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Abstract Growing evidence indicates that extreme environmental conditions in summer months have

an adverse impact on mental and behavioral disorders (MBD), but there is limited research looking at youth
populations. The objective of this study was to apply machine learning approaches to identify key variables
that predict MBD-related emergency room (ER) visits in youths in select North Carolina cities among
adolescent populations. Daily MBD-related ER visits, which totaled over 42,000 records, were paired with
daily environmental conditions, as well as sociodemographic variables to determine if certain conditions lead
to higher vulnerability to exacerbated mental health disorders. Four machine learning models (i.e., generalized
linear model, generalized additive model, extreme gradient boosting, random forest) were used to assess the
predictive performance of multiple environmental and sociodemographic variables on MBD-related ER visits
for all cities. The best-performing machine learning model was then applied to each of the six individual cities.
As a subanalysis, a distributed lag nonlinear model was used to confirm results. In the all cities scenario,
sociodemographic variables contributed the greatest to the overall MBD prediction. In the individual cities
scenario, four cities had a 24-hr difference in the maximum temperature, and two of the cities had a 24-hr
difference in the minimum temperature, maximum temperature, or Normalized Difference Vegetation Index as
a leading predictor of MBD ER visits. Results can inform the use of machine learning models for predicting
MBD during high-temperature events and identify variables that affect youth MBD responses during these
events.

Plain Language Summary There is new evidence showing that really hot weather during the
summer make it harder for people with mental and behavioral disorders (MBD) to cope. But not much research
has been done on youths. This study used machine learning to look at data from over 42,000 visits to the
emergency room for mental and behavioral issues in youths in North Carolina. We examined the association
between youth MBD and environmental conditions using different types of machine-learning models. The
research found that in some cities, environmental factors like the temperature had a significant impact, while

in other cities, factors like where people lived, and their sociodemographic backgrounds were more important.
Overall, this study suggests that really hot weather might make it harder for young people with MBD to cope,
but this might not be the case in all locations. Other place-based factors and social determinants of health might
be more important than environmental conditions like ambient temperature.

1. Introduction

The burden of mental illness in the United States is substantial; one in five individuals experience a diagnosable
mental illness each year (Centers for Disease Control and Prevention, 2021). According to the U.S. Department of
Health and Human Services Substance Abuse and Mental Health Services Administration (SAMHSA), instances
of mental health are the highest among young adults aged 18-25, with one in three reporting having a mental
illness (SAMHSA, 2021). The direct cost of addressing and treating mental illness in the United States is growing
annually, with the annual cost increasing by 40% in the last 7 years (Roehrig, 2016; SAMHSA, 2014).

Exposure to hot environmental conditions such as air temperature has been associated with an increased risk
of hospitalizations or emergency room (ER) visits for mental health disorders (Berry et al., 2009; McMichael
et al., 2006; Mullins & White, 2019; X. Wang et al., 2014), but the majority of this work has been focused
on adult rather than youth populations (Sugg et al., 2018). Despite a strong association, there is no universal
temperature threshold for when mental health begins to be negatively affected. Researchers have identified a
strong association between high ambient air temperatures (24.5-28°C) over a period of up to 7 days and a strong
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increase (26%—29%) in mental and behavioral disease emergency visits compared to days below this threshold
(Peng et al., 2017; X. Wang et al., 2014). Research has also observed a positive association between increased
hospital admissions for MBDs (7.3%) and heat-wave days (Hansen et al., 2008). Previous research has shown
an overall increase in mental health admittance during summer months for select locations (Toronto Canada, 10
labor market regions in New York, and Erie and Niagara counties in New York) (C. Wang et al., 2018; Yoo, Eum,
Gao, & Chen, 2021; Yoo, Eum, Roberts, et al., 2021).

Despite many studies investigating the susceptibility to extreme heat among persons with a mental disorder, the
lack of defined metrics identifying which environmental (e.g., vegetation amount, ambient temperature, humid-
ity) and socioeconomic factors (e.g., income and race) contribute to susceptibility means that there still is a need
to better understand this relationship (Park & Kim, 2018; C. Wang et al., 2018). Previous studies have indicated
that socioeconomic variables such as unemployment and no high school diploma are proxies for low income and
suggest higher vulnerability to temperature-related mental health outcomes (Mullins & White, 2019; Reiss, 2013;
Y. Wang et al., 2019).

Future projections show that the Southeastern United States will likely experience an increase in average
temperature as high as 8°F along with an increase of up to 50 additional days over 95°F in some areas, all
of which will lead to an increase in heat stress and heat-related deaths (EPA, 2022). However, there has
been little research on how different geographical and climatological regions respond to high-temperature
extremes and the susceptibility of vulnerable populations like children, particularly in the southeastern US,
a region regularly impacted by high temperature and humidity (Park & Kim, 2018). The extreme heat and
health associations are typically assessed by looking at a select individual area (Hansen et al., 2008; Rocklov
et al., 2014) or multiple urban cities spread across a single country (Ogata et al., 2021). As a result, there
is limited information about how neighboring cities differ in their response behavior and what contributes
to this differing response and even fewer studies have examined how place-based disparities in access to
greenspaces or other mental health-promoting resources influence the heat-health relationship (Mullins &
White, 2019). It would be useful to capture the driving risk factors in predicting the occurrence of MBDs
for determining interventions to address the effect of climate change on mental health. However, the lack
of identifiable risk factors delays an accurate prediction and lowers the utilization of available medical
resources, which could be provided more effectively to improve response rates, decrease mortality, and
reduce medical costs (SAMHSA, 2021).

