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Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have enabled modeling
macromolecular complexes that are essential components of the cellular machinery.
The density maps derived from cryo-EM experiments are often integrated with man-
ual, knowledge-driven, and physics-guided computational methods to build, fit, and
refine molecular structures. Going beyond a single stationary-structure determination
scheme, it is becoming more common to interpret the experimental data with an en-

semble of models, which contributes to an average observation. Hence, there is a need
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to decide on the quality of an ensemble of protein structures on-the-fly, while refin-
ing them against the density maps. We introduce such an adaptive decision making
scheme during the molecular dynamics flexible fitting (MDFF) of biomolecules. Us-
ing RADICAL-Cybertools, and the new RADICAL augmented MDFF implementation
(R-MDFF) is examined in high-performance computing environments for refinement
of two protein systems, Adenylate Kinase and Carbon Monoxide Dehydrogenase. The
use of multiple replicas in flexible fitting with adaptive decision making in R-MDFF
improves the overall quality of the fit and model by 40% relative to the refinements
of the brute-force MDFF. The improvements are particularly significant at high, 2 -
3 A map resolutions. More importantly, the ensemble model captures key features
of biologically relevant molecular dynamics that is inaccessible to a single-model in-
terpretation. Finally, this pipeline is applicable to systems of growing sizes, with the

overhead for decision making remaining low and robust to computing environments.

1 Introduction

Integrative modeling is an area of rapid methodological developments, wherein, atom-resolved structure(s) of

1-3

biological systems are determined by merging data from multiple experimental sources with physics ' and

12-16 methodologies

informatics-guided approaches. These elegant fitting, ! 35719 learning'! sand inferencing
have been successful in resolving a range of structures, starting with soluble and membrane proteins up to
sub-cellular complex architectures.!”'® Integrative models routinely make it to top positions at the EMDB
and PDB competitions, serving a diverse cross-section of the Biophysics community.'® Advances in protein

20-23 eyolutionary covariance or multi-sequence alignments offer excellent constraints for

structure modeling,
initiating such hybrid pipelines. 24

A key issue in integrating structural or biochemical information with simulations stems from the hetero-
geneity of the data. The data quality can be spatially variant, spanning anywhere between coarse-grained to
near-atomistic level of details. As a natural consequence of this heterogeneity, a single-model interpretation
of the experimental data becomes implausible, opening the door to an ensemble treatment of the data.?®
The ensemble models capture on one hand, the most probable interpretation of the data, while on the

other, pinpoints rare-events and hidden conformations. Biology often employs such conformational diver-

sity in problems of allostery and recognition, motivating the refinement of experimental knowledge against
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molecular ensembles. '

Another advantage of the ensemble interpretation is that, the generation of multiple independent atomic
models using an EM density and statistical analysis of their map-model agreement offers metrics of global as
well as local EM map quality.2® This ensemble approach offers essentially both a quantitative and qualitative
assessment of the precision of the models and their representation of the density.

The size of the ensembles that collectively describes the diversity in single-particle images (reflecting in
the quality of the maps), however, grows non-linearly with system-size.?” For proteins of molecular mass
500 kDa or bigger, composed of 5000 residues or more, a single CPU is expected to take 5000 years of
wall-clock time for sampling the conformational ensembles using either brute force molecular dynamics (MD)

28 even the fastest GPUs of the day will not rescue this situation. Alternatively,

or Monte Carlo simulations;
data-guided enhanced sampling methodologies, such as MELD'? (integrated with NAMD via the recently
completed CryoFold plugin'#) or backbone tracing methodologies such as MAINMAST2? and analogous
methods, ! by themselves, either remain system-size limited, generating ensembles for only local regions
within a map, or require further refinements using conjugate gradient minimization or free-energy schemes°
to determine thermodynamic ensemble. As a step towards addressing this issue, by leveraging classical force
fields (so-called CHARMM?3! energy functions) we have developed a range of molecular dynamics flexible
fitting (MDFF) methodologies for integrating x-ray and cryo-EM data with MD simulations. ! 332 The simu-
lations are biased towards conforming molecular models into forms consistent with the experimental density
maps. These protocols are available through MD simulation engine NAMD, 3?3 recently to GROMACS® and
are also expanded as plugins, such as ISOLDE?3? in ChimeraX.3%3¢ As a natural outcome of this fitting
procedure, the most probable data-guided models are derived, e.g. for complex systems like the ribosomal
machinery, virus particles and membrane proteins.'® However, the conformational heterogeneity 2737-3% that
contributes to the uncertainty of the experimental data is lost.

In this article we explore whether, it is possible to recover portions of the conformations lost in brute-
force MDFF by running multiple replicas of MDFF in parallel with ‘adaptive decision making’. Rather
than physically enforcing a model into a map, this approach skews the probability of an ensemble of models
towards maximizing their consistency with the map. This way, there remains a finite probability of visiting
several uncertain structures, while still emphasizing determination of the most probable molecular models.

Traditional high-performance computing (HPC) approaches fail to make data-driven decisions within a
multi-replica ensemble modeling workflow. We employ RADICAL-Cybertools, 3 and in particular Ensem-
ble Toolkit (EnTK),%% to overcome this challenge of developing multi-replica MDFF as a workflow applica-
tion. Herein, EnTK deploys an application programming interface (API) for casting the MDFF simulation

and analysis workflow as a hierarchy of pipelines, stages and tasks. Simultaneously, the RADICAL-Pilot
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(RP)4142 is employed as the high-performance and dynamic resource management layer. This workflow
identifies all the flexible fitting tasks within a pipeline, acquires heterogeneously distributed resources to
complete multiple parallel pipelines, and manages the overall execution of the stages iteratively.

A classical approach involves long brute-force MD simulations that are often stuck in local minima, re-
quiring additional steps to find interesting regions of the conformational search space. In contrast, adaptive
sampling implements an iterative loop that concurrently executes multiple simulations, each with short sim-
ulation time.43 45 Map-model metrics are analyzed at every iteration - this analysis increases the probability
of finding models that are consistent with the data, reducing the possibilities of getting trapped in any local
energy minimum. The decision to enhance the sampling of specific models can be based a number of map-
model metrics,'® such as TM scores,*6 MolProbity,*” EMRinger,*® Q-score.*? In our first proof-of-concept
adaptive MDFF workflow, a simple global cross correlation coefficient (CC) is employed as a criteria to guide
the choice of refinement models; Molprobilty statistics are employed for cross-validation.

Outlined in Figure 1, workflow application using R-MDFF composes individual simulations and sup-
ports analysis calculation on intermediate results to perform adaptive sampling. The scheme iteratively
screens model populations based on their CCs with the map, and improves efficiency of computing resource
consumption over longer simulations. We find that, powered by EnTK’s data-staging capabilities and check-
pointing of the parallel MD simulations available on NAMD, MDFF trajectories intermittently screened by
CC values offer an ensemble of refined models. We have tested the adaptive MDFF workflow with up to 100
replicas, each encompassing 16 iterations across resolutions of 2 A to 5 A, and achieved around 40 % improve-
ment in map-model fitting over a long brute-force simulation. Similar efficiencies are noted while comparing
the adaptive workflow with multi-replica, yet non-adaptive implementations of MDFF. The pipeline is fur-
ther tested for using up to 400 replica with (1 node/replica). In all these cases, we find that an ensemble
approach with adaptive decision making offers more diverse ensembles than brute force MDFF. Thus, going
beyond traditional MDFF, these ensembles capture on one hand, the ‘best’ model, while simultaneously the
uncertainty in the assignments on the other. Remarkably, the performance of the workflow improves with
system-size (3341 atoms in Adenylate Kinase and 11452 atoms in Carbon Monoxide Dehydrogenase atoms),
and remains robust to computing platforms. Taken together, our implementation breaks free of the tradi-
tional high-performance computing execution model that assumes singular jobs and static execution of tasks
and data, to one that is fundamentally designed for data-integration and assimilation across different scales,
quality and sparsity. The cryo-EM community has actively sought ways of extracting not just stationary
structures, but ensembles and more importantly, molecular dynamics information from electron density data

are ever-increasing. 27-°0-52
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2 Adaptive Integrative Modeling using R-MDFF

