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Purpose: The purpose of this study is to develop an accurate deep learning model capable of Inferior Vena Cava 
(IVC) filter segmentation from CT scans. The study does a comparative assessment of the impact of Residual 
Networks (ResNets) complemented with reduced convolutional layer depth and also analyzes the impact of 
using vision transformer architectures without performance degradation.
Materials and Methods: This experimental retrospective study on 84 CT scans consisting of 54618 slices involves 
design, implementation, and evaluation of segmentation algorithm which can be used to generate a clinical report 
for the presence of IVC filters on abdominal CT scans performed for any reason. Several variants of patch-based 
3D-Convolutional Neural Network (CNN) and the Swin UNet Transformer (Swin-UNETR) are used to retrieve 
the signature of IVC filters. The Dice Score is used as a metric to compare the performance of the segmentation 
models.
Results: Model trained on UNet variant using four ResNet layers showed a higher segmentation performance 
achieving median Dice = 0.92 [Interquartile range(IQR): 0.85, 0.93] compared to the plain UNet model with 
four layers having median Dice = 0.89 [IQR: 0.83, 0.92]. Segmentation results from ResNet with two layers 
achieved a median Dice = 0.93 [IQR: 0.87, 0.94] which was higher than the plain UNet model with two layers 
at median Dice = 0.87 [IQR: 0.77, 0.90]. Models trained using SWIN-based transformers performed significantly 
better in both training and validation datasets compared to the four CNN variants. The validation median Dice 
was highest in 4 layer Swin UNETR at 0.88 followed by 2 layer Swin UNETR at 0.85.
Conclusion: Utilization of vision based transformer Swin-UNETR results in segmentation output with both low 
bias and variance thereby solving a real-world problem within healthcare for advanced Artificial Intelligence 
(AI) image processing and recognition. The Swin UNETR will reduce the time spent manually tracking IVC filters 
by centralizing within the electronic health record. Link to GitHub repository.
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Inferior Vena Cava (IVC) filters are medical devices placed inside 
e IVC to reduce the morbidity and mortality of Venous Thromboem-
lism (VTE), specifically Pulmonary Embolism (PE). In the United 
ates, there are about 60,000 to 100,000 deaths per year due to VTE 
]. IVC filtration is an alternative option for managing these conditions 
hen anticoagulation, the first line treatment for VTE, cannot be used – 
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usually due to a high risk of major bleeding [15]. The National Hospital 
Discharge Survey recorded a total of 803,00 IVC filters placed between 
1985 to 2006, and about 259,000 filters were estimated to have been 
placed in 2012 [3].

Currently, the two types of IVC filters in use within the United 
States are permanent filters and retrievable filters. Retrievable filters 
originated in the 1990s and were designed with the option of being 
retrieved or left in place after the risk of PE subsided [18]. When re-
ailable online 18 August 2023
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g. 1. (a) An example of IVC filter used in patients. (b) shows a 3D rendering 
 CT scan with the position of IVC filter in the patient.

ieved at the appropriate time, retrievable IVC filters provide an added 
nefit of reducing the occurrence of long-term complications associ-
ed with their permanent counterpart [5,26]. While retrievable IVC 
ters were advertised with the option of having it remain in a pa-
nt’s body, serious long-term complications can occur. Leaving IVC 
ters in the body for more than 30 days increases the risk of Deep 
in Thrombosis (DVT), filter migration/embolization, filter fracture, 
d IVC perforation [10,4,2]. To address these potential complications, 
e FDA in 2010 recommended that physicians consider the removal 
 retrievable IVC filters as soon as the risk for PE subsided. Then, in 
14, the FDA issued guidance that, once the patient is no longer at risk 
r PE, the risks of keeping filters in the patient begin to outweigh the 
nefits between 29 to 54 days after implantation [8].
Although removal of these IVC filter is as simple as setting up an ap-
intment with the clinician within 30 days of the procedure, most stud-
s reported an average retrieval rate between 20% and 30% [28,23]. 
ere are three factors relating to the underwhelming rate of IVC filter 
trieval: (a) patient, (b) system, and (c) technical factors. Patient fac-
rs include socioeconomic status and medical comorbidities. Patients 
uld have limited resources, such as healthcare coverage and trans-
rtation, which results in poor clinical follow-up. Patients with many 
morbidities may have a higher periprocedural risk than the risks of 
aving the filter in place. The system factors consist of poor tracking 
d patient follow-up [8] mostly arising due to patients moving to a dif-
rent health care system due to job, education, and other factors and 
t transferring records from their past. The technical factors include 
e challenges encountered during retrievals, such as filter tilt or frag-
entation. An easy way to track these IVC filters at a much later date 
 to have a lightweight filter detection algorithm that runs whenever 
person gets a CT scan for other health reasons thereby uncovering 
tients who would otherwise be lost to follow-up. Fig. 1 shows an ex-
ple of IVC filter used during the procedure. With these three issues 
ading to underwhelming retrieval rates, it is crucial that the process of 
C tracking, and retrieval be integrated in the general CT scan pipeline 
 enable rapid diagnosis. The proposed research explores the develop-
ent of the segmentation algorithm which will be an integral part of 
is pipeline. There is also a need to ensure that this algorithm is very 
curate with significantly less false positives thereby saving valuable 
e for clinicians.
Research has already been conducted on classifying the type of IVC 
ter found in radiographs using CNNs in the context of medical image 
alysis. In one study, radiographic pictures that had been manually 
opped were utilized to classify 14 different IVC filters. This catego-
2

