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Abstract

Recent advances in cryo-electron microscopy (cryo-EM) have enabled modeling

macromolecular complexes that are essential components of the cellular machinery.

The density maps derived from cryo-EM experiments are often integrated with man-

ual, knowledge-driven, and physics-guided computational methods to build, fit, and

refine molecular structures. Going beyond a single stationary-structure determination

scheme, it is becoming more common to interpret the experimental data with an en-

semble of models, which contributes to an average observation. Hence, there is a need

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2021.12.07.471672doi: bioRxiv preprint 

sarkarda@msu.edu
shantenu.jha@rutgers.edu
asinghar@asu.edu
https://doi.org/10.1101/2021.12.07.471672


to decide on the quality of an ensemble of protein structures on-the-fly, while refin-

ing them against the density maps. We introduce such an adaptive decision making

scheme during the molecular dynamics flexible fitting (MDFF) of biomolecules. Us-

ing RADICAL-Cybertools, and the new RADICAL augmented MDFF implementation

(R-MDFF) is examined in high-performance computing environments for refinement

of two protein systems, Adenylate Kinase and Carbon Monoxide Dehydrogenase. The

use of multiple replicas in flexible fitting with adaptive decision making in R-MDFF

improves the overall quality of the fit and model by 40% relative to the refinements

of the brute-force MDFF. The improvements are particularly significant at high, 2 -

3 Å map resolutions. More importantly, the ensemble model captures key features

of biologically relevant molecular dynamics that is inaccessible to a single-model in-

terpretation. Finally, this pipeline is applicable to systems of growing sizes, with the

overhead for decision making remaining low and robust to computing environments.

1 Introduction

Integrative modeling is an area of rapid methodological developments, wherein, atom-resolved structure(s) of

biological systems are determined by merging data from multiple experimental sources with physics1–3 and

informatics-guided approaches.4 These elegant fitting,1–3,5–10 learning11 sand inferencing12–16 methodologies

have been successful in resolving a range of structures, starting with soluble and membrane proteins up to

sub-cellular complex architectures.17,18 Integrative models routinely make it to top positions at the EMDB

and PDB competitions, serving a diverse cross-section of the Biophysics community.19 Advances in protein

structure modeling,20–23 evolutionary covariance or multi-sequence alignments offer excellent constraints for

initiating such hybrid pipelines.24

A key issue in integrating structural or biochemical information with simulations stems from the hetero-

geneity of the data. The data quality can be spatially variant, spanning anywhere between coarse-grained to

near-atomistic level of details. As a natural consequence of this heterogeneity, a single-model interpretation

of the experimental data becomes implausible, opening the door to an ensemble treatment of the data.25

The ensemble models capture on one hand, the most probable interpretation of the data, while on the

other, pinpoints rare-events and hidden conformations. Biology often employs such conformational diver-

sity in problems of allostery and recognition, motivating the refinement of experimental knowledge against
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molecular ensembles.14

Another advantage of the ensemble interpretation is that, the generation of multiple independent atomic

models using an EM density and statistical analysis of their map-model agreement offers metrics of global as

well as local EM map quality.26 This ensemble approach offers essentially both a quantitative and qualitative

assessment of the precision of the models and their representation of the density.

The size of the ensembles that collectively describes the diversity in single-particle images (reflecting in

the quality of the maps), however, grows non-linearly with system-size.27 For proteins of molecular mass

500 kDa or bigger, composed of 5000 residues or more, a single CPU is expected to take 5000 years of

wall-clock time for sampling the conformational ensembles using either brute force molecular dynamics (MD)

or Monte Carlo simulations;28 even the fastest GPUs of the day will not rescue this situation. Alternatively,

data-guided enhanced sampling methodologies, such as MELD13 (integrated with NAMD via the recently

completed CryoFold plugin14) or backbone tracing methodologies such as MAINMAST29 and analogous

methods,11 by themselves, either remain system-size limited, generating ensembles for only local regions

within a map, or require further refinements using conjugate gradient minimization or free-energy schemes30

to determine thermodynamic ensemble. As a step towards addressing this issue, by leveraging classical force

fields (so-called CHARMM31 energy functions) we have developed a range of molecular dynamics flexible

fitting (MDFF) methodologies for integrating x-ray and cryo-EM data with MD simulations.1–3,32 The simu-

lations are biased towards conforming molecular models into forms consistent with the experimental density

maps. These protocols are available through MD simulation engine NAMD,33 recently to GROMACS6 and

are also expanded as plugins, such as ISOLDE34 in ChimeraX.35,36 As a natural outcome of this fitting

procedure, the most probable data-guided models are derived, e.g. for complex systems like the ribosomal

machinery, virus particles and membrane proteins.18 However, the conformational heterogeneity27,37,38 that

contributes to the uncertainty of the experimental data is lost.

