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Sub-inhibitory antibiotic treatment selects for enhanced 
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ABSTRACT Bacterial growth and metabolic rates are often closely related. However, 
under antibiotic selection, a paradox in this relationship arises: antibiotic efficacy 
decreases when bacteria are metabolically dormant, yet antibiotics select for resist­
ant cells that grow fastest during treatment. That is, antibiotic selection counterintui­
tively favors bacteria with fast growth but slow metabolism. Despite this apparent 
contradiction, antibiotic resistant cells have historically been characterized primarily 
in the context of growth, whereas the extent of analogous changes in metabolism 
is comparatively unknown. Here, we observed that previously evolved antibiotic-resist­
ant strains exhibited a unique relationship between growth and metabolism whereby 
nutrient utilization became more efficient, regardless of the growth rate. To better 
understand this unexpected phenomenon, we used a simplified model to simulate 
bacterial populations adapting to sub-inhibitory antibiotic selection through successive 
bottlenecking events. Simulations predicted that sub-inhibitory bactericidal antibiotic 
concentrations could select for enhanced metabolic efficiency, defined based on nutrient 
utilization: drug-adapted cells are able to achieve the same biomass while utilizing 
less substrate, even in the absence of treatment. Moreover, simulations predicted that 
restoring metabolic efficiency would re-sensitize resistant bacteria exhibiting metabolic-
dependent resistance; we confirmed this result using adaptive laboratory evolutions 
of Escherichia coli under carbenicillin treatment. Overall, these results indicate that 
metabolic efficiency is under direct selective pressure during antibiotic treatment and 
that differences in evolutionary context may determine both the efficacy of different 
antibiotics and corresponding re-sensitization approaches.

IMPORTANCE The sustained emergence of antibiotic-resistant pathogens combined 
with the stalled drug discovery pipelines highlights the critical need to better under­
stand the underlying evolution mechanisms of antibiotic resistance. To this end, bacterial 
growth and metabolic rates are often closely related, and resistant cells have historically 
been characterized exclusively in the context of growth. However, under antibiotic 
selection, antibiotics counterintuitively favor cells with fast growth, and slow metabo­
lism. Through an integrated approach of mathematical modeling and experiments, this 
study thereby addresses the significant knowledge gap of whether antibiotic selection 
drives changes in metabolism that complement, and/or act independently, of antibiotic 
resistance phenotypes.

KEYWORDS antibiotic selection, antibiotic resistance, metabolism, bacterial evolution, 
mathematical modeling

A ntibiotics bind to key microbial targets central to the bacterial cell replication cycle 
(1). In doing so, antibiotics can both inhibit bacterial growth (e.g., bacteriostatic) 

and result in active cell death (e.g., bactericidal) (2). As a result, genetic variants that are 
able to grow despite the presence of an antibiotic can become enriched (3, 4). Indeed, 
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cells that are able to proliferate at concentrations that are otherwise lethal are empirically 
classified as resistant. This status is traditionally determined based on an increase 
in the minimum inhibitory concentration (MIC) of the drug in question and can arise 
due to a variety of mechanisms. Common (referred to herein as “canonical”) resistance 
mechanisms generally act by minimizing the ability of an antibiotic to bind to its 
primary target (e.g., target modification, enzymatic inactivation, or altered transport [5–
7]). Despite the apparent specificity of these canonical resistance mechanisms, acquiring 
and maintaining antibiotic resistance is a complex evolutionary process that extends far 
beyond the individual drug target itself (8, 9).

In addition to their target-mediated effects, canonical resistance mechanisms can 
indirectly affect cellular metabolism, often imposing a fitness cost attributed to a 
metabolic burden (10, 11). For example, acquired amoxicillin resistance has been 
associated with alterations in core metabolic activity, including an increased glucose 
consumption rate that returned to baseline as cells adapted to the drug (12). The 
benefit of a particular resistance-conferring mutation can also be environment-depend­
ent (13). For example, the fitness cost of rifampicin resistance decreases in nutrient-poor 
conditions (14), suggesting that a metabolic component(s) underlies this phenotype. 
Finally, mutations in regulatory elements that affect antibiotic target or transport protein 
expression levels likely have broader global effects on cellular metabolism (15–17) due 
to non-specific changes in cellular resource allocation. Indeed, mutations in the multiple 
antibiotic resistance (mar) operon can result in the over-expression of efflux pumps and 
outer membrane porins. Bacteria must compensate for these overexpressed proteins in 
other aspects of metabolism since their production and utilization is an energy-demand­
ing process (18, 19). In all these cases, bacterial growth rates are often assumed to 
be a suitable overall proxy for an array of potentially complex and interrelated fitness 
determinants (20, 21) and are commonly used as a readout of these tradeoffs. For 
example, while resistance mechanisms are advantageous under antibiotic conditions 
(i.e., diverse mechanisms often lead to comparable growth rates in the face of selec­
tion pressure), in the absence of treatment, antibiotic-resistant mutants exhibit widely 
varying growth rates due to the broad range of consequences on underlying metabolic 
processes (10, 22).

In addition to the indirect effects of canonical antibiotic resistance on metabo­
lism, growing evidence demonstrates that bacterial metabolism directly contributes to 
antibiotic lethality(23–26). Bactericidal antibiotics have been shown to preferentially kill 
metabolically active cells (27), whereas they exhibit decreased efficacy against those 
that are metabolically dormant (e.g., persister cells [28, 29]). Intuitively, this suggests 
that antibiotics impose dual counteracting effects: they simultaneously enrich for clones 
with the fastest growth, yet lowest metabolic activity, within a population. That is, 
antibiotics may select for cells with enhanced metabolic efficiency, defined as the 
amount of energy required per unit biomass formed. This improved efficiency may 
itself serve as a resistance mechanism, regardless of whether it arises through canoni­
cal or non-canonical pathways. Consistent with this intuition, a recent study showed 
that adapting cells to heightened metabolic states under antibiotic treatment selected 
for variants with mutations in core metabolic genes. Their over-expression resulted in 
moderate changes in susceptibility despite no obvious growth defect, a hallmark of 
increased metabolic efficiency (30). However, whether, and to what extent, antibiotics 
directly select for changes in metabolism, separate from growth, is largely unknown 
since common growth-based characterization methods (e.g., fitness costs and MIC) do 
not separably capture changes in metabolism. Indeed, growth and metabolism are not 
universally strictly coupled; cells with a highly diverse range of metabolic efficiencies 
(31, 32) may still exhibit identical growth rates. Clearly, our understanding of metabolic 
adaptation during antibiotic selection, and its potential therapeutic implications, remains 
unclear (17).