zation was carried out using a 50-layer ResNet architecture with a m
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odified final fully connected layer [24]. While this study was able to 
entify different types of IVC filters, it was not applicable to detecting 
C filters that were already inside the patients. Another study made 
 effort to improve on this strategy by developing an architecture that 
n categorize three different IVC filter kinds without requiring the ra-
ographs to be cropped and adjusted to be centered on the filter [25]. 
 image-processing-only approach created in the past by Dr. Wilden-
rg can identify a filter from CT images with sensitivity and specificity 
 roughly 80% each. However, this study used a smaller dataset and 
ostly relied on a linear approach rendering it impossible to adjust 
 the heterogenous nature of patient CT scans. Given the low preva-
nce of IVC filters in the general community and the daily average 
 400 suitable CT scans in Mayo Enterprise, this accuracy would put 
 unreasonably heavy burden on clinician analysis of the inevitable 
lse positive results. A workable answer is offered by an automated 
ep learning method, and to our knowledge, real-time IVC filter pres-
ce/absence detection from segmentation is an uncharted area.
The success of the transformer architecture in the domain of natural 

nguage processing (NLP) has led researchers to examine its appli-
bility in the domain of computer vision. The usage of attention in 
ansformer models allows it to learn long-range relationships between 
age elements that are difficult to attain through convolutions. The 
sion Transformer (ViT) is the first architecture that fully replaced 
nvolutions with the original transformer model and garnered signifi-
nt research attention [11,20]. However, inherent differences between 
LP and computer vision presents significant challenges in adapting 
e transformer architecture. Visual elements are more variable in scale 
mpared to words in a passage and images of higher resolution scales 
mplexity beyond what is expected in NLP. The Swin Transformer uti-
es shifting windows of attention and hierarchical layers to overcome 
ese differences and achieve strong performance while maintaining lin-
r computational complexity [21].
This research explores the feasibility and performance of a Swin 

Net transformer to create a segmentation backbone for identification 
d tracking of patients with IVC filters and facilitate timely removal, 
en when they transition their care into or throughout a health system. 
 addition to the reduction in complications related to unintentionally 
ng filter dwell times, timely removal will also result in shorter proce-
ral times during retrieval [9,12].

 Materials and methods

1. Image datasets

All data processing was retrospective and IRB-exempt in the need for 
nsent. Using an internal list of known patients with filters, a total of 
 CT scans having 54618 slices along the axial plane were provided by 
e health system. By eliminating any attached protected health infor-
ation (PHI), these scans were anonymized. To make the model scanner 
nostic, CT scans were purposely chosen from multiple different scan-
rs used throughout the health system. A distribution of Hounsfield 
nits (HU) for scans is shown in Fig. 2. Fig. 2a shows the slice thickness 
d Fig. 2b shows the slice spacing of all the CT scans used for analysis. 
ese metrics show the heterogeneity in the CT scans used for training 
e deep learning models. Fig. 2c shows how many slices are available 
r CT scan used in this research. The bar graphs in blue resemble a re-
ced version of CT scans to further remove slices not relevant to our 
search. This significantly reduces the dataset as it can be observed in 
e graph compared to the dimensions of the original scans shown in 
d. A further explanation about data preprocessing is discussed in the 
xt section.