Adaptive decision making for the refinement of multiple protein structures coupled to 3-dimensional (3D) elec-
tron density maps is implemented as an iterative simulation-analysis workflow enabled by EnTK (Figure 1
and Algorithm 1). Within R-MDFF, a workflow is defined as an ensemble of simulation + analysis
pipelines that synchronously execute on HPC resources. Each constituent pipeline enable seven serial tasks:
(1) load an empirically determined density map or generate a simulated map. Then convert this map to an
MDFF potential, Eq. 1 and 2. Independently, examine the quality of an initial search model in terms of
stereochemical properties, and perform rigid body docking to place this search model inside the EM density

36 or Situs.%3 (2) Define the secondary structure restraints. Visual Molecular Dy-

map, e.g. using Chimera
namics (VMD)?* then prepares the input files required by NAMD 3355 to deploy MDFF. Multiple replicas
of the system are prepared, under the same R-MDFF pipeline, as shown in Figure 1. Then, the ensemble
of MDFF simulations are performed in parallel. (3) VMD’s scripting interface is re-used to calculate the
interim cross-correlation value between the atomic models from each replica and the EM density map. The
CC values are extracted from VMD log files for different replicas are then combined to construct a matrix.
EnTK uses a data staging area to move this matrix from flexible fitting to the adaptive decision-making block
across multiple replicas. (4) Here, a decision is made on whether the flexible fitting simulations will continue
or terminate, based on whether the computed CC is greater than or equal to the user-defined threshold. This
on-the-fly map-model analysis enables an adaptive flexible fitting algorithm to run recursively inside EnTK,
without user intervention. When the threshold CC is not met at the end of tasks 1-4, subsequent iterations
are performed, wherein (5) all replicas are reseeded with the atom coordinates, velocities, and periodic sys-
tem information corresponding to MDFF model with the best CC from the previous iteration, and the next
round of multi-replica MDFF proceeds. If the map correlation of the best-fitted model decreases along the
forward iteration, the new poorly fitted starting conformation is accepted with a weight min (1, eAECC/KT).
Here, we follow AEcc = k(CCny1 — CCy) for iteration no. N and k = 5 x 10° kJ/mol.® For a failed
move, the fitting restarts with the initial conformations of the last iteration, and the criterion is reused to
find a new starting structure. (6) Again, EnTK uses data staging area to store these information in files and
provide them to the replicas. This feature not only makes the algorithm adaptive, but offers future scope of

12-14,37,56

improvement for applications requiring advanced decision-making, either based on inferencing or

57-61

neural network based machine learning algorithms. Finally, the application converges to yield a refined

ensemble (7), which exit the R-MDFF workflow and downloads results to the end-user’s working directory.
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Algorithm 1: R-MDFF scheme with adaptive decision making based on CC.

begin

perform rigid body docking of protein atomic structure in EM density map

generate N replicas with this initial coordinate

while CC replica resolution < CC threshold do

generate N replicas with initial coordinates from highest CC ensemble to EM density map
repeat simulation stage (selected coordinates, density map)

repeat analysis stage (best cc coordinates, replica index)

increase iteration by 1

L end
| refined protein ensemble in end-user’s working directory

The R-MDFF API is implemented as a Python module, loaded into the workflow application’s code. 52
The API exposes classes for pipeline, stage, and task, allowing one to directly map the workflow description
to the logical representation of an ensemble of simulations. Each task object exposes a set of variables with
which to configure input, output files, executable, resource requirements, and pre/post execution directives.
Finally, an application manager object is used to contain the workflow description and execute it with a
single AppManager.run() method. The iteration logic to change the workflow description and issue another
AppManager.run() is written in pure Python as part of the workflow application. The entire R-MDFF
workflow application of this paper required only 500 lines of Python code. 52

As already described in Balasubramanian et al. °, EnTK complements the ensemble simulation paradigm
with decision making through real-time workflow and parameter changes, based on the results of the anal-
ysis stages. In the present context, this feature enables iterative workflow executions with a single HPC
batch-job submission, avoiding costly manual evaluation of cross-correlation coefficient, workflow editing,
and re-submission, as demonstrated here for flexibly fitting biomolecules in cryo-EM density maps. EnTK
also abstracts from the users the need to explicitly manage data flow and task execution. It manages data
staging so that each task of each stage has either a copy or a link to all the NAMD input files it requires,
allowing the users to focus on the MDFF simulation and VMD analysis methods, without having to explic-
itly handle data sourcing, saving, and exchange. Furthermore, EnTK schedules and executes the workflow’s
tasks, managing the mapping of tasks to available resources on each compute node allocated to the workflow
execution. Users only have to specify the amount of CPU cores/GPUs needed by each task and whether the

task is (Open)MPL.
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3 Methods

Modern adaptive sampling frameworks are dynamic, extensible, scalable and robust to facilitate hundreds
or thousands of experiments for searching different structures, and specialized features can be added to
solve existing problems through the framework. We developed a workflow application using RADICAL-
Cybertools®? that provides a scalable workflow framework for implementing ensemble refinement with cross
correlation calculation on HPC computing resources. R-MDFF (RADICAL-Cybertools enhanced Molecular
Dynamics Flexible Fitting), depicted in Figure 1, supports adaptive decision making algorithms to iterate
between molecular dynamics flexible fitting simulation and cross-correlation analysis. Our workflow appli-
cation is portable to explore the space of experimental configurations and support various use cases, so that
the ensemble refinement produces results on different dimensions of a physical system; resolution density,
simulation length, replica count, and HPC resource. The complete integration is explained in the following

sections: (a) MDFF simulation, (b) CC analysis, (c) RADICAL-cybertools and (d) validation approaches.

3.1 Molecular Dynamics Flexible Fitting simulation:

In the pipeline simulation stage, R-MDFF uses the conventional MDFF algorithm, as described in.? Briefly,
MDFTF requires, as input data, an initial structure and a cryo-EM density map. A potential map is generated
from the density and subsequently used to bias a MD simulation of the initial structure. The structure is
subject to the EM-derived potential while simultaneously undergoing structural dynamics as described by
the MD force field.

Let the Coulomb potential associated with the EM map be ®(r). Then the MDFF potential map is
given by,
¢ (G2 ] it () > gun

¢, if ¢(r) < dun

Vem(r) = (1)

where ( is a scaling factor that controls the strength of the coupling of atoms to the MDFF potential,
¢un is a threshold for disregarding noise, and ¢ua: = max(¢(r)). The potential energy contribution from

the MDFF forces is then

Upm(r) = Z w;i Ve (1) (2)

where ¢ labels the atoms in the structure and w; is an atom-dependent weight, usually the atomic mass.
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During the simulation, the total potential acting on the system is given by,
Utotal = Unp + Ugm + Uss (3)

where Upp is the MD potential energy as provided by MD force fields (e.g. CHARMM) and Ugg is a
secondary structure restraint potential that prevents warping of the secondary structure by the potentially
strong forces due to Ugps. 1'% A detailed description of the MDFF methodology is presented in.'? Specific

simulation parameters for the example cases of ADK and CODH are provided on the GitHub page. 2

3.2 Cross-correlation analysis

The analysis and decision-making part of the ensemble refinement involves calculating the map-model cross
correlation (CC) value for all replicas at every iteration of the R-MDFF workflow. For ¢ MD steps and M
replicas per iteration, the total simulation time is equal to tsseps/iteration X Niteration X Mreplicas- At the end
of each iteration, the CC for M, cpiicas number of resulting structures is computed against the target map
to examine the quality of fitting. Atomic coordinates corresponding to the Monte Carlo-like selection rule

described in Sect. 2 are used to restart all the replicas for the next iteration.