In this work, we observed that previously characterized Escherichia coli strains 
expressing either canonical or metabolic antibiotic resistance mechanisms consistently 

Research Article Microbiology Spectrum

February 2024  Volume 12  Issue 2 10.1128/spectrum.03241-23 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/s
pe

ct
ru

m
 o

n 
01

 M
ar

ch
 2

02
4 

by
 1

60
.3

9.
12

5.
16

.

https://doi.org/10.1128/spectrum.03241-23


displayed increased metabolic efficiency compared to a control strain. Specifically, we 
focused on nutrient consumption as a proxy for metabolic efficiency since substrate 
consumption kinetics are widely established both computationally and experimentally, 
and the tradeoff between consumption rate and growth yield (e.g., metabolic efficiency) 
has been validated in the literature(33–35). Initial characterization suggested that 
antibiotics preferentially select for bacteria with enhanced metabolic efficiency, which 
may directly or indirectly contribute to resistance. To further explore this premise, we 
used a mathematical framework (36) to investigate the interdependent evolutionary 
dynamics of growth and metabolism in a microbial population under sub-inhibitory 
antibiotic selection. Sub-inhibitory concentrations are particularly relevant in this context 
since resistance evolves in increments often attributed to the stepwise accumulation 
of mutations (and/or acquisition of resistance genes) selected for under antibiotic 
treatment (37). In that way, even mutations with moderate effects on resistance levels, 
e.g. those in genes predominantly involved in core metabolism (henceforth referred to 
as “metabolic genes”), are important components of the antibiotic resistance landscape, 
potentially providing strains with competitive advantages over their more sensitive kin 
(38). Modeling results indicated that, under selection by sub-inhibitory bactericidal drug 
concentrations, antibiotic-adapted cells were able to grow more efficiently, highlighting 
that metabolism can act as a selective target independent of both growth and antibiotic 
mechanism. We validated these results using a 21-day adaptive laboratory evolution of 
E. coli in the presence of carbenicillin. We found that increased metabolic efficiency is 
responsible for increased resistance phenotypes against multiple bactericidal antibiotics. 
Moreover, restoring efficiency by modulating environmental nutrient conditions can 
reverse the resistance phenotype. Overall, these results demonstrate that metabolic 
selection plays a parallel, contributory role in the evolution of antibiotic resistance, and 
that targeting metabolic efficiency may serve as a viable strategy to restore antibiotic 
susceptibility in a clinical setting.

RESULTS

Adapted mutants exhibit enhanced metabolic efficiency

In a recent study, we independently adapted E. coli to three bactericidal drugs in 
glucose minimal media under increasingly heightened metabolic states (30). Specifically, 
bacteria were exposed to lethal drug concentrations under incrementally increasing 
temperatures, which served as a stimulator of global metabolic activity, over 10 days (30). 
Evolved populations acquired mutations in both canonical resistance pathways (e.g., 
drug targets, transporters), as well as core metabolic pathways (e.g., TCA cycle, nucleo­
tide metabolism). We overexpressed these mutant genes and their wild-type counter­
parts on a medium-copy plasmid to investigate their impact on antibiotic susceptibility. 
In all cases, strains overexpressing mutant variants of either canonical or metabolic 
genes exhibited modest MIC increases in response to at least one of the selection drugs 
used. Moreover, sucAM, a strain that overexpresses a mutant sucA gene, exhibited a 
lower respiration rate with minimal growth defects, initially suggesting this strain had 
increased metabolic efficiency.

To further investigate these mutations’ impact on metabolism, here, we quantified 
each strain’s growth and metabolic phenotype on minimal medium containing glucose 
as the predominant carbon source (Table S1). We use KS as our metric of metabolic 
efficiency(33–35), defined as the substrate concentration (i.e., glucose) giving rise to 
half the maximal cell density (or maximal growth rate); practically, KS is readily quan­
tified in vitro. We found that the control strain expressing the innocuous lacZ gene 
exhibited the greatest KS value, while all mutant strains had statistically equivalent 
(icdAM and ushAM) or lower KS values (P = 0.0134 one-way ANOVA, Table S2A for 
individually corrected P values) (Fig. 1A). This trend was independent of whether biomass 
or growth rate was used to calculate KS (Fig. S1A), or whether the maximum density 
was normalized across strains prior to quantification (Fig. S1B). Moreover, while three 
of the seven strains (icdAM, ushAM, sucAM) showed no statistical difference in growth 
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rate compared to the control, and the other four strains (gltDM, ompFM, acrDM, yidAM) 
exhibited modest but significant growth defects (P = 0.0079, one-way ANOVA, Table S2B 
for individually corrected P values). Interestingly, we observed a statistically significant 
linear relationship between maximum growth rate (P = 0.0029) (or bacterial density 
after 20 h, P = 0.0055) and KS, suggesting that even for strains with a growth defect, 
metabolic efficiency improved (Fig. 1B). Together, these results indicated that antibiotics 
selected for enhanced metabolic efficiency. However, these engineered, overexpressed 
mutant strains arose in response to lethal antibiotic selection and are not necessarily 
representative of those that arise following natural selection. Therefore, we next sought 
to determine whether antibiotics, indeed, select for enhanced metabolic efficiency under 
these more relevant conditions.

Model development and characterization

To investigate how antibiotic selection may affect cellular metabolism, we considered 
the key interactions between growth, metabolism, and antibiotic-mediated lethality (Fig. 
2A). We focused on a generic bactericidal antibiotic and assume that it both inhibits 
the growth of, and actively kills, cells (36). Critically, increased substrate consumption 
not only increases growth rate but also makes cells more susceptible to drug-mediated 
killing—as described above, substrate consumption is a proxy for cellular metabolism, 
which potentiates lethality (27).