2. Data preprocessing

All CT scans were spatially cropped before training to remove as 

uch background thereby giving the deep learning model less data for 
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g. 2. Metrics of 84 CT scans used for model training. (a) Shows the slice 
ickness in mm, (b) Shows the slice pixel spacing in mm, and (c) shows the 
mber of slices per scan before (blue) and after (red) application of 40 cm 
atial cropping. It is observed that the number of slices reduces significantly 
ereby removing redundant data.

Fig. 3. Slices (a) before and (b) after HU normalization.

tter performance. The 20% spatial cropping was done equally to each 
 the four edges. As a result, the original (512 × 512) CT scan slices 
ere downsized to (307 × 307) before resampling to (256 × 256). 
llowing the spatial cropping, slices of each CT scan 40 cm below the 
anial-most slice were discarded. A 40 cm cut-off was chosen because 
most all IVC filters are placed within the upper to mid abdomen. The 
t-off was able to decrease CT slices by 19.01% as shown in Fig. 2c 
llowed by resampling to have 128 slices per scan. The minimum and 
aximum HU for the study was set at 1 HU and 2500 HU respectively. 
ese scans were then normalized between 0 and 1 before deep learn-
g was applied. This hard normalization scheme works well for IVC 
ter detection as shown in [14]. The segmentation masks were created 
der the supervision of a board-certified radiologist. Fig. 3 shows a 
3

ice before and after application of hard normalization scheme. tu
Artificial Intelligence in the Life Sciences 4 (2023) 100084

The training set consisted of 58 CT scans of size (256 × 256 × 128). 
is was 70% of the total CT scans split randomly. These scans were 
rther split into smaller 3-D patches to be used in the training process. 
e selected patch size was (64 × 64 × 32). The desired patches were 
tained using a function view_as_blocks [29] made available through 
e Scikit-image library. A total of 3712 patches were generated along 
ith corresponding 3712 segmentation masks. The patches were split 
to IVC and non-IVC based on the presence of IVC filters in the mask. 
ence, a total of 3557 patches and masks were generated with no IVC 
ters while 155 patches and masks were generated with IVC filters for 
aining. The validation set consisted of 26 CT scans (30%) resulting in 
91 patches and masks with no IVC filters along with 73 patches and 
asks with IVC filters.
These IVC filter voxels constitute an extremely small portion of the 
tire volume of a CT scan. To remedy the bias towards background 
ta, the ratio of IVC filter patches to normal patches were restricted to 
1 while training. Thus, the total input size was 155 patches with IVC 
ters and 155 patches without IVC filters in each sub-epoch. A total of 
 sub-epochs were run each containing a different sequence of non-
C filter CT scan patches. This procedure was repeated for 25 epochs 
sulting in 550 total iterations thereby training on the entire dataset. 
 address overfitting that may arise for using same IVC patches, dy-
mic augmentation techniques such as random crop, zoom, flipping, 
d rotation were applied on 3D-patches.

3. Deep learning segmentation

3.1. UNet
UNet is a Convolutional Neural Network (CNN) designed for image 
gmentation [27]. CNNs have been extensively used in healthcare for 
eating diagnostic and prognostic models [1,32,19,13]. The underlying 
ructure is made up of two paths: a contracting path and an expan-
on path. The contracting path is an encoder consisting of convolution 
yers and pooling layers. The expansion path is a decoder consisting 
 transposed convolution layers and concatenations with the feature 
aps from the encoder. The 3D-UNet is an extension of the basic UNet 
ructure, allowing for 3D volumetric processing [7]. The 3D-UNet still 
nsists of the contraction and expansion paths, but all its convolution 
d pooling operations are implemented on a data cube instead of a 
 image. Changing the basic UNet model to fit 3D patches allows it 

 fully take advantage of spatially dependent features across all three 
mensions [30].

