
1.  Introduction
The burden of mental illness in the United States is substantial; one in five individuals experience a diagnosable 
mental illness each year (Centers for Disease Control and Prevention, 2021). According to the U.S. Department of 
Health and Human Services Substance Abuse and Mental Health Services Administration (SAMHSA), instances 
of mental health are the highest among young adults aged 18–25, with one in three reporting having a mental 
illness (SAMHSA, 2021). The direct cost of addressing and treating mental illness in the United States is growing 
annually, with the annual cost increasing by 40% in the last 7 years (Roehrig, 2016; SAMHSA, 2014).

Exposure to hot environmental conditions such as air temperature has been associated with an increased risk 
of hospitalizations or emergency room (ER) visits for mental health disorders (Berry et al., 2009; McMichael 
et  al.,  2006; Mullins & White,  2019; X. Wang et  al.,  2014), but the majority of this work has been focused 
on adult rather than youth populations (Sugg et al., 2018). Despite a strong association, there is no universal 
temperature threshold for when mental health begins to be negatively affected. Researchers have identified a 
strong association between high ambient air temperatures (24.5–28°C) over a period of up to 7 days and a strong 
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increase (26%–29%) in mental and behavioral disease emergency visits compared to days below this threshold 
(Peng et al., 2017; X. Wang et al., 2014). Research has also observed a positive association between increased 
hospital admissions for MBDs (7.3%) and heat-wave days (Hansen et al., 2008). Previous research has shown 
an overall increase in mental health admittance during summer months for select locations (Toronto Canada, 10 
labor market regions in New York, and Erie and Niagara counties in New York) (C. Wang et al., 2018; Yoo, Eum, 
Gao, & Chen, 2021; Yoo, Eum, Roberts, et al., 2021).

Despite many studies investigating the susceptibility to extreme heat among persons with a mental disorder, the 
lack of defined metrics identifying which environmental (e.g., vegetation amount, ambient temperature, humid-
ity) and socioeconomic factors (e.g., income and race) contribute to susceptibility means that there still is a need 
to better understand this relationship (Park & Kim, 2018; C. Wang et al., 2018). Previous studies have indicated 
that socioeconomic variables such as unemployment and no high school diploma are proxies for low income and 
suggest higher vulnerability to temperature-related mental health outcomes (Mullins & White, 2019; Reiss, 2013; 
Y. Wang et al., 2019).

Future projections show that the Southeastern United States will likely experience an increase in average 
temperature as high as 8°F along with an increase of up to 50 additional days over 95°F in some areas, all 
of which will lead to an increase in heat stress and heat-related deaths (EPA, 2022). However, there has 
been little research on how different geographical and climatological regions respond to high-temperature 
extremes and the susceptibility of vulnerable populations like children, particularly in the southeastern US, 
a region regularly impacted by high temperature and humidity (Park & Kim, 2018). The extreme heat and 
health associations are typically assessed by looking at a select individual area (Hansen et al., 2008; Rocklöv 
et al., 2014) or multiple urban cities spread across a single country (Ogata et al., 2021). As a result, there 
is limited information about how neighboring cities differ in their response behavior and what contributes 
to this differing response and even fewer studies have examined how place-based disparities in access to 
greenspaces or other mental health-promoting resources influence the heat-health relationship (Mullins & 
White, 2019). It would be useful to capture the driving risk factors in predicting the occurrence of MBDs 
for determining interventions to address the effect of climate change on mental health. However, the lack 
of identifiable risk factors delays an accurate prediction and lowers the utilization of available medical 
resources, which could be provided more effectively to improve response rates, decrease mortality, and 
reduce medical costs (SAMHSA, 2021).

Prior studies have relied on statistical models like linear regression and generalized additive model (GAM) 
because they are easy to interpret but may yield less accurate predictions because these models lack the ability 
to simultaneously consider the complex and possibly nonlinear relationship between multiple collinear variables 
(Aragones et al., 2002; Benka-Coker et al., 2020). In general, too few studies have integrated state-of-the-art 
machine learning approaches (e.g., random forest and XGBoost) alongside standard statistical approaches to 
complement a priori statistical inference with the predictive performance of tree-based ensembles to enhance 
medical decision support (Lundberg,  2018). The study aims to identify the factors that predict ER visits for 
mental and behavioral disorders (MBD) in youths living within six metropolitan cities during the warm season. 
To achieve this, various machine learning approaches, including the generalized linear model (GLM), GAM, 
random forest, and extreme gradient boosting, will be explored. These models offer more precise and robust 
results than traditional linear regression and additive models, especially when dealing with multicollinearity 
within the data. The SHapely Additive exPlanations (SHAP) method will also be used to allocate contribution 
values for model outputs among explanatory variables, making it possible to quantify variable contribution in 
non-linear model results and thereby providing a means of quantifying variable contribution in non-linear model 
results.

The study hypothesizes that there is an association between hot ambient temperatures and youth mental 
health (ages 5 to 24), but socioeconomic and regional differences are the most influential factors in explain-
ing mental health disparities in youths. Results from this study can provide new guidance on the applica-
tion of machine learning models for predicting mental health conditions during high-temperature events, 
as well as help inform what variables contribute to a communities mental and behavioral response during 
high-temperature events.