Prior studies have relied on statistical models like linear regression and generalized additive model (GAM)
because they are easy to interpret but may yield less accurate predictions because these models lack the ability
to simultaneously consider the complex and possibly nonlinear relationship between multiple collinear variables
(Aragones et al., 2002; Benka-Coker et al., 2020). In general, too few studies have integrated state-of-the-art
machine learning approaches (e.g., random forest and XGBoost) alongside standard statistical approaches to
complement a priori statistical inference with the predictive performance of tree-based ensembles to enhance
medical decision support (Lundberg, 2018). The study aims to identify the factors that predict ER visits for
mental and behavioral disorders (MBD) in youths living within six metropolitan cities during the warm season.
To achieve this, various machine learning approaches, including the generalized linear model (GLM), GAM,
random forest, and extreme gradient boosting, will be explored. These models offer more precise and robust
results than traditional linear regression and additive models, especially when dealing with multicollinearity
within the data. The SHapely Additive exPlanations (SHAP) method will also be used to allocate contribution
values for model outputs among explanatory variables, making it possible to quantify variable contribution in
non-linear model results and thereby providing a means of quantifying variable contribution in non-linear model
results.

The study hypothesizes that there is an association between hot ambient temperatures and youth mental
health (ages 5 to 24), but socioeconomic and regional differences are the most influential factors in explain-
ing mental health disparities in youths. Results from this study can provide new guidance on the applica-
tion of machine learning models for predicting mental health conditions during high-temperature events,
as well as help inform what variables contribute to a communities mental and behavioral response during
high-temperature events.
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Figure 1. Study area with the ZIP Codes that comprise the six cities in North Carolina that are part of the study highlighted
in a unique color, and the ZIP Codes not in the study are shaded gray.

2. Materials and Methods
2.1. Data
2.1.1. Study Population

In this study, the MBD cases were obtained from the Shep's Center for Health and Human Services Research data
set, which contains all ER visits across North Carolina (SHEPS, 2022). Diagnosis of mental health and behavio-
ral conditions were identified using ICD-10 diagnosis codes (FO0-F99) in any of the diagnostic categories. We
collected the daily case counts of mental and behavior-related visits in Asheville, Hickory, Charlotte, Raleigh,
Wilmington, and Greensville from the summer (June, July, and August) of 2016-2019 of individuals between the
ages of 5 and 24, which was used as the outcome variable (Figure 1). The study locations were selected because
they represent a range of climates across NC while supporting a large enough sample size for the statistical anal-
ysis. ER visits were selected for between 2016 and 2019. This time period was selected due to the change from
ICD-9 to ICD-10 codes in 2016, leading to a classification change in several mental health-related codes. Addi-
tionally, 2019 was chosen as an endpoint, not to include data during the COVID-19 pandemic, as hospital visits
decreased for mental health in the early phase of the pandemic. The cities were treated as a categorical variable
(i.e., Asheville = 1, Hickory = 2, etc.) in the all city's model and as a dichotomous variable (Asheville (yes/no))
in the individual city analysis. Cities received a categorical value depending on which of the three geographical
regions of North Carolina they were located in: Mountains, Piedmont, and Coastal Plains. Additionally, the month
of the year and day of the week were notated in the data set and incorporated into the final models (Table 1).

2.1.2. Socio-Demographic Data

Additional sociodemographic information was obtained from the U. S. Census Bureau (2023) for each city
including the median age, total population, the population of our study age, male-to-female ratio, percent of
the population without a high school diploma, percent unemployment, percent English speakers, percentage of
mobile homes, and the Index of Concentration at the Extremes (ICE) metrics (Krieger et al., 2016) (Table 2).
Variable selection and justification can be found in Table 2. The ICE metrics are used in public health monitoring
to capture extremes of economic and residential segregation (Conner et al., 2010; Krieger et al., 2016). The ICE
income ratio is the number of persons in the 80th percentile of income subtracted from the 20th percentile, divided
by the total population with a known income; where by the majority low-income are compared to the majority
high-income communities. The ICE race metric is derived from the ratio of white to black individuals and repre-
sents a comparison between majority Black compared to majority White communities at each extreme (Krieger
et al., 2016). The ICE metrics range from —1 (least privilege) to 1 (most privileged) (Krieger et al., 2016). Lastly,
the rural-urban commuting area (RUCA) codes collected from the United States Department of Agriculture,
which use population density, urbanization, and daily commuting, were used to delineate metropolitan (RUCA
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Table 1
Sociodemographic Information for Each of the Six Cities in the Data Set Between June and August From 2016 to 2019