3.3 RADICAL-Cybertools

In order to implement the pipeline, we have extended an open-source, Python framework — RADICAL
Ensemble Toolkit (EnTK) — that facilitates adaptive ensemble biomolecular simulations at scale. The first
step of writing the EnTK workflow code is to construct a task parallel execution of MDFF simulation using
NAMD 2.14,335% and to connect the analysis stage to find highest CC values among replicas. While all
the necessary information such as NAMD checkpoints and CC values are kept under EnTK’s data staging
area, distributed computing resources are coordinated to ensure the workflow performance over CPUs and
GPUs from heterogeneous HPC platforms. In addition, several features have been added to the application
by utilizing existing capabilities of RADICAL-Cybertools. Tcl scripting is interfaced with EnTK APIs to
interact with VMD software directly and a partitioned scheduling is introduced to assign a single node per
replica for the best performance of NAMD simulations. Usability and productivity have been addressed
to automate resource configurations and experiment settings as well as ensuring reproducibility of scientific
data. The R-MDFF application integrates the NAMD engine and VMD for analysis methods and thus
requires only a few lines of settings in a workflow management file without source code modifications. The

application, R-MDFF is available on GitHub (https://github.com/radical-collaboration/MDFF-EnTK) and
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implemented to support adaptive decision making for ensemble-based simulations and to enable the novel

analysis method, MDFF or others on HPC resources.

3.4 Other analyses - MolProbity and PCA

MolProbity 47 scores are calculated to determine the quality of the ensemble of structures for protein ADK
after adaptive decision based flexible fitting. The distribution of MolProbity scores indicate that as the
ensemble members increase, ranging from 16 to 400, a population of high quality structural ensemble (Mol-
Probity score ~ 0.75) is observed.

For the analysis of protein molecular dynamics simulations, principal component analysis (PCA) 6466
approach can monitor the individual modes, thereby allowing one to filter the major modes of collective
motion from local fluctuations. Often these principal modes of motion is correlated with protein function,
the reduced dimensional subspace spanned by these modes was termed essential dynamics,®” reflecting the
modes which correspond to essential biological function. Also, using PCA we can distinguish converged
structures (fitted to EM density map) from outlier structures (outside the EM density map).

We performed PCA using ProDY % and represent the essential dynamics using the Normal Mode Wiz-
ard %8 plugin in VMD. % The principal components are represented in Figures 5 B and C, corresponding
to 16 and 400 ensemble members respectively. PCA results of evaluating the structural ensemble of protein
ADK across multiple iterations in R-MDFF, suggests while fitting to a high resolution EM density map
with low ensemble members (16 replicas), the essential dynamics capture mostly the biologically relevant
”lid-closed” state. However, increasing the number of ensemble members (400 replicas), results indicate that

normal modes can probe both the the biologically relevant ”lid-open” and ”lid-closed” states.

4 Results and Discussion

We conducted a series of experiments using R-MDFF by varying the number of replicas and iterations, and
length of flexible fitting simulations. With these parameters, we compared the quality of the refined models
for two example systems, namely, adenylate kinase (ADK) and carbon monoxide dehydrogenase (CODH)
proteins. The robustness of the protocol is demonstrated on two HPC facilities, namely on Oak Ridge
Leadership Computing’s Summit, each node on which has two IBM Power9 processors and six NVIDIA
V100 GPU accelerators, and on Pittsburgh Supercomputer Center’s Bridges2 having two AMD EPYC 7742

processors per node.
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4.1 Adaptive decision making using R-MDFF provides variance

in ensemble refinement of high-resolution density maps

We start by fitting the ‘closed’ conformation of ADK (PDB: 1AKE) into synthetic density maps derived
from its ‘open’ form (PDB: 4AKE). In Figure 2 the CC changes are presented as a function of iterations
for ensemble members with 4, 8, 16 and 32 replicas, and at map resolutions of 1.8, 3 and 5 A. Using the
utility Phenix.maps and the reported structure factors, ADK density maps were constructed at the native
1.8 A resolution, and were further truncated at intermediate (3 A) and low (5 A) map resolutions. The
product of number of replicas (Myepricas) X number of iterations (Njterations) X the flexible fitting MD steps
per iteration and per replica (t¢eps/iteration/replica) Which results in 16 nanoseconds (ns) of sampling.

For intermediate and low resolutions, the CC peak is =2 0.9, while at high resolution this value shifts to ~
0.8. While the former took one to two iterations only, the later took up to ten iterations to reach the highest
CC values. The determination of the best-fitted model is almost independent of the number of replicas used,
barring at 1.8 A where a small increase in peak CC from 0.78 to 0.80 is observed when M,eplicas doubled
from 4 to 8. As expected, the change in the quality of fit from 0.9 (against the 3.0 A and 5.0 A maps) to
0.8 (against the 1.8 A maps) stems from the many conformations of a model that can match intermediate
to low resolution density, the number of which decreases at higher resolutions.

In Figure 2, as the replica count further increases to 16 and 32, the distribution of CC values becomes
wider for a high-resolution density map. Interestingly, the best CC values at the end of every iteration does
not linearly increase with iterations, but rather show fluctuations with an overall increasing trend, Figure S1.
For example, in iterations 3 to 5 of the 32-replica refinement the CC’s decrease, suggesting that the Fcc-
selection criterion does not uniquely bias the distribution towards higher CC values, offering a probability
to sample also the poorly fitted structures. This wider distribution implies conformational diversity2” in
the ensemble of refined protein structures. Conventionally, MDFF generates protein structures with low
variance and high bias towards maximizing correlation with the target density. At higher resolutions, the
population of the structures is further skewed. Even with the use of a relatively small number of R-MDFF
replicas (Myeplicas = 32) encoded through EnTK, the workflow generates a range of structures with CCs
between 0.78 to 0.82. On the contrary, a single long MDFF trajectory with identical cumulative time of 16 ns
produces final models strongly peaked at CC ~ 0.67. Therefore, unlike conventional flexible fitting, the R-
MDFF workflow generates models that represent different propensities for large-scale protein conformations,

still including the most probable model with an improvement of 22% over a single long MDFF.

10
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4.2 Statistics of map-model fits improve with larger replica simu-

lations

An improvement in ADK fit quality on a single long MDFF trajectory, particularly at 1.8 A resolution, mo-
tivated further exploration of fit quality as a function of M,.cpjicqas. First, we have repeated the M, cpiicas = 64
computations without the adaptive decision block in R-MDFF. The most probable CC values decrease to
0.52 compared to 0.82 determined by executing the entire workflow, see Figure 3. This significant differ-
ence of 40% in the fit of the model to map implies that it is not just the sampling of an increased number
of replicas, rather the adaptive re-initialization strategy employed every iteration successfully improves the
simple MDFF results.