 24711403, 2023, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

H
000839, W

iley O
nline Library on [31/01/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



GeoHealth

WERTIS ET AL.

10.1029/2023GH000839

3 of 18

2.  Materials and Methods
2.1.  Data

2.1.1.  Study Population

In this study, the MBD cases were obtained from the Shep's Center for Health and Human Services Research data 
set, which contains all ER visits across North Carolina (SHEPS, 2022). Diagnosis of mental health and behavio-
ral conditions were identified using ICD-10 diagnosis codes (F00-F99) in any of the diagnostic categories. We 
collected the daily case counts of mental and behavior-related visits in Asheville, Hickory, Charlotte, Raleigh, 
Wilmington, and Greensville from the summer (June, July, and August) of 2016–2019 of individuals between the 
ages of 5 and 24, which was used as the outcome variable (Figure 1). The study locations were selected because 
they represent a range of climates across NC while supporting a large enough sample size for the statistical anal-
ysis. ER visits were selected for between 2016 and 2019. This time period was selected due to the change from 
ICD-9 to ICD-10 codes in 2016, leading to a classification change in several mental health-related codes. Addi-
tionally, 2019 was chosen as an endpoint, not to include data during the COVID-19 pandemic, as hospital visits 
decreased for mental health in the early phase of the pandemic. The cities were treated as a categorical variable 
(i.e., Asheville = 1, Hickory = 2, etc.) in the all city's model and as a dichotomous variable (Asheville (yes/no)) 
in the individual city analysis. Cities received a categorical value depending on which of the three geographical 
regions of North Carolina they were located in: Mountains, Piedmont, and Coastal Plains. Additionally, the month 
of the year and day of the week were notated in the data set and incorporated into the final models (Table 1).

2.1.2.  Socio-Demographic Data

Additional sociodemographic information was obtained from the U. S. Census Bureau (2023) for each city 
including the median age, total population, the population of our study age, male-to-female ratio, percent of 
the population without a high school diploma, percent unemployment, percent English speakers, percentage of 
mobile homes, and the Index of Concentration at the Extremes (ICE) metrics (Krieger et al., 2016) (Table 2). 
Variable selection and justification can be found in Table 2. The ICE metrics are used in public health monitoring 
to capture extremes of economic and residential segregation (Conner et al., 2010; Krieger et al., 2016). The ICE 
income ratio is the number of persons in the 80th percentile of income subtracted from the 20th percentile, divided 
by the total population with a known income; where by the majority low-income are compared to the majority 
high-income communities. The ICE race metric is derived from the ratio of white to black individuals and repre-
sents a comparison between majority Black compared to majority White communities at each extreme (Krieger 
et al., 2016). The ICE metrics range from −1 (least privilege) to 1 (most privileged) (Krieger et al., 2016). Lastly, 
the rural-urban commuting area (RUCA) codes collected from the United States Department of Agriculture, 
which use population density, urbanization, and daily commuting, were used to delineate metropolitan (RUCA 

Figure 1.  Study area with the ZIP Codes that comprise the six cities in North Carolina that are part of the study highlighted 
in a unique color, and the ZIP Codes not in the study are shaded gray.
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1–3), micropolitan (RUCA 4–6), small-town (RUCA 7–9), and rural (RUCA 10) commuting areas based on the 
size and direction of the primary (largest) commuting flows (USDA, 2020), for the ZIP Codes comprising the 
area within the chosen city's city limits.

2.1.3.  Weather Data

Daily gridded raster temperature data at 4  km resolution was obtained from the PRISM Climate Group 
(PRISM, 2022); the raster was aggregated to the city level by taking a weighted mean average of daily climate 
metrics; minimum temperature (TMIN) (°C), average temperature (TAVG) (°C), maximum temperature (TMAX) 
(°C), and dew point for all grid points within a city, where the values from each grid point are combined to 
calculate the mean value within the grid. In addition to the metrics obtained by PRISM, several other metrics 
were derived; the TMAX 24-hr difference (°C), TMIN 24-hr difference (°C), and TAVG 24-hr difference (°C), 
which were obtained by subtracting the current days' value by the previous day's value. Relative humidity (RH) 
(%) was obtained as a product of TAVG and dew point, and the heat index was calculated using TAVG and RH. 
Lastly, excess heat factor (EHF) was calculated using TAVG and following the methodology from Nairn and 
Fawcett (2014). R 4.2.0 was utilized to perform this raster analysis at the city level.

2.1.4.  Green Space Data

The Normalized Difference Vegetation Index (NDVI) was obtained from the National Oceanic and Atmospheric 
Administration (NOAA, 2022). NDVI is used to quantify vegetation greenness and is used to understand vege-
tation density, ranging from 1 to −1 from dense vegetation to barren rock (USGS, 2018). The spatial resolution 
of the data set was 5 km with a daily temporal resolution. The raster was aggregated to the city level by taking a 
weighted mean average of daily NDVI value for all grid points within a city, where the values from each point are 
combined in order to calculate the mean value within the grid. R 4.2.0 was utilized to perform this raster analysis 
at the city level.