Asheville Hickory Charlotte Raleigh Greenville ~ Wilmington

Total Population 194,953 103,044 907,489 739,710 140,723 169,921
Population between 5 and 24 42,633 26,607 240,923 199,645 50,559 47,975
Median Age of City 42.15 40.17 34.78 35.71 31.7 37.96
Male to Female Ratio 91.48 93.30 93.62 95.41 90.33 90.28
ICE Income? —-0.14 -0.27 0.06 0.28 -0.21 —-0.16
ICE Race?® 0.82 0.79 0.19 0.48 0.27 0.61
Total Mobile Home, % 2.08 2.07 0.58 0.81 1.53 1.22
Does not Speak English, % 8.03 14.80 18.81 15.34 7.58 7.30
Below Poverty Line, % 14.83 17.23 15.64 12.56 22.40 20.94
No High School Diploma, % 17.89 22.7 13.15 11.69 16.48 18.04
Unemployment, % 3.775 5.5 5.796 3.97 7.03 5.48

ICE metrics range from —1 (least privilege) to 1 (most privileged).

1-3), micropolitan (RUCA 4-6), small-town (RUCA 7-9), and rural (RUCA 10) commuting areas based on the
size and direction of the primary (largest) commuting flows (USDA, 2020), for the ZIP Codes comprising the
area within the chosen city's city limits.

2.1.3. Weather Data

Daily gridded raster temperature data at 4 km resolution was obtained from the PRISM Climate Group
(PRISM, 2022); the raster was aggregated to the city level by taking a weighted mean average of daily climate
metrics; minimum temperature (TMIN) (°C), average temperature (TAVG) (°C), maximum temperature (TMAX)
(°C), and dew point for all grid points within a city, where the values from each grid point are combined to
calculate the mean value within the grid. In addition to the metrics obtained by PRISM, several other metrics
were derived; the TMAX 24-hr difference (°C), TMIN 24-hr difference (°C), and TAVG 24-hr difference (°C),
which were obtained by subtracting the current days' value by the previous day's value. Relative humidity (RH)
(%) was obtained as a product of TAVG and dew point, and the heat index was calculated using TAVG and RH.
Lastly, excess heat factor (EHF) was calculated using TAVG and following the methodology from Nairn and
Fawcett (2014). R 4.2.0 was utilized to perform this raster analysis at the city level.

2.1.4. Green Space Data

The Normalized Difference Vegetation Index (NDVI) was obtained from the National Oceanic and Atmospheric
Administration (NOAA, 2022). NDVI is used to quantify vegetation greenness and is used to understand vege-
tation density, ranging from 1 to —1 from dense vegetation to barren rock (USGS, 2018). The spatial resolution
of the data set was 5 km with a daily temporal resolution. The raster was aggregated to the city level by taking a
weighted mean average of daily NDVI value for all grid points within a city, where the values from each point are
combined in order to calculate the mean value within the grid. R 4.2.0 was utilized to perform this raster analysis
at the city level.

All variables calculated at the ZIP Code level were then aggregated with the other ZIP Codes corresponding to
their given city.

2.2. Model Development
2.2.1. Preprocessing

Prior research has documented a strong association between exposure to high temperatures and increased risk
of MBD-related ER visits in the summer season (Ogata et al., 2021; Son et al., 2016; X. Wang et al., 2014; Y.
Wang et al., 2019); therefore, this study focused on the warmer period (June through August). Multicollinearity
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Table 3 among the sociodemographic and environmental variables was assessed
Variable Inflation Factor of the Chosen Variables for Generalized Linear against the outcome variable, mental and behavioral health conditions, using
Model, Generalized Additive Model, RF, and XGBoost Models the variance inflation factor (VIF) (Dormann et al., 2012; Graham, 2003;
Variable GLM and GAM RF and XGBoost O'brien, 2007). Independent variables were removed when they had a VIF
- value greater than 10, an indication of multicollinearity (Mason et al., 2003;
Total Population - 6.12 . . .
Menard, 1995; Neter et al., 1989). To select the best variables with low multi-
Median Age 3.546 3.15 collinearity, the variable with the largest VIF value was removed, and the
Male to Female Ratio 8.31 - model was retested until all variable's VIF values remained under 10 (Craney
Population 5-24 per 1,000 6.62 = & Surles, 2002) (Table 3).
i 27l e 2.2.2. Procedure of Prediction Models
ICE Income® — 3.01 ) . . ) .
Four kinds of machine learning models, ranging from more simple to
Day of the week 1.00 1.00 . . . . .
complex, were assessed including (a) GLM assuming Poisson distribution
Month of the year 112 112 with multivariable predictors and log of population size as the offset; (b)
NDVI 1.04 1.04 GAM assuming Poisson distribution with multivariable predictors and log
TMIN 6.95 6.73 of population size as the offset; (c) random forest models with multivariable
TMAX 6.17 6.16 predictors; and (d) extreme gradient boosting trees (XGBoost) with multivar-
TMIN 24-hr difference® 171 170 iable predictors (Té.lble 4). Among the four. approaches, the best prediction
TMAX 24-hr diff . 162 W model was determined to be the model with the lowest root-mean-square
- diference ’ ’ error (RMSE) and mean absolute error (MAE) (Ogata et al., 2021). GLM is a
EHF* 1.28 1.28 generalized linear model in which a dependent variable is linearly related to
Relative Humidity 3.48 3.43 independent variables by a log link function when using a Poisson distribution
Above 95th 1.38 1.38 (IBM, 2011). By using spline functions, GAM can model non-linear associa-
Note. “_> Indicates that variable was not used in model. tions bfatween the independe.nt variab.les and the delpendent variable. Rarlldf)m
AICE metrics range from —1 (least privilege) to 1 (most privileged). *24 hr forest is a tree-based machine learning model with an ensemble by fitting
difference, current days temperature subtracted by previous days temperature, a number of decision trees on different subsamples of the training data set
values range from negative to positive. “Excess Heat Factor (EHF) values and combining their predictions for a more accurate result (Breiman, 2001).
begin at 0. XGBoost is an optimized distributed gradient-boosting decision tree model