Next, it is examined whether increasing the simulation length per iteration for every replica, i.e. tseps/iteration/replica
has an effect on improving the quality of fit for larger number of replicas. From Figure 4, one notice that
the CC value increases and then drops and forks as the M;epiicas increases beyond 32. This is expected,
since for higher M .cpiicas the tsieps/iteration/replica 1 decreased to conserve the cumulative simulation length
as that of a single MDFF trajectory. To address this issue, for replicas 64, 100, 200, 400 we increase the
simulation length per iteration for each replica to match that of the 16-replica workflow. We chose the
tsteps iteration/replica = 16 ns from the My.cpiicas =16 setup, as that provides some rare yet high CC peaks.

AS tspeps/iteration/replica increased from 20 ps to 80 ps, for Mepiicas = 64, to match the simulation
length for Myepiicas = 16 from Figure 4, the CCs improved systematically by 11% from 0.72 to 0.82
(Figure 5). More importantly, at the higher values of Mcpiicas, €.g. 100, 200, and 400, a broad, and
in fact, bimodal distribution of refined models is derived, while maintaining the same tscps/iteration/replica
= 80 ps. The bimodal distribution captured using 400 ensemble members represents the conformational

heterogeneity 27-37:38

observed in cryo-EM density maps. These conformational heterogeneity corresponds to
different thermodynamic states of the biomolecule.

Models with high CC around 0.8 are expected given the inherent bias of the density data within MDFF
simulations. However, the distribution of models isolated with statistical significance, and lower yet still
decent CC values between 0.7 to 0.8, were obscured by single, smaller-replica or non R-MDFF jobs. The
quality of these structures was determined employing a MolProbity4” analysis of all members of the generated
protein ensemble. Despite a broad distribution in the quality of fit, the quality of model remains universally
high as seen through MolProbity scores peaked between 0.75 - 1.75, see SI figures, Figures S2 - S6.
Thus, the multi-model description inferred from the 1.8 A ADK density map remain energetically viable

conformations of the protein that remain in the vicinity of the best-fitted model, but with variations that

can reflect the dynamics of ADK.

11
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In the open state of ADK, its so-called “lid” domain undergoes a hinge-like movement3%7°-72 to maintain
a conformational pre-equilibrium with the closed state, with the open state being more prevalent for apo pro-
tein. ™ Such movements are confirmed by transition path sampling simulations and FRET experiments. "7
Tllustrated in Figure 5, principal components from the ensemble of converged R-MDFF models collated
across 400 replicas clearly captures this hinge movement of “lid” opening and closing essential towards the
biological function catalyzes the interconversion of the various adenosine phosphates (ATP, ADP, and AMP).
However, a skewed distribution of the just the best-fitted models is obtained with M¢piicas = 16, indicating
only the “lid” open state. Thus, by using a probabilistic selection criterion within R-MDFF, rather than
a deterministic one used conventionally with data-guide simulations such as MDFF, the space of CCs is

more exhaustively sampled during flexible fitting, and the evolution of an ensemble can be monitored to gain

insights on the structure-function relationship for biomolecules.

4.3 Refinement protocol is robust to system size

Robustness of the newly implemented R-MDFF parameters estimated from our multi-replica ADK simula-
tions is tested using a second example of larger protein, namely carbon monoxide dehydrogenase. The closed
conformation (PDB - 10AQO: chain C) was used as the search model, while the open state (10AO: chain
D) was the target. Similar to ADK, the fitting was performed with maps of the reported 1.9 A and syn-
thetically reduced 3.0 A resolutions. After reconstruction of the density for the entire protein, again using
phenixz.maps, the target density for the open state was extracted by masking the map about chain D using
the volutil module of VMD.

Figure 6 suggests improvement in the refinement of CODH both at the high and intermediate resolu-
tions. Similar to the ADK example, a higher number of replica improved the distribution of models across
the range of CCs when fitting to a high resolution density map. But now, the best-fitted MDFF model
improved from CC= 0.75 to 0.8 between M,cpiicas=16 and 100, which an improvement of 6.7%, higher than
the improvement of 3% seen in ADK over a similar range of replicas. Thus, the workflow on one hand scales
with system size, while on the other benefits from the deployment of multiple replica simulations as the
system size grows.

Our procedure of performing flexible fitting with on-the-fly adaptive decision making to transition from
closed to open state, results in an ensemble within 2.0 A RMSD to the experimentally determined “open”
state comparing backbone atoms. This outcome is also comparable to our past refinement of CODH using
a so-called cascade or simulated-annealing protocol, where the refined CODH model also reached within 2 -

2.5 A of the open target. The larger number of replicas offer a search model greater number of opportunities
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ABoc/KT) hased selection-rule

to conform to density features in high resolution EM maps, and the min (1, e
installed in R-MDFF enables avoiding of local minima in the CC space. Since the larger systems are prone
to degeneracy of density features, we expect R-MDFF workflow enabled via EnTK to be more useful in

overcoming the local minima and exhaustively sampling the conformational space as the size grows.

4.4 R-MDFF: Performance characterization

This section characterizes the computing performance of R-MDFF on HPC resources. We provide evidence
that R-MDFF manages computing resources efficiently, with comparatively small overhead when running

multiple replicas.

4.4.1 Experiment Configuration

We designed 11 experiments to evaluate the efficiency of R-MDFF enabled via EnTK and we summarized
their setup and results in Table 1. We utilized two biological systems—adenylate kinase (ADK) and carbon
monoxide dehydrogenase (CODH)—running between 2 and 100 replicas (Rep), with varying simulation
length (Sim. Len.) and resolution (Res.). Each experiment executed between 256 and 12800 tasks on PSC
Bridges and ORNL Summit.

We characterized the performance of EnTK by measuring its overhead (OVH), i.e., the amount of time in
which compute nodes are available but not used to execute tasks. Specifically, we separate between then time
taken by the middleware (EnTK and its runtime system) to acquire resources, bootstrap the components and
schedule the tasks; from the time taken by all the tasks to perform their scientific computation. Thus, OVH
gives a simple but effective way to evaluate the cost of executing MDFF with EnTK and its components in
terms of time spent to do everything else but science.

Experiment’s runs utilize up to 4 compute nodes on Bridges2 and 100, and execute each replica on a
full compute node. On Bridges2, the NAMD MD engine uses 128 cores (AMD EPYC 7742 with of 256GB
DDR4 memory), without GPU acceleration. Note that Bridges2 offers 24 compute nodes, each with 8 V100
GPUs accelerators but we decided to use only CPU resources due to their limited availability. On Summit,
we run the CUDA-enabled NAMD MD engine on 6 NVIDIA V100 GPU accelerators per node. Different
hardware platforms show wide performance gaps in time to solution but the cross-correlation is similar when
using the same configurations.

We provide templates to allow users to replicate the experiments presented in this paper or as a starting
point to create a run new experiments. The templates, written in YAML, store user-defined attributes

for experiments and HPC resources separately, ensuring flexible analysis on diverse computing platforms.
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Table 1: Experiments to characterize R-MDFF performance. System: biological system
name; Rep. (M): Total number of replicas between 2 and 100; Sim (ps): R-MDFF simula-
tion length per iteration in picoseconds; Res. (A): resolutions in Angstrom (high 1.8A and
intermediate 3.0A); Resource: GPUs and CPU cores on OLCF Summit and CPU cores only
on PSC Bridges2; Tasks: number of tasks for each experiment; OVH(s): Overhead of R-
MDEFF enabled via EnTK in seconds.