In this article we explore whether, it is possible to recover portions of the conformations lost in brute-

force MDFF by running multiple replicas of MDFF in parallel with ‘adaptive decision making’. Rather

than physically enforcing a model into a map, this approach skews the probability of an ensemble of models

towards maximizing their consistency with the map. This way, there remains a finite probability of visiting

several uncertain structures, while still emphasizing determination of the most probable molecular models.

Traditional high-performance computing (HPC) approaches fail to make data-driven decisions within a

multi-replica ensemble modeling workflow. We employ RADICAL-Cybertools, 39 and in particular Ensem-

ble Toolkit (EnTK),40 to overcome this challenge of developing multi-replica MDFF as a workflow applica-

tion. Herein, EnTK deploys an application programming interface (API) for casting the MDFF simulation

and analysis workflow as a hierarchy of pipelines, stages and tasks. Simultaneously, the RADICAL-Pilot
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(RP)41,42 is employed as the high-performance and dynamic resource management layer. This workflow

identifies all the flexible fitting tasks within a pipeline, acquires heterogeneously distributed resources to

complete multiple parallel pipelines, and manages the overall execution of the stages iteratively.

A classical approach involves long brute-force MD simulations that are often stuck in local minima, re-

quiring additional steps to find interesting regions of the conformational search space. In contrast, adaptive

sampling implements an iterative loop that concurrently executes multiple simulations, each with short sim-

ulation time.43–45 Map-model metrics are analyzed at every iteration - this analysis increases the probability

of finding models that are consistent with the data, reducing the possibilities of getting trapped in any local

energy minimum. The decision to enhance the sampling of specific models can be based a number of map-

model metrics,19 such as TM scores,46 MolProbity,47 EMRinger,48 Q-score.49 In our first proof-of-concept

adaptive MDFF workflow, a simple global cross correlation coefficient (CC) is employed as a criteria to guide

the choice of refinement models; Molprobilty statistics are employed for cross-validation.

Outlined in Figure 1, workflow application using R-MDFF composes individual simulations and sup-

ports analysis calculation on intermediate results to perform adaptive sampling. The scheme iteratively

screens model populations based on their CCs with the map, and improves efficiency of computing resource

consumption over longer simulations. We find that, powered by EnTK’s data-staging capabilities and check-

pointing of the parallel MD simulations available on NAMD, MDFF trajectories intermittently screened by

CC values offer an ensemble of refined models. We have tested the adaptive MDFF workflow with up to 100

replicas, each encompassing 16 iterations across resolutions of 2 Å to 5 Å, and achieved around 40 % improve-

ment in map-model fitting over a long brute-force simulation. Similar efficiencies are noted while comparing

the adaptive workflow with multi-replica, yet non-adaptive implementations of MDFF. The pipeline is fur-

ther tested for using up to 400 replica with (1 node/replica). In all these cases, we find that an ensemble

approach with adaptive decision making offers more diverse ensembles than brute force MDFF. Thus, going

beyond traditional MDFF, these ensembles capture on one hand, the ‘best’ model, while simultaneously the

uncertainty in the assignments on the other. Remarkably, the performance of the workflow improves with

system-size (3341 atoms in Adenylate Kinase and 11452 atoms in Carbon Monoxide Dehydrogenase atoms),

and remains robust to computing platforms. Taken together, our implementation breaks free of the tradi-

tional high-performance computing execution model that assumes singular jobs and static execution of tasks

and data, to one that is fundamentally designed for data-integration and assimilation across different scales,

quality and sparsity. The cryo-EM community has actively sought ways of extracting not just stationary

structures, but ensembles and more importantly, molecular dynamics information from electron density data

are ever-increasing.27,50–52
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2 Adaptive Integrative Modeling using R-MDFF

Adaptive decision making for the refinement of multiple protein structures coupled to 3-dimensional (3D) elec-

tron density maps is implemented as an iterative simulation-analysis workflow enabled by EnTK (Figure 1

and Algorithm 1). Within R-MDFF, a workflow is defined as an ensemble of simulation + analysis

pipelines that synchronously execute on HPC resources. Each constituent pipeline enable seven serial tasks:

(1) load an empirically determined density map or generate a simulated map. Then convert this map to an

MDFF potential, Eq. 1 and 2. Independently, examine the quality of an initial search model in terms of

stereochemical properties, and perform rigid body docking to place this search model inside the EM density

map, e.g. using Chimera 36 or Situs.53 (2) Define the secondary structure restraints. Visual Molecular Dy-

namics (VMD)54 then prepares the input files required by NAMD33,55 to deploy MDFF. Multiple replicas

of the system are prepared, under the same R-MDFF pipeline, as shown in Figure 1. Then, the ensemble

of MDFF simulations are performed in parallel. (3) VMD’s scripting interface is re-used to calculate the

interim cross-correlation value between the atomic models from each replica and the EM density map. The

CC values are extracted from VMD log files for different replicas are then combined to construct a matrix.