To capture these core interactions, we modified a previously described population-
level model consisting of two ordinary differential equations that capture cell density (N) 
and substrate concentration (S) over time (36). For this full model, cells (N) grow accord­
ing to classical Monod kinetics, which are described by three parameters: the substrate 
conversion constant (which describes the fraction of substrate converted into biomass 
[e]), the maximal growth rate (μM), and the half-maximal substrate concentration (KS). We 
assume that the antibiotic (A) both inhibits the growth of, and actively kills, cells 
according to the IC50 concentration (k) and specific death rate (d), respectively (equa­
tions 1–4) (39, 40). However, we implement these mechanisms separately to allow for 
independent investigation of each: AEff1 depends only on A1, which corresponds strictly 
to growth inhibition; AEff2 depends only on A2, which corresponds strictly to cell killing. 
Consistent with literature, we further assume that only bactericidal action directly 
depends on the metabolic state of the cell (41), independent of growth. Accordingly, we 
scale the specific death rate d by substrate utilization/conversion—greater consumption, 
corresponding to heightened metabolic states, potentiates antibiotic-mediated cell 
death. Therefore, the full model corresponds to A = A1 = A2 since bactericidal drugs likely 

FIG 1 Mutant metabolic efficiency. (A) Mutant KS values. Half-maximal glucose concentration for all strains calculated based 

on density at 20 h of growth. For all strains, the KS value was statistically equivalent to or less than the control strain (lacZ). 

(B) Correlation between KS and maximum growth rate. Data from panel A plotted as a function of maximum growth rate (i.e., 

growth in 0.4% glucose). All error bars are standard deviations of three biological replicates.
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impact cells through both growth inhibition and lethality. Finally, ρ is a volumetric scalar 
that ensures modeling results remain consistent with experiments. This model frame­
work is consistent with previous experimental results, which have shown that antibiotics 
can affect growth (42), metabolism (25), and antibiotic-specific targets that lead to active 
cell death (5).

(1)dN
dt = 1 − NNm

NμM SS + KS
AEff1 − NAEff2

(2)dS
dt = − NμM eSS + KS (3)AEff1 = kA1 + k (4)AEff2 = dA2

eSρS + KS

Cells grow until all nutrients are exhausted, or space is limited, which is dictated 
by the initial substrate concentration (S0) and the carrying capacity of the environ­
ment (Nm), respectively. Intuitively, decreasing the half-maximal substrate concentra­
tion (KS) generally increases the final cell density since cells are able to grow faster 
while consuming lesser amounts of nutrients (43, 44). As expected, this relationship 
depends directly on the initial substrate concentration, S0, and inversely on the substrate 
conversion constant, e (Fig. 2B). Further, this relationship is dependent on the antibiotic 
concentration A (Fig. S1C); in the absence of antibiotic treatment, the relationship is 
independent of the intrinsic death rate (Fig. S1D).

Our model, as expected, predicts that cells exhibit an antibiotic-concentration-
dependent decrease in both observed growth rate and maximum density (Fig. 2C). 
Moreover, the combined interactions between e, μM, d, k, and KS determine the degree of 
antibiotic lethality (Fig. 2D). Combined, this model intuitively captures bacterial growth 

FIG 2 Mathematical model overview and characterization. (A) Model network schematic. Substrates are consumed by cells during growth, which results 

in increased cell density. Antibiotics function by directly inhibiting cellular growth, which reduces cell density, and by promoting cell death. Increasing 

substrate consumption not only increases growth rate but also makes cells more susceptible to antibiotics. As a result, antibiotics indirectly cause substrate 

consumption to inhibit growth (dotted lines). (B) Metabolic effects in the absence of antibiotics. Initial substrate concentration (S) and half-maximal substrate 

constant (KS) (left) or metabolic efficiency constant (e) (right) are varied 10-fold from their base value. In both panels, log cell density (N) is shown after 24 h. 

(C) Antibiotic-mediated growth inhibition. Temporal dynamics of cells in response to sub-inhibitory antibiotic treatment are shown for no antibiotics (A), and four 

representative increasing concentrations (blue, green, yellow, orange, red). (D) Parameter intuition under antibiotic treatment. Each of the five main parameters 

is perturbed ±20% from their base value. Final cell density (N) following 24 h of growth in the indicated antibiotic concentration (ATreat) is shown. Base value of 

parameters, and simulation conditions, is shown in Table S4.
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dynamics and resource utilization in the absence and presence of antibiotic treatment 
using a generic bactericidal drug.

Simulating adaptive evolution reveals that antibiotics select for enhanced 
metabolic efficiency

We next explored the interactions between growth and metabolism parameters, and 
their contribution to the adaptive evolution of antibiotic resistance. During positive 
selection (e.g., antibiotic exposure), evolution is primarily driven by the combination of 
mutations with small fitness effects that commonly occur and accumulate over time, 
along with larger fitness effects that occur less frequently, but can rapidly sweep through 
a population (45). To account for all these potential scenarios, we modified the model 
structure to allow for multiple emergent populations growing on the same nutrient 
source, thereby accounting for both evolutionary (e.g., mutations resulting in adaptive 
changes over time with the potential for strong selective sweeps) and ecological (e.g., 
competition and extinction of individual lineages) dynamics.

We simulated the evolution of a heterogenous population undergoing cyclical rounds 
of growth (seasons) separated by bottleneck events (Fig. 3A) based on randomized 
parameters drawn from distributions parameterized by experimental data (Fig. 3B) (see 
Materials and Methods). Evolutions were simulated over 3 weeks (21 seasons) at five 
sub-inhibitory antibiotic treatment concentrations (ATreat) including the antibiotic-free 
control (ATreat = 0). Under all ATreat, populations reached approximately the same, or 
greater, density by the last season relative to day 0 (Fig. 3C). Within each population, 
fewer mutants remained for increasingly higher ATreat (Fig. 3D). This is consistent with the 
known higher likelihood of enriching for rare mutants with increasing selection strength 
(46). When ATreat exceeds the adaptation limit, however, no mutants are selected for 
and the entire population is eliminated (Fig. S1E). The populations evolved under the 
highest sub-inhibitory antibiotic concentration (ATreat = 4) exhibited modestly shifted 
dose responses compared to no antibiotic (ATreat = 0), confirming the reduction in drug 
sensitivity (Fig. 3E).

ATreat-dependent changes in post-evolution parameter distributions revealed the 
underlying selection targets for these phenotypic shifts (Fig. 3F). In particular, whereas 
maximum growth rate (μM) decreased modestly, KS decreased monotonically (P < 1e−4), 
with increasing ATreat, compared to the untreated control (ATreat = 0). Additionally, cells 
acquired antibiotic resistance via canonical pathways, as confirmed by a significant 
monotonic increase and decrease in the average IC50 (k) and death rate (d) of evolved 
populations, respectively (see Table S3 for corrected P values). This increase appeared 
biphasic, and ultimately changes in metabolism were outweighed by canonical resist­
ance (i.e., k and d) once ATreat was sufficiently high.