Exp. Rep. Sim. Res. Tasks OVH

D System (M) (ps) (A) Resource (s)

1 ADK 2 64 1.8 Bridges (CPU) 256 81.0 £ 10

2 ADK 4 32 1.8 Bridges (CPU) 512 126.0 + 10
3 ADK 4 250 1.8 Summit (GPU&CPU) 512 92.0

4 ADK 8 160 1.8 Summit (GPU&CPU) 1024 105.27 £ 18
5 ADK 16 80 1.8 Summit (GPU&CPU) 2048 114.06 £ 16
6 ADK 32 40 1.8 Summit (GPU&CPU) 4096 109.33 £10
7 ADK 64 20 1.8 Summit (GPU&CPU) 8092 158.87 £ 57
8 ADK 100 10 1.8 Summit (GPU&CPU) 12800  266.98 + 245
9 CODH 16 80 1.8 Summit (GPU&CPU) 2048  93.34 £ 17
10 CODH 16 80 3.0 Summit (GPU&CPU) 2048  99.44 £+ 20
11 CODH (long) 100 80 1.8 Summit (GPU&CPU) 12800 113.61 420

The source code and configuration parameters of the experiments are published on the R-MDFF Github

repository. 62

4.4.2 EnTK Overhead is Steady Across HPC Platforms

We measured the time spent by EnTK to bootstrap and clean up the execution environment. Those are
overheads as they measure the time spent before and after the execution of the workflow’s tasks, when
computing resources are already available. We measured the overheads on both Bridges and Summit, and
at different scales.

Both bootstrap and clean up overheads are independent of the workflow scale as the time taken to
manage the execution environment does not depend on the number of tasks executed in it. However, the
bootstrap overhead can vary, depending on the filesystem performance and network latency, when serving
packages and files during the bootstrapping process. We used a pre-configured environment to reduce the
bootstrapping overhead by limiting the number of downloaded packages and the 1/O operations required to
build the execution environment of EnTK and the other RADICAL-Cybertools.

Figure 7 shows that OVH is between 3% and 5% of the total execution time of the workflow presented

in §3, across all our experiments. As summarized in Table 1, OVH is invariant of the number of replicas
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executed on Summit (150.90 =+ 115 seconds) and on Bridges (103.5 =+ 22.5 seconds) when running from 2
replicas to 100 replicas.

Bridges2 shows three times larger overhead compared to Summit, mainly due to the different performance
of the parallel filesystems: Lustre on Bridges2, GPFS on Summit. On Lustre, the initial access to files takes
longer than continuous access because Lustre has to retrieve the location of the actual storage device over

the network. The additional results from both platforms are reported in SI figures, Figures S7 and S8.

5 Conclusions

Cryo-EM data of a protein represents an average of many two-dimensional images transformed to a three-
dimensional density map. Classical methods in statistical mechanics such as MD fail to determine such an
ensemble in finite length simulations, as structures remain trapped in deep potential wells corresponding to
local dense points in the density maps. To circumvent this algorithmic bottleneck of importance sampling
and to decide the quality of an ensemble of protein structures on-the-fly, we present a framework for ensem-
ble refinement of protein structures with adaptive decision making that improves both the quality of model
and fit. We call this method R-MDFF. A refined protein ensemble offers, on one hand, the most probable
structural representation based on available density information, while offering insights on protein conforma-
tional dynamics that are often ignored in traditional single-model interpretation derived from single-particle
experiments.

The R-MDFF based workflow application allows adaptive decision-making for flexible fitting simula-
tions by the the integration of correlation analysis with MD simulations. This workflow is implemented on
two distinct heterogeneous high-performance national supercomputers facilities, Bridges2 and Summit. The
workflow performs an user-defined number of iterative fitting and analysis tasks. This multi-replica scheme
improves statistical significance, the quality of models over those derived from the traditional scheme of per-
forming a single long MDFF simulation. Consequently, the new scheme arrives not just at the best-fit but
a population of models with varied ranges of data-consistency. In addition, we show that R-MDFF enabled
via EnTK, is well suited for heterogeneous extreme-scale high-performance computing environments™ by
managing resource utilization of GPU and CPU computing units and the workflow overhead for increased
ensemble members. We also show that our approach would have a similar computational cost as the tradi-
tional single long MDFF simulation, but with a quick turnaround time (shorter wall time of workload), while
exploring interesting regions in the density map. Larger system sizes that are more akin to cryo-EM struc-
ture determination offer further performance advantages. We continue to extend the capability of R-MDFF

in complex applications in exascale high-performance computing environments.

15


https://doi.org/10.1101/2021.12.07.471672

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471672; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Acknowledgement

A.S. acknowledges start-up funds from SMS and CASD at Arizona State University, CAREER, award from
NSF (MCB-1942763), and an NDEP grant from the Department of Defense. This work used the Extreme
Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Founda-
tion grant number ACI-1548562. The RADICAL Lab acknowledges NSF Awards 1835449 and 1931512. The
benchmarks were also carried out using the resources of the OLCF at Oak Ridge National Laboratory, which
is supported by the Office of Science at DOE under Contract No. DE-AC05-000R22725, made available via
the INCITE program. J.W.V acknowledges the support from the National Science Foundation Graduate
Research Fellowship under grant number 2020298734.

References

(1) Trabuco, L. G.; Villa, E.; Mitra, K.; Frank, J.; Schulten, K. Flexible Fitting of Atomic Struc-
tures into Electron Microscopy Maps Using Molecular Dynamics. Structure 2008, 16, 673-683, DOI:

10.1016/j.str.2008.03.005.

(2) Trabuco, L. G.; Villa, E.; Schreiner, E.; Harrison, C. B.; Schulten, K. Molecular dynamics flexible
fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods

2009, 49, 174-180, DOI: 10.1016/j.ymeth.2009.04.005.

(3) Singharoy, A.; Teo, I.; McGreevy, R.; Stone, J. E.; Zhao, J.; Schulten, K. Molecular dynamics-based
refinement and validation for sub-5 A cryo-electron microscopy maps. eLife 2016, 5, 1-33, DOI:

10.7554/eLife.16105.

(4) Leaver-Fay, A. et al. Methods in Enzymology; Academic Press, 2011; Vol. 487; pp 545-574, DOI:

10.1016/B978-0-12-381270-4.00019-6.

(5) McGreevy, R.; Teo, L.; Singharoy, A.; Schulten, K. Advances in the molecular dynamics flexible fitting
method for cryo-EM modeling. Methods 2016, 100, 50-60, DOI: 10.1016/j.ymeth.2016.01.009.

(6) Igaev, M.; Kutzner, C.; Bock, L. V.; Vaiana, A. C.; Grubmiiller, H. Automated cryo-EM
structure refinement using correlation-driven molecular dynamics. eLife 2019, 8, 1-33, DOI:

10.7554/eLife.43542.

16


https://doi.org/10.1101/2021.12.07.471672

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471672; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(7) Kim, D. N.; Moriarty, N. W.; Kirmizialtin, S.; Afonine, P. V.; Poon, B.; Sobolev, O. V.; Adams, P. D ;
Sanbonmatsu, K. Cryo_fit: Democratization of flexible fitting for cryo-EM. Journal of Structural Biology

2019, 208, 1-6, DOI: 10.1016/j.jsb.2019.05.012.

(8) Costa, M. G.; Fagnen, C.; Vénien-Bryan, C.; Perahia, D. A New Strategy for Atomic Flexible Fitting in
Cryo-EM Maps by Molecular Dynamics with Excited Normal Modes (MDeNM-EM(it). 2020; https:

//pubs.acs.org/doi/abs/10.1021/acs. jcim.9b01148.

(9) Vant, J. W.; Lahey, S. L. J.; Jana, K.; Shekhar, M.; Sarkar, D.; Munk, B. H.; Kleinekathofer, U.;
Mittal, S.; Rowley, C.; Singharoy, A. Flexible Fitting of Small Molecules into Electron Microscopy
Maps Using Molecular Dynamics Simulations with Neural Network Potentials. Journal of Chemical

Information and Modeling 2020, 60, 2591-2604, DOI: 10.1021/acs. jcim.9b01167.