(XGBoost, 2022). XGBoost trains a sequence of decision trees, with each
iteration attempting to correct the errors of the trees already in the previous
model.

2.2.3. Feature Selection and Hyperparameter Optimization

In each model, a 5-fold cross-validation (CV) technique was utilized to
ensure the robustness of the model. This technique involves randomly selecting hold-out test data for each fold
to evaluate the performance of the training model; this was performed using a randomly selected 80% of the
data from the original data set. The procedure is repeated based on the number of folds selected, resulting in a
more reliable model. Recursive feature selection (RFE) was used to identify the optimal predictors (i.e., feature
selection), and grid search was used to identify the optimal hyperparameters (i.e., hyperparameter tuning) (Chen
et al., 2018). The optimal model and hyperparameters were chosen based on having the lowest RMSE. RFE is
a wrapper method of backward feature selection that searches a defined subset of predictors by first training a
model by using all possible predictors, calculating the models' performance, and then calculating the variable
importance of the model. After the first round, the model subsets the top-performing variables. This process
occurred for each group of predictors in the first round. In the second iteration, an updated model of the optimally
selected predictors was tested in the same manner as before; this process was repeated until the best subset of
predictors was determined by having the lowest RMSE (Kuhn, 2019).

In the final models, city-level socioeconomic information included median age, population per 1,000 individuals
between the ages of 5 and 24, ICE race ratio, and ICE income ratio. Calendar information included the day of
the week and the month of the year. Landcover and location information included NDVI and geographic region.
Climate information included TMIN (°C), TMAX (°C), the TMIN 24-hr difference (°C), TMAX 24-hr difference
(°C), EHF, and RH (%). The total population was modeled into a log of population per 1,000 as the offset term in
GLM and GAM but was excluded from the random forest and XGBoost.
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Table 4
Summary Characteristics of Machine Learning Algorithms, Packages, and Optimized Hyperparameters for the Training
Data Set
Model R package Optimized hyperparameters Advantages
Generalized Linear Model Glmnet penalty = 0.096 - Linear regression is straightforward to
mixture = 0.1 understand and explain and can be regularized
to avoid overfitting
- In addition, linear models can be updated
easily with new data
Generalized Additive Model ~gamSpline Degrees of freedom = 1 - Can model non-linear associations of
independent variables with a dependent
variable by using spline functions; provides
straightforward visual interpretation for
nonlinear response variables
Random Forest Ranger mtry = 1 - Can use the Boruta algorithm as a preliminary
trees = 506, selectiop of fnodel v?riables to reduce the
calculating time of final random forest models
min_n = 101 - Capture the potential non-linear relationship
between heat-health outcome occurrence
and other meteorological and socioeconomic
variables
Extreme Gradient Boosting XGBoost nrounds = 51 - Able to handle missing data, can be optimized
max_depth = 3 on different loss functions z.md proyides
several hyperparameter tuning options that
eta=0.1 make the function fit very flexible
gamma = 0.3 - Able to capture nonlinearity in the
dependence structure
colsample_bytree = 0.8
min_child_weight = 5
subsample = 0.4
2.2.4. Model Selection and Validation
We used the remaining randomly split 20% of the data from the original data set for model testing and validation.
Predictive accuracies of the four different prediction models were evaluated using RMSE and MAE. RMSE is the
mean difference between observed and predicted values and shows an average predictive error; thus, the smaller
the RMSE, the better the model. MAE is the mean of the absolute value of the difference between the predicted
and observed values, a smaller MAE indicates a better prediction. The model with the lowest RMSE and MAE
was selected as the best fit and used to identify which variables contribute to an individual's susceptibility to
being admitted to the ER for MBDs.
2.3. Evaluation of Developed Prediction Model Variables
We examined the impact that the most important variables had on the prediction of MBD cases for the
best-performing model by using SHapley Additive exPlanations (SHAP) values. The goal of SHAP is to explain
why the model predicts a certain outcome based on the variable values that are provided and the contribution that
those values contribute to the final prediction (Lundberg & Lee, 2017; Molnar, 2022). The SHAP value shows
how much an individual variable contributes (either negatively or positively) to the difference between the mean
and the actual prediction in the context of the other variables in the data. The mean absolute contribution value
is the SHAP value, which indicates the average absolute contribution value that variable makes to the overall
predicted outcome. Analysis was conducted using gam (Hastie, 2022), caret (Kuhn, 2022), tidymodels (Kuhn &
Wickham, 2020), iBreakDown (Gosiewska & Biecek, 2019), and vip (Greenwell & Boehmke, 2020) packages
in R version 4.2.0.
WERTIS ET AL. 7 of 18