EnTK uses a data staging area to move this matrix from flexible fitting to the adaptive decision-making block

across multiple replicas. (4) Here, a decision is made on whether the flexible fitting simulations will continue

or terminate, based on whether the computed CC is greater than or equal to the user-defined threshold. This

on-the-fly map-model analysis enables an adaptive flexible fitting algorithm to run recursively inside EnTK,

without user intervention. When the threshold CC is not met at the end of tasks 1-4, subsequent iterations

are performed, wherein (5) all replicas are reseeded with the atom coordinates, velocities, and periodic sys-

tem information corresponding to MDFF model with the best CC from the previous iteration, and the next

round of multi-replica MDFF proceeds. If the map correlation of the best-fitted model decreases along the

forward iteration, the new poorly fitted starting conformation is accepted with a weight min (1, e∆ECC/KT ).

Here, we follow ∆ECC = k(CCN+1 − CCN ) for iteration no. N and k = 5 × 105 kJ/mol.6 For a failed

move, the fitting restarts with the initial conformations of the last iteration, and the criterion is reused to

find a new starting structure. (6) Again, EnTK uses data staging area to store these information in files and

provide them to the replicas. This feature not only makes the algorithm adaptive, but offers future scope of

improvement for applications requiring advanced decision-making, either based on inferencing12–14,37,56 or

neural network based machine learning algorithms.57–61 Finally, the application converges to yield a refined

ensemble (7), which exit the R-MDFF workflow and downloads results to the end-user’s working directory.
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Algorithm 1: R-MDFF scheme with adaptive decision making based on CC.

begin

perform rigid body docking of protein atomic structure in EM density map

generate N replicas with this initial coordinate

while CC replica resolution ≤ CC threshold do

generate N replicas with initial coordinates from highest CC ensemble to EM density map

repeat simulation stage (selected coordinates, density map)

repeat analysis stage (best cc coordinates, replica index)

increase iteration by 1

end
refined protein ensemble in end-user’s working directory

The R-MDFF API is implemented as a Python module, loaded into the workflow application’s code.62

The API exposes classes for pipeline, stage, and task, allowing one to directly map the workflow description

to the logical representation of an ensemble of simulations. Each task object exposes a set of variables with

which to configure input, output files, executable, resource requirements, and pre/post execution directives.

Finally, an application manager object is used to contain the workflow description and execute it with a

single AppManager.run() method. The iteration logic to change the workflow description and issue another

AppManager.run() is written in pure Python as part of the workflow application. The entire R-MDFF

workflow application of this paper required only 500 lines of Python code.62

As already described in Balasubramanian et al. 40 , EnTK complements the ensemble simulation paradigm

with decision making through real-time workflow and parameter changes, based on the results of the anal-

ysis stages. In the present context, this feature enables iterative workflow executions with a single HPC

batch-job submission, avoiding costly manual evaluation of cross-correlation coefficient, workflow editing,

and re-submission, as demonstrated here for flexibly fitting biomolecules in cryo-EM density maps. EnTK

also abstracts from the users the need to explicitly manage data flow and task execution. It manages data

staging so that each task of each stage has either a copy or a link to all the NAMD input files it requires,

allowing the users to focus on the MDFF simulation and VMD analysis methods, without having to explic-

itly handle data sourcing, saving, and exchange. Furthermore, EnTK schedules and executes the workflow’s

tasks, managing the mapping of tasks to available resources on each compute node allocated to the workflow

execution. Users only have to specify the amount of CPU cores/GPUs needed by each task and whether the

task is (Open)MPI.
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3 Methods

Modern adaptive sampling frameworks are dynamic, extensible, scalable and robust to facilitate hundreds

or thousands of experiments for searching different structures, and specialized features can be added to

solve existing problems through the framework. We developed a workflow application using RADICAL-

Cybertools39 that provides a scalable workflow framework for implementing ensemble refinement with cross

correlation calculation on HPC computing resources. R-MDFF (RADICAL-Cybertools enhanced Molecular

Dynamics Flexible Fitting), depicted in Figure 1, supports adaptive decision making algorithms to iterate

between molecular dynamics flexible fitting simulation and cross-correlation analysis. Our workflow appli-

cation is portable to explore the space of experimental configurations and support various use cases, so that

the ensemble refinement produces results on different dimensions of a physical system; resolution density,

simulation length, replica count, and HPC resource. The complete integration is explained in the following

sections: (a) MDFF simulation, (b) CC analysis, (c) RADICAL-cybertools and (d) validation approaches.

3.1 Molecular Dynamics Flexible Fitting simulation:

In the pipeline simulation stage, R-MDFF uses the conventional MDFF algorithm, as described in.3 Briefly,

MDFF requires, as input data, an initial structure and a cryo-EM density map. A potential map is generated

from the density and subsequently used to bias a MD simulation of the initial structure. The structure is

subject to the EM-derived potential while simultaneously undergoing structural dynamics as described by

the MD force field.