All variables calculated at the ZIP Code level were then aggregated with the other ZIP Codes corresponding to 
their given city.

2.2.  Model Development

2.2.1.  Preprocessing

Prior research has documented a strong association between exposure to high temperatures and increased risk 
of MBD-related ER visits in the summer season (Ogata et al., 2021; Son et al., 2016; X. Wang et al., 2014; Y. 
Wang et al., 2019); therefore, this study focused on the warmer period (June through August). Multicollinearity  

Asheville Hickory Charlotte Raleigh Greenville Wilmington

Total Population 194,953 103,044 907,489 739,710 140,723 169,921

Population between 5 and 24 42,633 26,607 240,923 199,645 50,559 47,975

Median Age of City 42.15 40.17 34.78 35.71 31.7 37.96

Male to Female Ratio 91.48 93.30 93.62 95.41 90.33 90.28

ICE Income a −0.14 −0.27 0.06 0.28 −0.21 −0.16

ICE Race a 0.82 0.79 0.19 0.48 0.27 0.61

Total Mobile Home, % 2.08 2.07 0.58 0.81 1.53 1.22

Does not Speak English, % 8.03 14.80 18.81 15.34 7.58 7.30

Below Poverty Line, % 14.83 17.23 15.64 12.56 22.40 20.94

No High School Diploma, % 17.89 22.7 13.15 11.69 16.48 18.04

Unemployment, % 3.775 5.5 5.796 3.97 7.03 5.48

 aICE metrics range from −1 (least privilege) to 1 (most privileged).

Table 1 
Sociodemographic Information for Each of the Six Cities in the Data Set Between June and August From 2016 to 2019
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among the sociodemographic and environmental variables was assessed 
against the outcome variable, mental and behavioral health conditions, using 
the variance inflation factor (VIF) (Dormann et  al.,  2012; Graham,  2003; 
O'brien, 2007). Independent variables were removed when they had a VIF 
value greater than 10, an indication of multicollinearity (Mason et al., 2003; 
Menard, 1995; Neter et al., 1989). To select the best variables with low multi-
collinearity, the variable with the largest VIF value was removed, and the 
model was retested until all variable's VIF values remained under 10 (Craney 
& Surles, 2002) (Table 3).

2.2.2.  Procedure of Prediction Models

Four kinds of machine learning models, ranging from more simple to 
complex, were assessed including (a) GLM assuming Poisson distribution 
with multivariable predictors and log of population size as the offset; (b) 
GAM assuming Poisson distribution with multivariable predictors and log 
of population size as the offset; (c) random forest models with multivariable 
predictors; and (d) extreme gradient boosting trees (XGBoost) with multivar-
iable predictors (Table 4). Among the four approaches, the best prediction 
model was determined to be the model with the lowest root-mean-square 
error (RMSE) and mean absolute error (MAE) (Ogata et al., 2021). GLM is a 
generalized linear model in which a dependent variable is linearly related to 
independent variables by a log link function when using a Poisson distribution 
(IBM, 2011). By using spline functions, GAM can model non-linear associa-
tions between the independent variables and the dependent variable. Random 
forest is a tree-based machine learning model with an ensemble by fitting 
a number of decision trees on different subsamples of the training data set 
and combining their predictions for a more accurate result (Breiman, 2001). 
XGBoost is an optimized distributed gradient-boosting decision tree model 
(XGBoost, 2022). XGBoost trains a sequence of decision trees, with each 
iteration attempting to correct the errors of the trees already in the previous 
model.

2.2.3.  Feature Selection and Hyperparameter Optimization

In each model, a 5-fold cross-validation (CV) technique was utilized to 
ensure the robustness of the model. This technique involves randomly selecting hold-out test data for each fold 
to evaluate the performance of the training model; this was performed using a randomly selected 80% of the 
data from the original data set. The procedure is repeated based on the number of folds selected, resulting in a 
more reliable model. Recursive feature selection (RFE) was used to identify the optimal predictors (i.e., feature 
selection), and grid search was used to identify the optimal hyperparameters (i.e., hyperparameter tuning) (Chen 
et al., 2018). The optimal model and hyperparameters were chosen based on having the lowest RMSE. RFE is 
a wrapper method of backward feature selection that searches a defined subset of predictors by first training a 
model by using all possible predictors, calculating the models' performance, and then calculating the variable 
importance of the model. After the first round, the model subsets the top-performing variables. This process 
occurred for each group of predictors in the first round. In the second iteration, an updated model of the optimally 
selected predictors was tested in the same manner as before; this process was repeated until the best subset of 
predictors was determined by having the lowest RMSE (Kuhn, 2019).

In the final models, city-level socioeconomic information included median age, population per 1,000 individuals 
between the ages of 5 and 24, ICE race ratio, and ICE income ratio. Calendar information included the day of 
the week and the month of the year. Landcover and location information included NDVI and geographic region. 
Climate information included TMIN (°C), TMAX (°C), the TMIN 24-hr difference (°C), TMAX 24-hr difference 
(°C), EHF, and RH (%). The total population was modeled into a log of population per 1,000 as the offset term in 
GLM and GAM but was excluded from the random forest and XGBoost.