ASUAOIT suowwoy) aAneal) d[qesrjdde oy £q pauloAoS are s3[o1IR YO (2Sh JO SO[NI 10§ AIeIqI duI[UQ AS[IA\ UO (SUOHIPUOI-PUE-SULIR}/W0d Kd[1m  AIeiqjaul[uo//:sdpy) suonipuo)) pue suLa ], ay1 99S “[+207/10/1€] uo Areiqr autuQ A3[IM ‘6£8000HDETOT/6T01 0 1/10p/wod Kapim Kreiqrjaurjuo-sqndnSe//:sdny woiy papeojumo( ‘6 ‘€20T ‘€01 1LHT



A7oN |
NI
ADVANCING EARTH
AND SPACE SCIENCES

GeoHealth

10.1029/2023GH000839

Table 5

Characteristics of Train and Test Data Sets in Six North Carolina Cities Between June and August From 2016 to 2019
Variable Train Test
Mental and behavior disorders 31,656 7,976

Median Age

Male to female ratio

ICE Income

ICE race

Percent Unemployment
NDVI

TMAX, °C

TAVG, °C

TMIN, °C

TMAX 24 hr difference, °C
TMIN 24 hr difference, °C
Relative Humidity, %

37.15 (33.68-40.82)
92.4 (90.54-94.29)
—0.075 (—0.26-0.11)
0.53 (0.29-0.77)
5.24 (4.13-6.35)
0.39 (0.34-0.45)
30.67 (27.85-33.49)
25.37 (22.67-28.07)
20.07 (17.02-23.12)
—0.002 (—2.17-2.16)
—0.02 (=1.71-1.67)
71.53 (63.81-79.25)

36.79 (33.33-40.24)
92.43 (90.51-94.34)
—0.072 (~0.26-0.12)
0.51 (0.27-0.75)
5.33 (4.21-6.45)
0.4 (0.35-0.44)
30.68 (27.80-33.56)
25.4 (22.82-27.99)
20.13 (17.32-22.94)
0.065 (~2.07-2.20)
0.024 (=1.66-1.71)
71.81 (64.05-79.57)

Excessive Heat Factor 0.0052 (—0.046-0.0565) 0.0037 (—0.036-0.043)

2.4. Sensitivity Analysis: Distributed Lag Non-Linear Model

Relying on a standard approach typically used in environmental health studies, the distributed lag nonlinear
model (DLNM) was employed to confirm the machine learning results. We investigated the association between
daily average temperature and any MBD-related ER visit to confirm our machine-learning ambient temperature
findings in the individual city models.

Prior literature has demonstrated a non-linear and delayed (e.g., typically 3 to 7-day lag) relationship between
temperature and MBD-related ER visits; therefore, we performed the DLNM combined with a GLM as a
sensitivity analysis to further confirm the temperature-related results from our top-performing ML approach
(Crank et al., 2022; Gasparrini, 2011; Peng et al., 2017; Yoo, Eum, Gao, & Chen, 2021). In each city, a DLNM
was applied as a quasi-Poisson distribution with a lag period of 0 days in order to establish the associations
between temperature and the relative risk (RR) of increased ER visits. DLNM can characterize the non-linear
exposure-response relationship at varying delayed exposure times (Gasparrini, 2011). For this analysis, the
region-specific temperature-ER visit association for MBDs was calculated. In this study, DLNM was employed to
investigate the relationship between exposure to varying temperatures in the summer months for each individual
city and the corresponding mental and behavioral ER visits. The model is written as:

log E(Y;) = a + cb(Temp,, df} ) + ns(RH,, df>) + ns(Time,, df3) + SDOW, (1)

where E(Y)) is the expected ER visits related to MBDs on day ¢ as a logarithmic function of an intercept (a); cb()
denotes the cross basis function for temperature (daily average temperature); ns() denotes the natural cubic spline
applied to RH and time trend. Three knots in the lag space of the cross basis-function were set equally spaced
values in the log scale of lags for more flexible lag effects at shorter delays (Gasparrini, 2011; Yoo, Eum, Gao,
& Chen, 2021). The day of the week (DOW,) and Time were used as controls for the temperature and RH vari-
ables (Dominici, 2004). The degrees of freedom (df) for the predictors were set; df, = 4 for the temperature in
the crossbasis function, df, = 2 for RH, and df; = 7 X number of years for the time trend to model for the season
and long-term time trends. These parameters were identified based on previous studies (Crank et al., 2022;
Gasparrini, 2011; Peng et al., 2017; Yoo, Eum, Gao, & Chen, 2021) and then tested for the best fitting model
based on qAIC (Guo et al., 2011). Analysis was conducted using glm to analyze a quasi-Poisson generalized
linear regression model and dlnm (Gasparrini, 2011) and mixmeta (Sera et al., 2019) packages for distributed lag
models and meta-analyses, respectively in R version 4.2.0.
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Table 6

RMSE and Mean Absolute Error of the Models for Train and Test
Performance for All Machine Learning Approaches

GLM GAM RF ranger XGBoost
Train RMSE 4.71 4.71 4.01 4.35
Test RMSE 4.97 4.96 4.96 5.00
Train MAE 3.45 3.45 2.94 3.20
Test MAE 3.59 3.59 3.62 3.68

Note. RMSE, Root Mean Squared Error; MAE, Mean Absolute Error.