To confirm that changes in KS indicate an increase in metabolic efficiency, we defined 
various KS-independent metrics of metabolic efficiency that capture biomass per unit 
substrate (see Materials and Methods) and investigated the relationships between each 
metric and KS in the absence of evolution. We found that KS was strongly inversely 
correlated with each metabolic efficiency metric, with a Pearson correlation coeffi-
cient >−0.97016 in all cases (Fig. S2A through H). Moreover, since in vitro KS values 
inherently reflect the impact of underlying e, we expect strains with higher e values to 
evolve towards lower KS in a given set of nutrient conditions. Indeed, the two parameters 
also exhibited a strong inverse correlation (Fig. S2I through L). Finally, to verify that post-
evolution reductions in KS reflect increased metabolic efficiency of the entire population, 
we simulated one additional season of each evolved population over a more granular 
range of ATreat and examined one metabolic efficiency metric (i.e., the cell density 
corresponding to when half the initial substrate was consumed). Results confirmed that 
increasing ATreat results in enhanced metabolic efficiency for the evolved population (Fig. 
3G).

Importantly, these results—that metabolic efficiency is selected for under antibiotic 
selection—were largely robust to the model setup: changes in selection parameters’ 
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mean and standard deviation values (Fig. S3A through H), initial conditions (e.g., lower 
initial S0, Fig. S4A through E), and other evolution parameters (e.g., mutation rates, Fig. 
S4F), did not qualitatively change key results. Although one case (Fig. S3H) suggested 
metabolic efficiency apparently decreases in the presence of the antibiotic, the parame­
ter evolution (Fig S3I through K) shows that KS consistently decreased for all the three 
cases. Thus, this condition likely captures a regime where our chosen metric may not 
perfectly capture metabolic efficiency. Additionally, the trend was also lost when the 
initial substrate is sufficiently low (S = 0.01, Fig. S4D). However, under these conditions, 
growth is severely limited (Fig. S4E), likely preventing complete evolution under the 
same time period. Moreover, we note that our key results are not dependent on specific 
model formulations [Fig. S5(i) and (ii), equations 5–8]: two alternative yet consistent 
frameworks, each capturing diverse representations of metabolic-dependent antibiotic 
lethality, both predict the same conclusions.

FIG 3 Simulations predict antibiotics select for enhanced metabolic efficiency (A) Evolution schematic. A population of cells is pooled and grown for one 

round in the absence of antibiotics to allow for heterogeneity to emerge (season 0). Following this pre-growth phase, antibiotics are introduced at a constant 

concentration throughout the duration of the evolution. Fifty iterations are performed for all evolutions to account for variation in the dynamics. (B) Parameter 

distributions. Fifty populations of bacteria are quantified to obtain parameter shapes and variations. Distributions for growth rate μm (left), KS (middle), and 

antibiotic sensitivity as estimated by the fold change in cell density grown at 0 and that grown at 1.6 (right) are shown. (C) Temporal evolutionary dynamics. 

Evolution simulations are performed for five representative, sub-lethal antibiotic concentrations. Cell density dynamics are shown over all 21 seasons. (D) Mutant 

dynamics. A number of mutants that emerged and remained in the population on the last day of the evolution are shown (y-axis) at each antibiotic treatment 

condition (x-axis). High concentrations select for fewer number of mutants. (E) Evolved IC50 concentrations. Populations from the last day of the evolution are 

used to estimate IC50 values. x-axis is antibiotic concentration and y-axis is growth rate. IC50 values are measured for the drug-free (blue) evolution and the 

treated evolution (ATreat = 4) (red). Cells evolved under ATreat = 4 exhibit a shifted IC50 curve. (F) Evolved parameters. On the last day of the evolution, parameter 

values are collected and weighted by the respective population size. Since substrate utilization is coupled to KS, only the latter is shown. (G) Antibiotics select for 

increased metabolic efficiency. Metabolic efficiency is defined as the amount of total biomass that is generated when half of the initial substrate is utilized. As 

antibiotic concentration increases, metabolic efficiency also increases. In all cases, error bars represent standard deviation across all 50 iterations.
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Although both k (IC50) and the d (death rate) evolved in response to increasing 
ATreat, neither of these parameters exhibited as strong a dependency on ATreat as did 
KS. To ensure that multiple putative resistance pathways (KS, k, d) were not “competing” 
with each other and skewing our conclusions, we examined the individual roles of each 
antibiotic type on these outcomes. While the full model captures a generic bactericidal 
antibiotic (referred herein as cidal) that may result in both growth inhibition and active 
cell death, a strict separation of bacteriostatic (referred herein as static) and cidal activity 
can be achieved by assuming only growth inhibition via the IC50 (k, static), or cell death 
via the death rate (d, cidal). While complete separation of the two may not always be 
biologically relevant (i.e., actively killing cells likely also inhibits growth), A2 = 0 and A1 > 0 
corresponds to an entirely bacteriostatic activity, whereas A2 > 0 and A1 = 0 corresponds 
to entirely cidal activity. Intuitively, since only cidal drugs are known to depend on 
metabolism, we hypothesized that A2 drives the observed changes in KS rather than A1. 
Therefore, setting A1 = 0 should maximize the selection effect on KS, whereas setting 
A2 = 0 should maximize the evolution of the canonical parameter k. Indeed, consistent 
with our interpretation, under entirely static conditions (i.e., A2 = 0), only k evolved 
significantly, with negligible changes in KS (Fig. S6A, P = 0.08 and P = 5.65e−20 for KS and 
k, respectively, one-way ANOVA). In contrast, under entirely cidal conditions (i.e., A1 = 0), 
even though d decreased modestly, KS monotonically and significantly decreased with 
increasing ATreat (Fig. S6B, P = 6.55e−28 and P = 0.05 for KS and k, respectively, one-way 
ANOVA). Overall, these results highlight that cidal drugs specifically select for enhanced 
metabolic efficiency even in the absence of canonical resistance.

Experimental evolution confirms modeling predictions

That antibiotics select for cells with increased metabolic efficiency makes intuitive sense: 
reducing metabolic rates reduces the killing effect of bactericidal drugs, while maximiz­
ing growth is favored in competitive environments. However, that this may happen 
regardless of the canonical mechanism (e.g., any change in d or k) is surprising. Indeed, 
simulations revealed that under sub-inhibitory concentrations, there were no, or weak, 
correlations between metabolic and resistance parameters within a population (e.g., KS 
and k, or KS and d, R2 ≤ 0.2 in all cases) (Fig. S6C and S6D). This suggests that antibiotics 
select for enhanced efficiency as a general phenotype, in parallel with, and agnostic 
to, any resistance that evolves through diverse canonical mechanisms. Thus, we next 
sought to investigate whether in vitro systems, subject to natural biological constraints, 
would confirm our modeling conclusions. Since our model equations are not specific to 
any particular cidal mechanism of action, we chose the antibiotic carbenicillin, which 
belongs to one of the most widely used antibiotic classes and also has been shown to 
exhibit clear metabolic-dependent efficacy (30, 47). To select an appropriate sub-inhibi­
tory concentration, we quantified the IC50 of the E. coli strain BW25113, from which a 
sub-inhibitory concentration of 1.6 µg/mL was chosen (Fig. 4A).