3.2. ResUNet
ResUNets are similar to UNet in terms of the UNet architecture. 

owever, the convolution blocks are replaced with residual blocks also 
own as ResNets [17]. ResNets use “skip connections” that allow infor-
ation to bypass one or more layers in the network, and thus propagate 
ore easily through the network. It is therefore able to address the van-
hing gradient problem during backpropagation for higher accuracy. A 
mparison of a convolution block and a ResNet block used in this re-
arch is shown in Fig. 5. The concatenation of the input with the output 
om convolution layers increased prediction performance of ResNets.

3.3. SWIN UNet
The Swin UNet Transformer (Swin UNETR) is a novel architecture 
at integrates the Swin Transformer into the traditional UNet convo-
tion architecture. Swin UNETR replaces the convolutional encoder 
 the original UNet design with the hierarchical design of the Swin 
ansformer. The outputs of the Swin Transformer are reconnected to 
e standard UNet decoder through residual block skip connections. 
in UNETR was originally designed for accurate and reproducible seg-
entation of brain tumors in MRI images [16]. The integration of the 
in Transformer into the UNet architecture was intended to allow the 
odel to learn long-range dependencies for accurate segmentation of 

mors that can appear in varying locations, shapes, and sizes. Model 
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Fig. 4. Overview of the entire training and validation process of the IVC prediction pipeline. After data normalization, slices are split into training and validation. 
This is followed by 3D-patch extraction. Patches are fed to 3D-UNet variants for IVC filter segmentation. Finally, image processing algorithms remove artefacts to 
classify a scan having IVC filter.
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g. 5. Overview of a) ResNet blocks and b) UNet blocks used in the training 
ocess.

as trained on the dataset provided as part of the 2021 Multi-modal 
ain Tumor Segmentation Challenge (BraTS). Compared to the win-
ng methodologies of the 2021 BraTS, Swin UNETR outperformed all 
her models with at least 0.7%, 0.6%, and 0.5% greater Dice scores 
 Enhancing Tumor (ET), Whole Tumor (WT), and Tumor Core (TC) 
mantic classes respectively. The model also achieved a highly com-
titive performance in the testing phase. Swin UNETR has also been 
plied to head and neck primary tumors and lymph node segmenta-
n using FGD-PET/CT images. 524 samples provided by the Head and 
4

eck Tumor (HECKTOR) 2022 challenge. Swin UNETR was pre-trained re
 5050 CT scans from publicly available datasets and transfer learned 
 the HECKTOR dataset. The model achieved an average of 0.707 and 
582 aggregated Dice similarity coefficient on the primary tumors and 
mph node gross tumor volume (GTV) respectively. The model per-
rmed at a more stable 0.633 (primary tumor) and 0.673 (lymph node) 
ring the evaluation on the test dataset [6]. In a comparative study 
nducted by Wei et al. [33], Swin UNETR was used among other ar-
itectures to evaluate the effectiveness of the proposed high-resolution 
in Transformer network. In the BraTS 2021 dataset, the Swin UN-
R achieved the best Hausdorff score amongst the transformer-based 
odels while maintaining a comparable DICE score. Swin UNETR also 
hieved the best average validation DICE performance of 0.787 on the 
CV multi-organ segmentation task. Maurya et al. [22] applied Swin 
NETR to the segmentation of pulmonary arteries using 200 samples 
om the PARSE 2022 Grand Challenge. All versions of the Swin UN-
R trained and examined performed better than all versions of UNet, 
though by a small margin of around 0.1 DICE score. The authors ob-
rved that Swin UNETR was able to better segment arterial branches 
hile UNet was able to better detect the main artery.

4. Training process

Fig. 4 summarizes this entire process. Six variants of UNet model 
ere implemented. The plain UNet models had two convolutional lay-
s per block. One model utilized four blocks and the other utilized two 
ocks. A similar two and four-block approach was used by replacing 
sic UNet blocks with ResNets. Batch normalization was applied to 
e output of the convolution layers. The output of the decoder blocks 
 fed through SoftMax activation to create a (64 × 64 × 32 × 2) patch 
ntaining prediction probabilities for background and IVC filter. The 

maining two UNet models utilized SWIN transformers.
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Fig. 6. Overview of SWIN-UNet used in the training process.

Fig. 7. Box plot showing the Dice Score distributions of the six model variants used in this study.

