

Draft genome sequence of a *Serratia marcescens* strain (PIC 3611) proficient at recalcitrant polysaccharide utilization

Jessica K. Novak and Jeffrey G. Gardner[#]

Running Title

S. marcescens recalcitrant polysaccharide utilization genome sequence

Keywords

Carbohydrate active enzyme, chitin, polysaccharide, *Serratia marcescens*

Author Affiliations

Department of Biological Sciences, University of Maryland - Baltimore County
Baltimore, Maryland, USA

#Correspondance

Jeffrey G. Gardner

Department of Biological Sciences

28 University of Maryland - Baltimore County

29 Email: jgardner@umbc.edu

30 Phone: 410-455-3613

31 Fax: 410-455-3875

32 ABSTRACT

33 *Serratia marcescens* is a Gram-negative bacterium found in terrestrial and aquatic
34 environments and studied for its polysaccharide utilization capabilities as part of larger
35 efforts to discover novel carbohydrate active enzymes. Here we announce the genome
36 sequence of an *S. marcescens* strain (PIC3611) able to utilize complex polysaccharide
37 substrates.

38

39 ANNOUNCEMENT

40 *Serratia marcescens* is a Gram-negative bacterium known for its red pigmentation and
41 potent degradation of marine polysaccharides, in particular chitin (1–3). The *S.*
42 *marcescens* strain PIC3611, previously available at Presque Isle Cultures (PIC), has a
43 robust ability to degrade various complex chitin-containing substrates (**Fig 1**). Despite
44 the closure of PIC, *S. marcescens* strain PIC3611 is still used as a model system (4–6),
45 which justifies genome sequencing.

46

47 *S. marcescens* PIC3611 was stored in 50% glycerol (w:v) at -80 °C. The strain was
48 grown to full density ($OD_{600} \cong 1.5$) in a MOPS-glucose (0.2% w:v) broth at 37 °C for 48
49 hours, and cell pellets were collected as previously described (7). The pellets were flash
50 frozen in a dry ice and 95% ethanol bath, and then stored at -80 °C before DNA
51 extraction and whole-genome sequencing at Azena (South Plainfield, NJ). Genomic
52 DNA was extracted with a PureLink™ Genomic DNA Mini-kit per manufacturer's
53 instructions (Invitrogen, Waltham, MA). Extracted DNA was quantified using a Qubit 2.0
54 fluorometer (Life Technologies, Carlsbad, CA). DNA library preparation used a
55 NEBNext Ultra DNA Library Preparation kit per manufacturer's instructions (NEB, Inc.,
56 Ipswich, MA). The adaptor-ligated DNA library was cleaned and validated using an
57 Agilent TapeStation (Santa Clara, CA) and quantified via a Qubit 2.0 Fluorometer with
58 Real-Time PCR (Applied Biosystems, Carlsbad, CA) analysis as needed. The DNA
59 library was added to a single flow cell and sequenced on an Illumina MiSeq instrument
60 using a 2 x 250 bp paired-end read configuration (San Diego, CA). For all software
61 referenced below, default parameters were used unless otherwise specified. MiSeq
62 Control Software (v2.6) was used for base-calling. The raw sequence files (.bcl)

63 generated from MiSeq were converted to FASTQ files and demultiplexed via Illumina's
64 bcl2fastq software (v2.17), and allowed one mismatch during index sequence
65 identification (7). Reads were trimmed using Trimmomatic (v0.36) with the following
66 parameters: LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15, and MINLEN:30 (8).
67 *De novo* genome assembly was completed with Spades *de novo* assembler (v3.10) with
68 the following parameters: -k 21,33,55,77,99,127 --careful (9), which produced 299
69 contigs with an N_{50} value of 899,515, an average Q-score of 35.22, and a minimum
70 length of 1000 bp (smaller contigs were manually filtered out). There were a total of
71 62,571,120 reads from the MiSeq, which corresponds to ~2,800x genome coverage.
72 Sequencing and assembly found the *S. marcescens* PIC3611 genome was 5,531,323 bp
73 and an average G+C content of 59%, both of which were in agreement with other
74 sequenced *S. marcescens* strains (10, 11). A nucleotide BLAST (12) of the 16S rDNA
75 gene returned *S. marcescens* strain JWCZ2 as the top hit with an E-value of 0.0 (100%
76 coverage; 100% identity) as further confirmation. Quality assessment of the genome
77 assembly used the getorf function in QUAST (v4.2) (13). Functional assessment used
78 the NCBI Prokaryotic Genome Annotation pipeline (PGAP; v6.0) (14). PGAP found
79 5,429 genes, of which 5,246 coded for proteins, 103 tRNAs, 47 pseudogenes, 18
80 ncRNAs, and 15 rRNAs.

81
82 **DATA AVAILABILITY**
83 The NCBI BioProject number for this genome is [PRJNA802829](#) and raw data files can
84 be obtained from the NCBI SRA using ID [SRX14024400](#). The genome sequence for *S.*
85 *marcescens* PIC3611 can be found in the NCBI Genbank using accession number
86 [JAKQYC000000000](#) and assembly number [ASM2260299v1](#).