(10) Vant, J. W.; Sarkar, D.; Gupta, C.; Shekhar, M. S.; Mittal, S.; Singharoy, A. In Protein Structure
Prediction; Kihara, D., Ed.; Methods in Molecular Biology; Springer US: New York, NY, 2020; pp

301-315, DOI: 10.1007/978-1-0716-0708-4_18.

(11) Pfab, J.; Phan, N. M.; Si, D. DeepTracer for fast de novo cryo-EM protein structure modeling and
special studies on cov-related complexes. Proceedings of the National Academy of Sciences of the United

States of America 2021, 118, DOI: 10.1073/pnas.2017525118.

(12) Perez, A.; MacCallum, J. L.; Dill, K. A. Accelerating molecular simulations of proteins using Bayesian
inference on weak information. Proceedings of the National Academy of Sciences 2015, 112, 11846—

11851, DOI: 10.1073/pnas.1515561112.

(13) Perez, A.; Morrone, J. A.; Brini, E.; MacCallum, J. L.; Dill, K. A. Blind protein structure prediction

using accelerated free-energy simulations. Science Advances 2016, 2, DOI: 10.1126/sciadv.1601274.

(14) Shekhar, M. et al. CryoFold: Determining protein structures and data-guided ensembles from cryo-EM
density maps. Matter 2021, 4, 3195-3216, DOI: 10.1016/j .matt.2021.09.004.

(15) Bonomi, M.; Camilloni, C.; Cavalli, A.; Vendruscolo, M. Metainference: A Bayesian inference method

for heterogeneous systems. Science Advances 2016, 2, 1501177, DOI: 10.1126/sciadv.1501177.

(16) Bonomi, M.; Hanot, S.; Greenberg, C. H.; Sali, A.; Nilges, M.; Vendruscolo, M.; Pellarin, R. Bayesian
Weighing of Electron Cryo-Microscopy Data for Integrative Structural Modeling. Structure 2019, 27,
175-188.¢6, DOI: 10.1016/j.str.2018.09.011.

17


https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b01148
https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b01148
https://doi.org/10.1101/2021.12.07.471672

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471672; this version posted March 2, 2023. The copyright holder for this preprint

(17)

(22)

(24)

(26)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Gupta, C.; Sarkar, D.; Tieleman, D. P.; Singharoy, A. The Ugly, Bad, and Good Stories of Large-
Scale Biomolecular Simulations. Current Opinion in Structural Biology 2022, 75, 102338, DOI:

10.1016/j.sbi.2022.102338.

Vant, J. W.; Sarkar, D.; Nguyen, J.; Baker, A. T.; Vermaas, J. V.; Singharoy, A. Exploring Cryo-
Electron Microscopy with Molecular Dynamics. Biochemical Society Transactions 2022, 50, 569-581,

DOI: 10.1042/BST20210485.

Lawson, C. L. et al. Cryo-EM model validation recommendations based on outcomes of the 2019

EMDataResource challenge. Nature Methods 2021, 18, 156-164, DOI: 10.1038/s41592-020-01051-w.

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, DOI:

10.1038/s41586-021-03819-2.

Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural

network. Science 2021, 373, 871-876, DOI: 10.1126/science.abj8754.

Kryshtafovych, A.; Moult, J.; Billings, W. M.; Della Corte, D.; Fidelis, K.; Kwon, S.; Olechnovi¢, K.;
Seok, C.; Venclovas, C.; Won, J.; Participants, C.-C. Modeling SARS-CoV-2 Proteins in the CASP-
commons Experiment. Proteins: Structure, Function, and Bioinformatics 2021, 89, 1987-1996, DOI:

10.1002/prot.26231.

Lensink, M. F. et al. Prediction of Protein Assemblies, the next Frontier: The CASP14-
CAPRI Experiment. Proteins: Structure, Function, and Bioinformatics 2021, 89, 1800-1823, DOI:

10.1002/prot.26222.

Lee, H.; Turilli, M.; Jha, S.; Bhowmik, D.; Ma, H.; Ramanathan, A. DeepDriveMD: Deep-Learning
Driven Adaptive Molecular Simulations for Protein Folding. 2019 IEEE/ACM Third Workshop on Deep

Learning on Supercomputers (DLS). 2019; pp 12-19, DOI: 10.1109/DL349591.2019.00007.

Balasubramanian, V.; Jensen, T.; Turilli, M.; Kasson, P.; Shirts, M.; Jha, S. Adaptive Ensemble
Biomolecular Applications at Scale. SN Computer Science 2020, 1, 1-15, https://doi.org/10.1007/

s542979-020-0081-1.

Herzik, M. A.; Fraser, J. S.; Lander, G. C. A Multi-model Approach to Assessing Local and Global

Cryo-EM Map Quality. Structure 2019, 27, 344-358.e3, DOI: 10.1016/j.str.2018.10.003.

18


https://doi.org/10.1007/s42979-020-0081-1
https://doi.org/10.1007/s42979-020-0081-1
https://doi.org/10.1101/2021.12.07.471672

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471672; this version posted March 2, 2023. The copyright holder for this preprint

(27)

(28)

(29)

(30)

(31)

(36)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Frank, J.; Ourmazd, A. Continuous changes in structure mapped by manifold embedding of single-

particle data in cryo-EM. Methods 2016, 100, 61-67, DOI: 10.1016/j.ymeth.2016.02.007.

Netz, R. R.; Eaton, W. A. Estimating computational limits on theoretical descriptions of bi-
ological cells. Proceedings of the National Academy of Sciences 2021, 118, 2022753118, DOI:

10.1073/pnas.2022753118.

Terashi, G.; Kihara, D. De novo main-chain modeling for em maps using MAINMAST. Nature Com-

munications 2018, 9, 1-11, DOI: 10.1038/s41467-018-04053-7.

Vant, J. W.; Sarkar, D.; Streitwieser, E.; Fiorin, G.; Skeel, R.; Vermaas, J. V.; Singharoy, A. Data-
guided Multi-Map variables for ensemble refinement of molecular movies. Journal of Chemical Physics

2020, 153, DOI: 10.1063/5.0022433.

Huang, J.; Mackerell, A. D. CHARMMS36 all-atom additive protein force field: Validation based
on comparison to NMR data. Journal of Computational Chemistry 2013, 34, 2135-2145, DOI:

10.1002/jcc.23354.

McGreevy, R.; Singharoy, A.; Li, Q.; Zhang, J.; Xu, D.; Perozo, E.; Schulten, K. xMDFF: Molecular
Dynamics Flexible Fitting of Low-Resolution X-ray Structures. Acta Crystallographica. Section D,

Biological Crystallography 2014, 70, 2344-2355, DOI: 10.1107/51399004714013856.

Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. The
Journal of Chemical Physics 2020, 153, 044130, DOI: 10.1063/5.0014475.

Croll, T. I. ISOLDE: A physically realistic environment for model building into low-resolution
electron-density maps. Acta Crystallographica Section D: Structural Biology 2018, 7/, 519-530, DOI:

10.1107/52059798318002425.

Goddard, T. D.; Huang, C. C.; Meng, E. C.; Pettersen, E. F.; Couch, G. S.; Morris, J. H.; Ferrin, T. E.
UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science 2018, 27,

14-25, DOI: 10.1002/pro.3235.

Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.;
Ferrin, T. E. UCSF Chimera - A visualization system for exploratory research and analysis. Journal of

Computational Chemistry 2004, 25, 1605-1612, DOI: 10.1002/jcc.20084.

19


https://doi.org/10.1101/2021.12.07.471672

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471672; this version posted March 2, 2023. The copyright holder for this preprint

(37)

(46)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Tang, W. S.; Silva-Sénchez, D.; Giraldo-Barreto, J.; Carpenter, B.; Hanson, S.; Barnett, A. H.;
Thiede, E. H.; Cossio, P. Ensemble Reweighting Using Cryo-EM Particles. 2022.

Bock, L. V.; Grubmiiller, H. Effects of Cryo-EM Cooling on Structural Ensembles. Nature Communi-

cations 2022, 13, 1709, DOI: 10.1038/s41467-022-29332-2.

Turilli, M.; Balasubramanian, V.; Merzky, A.; Paraskevakos, I.; Jha, S. Middleware building blocks for

workflow systems. Computing in Science & Engineering 2019, 21, 62-75.

Balasubramanian, V.; Turilli, M.; Hu, W.; Lefebvre, M.; Lei, W.; Modrak, R.; Cervone, G.; Tromp, J.;
Jha, S. Harnessing the power of many: Extensible toolkit for scalable ensemble applications. Interna-

tional Parallel and Distributed Processing Symposium. 2018; pp 536-545.

Luckow, A.; Santcroos, M.; Zebrowski, A.; Jha, S. Pilot-data: an abstraction for distributed data.

Journal of Parallel and Distributed Computing 2015, 79, 16-30.

Luckow, A.; Rattan, K.; Jha, S. Pilot-Edge: Distributed Resource Management Along the Edge-to-
Cloud Continuum. arXiv preprint arXiv:2104.03374 2021, Accepted for PAISE’21 (IPDPS 21).

Dakka, J.; Farkas-Pall, K.; Turilli, M.; Wright, D. W.; Coveney, P. V.; Jha, S. Concurrent and adaptive
extreme scale binding free energy calculations. 2018 IEEE 14th International Conference on e-Science

(e-Science). 2018; pp 189-200.

Hruska, E.; Balasubramanian, V.; Lee, H.; Jha, S.; Clementi, C. Extensible and scalable adaptive

sampling on supercomputers. Journal of Chemical Theory and Computation 2020, 16, 7915-7925.

Zwier, M. C.; Adelman, J. L.; Kaus, J. W.; Pratt, A. J.; Wong, K. F.; Rego, N. B.; Sudrez, E.;
Lettieri, S.; Wang, D. W.; Grabe, M., et al. WESTPA: An interoperable, highly scalable software
package for weighted ensemble simulation and analysis. Journal of chemical theory and computation

2015, 11, 800-809.

Zhang, Y.; Skolnick, J. Scoring function for automated assessment of protein structure template quality.

Proteins: Structure, Function, and Bioinformatics 2004, 57, 702-710, DOI: 10.1002/prot.20264.

Williams, C. J. et al. MolProbity: More and better reference data for improved all-atom structure

validation. Protein Science 2018, 27, 293-315, DOI: 10.1002/pro.3330.

20


https://doi.org/10.1101/2021.12.07.471672

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471672; this version posted March 2, 2023. The copyright holder for this preprint

(48)

(50)

(57)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Barad, B. A.; Echols, N.; Wang, R. Y. R.; Cheng, Y.; Dimaio, F.; Adams, P. D.; Fraser, J. S. EMRinger:
Side chain-directed model and map validation for 3D cryo-electron microscopy. Nature Methods 2015,

12, 943-946, DOI: 10.1038/nmeth.3541.

Pintilie, G.; Zhang, K.; Su, Z.; Li, S.; Schmid, M. F.; Chiu, W. Measurement of atom resolvability in
cryo-EM maps with Q-scores. Nature Methods 2020, 17, 328-334, DOI: 10.1038/s41592-020-0731-1.

Punjani, A.; Rubinstein, J. L.; Fleet, D. J.; Brubaker, M. A. CryoSPARC: Algorithms for
rapid unsupervised cryo-EM structure determination. Nature Methods 2017, 14, 290-296, DOI:

10.1038/nmeth.4169.

Ourmazd, A. Cryo-EM, XFELs and the structure conundrum in structural biology. Nature Methods
2019, 16, 941-944, DOI: 10.1038/s41592-019-0587-4.

Mashayekhi, G.; Vant, J.; Polavarapu, A.; Ourmazd, A.; Singharoy, A. Energy landscape of the SARS-
CoV-2 reveals extensive conformational heterogeneity. Current Research in Structural Biology 2022,

4, 68-77, DOL: 10.1016/j . crstbi.2022.02.001.

Wriggers, W. Conventions and workflows for using Situs. Acta crystallographica. Section D, Bi-
ological crystallography 2012, 68, 344-351, DOI: 10.1107/80907444911049791, 22505255[pmid]
PMC3322594[pmcid] S0907444911049791[PII] Acta Crystallogr D Biol Crystallogr.

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. Journal of Molecular Graph-

ics 1996, 14, 33-38, DOI: https://doi.org/10.1016/0263-7855(96)00018-5.

Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.;
Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry
2005, 26, 1781-1802, DOI: 10.1002/jcc.20289.

MacCallum, J. L.; Perez, A.; Dill, K. A. Determining Protein Structures by Combining Semireliable
Data with Atomistic Physical Models by Bayesian Inference. Proceedings of the National Academy of
Sciences 2015, 112, 6985-6990, DOI: 10.1073/pnas.1506788112.

Ho, N.; Cava, J. K.; Vant, J.; Shukla, A.; Miratsky, J.; Turaga, P.; Maciejewski, R.; Singharoy, A. Learn-
ing Free Energy Pathways through Reinforcement Learning of Adaptive Steered Molecular Dynamics.
2022.

21


https://doi.org/10.1101/2021.12.07.471672

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471672; this version posted March 2, 2023. The copyright holder for this preprint

(58)

(64)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Tsai, S.-T.; Fields, E.; Xu, Y.; Kuo, E.-J.; Tiwary, P. Path Sampling of Recurrent Neu-
ral Networks by Incorporating Known Physics. Nature Communications 2022, 18, 7231, DOI:

10.1038/s41467-022-34780-x.

Wang, Y.; Herron, L.; Tiwary, P. From Data to Noise to Data for Mixing Physics across Temperatures
with Generative Artificial Intelligence. Proceedings of the National Academy of Sciences 2022, 119,

€2203656119, DOI: 10.1073/pnas.2203656119.

Evans, L.; Cameron, M. K.; Tiwary, P. Computing Committors via Mahalanobis Diffusion Maps
with Enhanced Sampling Data. The Journal of Chemical Physics 2022, 157, 214107, DOLI:

10.1063/5.0122990.

Evans, L.; Cameron, M. K.; Tiwary, P. Computing Committors in Collective Variables
via Mahalanobis Diffusion Maps. Applied and Computational Harmonic Analysis 2023, DOI:

10.1016/j.acha.2023.01.001.
MDFF Integration with EnTK. https://github.com/radical-collaboration/MDFF-EnTK, 2019.

Trabuco, L. G.; Villa, E.; Schreiner, E.; Harrison, C. B.; Schulten, K. Molecular dynamics flexi-
ble fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Meth-
ods 2009, 49, 174-80, DOI: 10.1016/j.ymeth.2009.04.005, Trabuco, Leonardo G Villa, Elizabeth
Schreiner, Eduard Harrison, Christopher B Schulten, Klaus eng P41 RR005969/RR/NCRR NIH HHS/
P41 RR005969-19/RR/NCRR NIH HHS/ P41-RR05969/RR/NCRR NIH HHS/ Research Support,
N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Methods. 2009 Oct;49(2):174-80. doi:
10.1016/j.ymeth.2009.04.005. Epub 2009 May 4.