Table 1

Dice scores for different model variants derived from training and validation datasets.
UNet Simple ResNet blocks Swin UNETR

2 Layer 4 Layer 2 Layer 4 Layer 2 Layer 4 Layer

Train Median 0.87 0.89 0.93 0.92 0.89 0.90
IQR 0.77-0.90 0.83-0.92 0.87-0.94 0.85-0.93 0.84-0.91 0.87-0.92

Valid Median 0.6 0.61 0.64 0.63 0.85 0.88
IQR 0.55-0.63 0.58-0.63 0.62-0.65 0.59-0.65 0.75-0.89 0.79-0.92
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The two variants of the Swin UNETR architecture was implemented 
 allow for comparison with the four UNet variants. One utilizes the 
ur stage design detailed by Hatamizadeh et al. [16]. The model was 
plemented using the MONAI library, which limits the starting num-
r of filters to a multiple of 12. Therefore, both variants are imple-
ented with a starting feature size of 36 to best match the other UNet 
riant implementations. Each subsequent stage doubles the number of 
atures, to a max of 576 features in the 4-stage variant and 144 fea-
res in the 2-stage variant. The output of the Swin UNETR at each stage 
 fed into a residual block and then concatenated with the deconvolu-
5

n of the previous stage in a standard UNet decoder. The output of the in
odel is (64 x 64 x 32 x 2) patches of logits, which are then processed 
to inferences using the Argmax function. The 4-stage Swin UNETR 
ntained 35,072,552 trainable parameters and completed training in 4 
urs 40 minutes. The 2 stage Swin UNETR contained 6,612,392 train-
le parameters and completed training in 4 hours 28 minutes. The 
agram of the 4-stage Swin UNETR is shown in Fig. 6.

 Results

Application of different UNet variants showed significant variation 

 segmentation performance. Dice Score was used as the evaluation 
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Fig. 8. Overview of IVC Dice for training data for a) Two stage and b) Four stage models and validation data for c) Two stage and d) Four stage models.
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g. 9. Figure showing calculation of Dice Score adopted from image under a 
 BY-SA 4.0 license.

etric which is a common tool in computer vision tasks. In the con-
xt of image segmentation, Dice is used to assess the accuracy of a 
gmentation model’s predictions compared to the ground truth seg-
entation masks as shown in Fig. 9. The Dice score ranges from 0 to 
with 1 being a complete match between segmentation and ground 
uth. Considering the highly imbalanced nature of IVC pixels, the Dice 
ovided a simple and intuitive way to investigate the segmentation 
rformance across different models which would otherwise have been 
allenging if sensitivity and specificity were used due to such a large 
ount of background class. On the training dataset, the ResNet models 
rformed significantly better compared to plain UNet versions. ResNet 
ith two layers achieved the highest median Dice = 0.93 [IQR: 0.87, 
94] while the UNet model with two layers achieved the lowest me-
an Dice = 0.87 [IQR: 0.77, 0.90]. Results from applying the model 
 validation data also revealed a similar trend with ResNet variants 
6

hieving a higher accuracy. ResNet with two layers again achieved the du
ghest median Dice = 0.64 [IQR: 0.62, 0.65] while the UNet model 
ith two layers achieved the lowest median Dice = 0.60 [IQR: 0.55, 
63].
The 4-stage Swin UNETR training recorded a median Dice = 0.90 

QR: 0.87, 0.92]. The 2-stage Swin UNETR training recorded a me-
an Dice = 0.89 [IQR: 0.84, 0.91]. Compared to results from plain 
Net and UNet with ResNet blocks, it is noticeable that Swin UNETR 
aining returns a more consistent and better performance. The effects 
e also visible with Swin UNETR performance on validation datasets. 
e 4-stage model returns median Dice = 0.88 [IQR: 0.79, 0.92] and 
stage model reported median Dice = 0.85 [IQR: 0.75, 0.89]. These 
etrics are significantly higher than the other CNN-based implementa-
ns used earlier. The IVC Dice during training process along with the 
ice distributions is shown in Fig. 7 and summarized in Table 1.
The training accuracy for all six model variants for the desired num-
r of epochs were similar as noted in Fig. 8a and 8b. The graphs denote 
rformance of 2-layer compared to 4-layer models. The validation ac-
racy showed a major improvement while using Swin UNETR across 
th two and four stage models. The validation accuracy is shown in 
g. 8c and 8d. The loss values of the training and validation process 
e shown in Fig. 10.