3. Results

3.1. Prediction for Mental Health Aggregated Approach Across All
Cities
The variables used in the training and testing data sets are located in Table 5.

The total number of MBDs reported from June—August of 2016 to 2019 is
summarized as 31,656 and 7,976 cases for training and testing, respectively.

We developed machine learning models to predict the number of MBDs using
a GLM, GAM, random forest, and extreme gradient boosting (XGBoost)
using multivariable predictors in the training data set. Amongst these
models, GAM was chosen based on having the lowest root-mean-squared
error (RMSE), 4.96, and lowest MAE, 3.59, when applied to the testing data
(Table 6). The performance across the entire test data set is graphically repre-
sented in Figure 2. The observed number of MBDs was found to be strongly

correlated with the predicted values from all four machine-learning approaches. In the GAM, 12 of the predictor

variables that had variable inflation factor values below 10 were selected (Median age, the population of our
study age, male-to-female ratio, the city location, day of the week, TMAX 24-hr difference (°C), TMIN 24 hr
difference (°C), RH, TMAX, TMIN, month of the year, and NDVI of the city) as the top contributors to the
predictive outcome of the model set by the RFE method.

The GAM model had all twelve top-performing variables' SHAP values calculated, which are summarized in

Figure 3 and show the importance of its predictors. The SHAP summary model illustrates the leading variables

in identifying what leads youths in a city to be more prone to MBDs. The variables that lead to higher predictions
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Figure 2. Comparison between observed and the predicted number of mental and behavioral disorder-related emergency department visits across six North Carolina
cities from June to August 2016 to 2019 by generalized linear model (GLM), generalized additive model (GAM), RF, and XGBoost. The black line indicates the
observed totals of MBD-related emergency department visits per day across six North Carolina cities and the red line indicates the predicted total number of mental
and behavioral-related emergency department visits per day in the six North Carolina cities. These predictions were obtained from the following models from top to
bottom: (1) GLM using multivariable predictors, (2) GAM using multivariable predictors, (3) RF using multivariable predictors, and (4) XGBoost using multivariable

predictors.
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Figure 3. SHapely Additive exPlanations (SHAP) (SHapley Additive exPlanations) values and contributions of the best-performing variables in the best model
(generalized additive model). The plot shows the importance of the predictors, with the most important at the top, of the best-performing model using SHAP values.
The effect of the contribution is notated as a positive or negative point-level contribution; the given variables' value is represented with a sliding scale from yellow,
representing a low variable value to purple, representing a high variable value for each. The x-axis SHAP value illustrates the contribution of every variable to the
predicted number of mental and behavioral disorders emergency department visits, with positive values leading to a higher number of predicted emergency room (ER)
visits and a negative value leading to a lower number of predicted ER visits.

of MBDs were a larger population between the ages of 5 and 24 per 1,000, a smaller male-to-female ratio, higher
median age, being located on the eastern side of the state, lower minimum temperature, higher RH, being in the
first half of the week, higher 24-hr minimum temperature difference, lower 24-hr maximum temperature differ-
ence, and lower NDVI all lead to higher rates of MBDs.

3.2. Prediction for Mental Health in Each City

Individual GAM models were developed for each of the six cities in this analysis to identify leading environmen-
tal contributors to an individual's risk of an MBD; building this model took into account land cover and temper-
ature data and used temporal information as controls for the model (Table 7).

The RMSE and MAE were summarized across all six cities (Table 8), the individual city approach had a smaller
mean RMSE (4.43 vs. 4.96) and a smaller mean MAE (3.53 vs. 3.59) than the all cities approach.

To better understand the difference in the influence of ambient temperature and land cover on MBD-related
ER visits, SHAP values were calculated for each city. The top-performing variables that were identified
within the GAM model were chosen to be represented in the SHAP model (Lundberg & Lee, 2017). The
SHAP value model can be seen in Figure 4, and shows the feature importance for the models with respect
to the mental health case count prediction. The features are listed top-down with decreasing importance.
The overall SHAP value of the contribution, found on the left side of the plot for each category gives the
total contribution value and shows the average impact of the individual features on the models' output. Each
dot represents an individual SHAP value for individual patients instead of the average absolute value. The
further away a point is from x = 0, the larger the impact on the output prediction. Values to the left of x =0
are contributing to decreased MBD-related ER visits, while values to the right are contributing to the predic-
tion of increased MBD-related ER visits. Each of the colored dots for each category represents an individual
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Table 8
RMSE and Mean Absolute Error of the Models for Train and Test Performance of the Generalized Additive Model for All Six Cities Individually