Variable GLM and GAM RF and XGBoost

Total Population – 6.12

Median Age 3.546 3.15

Male to Female Ratio 8.31 –

Population 5–24 per 1,000 6.62 –

City 3.71 2.79

ICE Income a – 3.01

Day of the week 1.00 1.00

Month of the year 1.12 1.12

NDVI 1.04 1.04

TMIN 6.95 6.73

TMAX 6.17 6.16

TMIN 24-hr difference b 1.71 1.70

TMAX 24-hr difference b 1.62 1.63

EHF c 1.28 1.28

Relative Humidity 3.48 3.43

Above 95th 1.38 1.38

Note. “–” Indicates that variable was not used in model.
 aICE metrics range from −1 (least privilege) to 1 (most privileged).  b24 hr 
difference, current days temperature subtracted by previous days temperature, 
values range from negative to positive.  cExcess Heat Factor (EHF) values 
begin at 0.

Table 3 
Variable Inflation Factor of the Chosen Variables for Generalized Linear 
Model, Generalized Additive Model, RF, and XGBoost Models
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2.2.4.  Model Selection and Validation

We used the remaining randomly split 20% of the data from the original data set for model testing and validation. 
Predictive accuracies of the four different prediction models were evaluated using RMSE and MAE. RMSE is the 
mean difference between observed and predicted values and shows an average predictive error; thus, the smaller 
the RMSE, the better the model. MAE is the mean of the absolute value of the difference between the predicted 
and observed values, a smaller MAE indicates a better prediction. The model with the lowest RMSE and MAE 
was selected as the best fit and used to identify which variables contribute to an individual's susceptibility to 
being admitted to the ER for MBDs.

2.3.  Evaluation of Developed Prediction Model Variables

We examined the impact that the most important variables had on the prediction of MBD cases for the 
best-performing model by using SHapley Additive exPlanations (SHAP) values. The goal of SHAP is to explain 
why the model predicts a certain outcome based on the variable values that are provided and the contribution that 
those values contribute to the final prediction (Lundberg & Lee, 2017; Molnar, 2022). The SHAP value shows 
how much an individual variable contributes (either negatively or positively) to the difference between the mean 
and the actual prediction in the context of the other variables in the data. The mean absolute contribution value 
is the SHAP value, which indicates the average absolute contribution value that variable makes to the overall 
predicted outcome. Analysis was conducted using gam (Hastie, 2022), caret (Kuhn, 2022), tidymodels (Kuhn & 
Wickham, 2020), iBreakDown (Gosiewska & Biecek, 2019), and vip (Greenwell & Boehmke, 2020) packages 
in R version 4.2.0.

Model R package Optimized hyperparameters Advantages

Generalized Linear Model Glmnet penalty = 0.096 �-	� Linear regression is straightforward to 
understand and explain and can be regularized 
to avoid overfitting

�-	� In addition, linear models can be updated 
easily with new data

mixture = 0.1

Generalized Additive Model gamSpline Degrees of freedom = 1 �-	� Can model non-linear associations of 
independent variables with a dependent 
variable by using spline functions; provides 
straightforward visual interpretation for 
nonlinear response variables

Random Forest Ranger mtry = 1 �-	� Can use the Boruta algorithm as a preliminary 
selection of model variables to reduce the 
calculating time of final random forest models

�-	� Capture the potential non-linear relationship 
between heat-health outcome occurrence 
and other meteorological and socioeconomic 
variables

trees = 506,

min_n = 101

Extreme Gradient Boosting XGBoost nrounds = 51 �-	� Able to handle missing data, can be optimized 
on different loss functions and provides 
several hyperparameter tuning options that 
make the function fit very flexible

�-	� Able to capture nonlinearity in the 
dependence structure

max_depth = 3

eta = 0.1

gamma = 0.3

colsample_bytree = 0.8

min_child_weight = 5

subsample = 0.4

Table 4 
Summary Characteristics of Machine Learning Algorithms, Packages, and Optimized Hyperparameters for the Training 
Data Set
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2.4.  Sensitivity Analysis: Distributed Lag Non-Linear Model

Relying on a standard approach typically used in environmental health studies, the distributed lag nonlinear 
model (DLNM) was employed to confirm the machine learning results. We investigated the association between 
daily average temperature and any MBD-related ER visit to confirm our machine-learning ambient temperature 
findings in the individual city models.

Prior literature has demonstrated a non-linear and delayed (e.g., typically 3 to 7-day lag) relationship between 
temperature and MBD-related ER visits; therefore, we performed the DLNM combined with a GLM as a 
sensitivity analysis to further confirm the temperature-related results from our top-performing ML approach 
(Crank et al., 2022; Gasparrini, 2011; Peng et al., 2017; Yoo, Eum, Gao, & Chen, 2021). In each city, a DLNM 
was applied as a quasi-Poisson distribution with a lag period of 0 days in order to establish the associations 
between temperature and the relative risk (RR) of increased ER visits. DLNM can characterize the non-linear 
exposure-response relationship at varying delayed exposure times (Gasparrini,  2011). For this analysis, the 
region-specific temperature-ER visit association for MBDs was calculated. In this study, DLNM was employed to 
investigate the relationship between exposure to varying temperatures in the summer months for each individual 
city and the corresponding mental and behavioral ER visits. The model is written as:

log𝐸𝐸(𝑌𝑌𝑡𝑡) = 𝛼𝛼 + cb
(

Temp𝑡𝑡, df1
)

