment and structural parameters. Fig. 9 plots the hysteretic diagram
of the identified Bouc-Wen model on the first floor. The correlation
coefficient between ground truth and PIDynNet identification re-
sult is 0.962. To assess the robustness of the model, similarly to the
previous case study, multiple experiments are conducted under dif-
ferent measurement noise levels. The identification results under
2.5% and 5% noise are shown in Table 5. The PIDynNet model has
yielded an average identification error of less than 1.5% at both
levels of noise. In contrast, the UKF model has exhibited a pre-
diction error greater than 50% as compared with PIDynNet. It in-
dicates that PIDynNet can offer relatively accurate identification
even for noisy data, with an average identification error lower than
that of UKF.

Table 4. Parameter identification of 3-DOF Bouc-Wen model with noise-
free data

Parameter
Ground
truth

UKF
value

UKF
error
(%)

PIDynNet
value

(mean� SD)

PIDynNet error
(mean� SD)

(%)

k1ðN=mÞ 50 51.77 3.54 49.21� 0.47 1.57� 0.94
k2ðN=mÞ 45 46.71 3.80 44.64� 0.52 0.79� 1.15
k3ðN=mÞ 45 46.83 4.08 45.08� 0.48 0.17� 1.06
β 2 2.26 12.86 1.97� 0.01 1.59� 0.57
γ 2 2.04 2.16 1.98� 0.01 1.17� 0.45
n 1 1.01 0.73 0.99� 0.04 0.22� 0.37

Note: The mean and standard deviation of the PIDynNet identification are
reported based on 10 different evaluations with different randomized
initializations.

Fig. 7. Convergence of parameter updating and error of 3-DOF
Bouc-Wen model using UKF and the PIDynNet. Ten independent iden-
tifications are conducted with different neural network randomized
initialization. The gray curve represents the identification history of each
randomized initialization, and the red curve represents the average result
of all randomized initialization.

Fig. 8. Identified hysteretic displacement response at three stories of
3-DOF Bouc-Wen model.
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Furthermore, to validate the generalization capability of the neu-
ral network unseen ground motions from NGA-West2 are used as
the excitation. Figs. 10 and 11 show the prediction of hysteric dis-
placement time history and hysteretic loop under unseen ground
motions. PIDynNet can produce an accurate prediction of the dis-
placement time history and the hysteretic behavior. The correlation
coefficients between the prediction and reference response are γ ¼
0.961. This shows that the response prediction part of PIDynNet
can be generalized as a forecast model to predict the structural re-
sponse to unseen earthquakes.

Discussion and Conclusion

In this paper, we proposed PIDynNet, a novel ODE-constrained
neural network structural identification framework, and showed how
it can be applied to multiphysics problems. One of the key strengths
of PIDynNet is its ability to handle complex and nonlinear structural
dynamics problems. In particular, we considered structural identifi-
cation problems where the structural damping was modeled as a
thermalization process between the structural system and the exter-
nal environmental bath. PIDynNet utilizes latent neural networks
that capture rate-dependent state variables or unobserved variables
and uses physics-based losses, which are derived from the governing
equation. Along with the supervised loss, the physics-based loss is
embedded in the overall loss function, which is considered an aux-
iliary constraint to enforce the architecture to capture the governing

dynamics. In the training phase, a subsampling strategy and an early
stopping criterion are used to accelerate learning and identification.
Using numerical examples, we showed that PIDynNet is effective in
identifying the parameters of nonlinear systems and outperforms the
state-of-the-art identification method. Two numerical case studies,
including the cubic stiffness model and the Bouc-Wen model, dem-
onstrate the effectiveness and efficiency of PIDynNet identification
performance. In addition to identification, we showed that PIDynNet
has generalization capability when used as a structural response pre-
diction for unseen earthquakes. We also demonstrated the robustness
of PIDynNet by studying cases where observations were noisy.
Whereas the proposed model has been tested only on numerical ex-
periments so far, it has the potential to be extended to real structures.
The ability to accurately identify the parameters of real structures is
important for structural health monitoring, which is critical for en-
suring the safety of civil infrastructure. Additionally, the extension of

Fig. 9. Identified hysteresis diagram at the first story of 3-DOF
Bouc-Wen model by PIDynNet. The gray curve represents the identi-
fication history of each randomized initialization, and the red curve
represents the hysteresis diagram with the average of the identified
parameters of all randomized initialization.

Table 5. Comparison of computed parameters of the Bouc-Wen model identified using UKF and PIDynNet with respect to the ground truth under different
noise levels

Parameter
Ground
truth

2.5% noise 5% noise

UKF Error (%) PIDynNet Error (%) UKF Error (%) PIDynNet Error (%)

k1ðN=mÞ 50.0 51.965 3.930 51.158 2.316 51.768 3.535 50.812 1.624
k2ðN=mÞ 45.0 46.980 4.399 45.961 2.135 46.711 3.803 45.679 1.509
k3ðN=mÞ 45.0 46.814 4.031 44.198 1.781 46.835 4.077 43.801 2.664
β 2.0 2.261 13.074 2.023 1.136 2.257 12.863 2.019 0.929
γ 2.0 2.011 0.526 2.008 0.385 2.043 2.156 2.011 0.566
n 1.0 0.998 0.202 0.993 0.680 1.007 0.727 0.997 0.284
Average — — 4.360 — 1.406 — 4.527 — 1.263

Fig. 10. Prediction of hysteresis displacement at the first story of
3-DOF Bouc-Wen model under unseen ground motions.
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the proposed framework to include nonuniform heat transfer would
provide insights into the applicability of more realistic situations.
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