We designed and implemented an in vitro evolution consistent with the model setup 
(Fig. 4B). Specifically, an isogenic population of BW25113 was first propagated for one 
season in glucose minimal media (referred to as day 0) in the absence of antibiotics in a 
96 well plate, where 46 replicate populations were assigned to each of two treatment 
groups (drug-free and abx denote carbenicillin = 0 and 1.6 µg/mL, respectively). The four 
corners of the plate were left cell-free and served as a contamination control. This 24-h 
population’s parameter distributions were used to initialize the model (i.e., Fig. 3B 
corresponds to day 0 measurements); the population was used to initiate longitudinal 
evolution. Following the first day (i.e., one 24-h “season”) of growth in the absence of any 
drug, cells were diluted 10,000-fold into fresh glucose minimal media, and either sterile 
water or drug was added to half of the plate. This dilution was repeated daily for a total 
duration of 21 days (equivalent to 21 seasons in the model). All populations were 
sampled and stored in glycerol on day 0 and day 21 for subsequent characterization. We 
refer to populations that evolved in the absence of drug as DF (drug-free) and those that 
evolved in the presence of carbenicillin as AB (abx-treated), for consistency.
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In vitro evolutionary dynamics were consistent with model results, where, only over a 
relatively short initial timeframe did AB populations exhibit a decrease in density relative 
to DF (Fig. 4C). Ultimately, the relative density of the AB group exceeded that of DF (P = 
6.64e−100, two-tailed t-test), initially suggesting improved metabolic efficiency under 
antibiotic selection. Specifically, we examined the growth rates of populations evolved 
under DF or AB condition, in the absence/presence of antibiotic (±) (Fig. 4D); we note 
that this captures drug sensitivity as in Fig. 4A (right). Both DF and AB populations 
exhibited statistically equivalent growth rates in the absence of the drug, consistent with 
modeling results that predicted minimal change in drug-free growth regardless of 
evolution conditions. Similarly, AB populations grew moderately faster under 1.6 µg/mL 
carbenicillin as compared to their DF counterparts, confirming that AB populations 
evolved moderate resistance under these conditions.

Next, we compared changes in metabolism for all 92 populations. We used a coarse 
range of glucose concentrations to estimate changes in KS (5 concentrations including 
0 glucose as control) for all 92 populations, along with the wild type (WT). Indeed, both 
the model predictions and experiments confirmed that, on average, the 46 AB popula­
tions exhibited a statistically lower KS compared to the 46 DF populations (Fig. 4E), as 
quantified from equation 6 (Materials and Methods). These results were not an artifact 

FIG 4 Experiments validate model predictions (A) E. coli IC50. IC50 is calculated to determine the appropriate treatment concentration. Concentration of 

1.6 µg/mL is chosen for evolution. (B) Evolution schematic. A 96 well plate was used to propagate 46 populations of E. coli for 21 seasons. Prior to the evolution, 

cells were grown for one season in the absence of any antibiotic, consistent with modeling, to equilibrate cells to the environment. Four corners of the plate were 

left cell-free to confirm there was no contamination (cntrl). (C) Evolution time course. Cells evolved in 1.6 µg/mL carb are shown in red, and drug-free in blue, over 

the course of the evolution. Left shows log-transformed raw data and right is normalized to the drug-free population. (D) Model predictions and experimental 

validation for sensitivity. Model predicts that cells moderately adapt to the treating antibiotic, confirmed by experiments. Error bars represent the standard 

deviation of all 46 populations. (E) Model predictions and experimental validation for efficiency. Model predicts that antibiotic treatment selects for lower KS, 

implying better growth on lesser amount of carbon, for all 46 populations. Error bars represent the standard deviation of all 46 populations. (F) High-resolution KS 

values: Verification of KS shift using high-resolution curves and three methods of growth quantification (20-h density, manual growth fit, and logistic growth fit); 

data confirms 46-population data. Data represent the mean, and error bars the standard deviation, of four biological replicates.
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of the glucose concentrations chosen. Indeed, randomly selecting and characterizing 
the KS of 6 populations with higher glucose resolution confirmed that AB populations 
exhibited a significantly reduced KS compared to DF. This was true regardless of whether 
KS was measured based on growth rate (Fig. 4F, left) or cell density (Fig. 4F, right). Overall, 
these results are consistent with initial mutant characterization (Fig. 1), and confirm that, 
in parallel with growth-based selection, sub-inhibitory carbenicillin selects for cells with 
increased metabolic efficiency.

Restoring metabolic efficiency reverses antibiotic resistance phenotypes

Based on these results, it is clear that KS evolves as a result of antibiotic selection. 
However, whether changes in KS alone are responsible for conferring phenotypic 
resistance, or are merely byproducts of canonical resistance acquisition, is not yet clear. 
We next attempted to indirectly separate these possibilities by examining whether 
restoring baseline metabolic efficiency (i.e., KS) is sufficient to recapture an antibiotic 
susceptible phenotype regardless of changes in IC50 (i.e., without antibiotic-mechanism-
specific intervention). To test this, we tested three scenarios in silico using parameter 
distributions corresponding to day 21 AB populations. Specifically, we quantified the 
effective IC50 as a measure of resistance given the populations had (i) restored metabolic 
efficiency only (revert only KS to ancestral values), (ii) restored resistance only (revert only 
evolved k and d to ancestral values), or (iii) nothing (i.e., maintain same parameter values 
as on day 21). Results confirmed that, for all values of ATreat, restoring drug susceptibility 
could be achieved by re-sensitization through either metabolic or canonical resistance 
pathways (Fig. 5). For a population evolved under a strictly cidal drug (A1 = 0), restoring 
metabolic parameters was sufficient to entirely re-sensitize the population, whereas 
restoring canonical resistance parameters had minimal effect (and vice versa for static 
drugs) (Fig. S6E and S6F). Thus, these results suggest that some re-sensitization strategies 
depend on the general type of antibiotic to which resistance has been evolved, as well as 
the environment under which the evolution occurred.