Stein, S. A. M.; Loccisano, A. E.; Firestine, S. M.; Evanseck, J. D. In Annual Reports in
Computational Chemistry; Spellmeyer, D. C., Ed.; Elsevier, 2006; Vol. 2; pp 233-261, DOI:

10.1016/51574-1400(06) 02013-5.

Sittel, F.; Jain, A.; Stock, G. Principal Component Analysis of Molecular Dynamics: On the Use
of Cartesian vs. Internal Coordinates. The Journal of Chemical Physics 2014, 141, 014111, DOL:

10.1063/1.4885338.

Schultze, S.; Grubmiiller, H. Time-Lagged Independent Component Analysis of Random Walks
and Protein Dynamics. Journal of Chemical Theory and Computation 2021, 17, 57665776, DOI:

10.1021/acs. jctc.1c00273.

22


https://github.com/radical-collaboration/MDFF-EnTK
https://doi.org/10.1101/2021.12.07.471672

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471672; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(67) David, C. C.; Jacobs, D. J. In Protein Dynamics: Methods and Protocols; Livesay, D. R.,
Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, 2014; pp 193-226, DOI:

10.1007/978-1-62703-658-0_11.

(68) Bakan, A.; Meireles, L. M.; Bahar, I. ProDy: Protein Dynamics Inferred from Theory and Experiments.

Bioinformatics 2011, 27, 1575-1577, DOI: 10.1093/bioinformatics/btr168.

(69) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. Journal of Molecular Graph-

ics 1996, 14, 33-38, DOI: https://doi.org/10.1016/0263-7855(96)00018-5.

(70) Arora, K.; Brooks, C. L. Large-Scale Allosteric Conformational Transitions of Adenylate Kinase Appear
to Involve a Population-Shift Mechanism. Proceedings of the National Academy of Sciences 2007, 104,
18496-18501, DOI: 10.1073/pnas.0706443104.

(71) Matsunaga, Y.; Fujisaki, H.; Terada, T.; Furuta, T.; Moritsugu, K.; Kidera, A. Minimum Free En-
ergy Path of Ligand-Induced Transition in Adenylate Kinase. PLOS Computational Biology 2012, 8,

€1002555, DOI: 10.1371/journal.pcbi.1002555.

(72) Li, D.; Liu, M. S.; Ji, B. Mapping the Dynamics Landscape of Conformational Transi-
tions in Enzyme: The Adenylate Kinase Case. Biophysical Journal 2015, 109, 647-660, DOI:

10.1016/j.bpj.2015.06.059.

(73) Potoyan, D. A.; Zhuravlev, P. I.; Papoian, G. A. Computing Free Energy of a Large-Scale Allosteric
Transition in Adenylate Kinase Using All Atom Explicit Solvent Simulations. The Journal of Physical
Chemistry B 2012, 116, 1709-1715, DOI: 10.1021/jp209980Db.

(74) Olsson, U.; Wolf-Watz, M. Overlap between Folding and Functional Energy Landscapes for Adenylate

Kinase Conformational Change. Nature Communications 2010, 1, 111, DOI: 10.1038/ncomms1106.

(75) Aviram, H. Y.; Pirchi, M.; Mazal, H.; Barak, Y.; Riven, I.; Haran, G. Direct Observation of Ultrafast
Large-Scale Dynamics of an Enzyme under Turnover Conditions. Proceedings of the National Academy

of Sciences 2018, 115, 3243-3248, DOI: 10.1073/pnas.1720448115.

(76) Merzky, A.; Turilli, M.; Titov, M.; Al-Saadi, A.; Jha, S. Design and Performance Characterization of
RADICAL-Pilot on Leadership-Class Platforms. IEEE Transactions on Parallel € Distributed Systems

2022, 33, 818-829, DOI: 10.1109/TPDS.2021.3105994.

23


https://doi.org/10.1101/2021.12.07.471672

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.471672; this version posted March 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supporting Information Available

The Supporting Information (SI) includes a trace plot for the cross correlation coefficient, calculated after
every iteration in the R-MDFF protocol to fit ADK in high, intermediate and low resolution electron denisty
maps. The SI also includes MolProbity scores for models from R-MDFF trajectories and the performance

of the R-MDFF algorithm when applied to larger biomolecular systems such as CODH.
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Atomic model

Figure 1: Overview of the workflow application for R-MDFF. The schematic shows
how NAMD/VMD is used to perform flexible fitting iteratively. Internal boxes with an-
notation numbers indicate the sequence of the workflow: (1) Input data (2) Simulation
preparation and execution using VMD and NAMD respectively (3) Building CC matrix and
sort through CC matrix to select best CC (4) Check if best CC is lower than threshold CC
(5) Use the current state of the molecular sytem corresponding to the best CC using the
restart files (6) Re-seed all replicas with the restart files and perform the next iteration of
flexible fitting (7) Data guided ensemble refined models.
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Figure 2: Cross correlation coefficient after flexibily fitting ADK with R-MDFF
at different resolution density maps. Data presented for high resolution (1.8 A), in-
termediate resolution (3.0 A) and low resolution (5.0 A) cryo-electron microscopy density
maps, for different ensemble members, 4 (purple), 8 (blue), 16 (light blue) and 32 (green)
respectively. We find that replica number directly correlates with we have larger variabilty
amongst ensemble members for high resolution density map.
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Figure 3: Conventional versus R-MDFF on flexbile fitting ADK in high resolution
density map. Comparing cross correlation between conventional and R-MDFF when fitting
ADK to high resolution EM map of 1.8 A using 64 replicas. We find R-MDFF to perform
better than a conventional MDFF, with a population of high cross correlation ensemble
members, indicated by the solid line.
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Figure 4: Change in quality of fitted ensemble with replica size. Best cross-
correlation after iterative adaptive flexible fitting using R-MDFF, to fit ADK to a high
resolution 1.8 A map, for different ensemble sizes with M, cpicas = 4 - 100. Monitoring the
effect of replica size on the quality of fit. We observe cross-correlation to increase till 32

replicas, after which the value starts decreasing.
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Figure 5: Impact of total simulation time on the quality of fit. (A) Best cross-
correlation (CC) after adaptive flexible fitting of ADK to a high resolution (1.8 A) map,
for different ensemble members (64, 100, 200 and 400). (B) Principal component analysis
(PCA) of ADK protein with 16 replicas flexibly fitting to 1.8 A using adaptive protocol
(C) PCA of ADK protein with 400 replicas flexibly fitting to 1.8 A using adaptive protocol.
PCA results demonstrate the experimentally observed hinge motion, can be found with a
high replica number, but not for a low replica number.
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A Initial MDFF model with adaptive
decision making
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Figure 6: Robustness of R-MDFF protocol to system size. (A) Closed (red) to open
(blue) are the initial and final (target) states of the dynamics for protein CODH. Flexibly
fitting with R-MDFF to high resolution 1.8 A EM density map. (B, C) Probability density
of cross correlation coefficient for CODH, using the optimal parameters taken from ADK
results at different resolutions - 1.8 A (B) and 3.0 A (Q).
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Figure 7: Performance of EnTK during flexible fitting with adaptive decision
making. EnTK Overheads on PSC Bridges2 (a, b) and Summit (c - g) compute nodes. The
total simulation time (equal t0 tseps/iteration X Niteration X Mreplicas) is 16ns. TTX tends to
decrease with the increasing of the number of compute nodes.
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