Let the Coulomb potential associated with the EM map be Φ(r). Then the MDFF potential map is

given by,

VEM (r) =


ζ
[
ϕ((r))−ϕth

ϕmax−ϕth

]
, if ϕ(r) ≥ ϕth

ζ, if ϕ(r) < ϕth

(1)

where ζ is a scaling factor that controls the strength of the coupling of atoms to the MDFF potential,

ϕth is a threshold for disregarding noise, and ϕmax = max(ϕ(r)). The potential energy contribution from

the MDFF forces is then

UEM (r) =
∑
i

wiVEM (ri) (2)

where i labels the atoms in the structure and wi is an atom-dependent weight, usually the atomic mass.
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During the simulation, the total potential acting on the system is given by,

Utotal = UMD + UEM + USS (3)

where UMD is the MD potential energy as provided by MD force fields (e.g. CHARMM) and USS is a

secondary structure restraint potential that prevents warping of the secondary structure by the potentially

strong forces due to UEM .1,63 A detailed description of the MDFF methodology is presented in.1,2 Specific

simulation parameters for the example cases of ADK and CODH are provided on the GitHub page.62

3.2 Cross-correlation analysis

The analysis and decision-making part of the ensemble refinement involves calculating the map-model cross

correlation (CC) value for all replicas at every iteration of the R-MDFF workflow. For t MD steps and M

replicas per iteration, the total simulation time is equal to tsteps/iteration×Niteration×Mreplicas. At the end

of each iteration, the CC for Mreplicas number of resulting structures is computed against the target map

to examine the quality of fitting. Atomic coordinates corresponding to the Monte Carlo-like selection rule

described in Sect. 2 are used to restart all the replicas for the next iteration.

3.3 RADICAL-Cybertools

In order to implement the pipeline, we have extended an open-source, Python framework – RADICAL

Ensemble Toolkit (EnTK) – that facilitates adaptive ensemble biomolecular simulations at scale. The first

step of writing the EnTK workflow code is to construct a task parallel execution of MDFF simulation using

NAMD 2.14,33,55 and to connect the analysis stage to find highest CC values among replicas. While all

the necessary information such as NAMD checkpoints and CC values are kept under EnTK’s data staging

area, distributed computing resources are coordinated to ensure the workflow performance over CPUs and

GPUs from heterogeneous HPC platforms. In addition, several features have been added to the application

by utilizing existing capabilities of RADICAL-Cybertools. Tcl scripting is interfaced with EnTK APIs to

interact with VMD software directly and a partitioned scheduling is introduced to assign a single node per

replica for the best performance of NAMD simulations. Usability and productivity have been addressed

to automate resource configurations and experiment settings as well as ensuring reproducibility of scientific

data. The R-MDFF application integrates the NAMD engine and VMD for analysis methods and thus

requires only a few lines of settings in a workflow management file without source code modifications. The

application, R-MDFF is available on GitHub (https://github.com/radical-collaboration/MDFF-EnTK) and
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implemented to support adaptive decision making for ensemble-based simulations and to enable the novel

analysis method, MDFF or others on HPC resources.

3.4 Other analyses - MolProbity and PCA

MolProbity47 scores are calculated to determine the quality of the ensemble of structures for protein ADK

after adaptive decision based flexible fitting. The distribution of MolProbity scores indicate that as the

ensemble members increase, ranging from 16 to 400, a population of high quality structural ensemble (Mol-

Probity score ∼ 0.75) is observed.

For the analysis of protein molecular dynamics simulations, principal component analysis (PCA)64–66

approach can monitor the individual modes, thereby allowing one to filter the major modes of collective

motion from local fluctuations. Often these principal modes of motion is correlated with protein function,

the reduced dimensional subspace spanned by these modes was termed essential dynamics,67 reflecting the

modes which correspond to essential biological function. Also, using PCA we can distinguish converged

structures (fitted to EM density map) from outlier structures (outside the EM density map).65

We performed PCA using ProDY68 and represent the essential dynamics using the Normal Mode Wiz-

ard68 plugin in VMD.69 The principal components are represented in Figures 5 B and C, corresponding

to 16 and 400 ensemble members respectively. PCA results of evaluating the structural ensemble of protein

ADK across multiple iterations in R-MDFF, suggests while fitting to a high resolution EM density map

with low ensemble members (16 replicas), the essential dynamics capture mostly the biologically relevant

”lid-closed” state. However, increasing the number of ensemble members (400 replicas), results indicate that

normal modes can probe both the the biologically relevant ”lid-open” and ”lid-closed” states.