To validate these predictions, we first quantified the IC50 of evolved DF and AB 
populations under identical media conditions as in the evolution (i.e., minimal media 
with glucose as the primary carbon source). In this environment, as expected, AB 
populations exhibited optimized metabolic efficiency (i.e., reduced KS) (Fig. 5, glucose), 
and resistance to the bactericidal antibiotic carbenicillin (i.e., increased IC50) (Fig. 5, top 
row), relative to the DF population. Importantly, however, this finding was not specific to 
carbenicillin, and the same AB populations exhibited increased IC50 values to both 
ciprofloxacin and kanamycin, which represents the three main bactericidal antibiotic 
classes (Fig. 5, top row). Next, to confirm these results were not an artifact of the glucose-
specific evolution conditions, we looked for alternative carbon sources that would 
maintain AB’s lower KS relative to DF. Indeed, the glycolytic carbon source maltose, which 
enters glycolysis immediately following glucose (48), also resulted in reduced KS for AB 
compared to DF populations (Fig. 5, second row). Moreover, as with glucose, the IC50 of 
AB was statistically greater than DF for all three antibiotics, consistent with our hypothe­
sis (Fig. 5, second row). In contrast, both glycerol and alanine resulted in no discernible KS 
differences between AB and DF (Fig. 5, bottom two rows). Consistent with our interpreta­
tion, these populations also had statistically indistinguishable IC50s under all three drugs, 
indicating that susceptibility was fully restored in these environments (Fig. 5, bottom two 
rows). Overall, only carbon sources that restored KS to the DF value led to restored IC50 
values.

Finally, to confirm that the restoration of antibiotic susceptibility was a result of 
metabolic-specific shifts in efficiency driven by metabolic-dependent (cidal) antibiotics, 
we tested whether these trends would be maintained by drugs that do not affect 
bacterial metabolism (static). Specifically, we used chloramphenicol, a bacteriostatic 
antibiotic whose sensitivity should not depend on the local KS value and measured IC50s 
in glucose media. Results confirmed that, while AB and DF have distinct KS values in this 
environment, there was no detectable shift in IC50 (Fig. 5). Overall, these confirm that 
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metabolic-dependent antibiotics can induce selection dynamics based on altering 
underlying metabolic physiology, complementary to resistance evolved to specific drug 
mechanisms.

FIG 5 Re-sensitizing cells using alternative carbon sources. (A) Re-sensitization model prediction. Effective IC50 values are measured for evolved populations 

with restored metabolism parameters (KS and e; green), restored resistant parameters (k and d; yellow), or no change (white). P values are shown for lsd-corrected 

two-sided t-tests. (B) Restoring sensitivity by changing KS. KS values for drug-free (DF) and antibiotic-treated (AB) populations are measured in glucose, maltose, 

glycerol, and alanine (top to bottom). Significant reductions in KS are observed in glucose and maltose only. Bar heights represent the means of three 

independent replicates (i.e., three unique populations), and white markers indicate individual values. (C) IC50 values for the same three DF and AB populations 

(blue and pink, respectively) are measured for carbenicillin (i), ciprofloxacin (ii), and kanamycin (iii). Carbon sources used are shown in the top right of each plot, 

and P values are shown for Bonferroni-corrected two-sided t-tests. (D) IC50 for bacteriostatic antibiotic. IC50 in glucose of chloramphenicol for the same three 

populations. For panels B and C, markers and error bars represent the mean and standard deviation of three biological replicates.
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DISCUSSION

Antibiotics are simple small molecules, yet their effects on bacterial populations are 
highly complex and often unpredictable. Understanding various drugs’ underlying 
physiological consequences, resulting population dynamics, and evolutionary outcomes, 
can, provide insights into methods that leverage microbial behavior into more effica-
cious treatments strategies. Such strategies, including the development of alternative 
dosing regimens (49), combination treatments (50), rational antibiotic stewardship 
approaches (51), and others that may significantly contribute to blunting the threat 
of antibiotic resistance, have garnered recent interest. To date, such advances have 
been the result of a primary research focus on canonical, mechanism-based antibiotic 
selection and resistance. However, despite growing evidence of their importance, the 
effects of selection on metabolic traits remain largely unexplored.

Here, to better understand the potential role of general metabolism as a target 
of antibiotic selection, we developed a modeling framework that captures ecolog­
ical responses to a generic bactericidal antibiotic, along with its selection-depend­
ent evolution. Critically, we emphasize selection dynamics due to sub-inhibitory 
drug concentrations, which are inherently more likely to lead to the types of meta­
bolic adaptations that may be readily overlooked/shadowed by classical approaches. 
Specifically, modeling results indicate that metabolic efficiency, described by the nutrient 
half-maximal growth constant KS, increases (since KS decreases) as a consequence 
of selection by sub-inhibitory bactericidal antibiotic conditions. This decrease in KS 
corresponds to an enhanced observed IC50 despite negligible changes in drug killing 
and inhibition parameters. We confirmed these predictions in vitro, using the bactericidal 
drug, carbenicillin. A statistically significant decrease in KS following a 21-day adapta­
tion to sub-inhibitory carbenicillin corresponded to a significantly shifted susceptibility 
profile.

Interestingly, according to the modeling results, metabolic efficiency was positively 
selected under bactericidal, not bacteriostatic, drug selection. This makes intuitive sense, 
given that bactericidal antibiotic lethality has been shown to depend directly on the 
cell’s downstream metabolic response to drug, which does not occur in response to 
bacteriostatic antibiotics (23, 52). That model-predicted resistance did not arise primarily 
due to drug-target-specific mutations/adaptations suggested that susceptibility could 
be restored under environmental conditions corresponding to a reversion to baseline 
efficiency. Indeed, we showed this to be the case; carbenicillin resistance was abolished 
in nutrient conditions mimicking original KS values, and this reversal was maintained for 
additional bactericidal antibiotics. Moreover, dose responses in glucose to the bacterio­
static antibiotic chloramphenicol were unchanged between DF and AB populations. 
Together, these results suggest that compounds which manipulate metabolic efficiency, 
rather than growth, represent an exciting potential path to increasing, restoring, or 
maintaining antibiotic susceptibility. Indeed, strategies to re-sensitize bacteria, including 
metabolites and small molecules, are being implemented as antibiotic adjuvants to 
improve antibiotic efficacy (53, 54). However, as demonstrated here, by focusing on 
modulating complex metabolic phenotypes, rather than metabolite-specific network 
pathways, adjuvants may eventually be more broadly applicable to entire classes of 
drugs, making them a key direction of further mechanistic and translational research.