Ashville Hickory Charlotte Raleigh Greenville Wilmington Overall

Train RMSE 3.36 2.31 7.88 6.06 2.67 34 4.28
Test RMSE 3.39 2.51 8.24 6.05 2.87 3.5 4.43
Train MAE 2.69 1.82 6.56 4.85 2.17 2.75 347
Test MAE 2.81 1.98 6.6 4.83 2.24 2.73 3.53
Normalized Test RMSE 0.331 0.486 0.173 0.227 0.416 0.303 0.32
Normalized Test MAE 0.275 0.384 0.138 0.181 0.324 0.236 0.26

Note. Normalized RMSE and normalized MAE for the test data set to better illustrate how the models performed on different data sets.

risk” association between temperature and MBD-related ER visits was not consistent within our study area, with
lower minimum temperatures associated with increasing counts of MBD-related ER visits.

The secondary aim of this analysis was to identify the leading environmental factors of mental health responses
at the city level for six cities in North Carolina in the summer months between 2016 and 2019. The results of
this analysis illustrate how environmental factors affect the mental health response across varying geographic
locations within North Carolina. All but two cities had different environmental metrics as their leading predictors
(i.e., Hickory and Willmington). However, there were some shared commonalities, with four cities having the
24-hr difference in the maximum temperature and two of the cities having the 24-hr difference in the minimum
temperature, maximum temperature, or NDVI as a leading predictor of MBD emergency department visits. Our
work highlights the importance of local-level understanding when trying to understand how temperature may
influence MDB.

Our results indicate that when the city comprises a higher ratio of females to males, we see an increase in the
predicted number of MBD ER visits. Previous research has indicated that females are more likely to display
help-seeking behaviors compared to males (Oliver et al., 2005). Results also showed that cities with a larger youth
population, a strong predictor in our study, showcased higher instances of MBD-related ER visits.

In contrast to previous studies showing a corresponding increase in ER visits for mental disorders as mini-
mum nighttime temperatures increase, our results in the aggregated all-cities model indicate that as the mini-
mum temperature decreases, we see a rise in MBD ER visits. These results contrast with previous research,
which has indicated that minimum temperature plays a stronger role than maximum temperature (Mullins
& White, 2019). A potential explanation for this finding is that there is a large daily swing in temperature
between night and day and that this dramatic increase in temperature contributes to additional heat stress on
individuals.

Our study contrasts with previous studies examining individual cities demonstrating that as temperature increases,
the risk for MBD increases, with studies finding that at the 99th percentile of temperature, an individual is over
25% more likely to suffer from a mental or behavioral disorder than at the 50th percentile of temperature (Peng
etal., 2017; X. Wang et al., 2014; Yoo, Eum, Gao, & Chen, 2021). More specifically for youths, Niu et al. (2023)
found that high summer temperatures were associated with a significant increase in MBD-related ER visits.
However, in our analysis, we found that not only was maximum temperature normally not the most predictive
variable, but a high maximum temperature resulted in lower MBD-related hospital visits when it was a top
contributing variable. We confirmed our results by conducting a sensitivity analysis using a DLNM and pooling
our results across all cities.

More specifically, the maximum temperature was a top contributing variable for Charlotte and Raleigh in the
individual city models. The SHAP values indicate that neither the highest nor lowest maximum temperature
values contributed to higher predicted ER visits. Still, temperatures near the median contributed to higher
predicted MBD emergency department visits. These results are consistent with the results from the DLNM,
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which had a significant decrease in ER visits in Charlotte at the highest average temperatures and no signifi-
cant correlation between high average temperature and ER visits in Raleigh.

The reason for this temperature-mental health difference could be based on the location of the study. Previ-
ous studies have focused further north and therefore have cooler summers, with extreme temperatures fall-
ing between 23 and 27°C for the 75th to 97.5th percentile of temperature, whereas in the Southeast US,
where North Carolina is located, the 75th and 97.5th percentile of maximum temperature being 33-37°C
(Peng et al., 2017; X. Wang et al., 2014; Yoo, Eum, Gao, & Chen, 2021). Due to the temperature reaching
much higher levels, individuals might be more inclined to seek shelter during these events, leading to fewer
extreme heat exposures for youths in North Carolina and mitigation of the environmental risk factors of
heat-related MBD.

4.1. Strengths and Limitations

This study had several notable strengths. First, we evaluated the association between summer environmental
data, sociodemographic information, and ER visits for any MBD in multiple cities across North Carolina, which
allowed for a more general state-wide analysis as well as a secondary analysis looking at each city individually.
We included variables that were not related to temperature to assess if the MBD-related hospital visits were
primarily affected by the climate or by sociodemographic factors. Second, unlike most nonlinear model results
that only indicate the top contributing predictive variables (Y. Wang et al., 2019), through the use of SHAP, we
provided precisely how each variable contributes to the outcome of the model. Unlike previous studies that have
used traditional additive models or DLNM, machine learning was employed to identify the top predictive varia-
bles, and SHAP models were used to quantify the contribution that each of the top variables made in the overall
prediction of the model. Lastly, we tested multiple machine learning approaches to ensure our results were robust
(e.g., random forest).