4 Results and Discussion

We conducted a series of experiments using R-MDFF by varying the number of replicas and iterations, and

length of flexible fitting simulations. With these parameters, we compared the quality of the refined models

for two example systems, namely, adenylate kinase (ADK) and carbon monoxide dehydrogenase (CODH)

proteins. The robustness of the protocol is demonstrated on two HPC facilities, namely on Oak Ridge

Leadership Computing’s Summit, each node on which has two IBM Power9 processors and six NVIDIA

V100 GPU accelerators, and on Pittsburgh Supercomputer Center’s Bridges2 having two AMD EPYC 7742

processors per node.
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4.1 Adaptive decision making using R-MDFF provides variance

in ensemble refinement of high-resolution density maps

We start by fitting the ‘closed’ conformation of ADK (PDB: 1AKE) into synthetic density maps derived

from its ‘open’ form (PDB: 4AKE). In Figure 2 the CC changes are presented as a function of iterations

for ensemble members with 4, 8, 16 and 32 replicas, and at map resolutions of 1.8, 3 and 5 Å. Using the

utility Phenix.maps and the reported structure factors, ADK density maps were constructed at the native

1.8 Å resolution, and were further truncated at intermediate (3 Å) and low (5 Å) map resolutions. The

product of number of replicas (Mreplicas) × number of iterations (Niterations) × the flexible fitting MD steps

per iteration and per replica (tsteps/iteration/replica) which results in 16 nanoseconds (ns) of sampling.

For intermediate and low resolutions, the CC peak is ≈ 0.9, while at high resolution this value shifts to ≈

0.8. While the former took one to two iterations only, the later took up to ten iterations to reach the highest

CC values. The determination of the best-fitted model is almost independent of the number of replicas used,

barring at 1.8 Å where a small increase in peak CC from 0.78 to 0.80 is observed when Mreplicas doubled

from 4 to 8. As expected, the change in the quality of fit from 0.9 (against the 3.0 Å and 5.0 Å maps) to

0.8 (against the 1.8 Å maps) stems from the many conformations of a model that can match intermediate

to low resolution density, the number of which decreases at higher resolutions.

In Figure 2, as the replica count further increases to 16 and 32, the distribution of CC values becomes

wider for a high-resolution density map. Interestingly, the best CC values at the end of every iteration does

not linearly increase with iterations, but rather show fluctuations with an overall increasing trend, Figure S1.

For example, in iterations 3 to 5 of the 32-replica refinement the CC’s decrease, suggesting that the ECC-

selection criterion does not uniquely bias the distribution towards higher CC values, offering a probability

to sample also the poorly fitted structures. This wider distribution implies conformational diversity27 in

the ensemble of refined protein structures. Conventionally, MDFF generates protein structures with low

variance and high bias towards maximizing correlation with the target density. At higher resolutions, the

population of the structures is further skewed. Even with the use of a relatively small number of R-MDFF

replicas (Mreplicas = 32) encoded through EnTK, the workflow generates a range of structures with CCs

between 0.78 to 0.82. On the contrary, a single long MDFF trajectory with identical cumulative time of 16 ns

produces final models strongly peaked at CC ∼ 0.67. Therefore, unlike conventional flexible fitting, the R-

MDFF workflow generates models that represent different propensities for large-scale protein conformations,

still including the most probable model with an improvement of 22% over a single long MDFF.
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4.2 Statistics of map-model fits improve with larger replica simu-

lations

An improvement in ADK fit quality on a single long MDFF trajectory, particularly at 1.8 Å resolution, mo-

tivated further exploration of fit quality as a function of Mreplicas. First, we have repeated the Mreplicas = 64

computations without the adaptive decision block in R-MDFF. The most probable CC values decrease to

0.52 compared to 0.82 determined by executing the entire workflow, see Figure 3. This significant differ-

ence of 40% in the fit of the model to map implies that it is not just the sampling of an increased number

of replicas, rather the adaptive re-initialization strategy employed every iteration successfully improves the

simple MDFF results.

Next, it is examined whether increasing the simulation length per iteration for every replica, i.e. tsteps/iteration/replica

has an effect on improving the quality of fit for larger number of replicas. From Figure 4, one notice that

the CC value increases and then drops and forks as the Mreplicas increases beyond 32. This is expected,

since for higher Mreplicas the tsteps/iteration/replica is decreased to conserve the cumulative simulation length

as that of a single MDFF trajectory. To address this issue, for replicas 64, 100, 200, 400 we increase the

simulation length per iteration for each replica to match that of the 16-replica workflow. We chose the

tsteps/iteration/replica = 16 ns from the Mreplicas =16 setup, as that provides some rare yet high CC peaks.

As tsteps/iteration/replica increased from 20 ps to 80 ps, for Mreplicas = 64, to match the simulation

length for Mreplicas = 16 from Figure 4, the CCs improved systematically by 11% from 0.72 to 0.82

(Figure 5). More importantly, at the higher values of Mreplicas, e.g. 100, 200, and 400, a broad, and

in fact, bimodal distribution of refined models is derived, while maintaining the same tsteps/iteration/replica

= 80 ps. The bimodal distribution captured using 400 ensemble members represents the conformational

heterogeneity27,37,38 observed in cryo-EM density maps. These conformational heterogeneity corresponds to

different thermodynamic states of the biomolecule.