+ ns(RH𝑡𝑡, df2) + ns(Time𝑡𝑡, df3) + 𝛽𝛽DOW𝑡𝑡� (1)

where E(Yt) is the expected ER visits related to MBDs on day t as a logarithmic function of an intercept (α); cb() 
denotes the cross basis function for temperature (daily average temperature); ns() denotes the natural cubic spline 
applied to RH and time trend. Three knots in the lag space of the cross basis-function were set equally spaced 
values in the log scale of lags for more flexible lag effects at shorter delays (Gasparrini, 2011; Yoo, Eum, Gao, 
& Chen, 2021). The day of the week (DOWt) and Time were used as controls for the temperature and RH vari-
ables (Dominici, 2004). The degrees of freedom (df) for the predictors were set; df1 = 4 for the temperature in 
the crossbasis function, df2 = 2 for RH, and df3 = 7 × number of years for the time trend to model for the season 
and long-term time trends. These parameters were identified based on previous studies (Crank et  al.,  2022; 
Gasparrini, 2011; Peng et al., 2017; Yoo, Eum, Gao, & Chen, 2021) and then tested for the best fitting model 
based on qAIC (Guo et al., 2011). Analysis was conducted using glm to analyze a quasi-Poisson generalized 
linear regression model and dlnm (Gasparrini, 2011) and mixmeta (Sera et al., 2019) packages for distributed lag 
models and meta-analyses, respectively in R version 4.2.0.

Variable Train Test

Mental and behavior disorders 31,656 7,976

Median Age 37.15 (33.68–40.82) 36.79 (33.33–40.24)

Male to female ratio 92.4 (90.54–94.29) 92.43 (90.51–94.34)

ICE Income −0.075 (−0.26–0.11) −0.072 (−0.26–0.12)

ICE race 0.53 (0.29–0.77) 0.51 (0.27–0.75)

Percent Unemployment 5.24 (4.13–6.35) 5.33 (4.21–6.45)

NDVI 0.39 (0.34–0.45) 0.4 (0.35–0.44)

TMAX, °C 30.67 (27.85–33.49) 30.68 (27.80–33.56)

TAVG, °C 25.37 (22.67–28.07) 25.4 (22.82–27.99)

TMIN, °C 20.07 (17.02–23.12) 20.13 (17.32–22.94)

TMAX 24 hr difference, °C −0.002 (−2.17–2.16) 0.065 (−2.07–2.20)

TMIN 24 hr difference, °C −0.02 (−1.71–1.67) 0.024 (−1.66–1.71)

Relative Humidity, % 71.53 (63.81–79.25) 71.81 (64.05–79.57)

Excessive Heat Factor 0.0052 (−0.046–0.0565) 0.0037 (−0.036–0.043)

Table 5 
Characteristics of Train and Test Data Sets in Six North Carolina Cities Between June and August From 2016 to 2019

 24711403, 2023, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

H
000839, W

iley O
nline Library on [31/01/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



GeoHealth

WERTIS ET AL.

10.1029/2023GH000839

9 of 18

3.  Results
3.1.  Prediction for Mental Health Aggregated Approach Across All 
Cities

The variables used in the training and testing data sets are located in Table 5. 
The total number of MBDs reported from June–August of 2016 to 2019 is 
summarized as 31,656 and 7,976 cases for training and testing, respectively.

We developed machine learning models to predict the number of MBDs using 
a GLM, GAM, random forest, and extreme gradient boosting (XGBoost) 
using multivariable predictors in the training data set. Amongst these 
models, GAM was chosen based on having the lowest root-mean-squared 
error (RMSE), 4.96, and lowest MAE, 3.59, when applied to the testing data 
(Table 6). The performance across the entire test data set is graphically repre-
sented in Figure 2. The observed number of MBDs was found to be strongly 

correlated with the predicted values from all four machine-learning approaches. In the GAM, 12 of the predictor 
variables that had variable inflation factor values below 10 were selected (Median age, the population of our 
study age, male-to-female ratio, the city location, day of the week, TMAX 24-hr difference (°C), TMIN 24 hr 
difference (°C), RH, TMAX, TMIN, month of the year, and NDVI of the city) as the top contributors to the 
predictive outcome of the model set by the RFE method.

The GAM model had all twelve top-performing variables' SHAP values calculated, which are summarized in 
Figure 3 and show the importance of its predictors. The SHAP summary model illustrates the leading variables 
in identifying what leads youths in a city to be more prone to MBDs. The variables that lead to higher predictions 

GLM GAM RF ranger XGBoost

Train RMSE 4.71 4.71 4.01 4.35

Test RMSE 4.97 4.96 4.96 5.00

Train MAE 3.45 3.45 2.94 3.20

Test MAE 3.59 3.59 3.62 3.68

Note. RMSE, Root Mean Squared Error; MAE, Mean Absolute Error.