This study had a few limitations. First, a longer study period could increase the robustness of results and
better identify trends. Second, an analysis of specific MBD would be more informative. Lastly, air pollution,
such as ozone, generally has a high correlation with temperature and has been shown to impact mental health
(X. Wang et al., 2014), and future studies should include PM, ; as a covariate in the model to better under-
stand the temperature-mental health relationship. However, our analysis was conducted at the ZCTA scale,
and PM, ; or ozone data are not readily available at this scale. Lastly, our results highlighted several notable
trends, including increased NDVI and high temperatures, corresponding to lower MBDs, and are worthy of
further exploration.

5. Conclusion

This study is among the first to examine the driving factors behind MBD ER visits in youth in North Carolina,
USA. Our study leveraged a daily ER inpatient data set for the entire state of North Carolina, allowing us to lever-
age a suite of machine learning models to examine the daily MBD response in youth to varying environmental
conditions and socioeconomic changes in distinct geographic regions. This study suggests that at the aggregated
city level, socioeconomic factors contribute more to an individual's mental and behavioral well-being during
the summer than environmental factors. At the city level, this study indicates that no clear environmental factor
contributes to the greatest risk of MBDs. Results from this study can provide new guidance on the application
of machine learning models for predicting mental health conditions and help inform what variables contribute to
youth mental and behavioral responses during high-temperature events.

Figure 4. Shows the SHapely Additive exPlanations (SHAP) values for (a) Asheville, (b) Hickory, (c) Charlotte, (d) Raleigh, (e) Greenville, (f) Wilmington. SHAP
values and contributions of the best-performing variables in the best model (generalized additive model). The plot shows the importance of the predictors, with the most
important at the top, of the best-performing model using SHAP values. The effect of the contribution is notated as a positive or negative point-level contribution; the
given variables' value is represented with a sliding scale from yellow, representing a low variable value to purple, representing a high variable value for each. The x-axis
SHAP value illustrates the contribution of every variable to the predicted number of mental and behavioral disorders emergency department visits, with positive values
leading to a higher number of predicted emergency room (ER) visits and a negative value leading to a lower number of predicted ER visits.
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Figure 5. The individual effect of daily average temperature for all MBD-related emergency room (ER) visits for (a)
Asheville, (b) Hickory, (c) Charlotte, (d) Raleigh, (e) Greenville, (f) Wilmington. The optimal ER visit temperature was

defined as the temperature that corresponded with the minimum risk of emergency department visits. The black line indicated

the relative risk, with the shaded area representing the 95% confidence intervals, dotted lines representing the 2.5th and
97.5th temperature percentile, and the gray dashed line representing the optimal ER visit temperature.

WERTIS ET AL.

15 of 18

Asu0dI] suowwo)) aanear) d[qearjdde ayy Aq pauIdA0S a1k S3[O1IE YO ASN JO SI[NI 10J AIRIQIT AUI[UQ AS[IA\ UO (SUOLIPUOI-PUEB-SULIS)/ W0 KJ[1m " KIRIqI[aul[uo//:sd)y) suonipuo)) pue suLd [, a1 39S “[$70z/10/1¢] uo Kreiqiy surjuQ L3[IM ‘6£8000HOET0T/6201°01/10p/wod Kafim’Areiqrourjuo-sqndnge;/:sdiy woiy papeojumo( 6 ‘70T ‘0¥ 1 1LYT



A7oN |
MN\\JI
ADVANCING EARTH
AND SPACE SCIENCES

GeoHealth

10.1029/2023GH000839

Acknowledgments

‘We thank our external funders and collab-
orators for supporting this work. This
work is made possible through the funded
support of the National Institute of Envi-
ronmental Health Sciences (NIEHS)'s
R15 grant (Grant IR15ES033817-01),

“A Causal Analysis of the Complex
Mental Health Impacts of the Climate
Crisis in Young People” (2021-2024),
National Science Foundation CAREER
grant (Grant 2044839), the National
Oceanic and Atmospheric Administration
(NOAA) Climate Program Office Climate
Adaptation Partnerships program (Grant
NA210AR4310312), and through the
Cooperative Institute for Satellite Earth
Systems under Cooperative Agreement
(Grant NA19NES4320002) The content
is solely the authors' responsibility and
does not represent the official views of
the National Institute of Environmental
Health Sciences, the National Oceanic
and Atmospheric Administration, and the
National Science Foundation.

Table 9

Relative Risk at the 2.5th and 97.5th Percentile of Temperature in the Summer Months Between 2016 and 2019

Location

Low (2.5th percentile)

High (97.5th percentile)

North Carolina

0.99 (0.96-1.02)

0.97 (0.93-0.99)

Asheville 1.02 (0.96-1.09) 0.91 (0.86-0.96)
Hickory 1.00 (0.94-1.08) 1.01 (0.95-1.06)
Charlotte 0.98 (0.94-1.02) 0.96 (0.93-0.99)
Raleigh 0.98 (0.93-1.03) 0.99 (0.95-1.05)
Greenville 0.98 (0.91-1.06) 0.96 (0.89-1.03)
Wilmington 0.98 (0.92-1.05) 0.99 (0.94-1.05)
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