Models with high CC around 0.8 are expected given the inherent bias of the density data within MDFF

simulations. However, the distribution of models isolated with statistical significance, and lower yet still

decent CC values between 0.7 to 0.8, were obscured by single, smaller-replica or non R-MDFF jobs. The

quality of these structures was determined employing a MolProbity47 analysis of all members of the generated

protein ensemble. Despite a broad distribution in the quality of fit, the quality of model remains universally

high as seen through MolProbity scores peaked between 0.75 - 1.75, see SI figures, Figures S2 - S6.

Thus, the multi-model description inferred from the 1.8 Å ADK density map remain energetically viable

conformations of the protein that remain in the vicinity of the best-fitted model, but with variations that

can reflect the dynamics of ADK.
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In the open state of ADK, its so-called “lid” domain undergoes a hinge-like movement30,70–72 to maintain

a conformational pre-equilibrium with the closed state, with the open state being more prevalent for apo pro-

tein.73 Such movements are confirmed by transition path sampling simulations and FRET experiments.74,75

Illustrated in Figure 5, principal components from the ensemble of converged R-MDFF models collated

across 400 replicas clearly captures this hinge movement of “lid” opening and closing essential towards the

biological function catalyzes the interconversion of the various adenosine phosphates (ATP, ADP, and AMP).

However, a skewed distribution of the just the best-fitted models is obtained with Mreplicas = 16, indicating

only the “lid” open state. Thus, by using a probabilistic selection criterion within R-MDFF, rather than

a deterministic one used conventionally with data-guide simulations such as MDFF, the space of CCs is

more exhaustively sampled during flexible fitting, and the evolution of an ensemble can be monitored to gain

insights on the structure-function relationship for biomolecules.

4.3 Refinement protocol is robust to system size

Robustness of the newly implemented R-MDFF parameters estimated from our multi-replica ADK simula-

tions is tested using a second example of larger protein, namely carbon monoxide dehydrogenase. The closed

conformation (PDB - 1OAO: chain C) was used as the search model, while the open state (1OAO: chain

D) was the target. Similar to ADK, the fitting was performed with maps of the reported 1.9 Å and syn-

thetically reduced 3.0 Å resolutions. After reconstruction of the density for the entire protein, again using

phenix.maps, the target density for the open state was extracted by masking the map about chain D using

the volutil module of VMD.

Figure 6 suggests improvement in the refinement of CODH both at the high and intermediate resolu-

tions. Similar to the ADK example, a higher number of replica improved the distribution of models across

the range of CCs when fitting to a high resolution density map. But now, the best-fitted MDFF model

improved from CC= 0.75 to 0.8 between Mreplicas=16 and 100, which an improvement of 6.7%, higher than

the improvement of 3% seen in ADK over a similar range of replicas. Thus, the workflow on one hand scales

with system size, while on the other benefits from the deployment of multiple replica simulations as the

system size grows.

Our procedure of performing flexible fitting with on-the-fly adaptive decision making to transition from

closed to open state, results in an ensemble within 2.0 Å RMSD to the experimentally determined “open”

state comparing backbone atoms. This outcome is also comparable to our past refinement of CODH using

a so-called cascade or simulated-annealing protocol, where the refined CODH model also reached within 2 -

2.5 Å of the open target. The larger number of replicas offer a search model greater number of opportunities
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to conform to density features in high resolution EM maps, and the min (1, e∆ECC/KT ) based selection-rule

installed in R-MDFF enables avoiding of local minima in the CC space. Since the larger systems are prone

to degeneracy of density features, we expect R-MDFF workflow enabled via EnTK to be more useful in

overcoming the local minima and exhaustively sampling the conformational space as the size grows.

4.4 R-MDFF: Performance characterization

This section characterizes the computing performance of R-MDFF on HPC resources. We provide evidence

that R-MDFF manages computing resources efficiently, with comparatively small overhead when running

multiple replicas.

4.4.1 Experiment Configuration

We designed 11 experiments to evaluate the efficiency of R-MDFF enabled via EnTK and we summarized

their setup and results in Table 1. We utilized two biological systems—adenylate kinase (ADK) and carbon

monoxide dehydrogenase (CODH)—running between 2 and 100 replicas (Rep), with varying simulation

length (Sim. Len.) and resolution (Res.). Each experiment executed between 256 and 12800 tasks on PSC

Bridges and ORNL Summit.