Table 6 
RMSE and Mean Absolute Error of the Models for Train and Test 
Performance for All Machine Learning Approaches

Figure 2.  Comparison between observed and the predicted number of mental and behavioral disorder-related emergency department visits across six North Carolina 
cities from June to August 2016 to 2019 by generalized linear model (GLM), generalized additive model (GAM), RF, and XGBoost. The black line indicates the 
observed totals of MBD-related emergency department visits per day across six North Carolina cities and the red line indicates the predicted total number of mental 
and behavioral-related emergency department visits per day in the six North Carolina cities. These predictions were obtained from the following models from top to 
bottom: (1) GLM using multivariable predictors, (2) GAM using multivariable predictors, (3) RF using multivariable predictors, and (4) XGBoost using multivariable 
predictors.
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of MBDs were a larger population between the ages of 5 and 24 per 1,000, a smaller male-to-female ratio, higher 
median age, being located on the eastern side of the state, lower minimum temperature, higher RH, being in the 
first half of the week, higher 24-hr minimum temperature difference, lower 24-hr maximum temperature differ-
ence, and lower NDVI all lead to higher rates of MBDs.

3.2.  Prediction for Mental Health in Each City

Individual GAM models were developed for each of the six cities in this analysis to identify leading environmen-
tal contributors to an individual's risk of an MBD; building this model took into account land cover and temper-
ature data and used temporal information as controls for the model (Table 7).

The RMSE and MAE were summarized across all six cities (Table 8), the individual city approach had a smaller 
mean RMSE (4.43 vs. 4.96) and a smaller mean MAE (3.53 vs. 3.59) than the all cities approach.

To better understand the difference in the influence of ambient temperature and land cover on MBD-related 
ER visits, SHAP values were calculated for each city. The top-performing variables that were identified 
within the GAM model were chosen to be represented in the SHAP model (Lundberg & Lee, 2017). The 
SHAP value model can be seen in Figure 4, and shows the feature importance for the models with respect 
to the mental health case count prediction. The features are listed top-down with decreasing importance. 
The overall SHAP value of the  contribution, found on the left side of the plot for each category gives the 
total contribution value and shows the average impact of the individual features on the models' output. Each 
dot represents an individual SHAP value for individual patients instead of the average absolute value. The 
further away a point is from x = 0, the larger the impact on the output prediction. Values to the left of x = 0 
are contributing to decreased MBD-related ER visits, while values to the right are contributing to the predic-
tion of increased MBD-related ER visits. Each of the colored dots for each category represents an individual 

Figure 3.  SHapely Additive exPlanations (SHAP) (SHapley Additive exPlanations) values and contributions of the best-performing variables in the best model 
(generalized additive model). The plot shows the importance of the predictors, with the most important at the top, of the best-performing model using SHAP values. 
The effect of the contribution is notated as a positive or negative point-level contribution; the given variables' value is represented with a sliding scale from yellow, 
representing a low variable value to purple, representing a high variable value for each. The x-axis SHAP value illustrates the contribution of every variable to the 
predicted number of mental and behavioral disorders emergency department visits, with positive values leading to a higher number of predicted emergency room (ER) 
visits and a negative value leading to a lower number of predicted ER visits.
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day. The color of a dot signifies the feature value for that patient. A purple dot represents a high 
value, while a yellow dot represents a low value; the gradients represent a value in between 
these two points. These plots visualize how different feature values contribute to either higher 
or lower MBD-related ER visits.

From these models, we can see that in Asheville, a higher RH, lower minimum temperature, higher 
24-hr maximum temperature difference, and higher 24-hr minimum temperature difference all lead 
to a higher incidence of MBD. In Hickory, a lower 24-hr maximum temperature difference leads to 
higher incidences of MBD. A lower maximum temperature leads to higher incidences of MBD in 
Charlotte. A lower 24-hr maximum temperature difference, higher NDVI value, a lower maximum 
temperature, and a higher 24-hr minimum temperature difference all lead to higher incidences of 
MBD in Raleigh. In Greenville, a higher NDVI and in Wilmington, and higher 24-hr maximum 
temperature difference leads to higher incidences of MBD.

3.3.  Sensitivity Analysis

Figure 5 shows the change in RR of ER visits associated with MBD for each of the individual six 
cities at the 2.5th and 97.5th percentile of temperature.

The results indicate that in the all-cities model, there is not a significant association between ER 
visits related to MBD and extreme daily average air temperature. For the 97.5th percentile of 
temperature across the all-cities model, there was a significant decrease in the risk associated with 
emergency department visits (RR = 0.97; 95% CI: 0.93–0.99).

Similar to the results found in the pooled cumulative effects model, no significant increase was 
observed at the 97.5th percentile of temperature; the results can be seen in Table 9. A significant 
decrease in risk associated with the temperature at the 97.5th percentile was observed for Asheville 
(RR = 0.91; 95% CI: 0.86–0.96) and Charlotte (RR = 0.96; 95% CI: 0.93–0.99). The results from 
the DLNM for Asheville confirm the results seen in the SHAP model where the hottest tempera-
tures corresponded with a decrease in the MBD-related outcomes. In the DLNM model for Char-
lotte, we see that extreme heat contributes to a significant decrease in the RR of MBD-related ER 
visits, which confirms the findings in the SHAP model, which indicates that at the highest temper-
atures, we see fewer predicted case counts. Lastly, in the DLNM for Raleigh, while not significant, 
we see that the coldest and hottest temperatures are associated with a lower RR, which mirrors the 
results of the SHAP model. In the SHAP model, both the lowest and highest temperature values are 
associated with a decrease in case counts.

