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ABSTRACT 32 

Serratia marcescens is a Gram-negative bacterium found in terrestrial and aquatic 33 

environments and studied for its polysaccharide utilization capabilities as part of larger 34 

efforts to discover novel carbohydrate active enzymes. Here we announce the genome 35 

sequence of an S. marcescens strain (PIC3611) able to utilize complex polysaccharide 36 

substrates. 37 

 38 

ANNOUNCEMENT 39 

Serratia marcescens is a Gram-negative bacterium known for its red pigmentation and 40 

potent degradation of marine polysaccharides, in particular chitin (1–3). The S. 41 

marcescens strain PIC3611, previously available at Presque Isle Cultures (PIC), has a 42 

robust ability to degrade various complex chitin-containing substrates (Fig 1). Despite 43 

the closure of PIC, S. marcescens strain PIC3611 is still used as a model system (4–6), 44 

which justifies genome sequencing. 45 

 46 

S. marcescens PIC3611 was stored in 50% glycerol (w:v)  at -80 OC. The strain was 47 

grown to full density (OD600 ≅ 1.5) in a MOPS-glucose (0.2% w:v) broth at 37 OC for 48 48 

hours, and cell pellets were collected as previously described (7). The pellets were flash 49 

frozen in a dry ice and 95% ethanol bath, and then stored at -80 OC before DNA 50 

extraction and whole-genome sequencing at Azenta (South Plainfield, NJ). Genomic 51 

DNA was extracted with a PureLinkTM Genomic DNA Mini-kit per manufacturer’s 52 

instructions (Invitrogen, Waltham, MA). Extracted DNA was quantified using a Qubit 2.0 53 

fluorometer (Life Technologies, Carlsbad, CA). DNA library preparation used a 54 

NEBNext Ultra DNA Library Preparation kit per manufacturer’s instructions (NEB, Inc., 55 

Ipswich, MA). The adaptor-ligated DNA library was cleaned and validated using an 56 

Agilent TapeStation (Santa Clara, CA) and quantified via a Qubit 2.0 Fluorometer with 57 

Real-Time PCR (Applied Biosystems, Carlsbad, CA) analysis as needed. The DNA 58 

library was added to a single flow cell and sequenced on an Illumina MiSeq instrument 59 

using a 2 x 250 bp paired-end read configuration (San Diego, CA). For all software 60 

referenced below, default parameters were used unless otherwise specified. MiSeq 61 

Control Software (v2.6) was used for base-calling. The raw sequence files (.bcl) 62 
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generated from MiSeq were converted to FASTQ files and demultiplexed via Illumina’s 63 

bcl2fastq software (v2.17), and allowed one mismatch during index sequence 64 

identification (7). Reads were trimmed using Trimmomatic (v0.36) with the following 65 

parameters: LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15, and MINLEN:30 (8). 66 

De novo genome assembly was completed with Spades de novo assembler (v3.10) with 67 

the following parameters: -k 21,33,55,77,99,127 --careful (9), which produced 299 68 

contigs with an N50 value of 899,515, an average Q-score of 35.22, and a minimum 69 

length of 1000 bp (smaller contigs were manually filtered out). There were a total of 70 

62,571,120 reads from the MiSeq, which corresponds to ~2,800x genome coverage. 71 

Sequencing and assembly found the S. marcesens PIC3611 genome was 5,531,323 bp 72 

and an average G+C content of 59%, both of which were in agreement with other 73 

sequenced S. marcescens strains (10, 11). A nucleotide BLAST (12) of the 16S rDNA 74 

gene returned S. marcescens strain JWCZ2 as the top hit with an E-value of 0.0 (100% 75 

coverage; 100% identity) as further confirmation. Quality assessment of the genome 76 

assembly used the getorf function in QUAST (v4.2) (13). Functional assessment used 77 

the NCBI Prokaryotic Genome Annotation pipeline (PGAP; v6.0) (14). PGAP found 78 

5,429 genes, of which 5,246 coded for proteins, 103 tRNAs, 47 pseudogenes, 18 79 

ncRNAs, and 15 rRNAs. 80 

 81 

DATA AVABILABILITY 82 

The NCBI BioProject number for this genome is PRJNA802829 and raw data files can 83 

be obtained from the NCBI SRA using ID SRX14024400. The genome sequence for S. 84 

marcescens PIC3611 can be found in the NCBI Genbank using accession number 85 

JAKQYC000000000 and assembly number ASM2260299v1. 86 

 87 

88 
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FIGURE LEGEND 158 

Figure 1.  Growth phenotypes of S. marcescens PIC3611 on 0.2% (w:v) glucose (A), 159 

0.25% (w:v) N-acetylglucosamine (B), 1% (w:v) α-chitin (C), 5% (w:v) fungal biomass 160 

(Apergillus nidulans) (D), and 5% (w:v) crab shell (Callinectes sapidus) (E) as the sole 161 

carbon sources. Chitinase secretion of S. marcescens PIC3611 on 0.5% (w:v) colloidal 162 

chitin as the sole carbon source as shown by Congo Red staining (F). All media and 163 

plates were made with MOPS minimal medium and supplemented with the designated 164 

carbon source. All growth experiments were completed in biological triplicate with error 165 

bars representing standard deviation, though some are too small to be observed. 166 

Growth analyses on glucose and N-acetylglucosamine were completed in an EPOCH2 167 

microplate reader (BioTek) while growth on α-chitin, fungal biomass, and crab shell 168 

were measured using test tubes and a spectrophotometer (Milton Roy 169 

Spec20D+)170 
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