 Discussion

A 3D-patch based segmentation solution has been proposed to IVC 
ter detection from CT scans along the axial plane. The use of 3D 
tches enabled retention of the spatial component of these filters 
ereby addressing the limitations of a 2D approach [14]. A smaller 
tch size also reduced the bias introduced by the sparseness of IVC fil-
rs in the data even though the scans used for training only constituted 
out 0.08% of IVC filters. The effect of this imbalance was further re-

ced during the training process when using a batch size with equal 
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Fig. 10. Overview of IVC Loss for training data for a) Two stage and b) Four stage models and validation data for c) Two stage and d) Four stage models.
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stribution of filter and no filter patches complemented with augmen-
tion during training process. Six different segmentation approaches 
ere compared to further ensure sparsity of filter signature would not 
pact the outcome. It was observed that using ResNet blocks outper-
rmed basic convolution blocks in segmentation. The ResNet blocks 
so reduced the rate of false-positives. These false positives were com-
ised mostly of bones and calcification around the spine. A probable 
use for this issue was the lack of skip-connections in basic UNet blocks 
at is present in ResNet. The skip connections enable a network to 
arn residual mappings, i.e., the difference between the input and out-
t. Since the IVC filter signature is very low compared to background, 
e kernels used in deep layers find it challenging to detect features 
ique to filters. As skip connections bring back the input from shallow 
yers, the network learns more easily the underlying filter patterns.
Another very significant outcome of this research indicates that deep 

arning models like Swin UNETR with transformers as their backbone 
e capable of maintaining consistent performance across both training 
d validation datasets. This is in contrast to CNN based segmenta-
n which shows a drop in segmentation accuracy for validation data. 
g. 11 further corroborates this fact. Notice how both Swin UNETR 
odels are able to conform the segmentation to the actual shape of 
e filters whereas the CNN-derived UNet and ResUNet models lose 
e edges during the segmentation process. Also, the four layer mod-
s achieve better segmentation hence less post-processing as their are 
 spurious segmentation regions around the scans.
A comparative layer analysis resulted in an optimized model with 
smaller footprint. While ResNet blocks increase the segmentation 
rformance, they also require more parameters. For example, the 
o layer ResNet model used in this research utilized around three 
illion parameters (3,155,810) compared to 53 million parameters 
3,154,018) in the four layer ResNet models. The Swin UNETR also 
7

ovided better results with very comparable usage of trainable param- re
ers. While these numbers are higher than traditional UNet variants at 
3 million (1,357,954) and 22 million (22,587,138) for two and four 
yer versions respectively, this research established that a transformer-
sed model with similar parameters as a CNN can produce better 
aining and validation outcomes when integrated with existing medi-
l information technology. The data augmentation strategies including 
ndom crop, random resize, random flip, and random rotation ensured 
at there was significant variation in the training dataset that consisted 
 155 IVC and 155 non-IVC patches per sub-epoch. This augmentation 
rategy ensures that even if the same image is used repeatedly, there 
e significant variations introduced by randomness thereby reducing 
y chances of any model overfitting.

 Conclusion

Future work in the IVC filter detection incorporates algorithm val-
ation and classification pipeline on an estimated 1,500 clinical CT 
ans predicted to be acquired from the health system. IVC filter pre-
ction pipeline will be developed to provide a report of the presence 
 an IVC filter and its location. After receiving a predicted 3D mask 
om the Swin UNETR model, the program will use scikit-image image 
ocessing library [31] in Python to analyze the region properties of 
e segmented image, removing any spurious segmentation that may 
casionally arise. The entire algorithm will be tested on clinical CT 
ans performed in the health system to assess performance, with man-
l review of each scan. This may be supplemented with additional 
own-positive test cases, separate from the training set, if the number 
 true-positive clinical cases is too low to generate meaningful statis-
s. The results and statistics from this review will then be used to 
train the Swin UNETR, if necessary, with rapid re-deployment and 

-evaluation.
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g. 11. Overview of results a) UNet 2 Layer b) UNet 4 layer, c) ResUNet 2 Layer, d) ResUNet 4 layer, e) Swin UNETR 2 Layer, and f) Swin UNETR 4 Layer. Results 
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dicate Swin UNETR 4 Layer is able to conform to the shape of IVC Filters without any false positives.
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