87
88

89 ACKNOWLEDGEMENTS

90 This report is based upon work supported by the National Science Foundation under
91 Grant No. (DEB 2038304). The processing of *Serratia marcescens* PIC3611 samples,
92 library generation, genome sequencing, and QC analysis was done by the company
93 GeneWiz (Plainfield, NJ) on a fee-for-service basis. We wish to thank Dr. Robert M. Q.
94 Shanks who provided the PIC3611 strain of *S. marcescens* after unsuccessful attempts
95 to obtain the strain directly from Presque Isle Cultures.

96

97 Author contributions

98 **JKN** generated cell pellets for whole genome sequencing, performed the growth and
99 secretion assays, and contributed to writing the manuscript. **JGG** supervised all aspects
100 of the work and contributed to writing the manuscript. All authors read and approved the
101 final submitted version of the manuscript.

102

103 Disclaimer

104 This report was prepared as an account of work sponsored by an agency of the United
105 States Government. Neither the United States Government nor any agency thereof, nor
106 any of their employees, makes any warranty, expressed or implied, or assumes any
107 legal liability or responsibility for the accuracy, completeness, or usefulness of any
108 information, apparatus, product, or process disclosed, or represents that its use would
109 not infringe privately owned rights. Reference herein to any specific commercial
110 product, process, or service by trade name, trademark, manufacturer, or otherwise does
111 not necessarily constitute or imply its endorsement, recommendation, or favoring by the
112 United States Government or any agency thereof. The views and opinions of authors
113 expressed herein do not necessarily state or reflect those of the United States
114 Government or any agency thereof.

115

116 Compliance with ethical standards

117 This article does not contain any studies using human participants or live vertebrate
118 animals. In addition, the authors declare that they have no conflicts of interest.

119 REFERENCES

120 1. Haddix PL, Shanks RMQ. 2018. Prodigiosin pigment of *Serratia marcescens* is
121 associated with increased biomass production. *Arch Microbiol* 200:139–148.

122 2. Montreal J, Reese ET. 1969. The chitinase of *Serratia marcescens*. *Can J*
123 *Microbiol* 15:689–696.

124 3. Watanabe T, Kimura K, Sumiya T, Nikaidou N, Suzuki K, Suzuki M, Taiyoji M,
125 Ferrer S, Regue M. 1997. Genetic analysis of the chitinase system of *Serratia*
126 *marcescens* 2170. *J Bacteriol* 179:7111–7117.

127 4. Brothers KM, Callaghan JD, Stella NA, Bachinsky JM, Alhigaylan M, Lehner KL,
128 Franks JM, Lathrop KL, Collins E, Schmitt DM, Horzempa J, Shanks RMQ. 2019.
129 Blowing epithelial cell bubbles with GumB: ShIA-family pore-forming toxins induce
130 blebbing and rapid cellular death in corneal epithelial cells *PLoS Pathogens*.

131 5. Bhagwat A, Padalia U. 2020. Optimization of prodigiosin biosynthesis by *Serratia*
132 *marcescens* using unconventional bioresources. *J Genet Eng Biotechnol* 18.

133 6. Stella NA, Kalivoda EJ, O'Dee DM, Nau GJ, Shanks RMQ. 2008. Catabolite
134 repression control of flagellum production by *Serratia marcescens*. *Res Microbiol*
135 159:562–568.

136 7. Garcia CA, Narrett JA, Gardner JG. 2019. Complete Genome Sequences of
137 *Cellvibrio japonicus* Strains with Improved Growth When Using α -Diglucosides.
138 *Microbiol Resour Announc* 8:3–5.

139 8. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina
140 sequence data. *Bioinformatics* 30:2114–2120.

141 9. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. 2020. Using
142 SPAdes De Novo Assembler. *Curr Protoc Bioinforma* 70:1–29.