We characterized the performance of EnTK by measuring its overhead (OVH), i.e., the amount of time in

which compute nodes are available but not used to execute tasks. Specifically, we separate between then time

taken by the middleware (EnTK and its runtime system) to acquire resources, bootstrap the components and

schedule the tasks; from the time taken by all the tasks to perform their scientific computation. Thus, OVH

gives a simple but effective way to evaluate the cost of executing MDFF with EnTK and its components in

terms of time spent to do everything else but science.

Experiment’s runs utilize up to 4 compute nodes on Bridges2 and 100, and execute each replica on a

full compute node. On Bridges2, the NAMD MD engine uses 128 cores (AMD EPYC 7742 with of 256GB

DDR4 memory), without GPU acceleration. Note that Bridges2 offers 24 compute nodes, each with 8 V100

GPUs accelerators but we decided to use only CPU resources due to their limited availability. On Summit,

we run the CUDA-enabled NAMD MD engine on 6 NVIDIA V100 GPU accelerators per node. Different

hardware platforms show wide performance gaps in time to solution but the cross-correlation is similar when

using the same configurations.

We provide templates to allow users to replicate the experiments presented in this paper or as a starting

point to create a run new experiments. The templates, written in YAML, store user-defined attributes

for experiments and HPC resources separately, ensuring flexible analysis on diverse computing platforms.

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2021.12.07.471672doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471672


Table 1: Experiments to characterize R-MDFF performance. System: biological system
name; Rep. (M): Total number of replicas between 2 and 100; Sim (ps): R-MDFF simula-
tion length per iteration in picoseconds; Res. (Å): resolutions in Angstrom (high 1.8Å and
intermediate 3.0Å); Resource: GPUs and CPU cores on OLCF Summit and CPU cores only
on PSC Bridges2; Tasks: number of tasks for each experiment; OVH(s): Overhead of R-
MDFF enabled via EnTK in seconds.

Exp.
System

Rep. Sim. Res.
Resource

Tasks OVH
ID (M) (ps) (Å) (s)

1 ADK 2 64 1.8 Bridges (CPU) 256 81.0± 10
2 ADK 4 32 1.8 Bridges (CPU) 512 126.0± 10
3 ADK 4 250 1.8 Summit (GPU&CPU) 512 92.0
4 ADK 8 160 1.8 Summit (GPU&CPU) 1024 105.27± 18
5 ADK 16 80 1.8 Summit (GPU&CPU) 2048 114.06± 16
6 ADK 32 40 1.8 Summit (GPU&CPU) 4096 109.33± 10
7 ADK 64 20 1.8 Summit (GPU&CPU) 8092 158.87± 57
8 ADK 100 10 1.8 Summit (GPU&CPU) 12800 266.98± 245
9 CODH 16 80 1.8 Summit (GPU&CPU) 2048 93.34± 17
10 CODH 16 80 3.0 Summit (GPU&CPU) 2048 99.44± 20
11 CODH (long) 100 80 1.8 Summit (GPU&CPU) 12800 113.61± 20

The source code and configuration parameters of the experiments are published on the R-MDFF Github

repository.62

4.4.2 EnTK Overhead is Steady Across HPC Platforms

We measured the time spent by EnTK to bootstrap and clean up the execution environment. Those are

overheads as they measure the time spent before and after the execution of the workflow’s tasks, when

computing resources are already available. We measured the overheads on both Bridges and Summit, and

at different scales.

Both bootstrap and clean up overheads are independent of the workflow scale as the time taken to

manage the execution environment does not depend on the number of tasks executed in it. However, the

bootstrap overhead can vary, depending on the filesystem performance and network latency, when serving

packages and files during the bootstrapping process. We used a pre-configured environment to reduce the

bootstrapping overhead by limiting the number of downloaded packages and the I/O operations required to

build the execution environment of EnTK and the other RADICAL-Cybertools.

Figure 7 shows that OVH is between 3% and 5% of the total execution time of the workflow presented

in §3, across all our experiments. As summarized in Table 1, OVH is invariant of the number of replicas
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executed on Summit (150.90 ± 115 seconds) and on Bridges (103.5 ± 22.5 seconds) when running from 2

replicas to 100 replicas.

Bridges2 shows three times larger overhead compared to Summit, mainly due to the different performance

of the parallel filesystems: Lustre on Bridges2, GPFS on Summit. On Lustre, the initial access to files takes

longer than continuous access because Lustre has to retrieve the location of the actual storage device over

the network. The additional results from both platforms are reported in SI figures, Figures S7 and S8.

5 Conclusions

Cryo-EM data of a protein represents an average of many two-dimensional images transformed to a three-

dimensional density map. Classical methods in statistical mechanics such as MD fail to determine such an

ensemble in finite length simulations, as structures remain trapped in deep potential wells corresponding to

local dense points in the density maps. To circumvent this algorithmic bottleneck of importance sampling

and to decide the quality of an ensemble of protein structures on-the-fly, we present a framework for ensem-

ble refinement of protein structures with adaptive decision making that improves both the quality of model

and fit. We call this method R-MDFF. A refined protein ensemble offers, on one hand, the most probable

structural representation based on available density information, while offering insights on protein conforma-

tional dynamics that are often ignored in traditional single-model interpretation derived from single-particle

experiments.