A thorough sensitivity analysis allowed us to interpret the robustness of these results. 
Overall, the results were qualitatively maintained across a broad range of parameter 
values and model formulations. However, there are some limitations. First, the evolution­
ary setup used a simplified representation of natural evolution. The model assumes 
only one mutant per sub-population emerges per season, which is not necessarily 
representative of natural bacterial evolution that typically involves a greater degree 
of heterogeneity. Second, select parameter regimes did result in qualitatively different 
outcomes. For instance, Fig. S3H through I illustrate a scenario where a decrease in KS 
does not necessarily correspond to an increase in metabolic efficiency, pointing out a 
limitation in using KS as a proxy metric. Similarly, there’s no marked rise in the metabolic 
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efficiency while exploring the full parameter space of k/IC50. Finally, we note the model 
assumes generic action of an antibiotic and highly simplified definitions of “metabolism” 
(i.e., that it is defined by substrate uptake only). Incorporating more mechanistic detail 
of specific drug types and corresponding metabolic dependencies may reveal more 
insights into the ways in which the parameters evolve.

Overall, this study emphasizes the need to consider the metabolic implications of 
microbial evolution in the face of antibiotic treatment. We have shown that cellular 
metabolism is a direct selection target, both in an idealized setting and in a more 
biologically feasible framework and demonstrated that antibiotic selection results in 
selection for enhanced metabolic efficiency overall. We note that myriad other factors 
(e.g., spatially imposed heterogeneity and fluctuating environmental nutrients/stressors) 
undoubtedly contribute to metabolic adaptation over time. Thoroughly characterizing 
the evolutionary relationship between metabolism and growth in bacterial populations 
under antibiotic selection, both experimentally and with increasing modeling complex­
ity, is, therefore, a critical next step in developing effective antibiotic treatments.

MATERIALS AND METHODS

Evolutionary model

Each simulation was initialized assuming a clonally homogenous population of 104 

unique cells with normally distributed phenotypic heterogeneity. Parameter values for 
each cell were drawn from distributions approximated from experimental data according 
to their calculated means and standard deviations (Fig. 3B). Specifically, we split one 
clone of the E. coli strain BW25113 into 92 distinct replicates and measured the expected 
variance in growth, metabolism, and antibiotic sensitivity for each corresponding to the 
day 0 plate. These standard deviations were used to set widths, and average values 
were used to set centers, of each base parameter distribution. Values for μM, KS, and k 
were determined directly from the data by quantifying maximum growth rate, half-max­
imal concentration of glucose utilization, or sensitivity to 0.5× the IC50 of carbenicillin, 
respectively. Since k and KS each represent drug sensitivity and metabolism variation, 
d and e could then be approximated using the same variance, with means shifted 
based on literature values. We note that this assumption of equal variances does not 
qualitatively change the overall metabolic efficiency profiles (Fig. S3A and S3C). Next, we 
conservatively assume that de novo mutants arise at a frequency of 0.003 per gene per 
cell (55, 56). To calculate the number of mutants present at the end of each season, we 
calculate the number of generations that occurred and generate a binomial distribution 
for every unique cell given a probability equal to the generation number multiplied by 
mutation rate. Any cell that is assigned a value of 1 is then used to draw new parameters 
for its corresponding mutant from the relevant distribution at the time the mutation 
arose. If the antibiotic concentration proves lethal thereby eliminating all the mutants, 
we assign the number of mutants as zero. Bottleneck events are implemented once 
every 24 h by randomly choosing cells based on the weighted population densities from 
the end of the previous season. If the cell density fails to plateau at the set season1 
cutoff (105) for any season, the respective simulation for the season within the iteration 
is repeated until the cutoff condition is met. Selected cells (corresponding to individual 
parameter sets) are then diluted to a preset density to initiate the next season. In all 
cases, simulations were run for 50 independent iterations to account for variation in 
parameter selection, and results were averaged across all iterations. For any given season 
within an iteration, a zero efficiency is assigned if the density does not exist at 50% of the 
initial substrate concentration. While averaging, all such zero efficiencies were censored. 
Overall, changes in the average parameters at the end of the evolution reflect both 
ecology (competition/extinction) and evolution (mutant acquisition) on a clonal starting 
population. We note that sensitivity analyses confirm that base parameter choices did 
not impact the main qualitative trends (Fig. S3A through D).
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Definitions of metabolic efficiency

We compared the amount of biomass formed per unit substrate consumed, i.e., the 
metabolic efficiency, using four metrics (Fig. S2A through H):

1. N/S at a given timestamp: the ratio of cell density (normalized with respect to its 
initial value) to substrate concentration was used to denote metabolic efficiency, 
at any given timestamp.

2. Log N/S at a given timestamp: the ratio of a natural log transformed cell density 
(normalized with respect to its initial value) to substrate was used in this case to 
represent metabolic efficiency. Both for definitions 1 and 2, the substrate S, was 
allowed to evolve with time.

3. N with constant and excess S: this definition considers metabolic efficiency as cell 
density when substrate S was held constant in excess of 0.5.

4. N at specific S: the cell density N, selected at a value of the substrate S, represents 
the metabolic efficiency. Here, we consider the cell density achieved when the 
substrate was reduced by half of its initial value.

Alternative model structures

Two additional model variations were considered.
Alternative model #1: here, we assume that bactericidal-mediated cell death is 

directly proportional to growth inhibition.

(5)dN
dt = 1 − NNm

NμM SS + KS

kA1 + k 1 − d A2eρ
(6)dS

dt = − NμM eSS + KS

Alternative model #2: here, we assume that bactericidal-mediated death is directly 
proportional to substrate concentration and conversion but independent of KS directly.