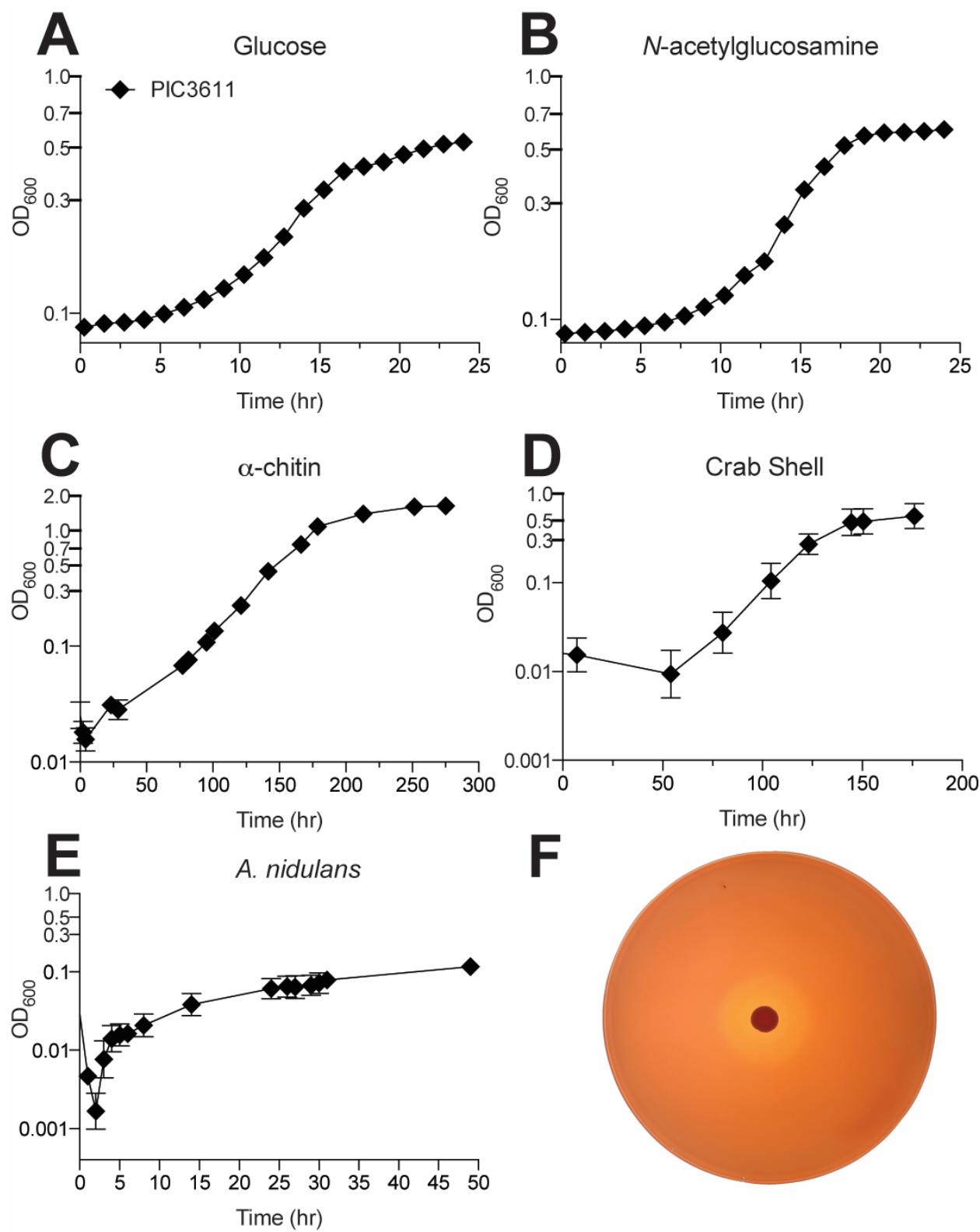
143 10. Chung WC, Chen LL, Lo WS, Kuo PA, Tu J, Kuo CH. 2013. Complete genome
144 sequence of *Serratia marcescens* WW4. *Genome Announc* 1:1–2.

145 11. Daligault HE, Davenport KW, Minogue TD, Broomall SM, Bruce DC, Chain PS,
146 Coyne SR, Gibbons HS, Jaissle J, Rosenzweig CN, Scholz M, Teshima H,
147 Johnson SL. 2018. Genome assembly of *Serratia marcescens* type strain ATCC
148 13880. *Genome Announc* 6:13880.

149 12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment

150 search tool. *J Mol Biol* 215:403–410.

151 13. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: Quality assessment
152 tool for genome assemblies. *Bioinformatics* 29:1072–1075.


153 14. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L,
154 Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome
155 annotation pipeline. *Nucleic Acids Res* 44:6614–6624.

156

157

158 **FIGURE LEGEND**

159 **Figure 1.** Growth phenotypes of *S. marcescens* PIC3611 on 0.2% (w:v) glucose (**A**),
160 0.25% (w:v) *N*-acetylglucosamine (**B**), 1% (w:v) α -chitin (**C**), 5% (w:v) fungal biomass
161 (*Apergillus nidulans*) (**D**), and 5% (w:v) crab shell (*Callinectes sapidus*) (**E**) as the sole
162 carbon sources. Chitinase secretion of *S. marcescens* PIC3611 on 0.5% (w:v) colloidal
163 chitin as the sole carbon source as shown by Congo Red staining (**F**). All media and
164 plates were made with MOPS minimal medium and supplemented with the designated
165 carbon source. All growth experiments were completed in biological triplicate with error
166 bars representing standard deviation, though some are too small to be observed.
167 Growth analyses on glucose and *N*-acetylglucosamine were completed in an EPOCH2
168 microplate reader (BioTek) while growth on α -chitin, fungal biomass, and crab shell
169 were measured using test tubes and a spectrophotometer (Milton Roy
170 Spec20D+)