4.  Discussion
The objective of this study was to apply a machine learning approach to identify key environmen-
tal conditions that predicted MBD-related ER visits in youths. Our findings from the all-cities 
model indicate that socio-demographic variables contribute a greater impact on youths' mental 
health compared to environmental variables. Important sociodemographic factors that contributed 
the most to the predictive outcome included the population between 5 and 24, male to female 
ratio, and the median age of the city; followed by the following environmental: included minimum 
temperature, RH, and maximum temperature. These findings are consistent with previous studies 
of extreme heat, which have demonstrated that the socio-demographic makeup of a city contrib-
utes to the overall MBD health of its youth population more than environmental drivers of mental 
health disparities (Dessai, 2003; Y. Wang et al., 2019). Further, The increase in hospital admissions 
on days of higher maximum temperature and higher RH, found in the all-cities machine-learning 
model, is consistent with multiple studies, which identified an increased RR at higher maximum 
temperatures, even after adjusting for RH as a covariate (Crank et al., 2022; Mullins & White, 2019; 
Peng et al., 2017). In the individual city models, we found no clear environmental variable contrib-
uting to an increased risk of MBD-related ER visits. However, the GAM model, with the use of the 
SHAP model to quantify the results, indicated that the traditional “higher exposure yields higher C
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risk” association between temperature and MBD-related ER visits was not consistent within our study area, with 
lower minimum temperatures associated with increasing counts of MBD-related ER visits.

The secondary aim of this analysis was to identify the leading environmental factors of mental health responses 
at the city level for six cities in North Carolina in the summer months between 2016 and 2019. The results of 
this analysis illustrate how environmental factors affect the mental health response across varying geographic 
locations within North Carolina. All but two cities had different environmental metrics as their leading predictors 
(i.e., Hickory and Willmington). However, there were some shared commonalities, with four cities having the 
24-hr difference in the maximum temperature and two of the cities having the 24-hr difference in the minimum 
temperature, maximum temperature, or NDVI as a leading predictor of MBD emergency department visits. Our 
work highlights the importance of local-level understanding when trying to understand how temperature may 
influence MDB.

Our results indicate that when the city comprises a higher ratio of females to males, we see an increase in the 
predicted number of MBD ER visits. Previous research has indicated that females are more likely to display 
help-seeking behaviors compared to males (Oliver et al., 2005). Results also showed that cities with a larger youth 
population, a strong predictor in our study, showcased higher instances of MBD-related ER visits.

In contrast to previous studies showing a corresponding increase in ER visits for mental disorders as mini-
mum nighttime temperatures increase, our results in the aggregated all-cities model indicate that as the mini-
mum temperature decreases, we see a rise in MBD ER visits. These results contrast with previous research, 
which has indicated that minimum temperature plays a stronger role than maximum temperature (Mullins 
& White, 2019). A potential explanation for this finding is that there is a large daily swing in temperature 
between night and day and that this dramatic increase in temperature contributes to additional heat stress on 
individuals.

Our study contrasts with previous studies examining individual cities demonstrating that as temperature increases, 
the risk for MBD increases, with studies finding that at the 99th percentile of temperature, an individual is over 
25% more likely to suffer from a mental or behavioral disorder than at the 50th percentile of temperature (Peng 
et al., 2017; X. Wang et al., 2014; Yoo, Eum, Gao, & Chen, 2021). More specifically for youths, Niu et al. (2023) 
found that high summer temperatures were associated with a significant increase in MBD-related ER visits. 
However, in our analysis, we found that not only was maximum temperature normally not the most predictive 
variable, but a high maximum temperature resulted in lower MBD-related hospital visits when it was a top 
contributing variable. We confirmed our results by conducting a sensitivity analysis using a DLNM and pooling 
our results across all cities.

More specifically, the maximum temperature was a top contributing variable for Charlotte and Raleigh in the 
individual city models. The SHAP values indicate that neither the highest nor lowest maximum temperature 
values contributed to higher predicted ER visits. Still, temperatures near the median contributed to higher 
predicted MBD emergency department visits. These results are consistent with the results from the DLNM, 

Ashville Hickory Charlotte Raleigh Greenville Wilmington Overall

Train RMSE 3.36 2.31 7.88 6.06 2.67 3.4 4.28

Test RMSE 3.39 2.51 8.24 6.05 2.87 3.5 4.43

Train MAE 2.69 1.82 6.56 4.85 2.17 2.75 3.47

Test MAE 2.81 1.98 6.6 4.83 2.24 2.73 3.53

Normalized Test RMSE 0.331 0.486 0.173 0.227 0.416 0.303 0.32

Normalized Test MAE 0.275 0.384 0.138 0.181 0.324 0.236 0.26

Note. Normalized RMSE and normalized MAE for the test data set to better illustrate how the models performed on different data sets.