(7)dN
dt = 1 − NNm

NμM SS + KS

kA1 + k − dNSA2eρ
(8)dS

dt = − NμM eSS + KS

Long-term evolution

A long-term evolution experiment was carried out using the E. coli strain BW25113. 
Briefly, one clone was picked from a newly streaked agar plate and grown overnight in 
2 mL Luria broth (LB) media for 16 h at 37°C with agitation at 250 rpm. The overnight 
culture was first re-suspended 1:1 (vol/vol) in M9CAG media (M9CA medium broth 
powder from Amresco, cat # J864-100G, containing 2 mg/mL casamino acid, supplemen­
ted with 2 mM MgSO4, 0.1 mM CaCl2, and 0.4%[wt/vol] glucose), diluted 10,000× in 
M9CAG media, and 200 µL was distributed into 92 wells of a 96-well plate. The four 
corners were filled with 200 µL of media only as contamination controls. The plate was 
then sealed with a Breath-easy sealing membrane (Sigma Aldrich, cat# Z380059) and 
grown overnight for 23 h at 37°C with agitation at 250 rpm. After 23 h, the plate was 
removed from the incubator and the optical density (600 nm) was recorded using a 
Spark Multimode Reader (Tecan, Mannendorf, Switzerland). This plate constituted day 
0 (day 0) for subsequent long-term evolution, or for model characterization. To initiate 
the long-term evolution, samples from the day 0 plate were transferred to a new plate 
such that all wells were split into two groups corresponding to either drug-free (DF) 
and antibiotic-treated (AB). Either water (for DF) or 1.58 µg/mL carbenicillin (for AB) 
populations, respectively, was added to the corresponding wells according to the map in 
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Fig. 3B. Columns 1–6 remained DF and 7–12 corresponded to AB populations. Cells were 
then transferred using a sterile 96-well replicator. The plate was then sealed and grown 
for 23 h in identical conditions as described above. The same protocol was followed 
daily, including optical density readings, for the duration of the experiment. In all cases, 
the negative control wells were first checked for contamination. In the case where 
contamination was visible, the most recent bottlenecking event was implemented using 
the stored plated corresponding to the previous day. In general, on days 0, 4, 7, 11, 14, 
and 21 of the evolution, the populations were stored by transferring 100 µL from each 
well to a separate microplate containing 100 µL of 50% (vol/vol) glycerol. After mixing, 
the plate was sealed with aluminum foil seals (AlumaSeal II, cat# AF100) and stored at 
−80°C for future use.

Full-plate (low-resolution) population characterization

To characterize populations on plates day 0 and day 21, up to 8 populations were 
measured simultaneously on a single 96 well plate. Specifically, each population was 
inoculated from the stored glycerol plate into 2 mL of LB media using sterile p10 
pipette tips. A negative control of 1 mL of LB media was also included to assess for 
contamination. If growth was observed in the control, the experiment was discarded. 
Cultures were grown at 37°C for 16 h with 250 rpm agitation. Then, 500 µL of each 
overnight culture was centrifuged at 10,000 rpm and resuspended in M9 blank media 
(M9 with no casamino acids or carbon source). Resuspended cells were diluted 1,000× 
into either M9 blank media for a low-resolution KS curve, or M9CAG for maximum growth 
rate and carbenicillin sensitivity measurements. In both cases, 198 µL of these solutions 
was aliquoted into each well of a sterile 96 well plates. Columns filled with M9CAG were 
mixed with either sterile water or 1.58 µg/mL carbenicillin. The columns filled with M9 
blank medium were mixed with glucose to achieve the final concentrations of 0.4%, 
0.4%, 0.1%, and 0.004% (wt/vol). All growth/metabolism parameters were measured in 
technical duplicates. Wells were then covered with 50 µL of mineral oil and placed in a 
temperature-controlled Tecan plate reader where optical density was measured every 15 
min for up to 24 h.

High-resolution KS and IC50 quantification

For all high-resolution measurements, three populations from DF and AB each were 
chosen randomly for characterization, where these populations were treated as 
biological replicates. Specifically, six overnight cultures were set up by inoculating 
bacteria from wells D2, F3, and C4 for DF and B9, F8, and E11 for AB from the stored 
day 21 plate into 2 mL of LB media. A negative control of 1 mL of LB media and a 
bacteria-free sterile pipette tip were included. Cultures were grown at 37°C for 16 h 
with 250 rpm agitation. Then, 500 µL of each overnight culture was centrifuged at 
10,000 rpm and resuspended in M9 blank media (M9 with no casamino acids or carbon 
source). Resuspended cells were diluted 1,000× into M9 blank media and 198 µL was 
aliquoted into every well of a 96 well plate. Then, 2 µL of pre-mixed glucose, maltose, 
glycerol, and alanine was added to each well to achieve the final concentrations of 0.4%, 
0.207%, 0.107%, 0.056%, 0.029%, 0.015%, 0.008%, and 0.004% (wt/vol) for glucose and 
maltose; 0.207%, 0.107%, 0.056%, 0.029%, 0.015%, 0.008%, 0.004%, and 0.002% (wt/vol) 
for alanine; and 0.107%, 0.056%, 0.029%, 0.015%, 0.008%, 0.004%, 0.002%, and 0.001% 
(wt/vol) for glycerol. IC50 values were obtained using an identical setup, except M9CA-
carbon media was used, where carbon consisted of 0.4% of glucose, maltose, alanine, or 
glycerol. 2 µL of each antibiotic was then added to each well at the following concentra­
tions: 50, 15.8, 5, 1.58, 0.5, 0.16, 0.05, 0 µg/mL for carbenicillin and chloramphenicol; 20, 
14.4, 10.4, 7.46, 5.37, 3.86, 2.78, and 0 µg/mL for kanamycin; and 1, 0.32, 0.1, 0.032, 0.01, 
0.0032, 0.001, and 0 µg/mL for ciprofloxacin. In both cases, concentrations were chosen 
to appropriately span dose responses at approximately the center of chosen range. Every 
population was measured in technical duplicate such that all 6 populations could be 
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measured on the same 96 well plate. All experiments were repeated at least twice to 
ensure reproducibility.

Once growth curves were complete, technical duplicates were averaged. To quantify 
growth rate, curves were fitted using the modified logistic growth equation:

(9)N = A
1 + e

4μm
A λ − t + 2

where μm and λ are taken to be the maximum growth rate and lag time, respec­
tively, N is the log-transformed cell density, and A is the maximum density achieved. To 
determine KS, calculated μm was then fit to carbon concentrations using the following 
equation:

(10)μm = γ C nKS
n + C n

where γ is the maximum growth rate in excess carbon concentrations [C], n is the hill 
coefficient, and KS is the concentration that corresponds to half the maximum growth 
rate. Alternatively, to calculate IC50, the following equation was used:

(11)μm = γIC50n
IC50 + A n

where [A] corresponds to the antibiotic concentration. To determine KS or IC50-based 
density, the same procedure was used except data were fit to N20 instead of μm , 
corresponding to the log-transformed cell density at 20 h of growth in the Tecan. Each 
population was fit individually and averaged together to obtain the mean per treatment 
group.
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