The R-MDFF based workflow application allows adaptive decision-making for flexible fitting simula-

tions by the the integration of correlation analysis with MD simulations. This workflow is implemented on

two distinct heterogeneous high-performance national supercomputers facilities, Bridges2 and Summit. The

workflow performs an user-defined number of iterative fitting and analysis tasks. This multi-replica scheme

improves statistical significance, the quality of models over those derived from the traditional scheme of per-

forming a single long MDFF simulation. Consequently, the new scheme arrives not just at the best-fit but

a population of models with varied ranges of data-consistency. In addition, we show that R-MDFF enabled

via EnTK, is well suited for heterogeneous extreme-scale high-performance computing environments76 by

managing resource utilization of GPU and CPU computing units and the workflow overhead for increased

ensemble members. We also show that our approach would have a similar computational cost as the tradi-

tional single long MDFF simulation, but with a quick turnaround time (shorter wall time of workload), while

exploring interesting regions in the density map. Larger system sizes that are more akin to cryo-EM struc-

ture determination offer further performance advantages. We continue to extend the capability of R-MDFF

in complex applications in exascale high-performance computing environments.
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Supporting Information Available

The Supporting Information (SI) includes a trace plot for the cross correlation coefficient, calculated after

every iteration in the R-MDFF protocol to fit ADK in high, intermediate and low resolution electron denisty

maps. The SI also includes MolProbity scores for models from R-MDFF trajectories and the performance

of the R-MDFF algorithm when applied to larger biomolecular systems such as CODH.
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Figure 1: Overview of the workflow application for R-MDFF. The schematic shows
how NAMD/VMD is used to perform flexible fitting iteratively. Internal boxes with an-
notation numbers indicate the sequence of the workflow: (1) Input data (2) Simulation
preparation and execution using VMD and NAMD respectively (3) Building CC matrix and
sort through CC matrix to select best CC (4) Check if best CC is lower than threshold CC
(5) Use the current state of the molecular sytem corresponding to the best CC using the
restart files (6) Re-seed all replicas with the restart files and perform the next iteration of
flexible fitting (7) Data guided ensemble refined models.
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Figure 2: Cross correlation coefficient after flexibily fitting ADK with R-MDFF
at different resolution density maps. Data presented for high resolution (1.8 Å), in-
termediate resolution (3.0 Å) and low resolution (5.0 Å) cryo-electron microscopy density
maps, for different ensemble members, 4 (purple), 8 (blue), 16 (light blue) and 32 (green)
respectively. We find that replica number directly correlates with we have larger variabilty
amongst ensemble members for high resolution density map.
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Figure 3: Conventional versus R-MDFF on flexbile fitting ADK in high resolution
density map. Comparing cross correlation between conventional and R-MDFF when fitting
ADK to high resolution EM map of 1.8 Å using 64 replicas. We find R-MDFF to perform
better than a conventional MDFF, with a population of high cross correlation ensemble
members, indicated by the solid line.
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Figure 4: Change in quality of fitted ensemble with replica size. Best cross-
correlation after iterative adaptive flexible fitting using R-MDFF, to fit ADK to a high
resolution 1.8 Å map, for different ensemble sizes with Mreplicas = 4 - 100. Monitoring the
effect of replica size on the quality of fit. We observe cross-correlation to increase till 32
replicas, after which the value starts decreasing.
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Figure 5: Impact of total simulation time on the quality of fit. (A) Best cross-
correlation (CC) after adaptive flexible fitting of ADK to a high resolution (1.8 Å) map,
for different ensemble members (64, 100, 200 and 400). (B) Principal component analysis
(PCA) of ADK protein with 16 replicas flexibly fitting to 1.8 Å using adaptive protocol
(C) PCA of ADK protein with 400 replicas flexibly fitting to 1.8 Å using adaptive protocol.
PCA results demonstrate the experimentally observed hinge motion, can be found with a
high replica number, but not for a low replica number.
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Figure 6: Robustness of R-MDFF protocol to system size. (A) Closed (red) to open
(blue) are the initial and final (target) states of the dynamics for protein CODH. Flexibly
fitting with R-MDFF to high resolution 1.8 Å EM density map. (B, C) Probability density
of cross correlation coefficient for CODH, using the optimal parameters taken from ADK
results at different resolutions - 1.8 Å (B) and 3.0 Å (C).
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Figure 7: Performance of EnTK during flexible fitting with adaptive decision
making. EnTK Overheads on PSC Bridges2 (a, b) and Summit (c - g) compute nodes. The
total simulation time (equal to tsteps/iteration × Niteration × Mreplicas) is 16ns. TTX tends to
decrease with the increasing of the number of compute nodes.
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