Table 8 
RMSE and Mean Absolute Error of the Models for Train and Test Performance of the Generalized Additive Model for All Six Cities Individually
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Figure 4.
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which had a significant decrease in ER visits in Charlotte at the highest average temperatures and no signifi-
cant correlation between high average temperature and ER visits in Raleigh.

The reason for this temperature-mental health difference could be based on the location of the study. Previ-
ous studies have focused further north and therefore have cooler summers, with extreme temperatures fall-
ing between 23 and 27°C for the 75th to 97.5th percentile of temperature, whereas in the Southeast US, 
where North Carolina is located, the 75th and 97.5th percentile of maximum temperature being 33–37°C 
(Peng et al., 2017; X. Wang et al., 2014; Yoo, Eum, Gao, & Chen, 2021). Due to the temperature reaching 
much higher levels, individuals might be more inclined to seek shelter during these events, leading to fewer 
extreme heat exposures for youths in North Carolina and mitigation of the environmental risk factors of 
heat-related MBD.

4.1.  Strengths and Limitations

This study had several notable strengths. First, we evaluated the association between summer environmental 
data, sociodemographic information, and ER visits for any MBD in multiple cities across North Carolina, which 
allowed for a more general state-wide analysis as well as a secondary analysis looking at each city individually. 
We included variables that were not related to temperature to assess if the MBD-related hospital visits were 
primarily affected by the climate or by sociodemographic factors. Second, unlike most nonlinear model results 
that only indicate the top contributing predictive variables (Y. Wang et al., 2019), through the use of SHAP, we 
provided precisely how each variable contributes to the outcome of the model. Unlike previous studies that have 
used traditional additive models or DLNM, machine learning was employed to identify the top predictive varia-
bles, and SHAP models were used to quantify the contribution that each of the top variables made in the overall 
prediction of the model. Lastly, we tested multiple machine learning approaches to ensure our results were robust 
(e.g., random forest).

This study had a few limitations. First, a longer study period could increase the robustness of results and 
better identify trends. Second, an analysis of specific MBD would be more informative. Lastly, air pollution, 
such as ozone, generally has a high correlation with temperature and has been shown to impact mental health 
(X. Wang et al., 2014), and future studies should include PM2.5 as a covariate in the model to better under-
stand the temperature-mental health relationship. However, our analysis was conducted at the ZCTA scale, 
and PM2.5 or ozone data are not readily available at this scale. Lastly, our results highlighted several notable 
trends, including increased NDVI and high temperatures, corresponding to lower MBDs, and are worthy of 
further exploration.

5.  Conclusion
This study is among the first to examine the driving factors behind MBD ER visits in youth in North Carolina, 
USA. Our study leveraged a daily ER inpatient data set for the entire state of North Carolina, allowing us to lever-
age a suite of machine learning models to examine the daily MBD response in youth to varying environmental 
conditions and socioeconomic changes in distinct geographic regions. This study suggests that at the aggregated 
city level, socioeconomic factors contribute more to an individual's mental and behavioral well-being during 
the summer than environmental factors. At the city level, this study indicates that no clear environmental factor 
contributes to the greatest risk of MBDs. Results from this study can provide new guidance on the application 
of machine learning models for predicting mental health conditions and help inform what variables contribute to 
youth mental and behavioral responses during high-temperature events.

Figure 4.  Shows the SHapely Additive exPlanations (SHAP) values for (a) Asheville, (b) Hickory, (c) Charlotte, (d) Raleigh, (e) Greenville, (f) Wilmington. SHAP 
values and contributions of the best-performing variables in the best model (generalized additive model). The plot shows the importance of the predictors, with the most 
important at the top, of the best-performing model using SHAP values. The effect of the contribution is notated as a positive or negative point-level contribution; the 
given variables' value is represented with a sliding scale from yellow, representing a low variable value to purple, representing a high variable value for each. The x-axis 
SHAP value illustrates the contribution of every variable to the predicted number of mental and behavioral disorders emergency department visits, with positive values 
leading to a higher number of predicted emergency room (ER) visits and a negative value leading to a lower number of predicted ER visits.
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Figure 5.  The individual effect of daily average temperature for all MBD-related emergency room (ER) visits for (a) 
Asheville, (b) Hickory, (c) Charlotte, (d) Raleigh, (e) Greenville, (f) Wilmington. The optimal ER visit temperature was 
defined as the temperature that corresponded with the minimum risk of emergency department visits. The black line indicated 
the relative risk, with the shaded area representing the 95% confidence intervals, dotted lines representing the 2.5th and 
97.5th temperature percentile, and the gray dashed line representing the optimal ER visit temperature.
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Asheville 1.02 (0.96–1.09) 0.91 (0.86–0.96)

Hickory 1.00 (0.94–1.08) 1.01 (0.95–1.06)

Charlotte 0.98 (0.94–1.02) 0.96 (0.93–0.99)

Raleigh 0.98 (0.93–1.03) 0.99 (0.95–1.05)

Greenville 0.98 (0.91–1.06) 0.96 (0.89–1.03)

Wilmington 0.98 (0.92–1.05) 0.99 (0.94–1.05)

Table 9 
Relative Risk at the 2.5th and 97.5th Percentile of Temperature in the Summer Months Between 2016 and 2019
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