Taylor & Francis
Taylor & Francis Group

International Journal of

el e [nternational Journal of Digital Earth

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tjde20

Adopting GPU computing to support DL-based
Earth science applications

Zifu Wang, Yun Li, Kevin Wang, Jacob Cain, Mary Salami, Daniel Q. Duffy,
Michael M. Little & Chaowei Yang

To cite this article: Zifu Wang, Yun Li, Kevin Wang, Jacob Cain, Mary Salami, Daniel Q. Duffy,
Michael M. Little & Chaowei Yang (2023) Adopting GPU computing to support DL-based
Earth science applications, International Journal of Digital Earth, 16:1, 2660-2680, DOI:
10.1080/17538947.2023.2233488

To link to this article: https://doi.org/10.1080/17538947.2023.2233488

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

ﬁ Published online: 11 Jul 2023.

N
[:J/ Submit your article to this journal &

||I| Article views: 660

A
& View related articles &'

@ View Crossmark data (&'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tjde20

https://www.tandfonline.com/action/journalInformation?journalCode=tjde20
https://www.tandfonline.com/journals/tjde20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17538947.2023.2233488
https://doi.org/10.1080/17538947.2023.2233488
https://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/17538947.2023.2233488?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/17538947.2023.2233488?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2023.2233488&domain=pdf&date_stamp=11 Jul 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2023.2233488&domain=pdf&date_stamp=11 Jul 2023

INTERNATIONAL JOURNAL OF DIGITAL EARTH
2023, VOL. 16, NO. 1, 2660-2680
https://doi.org/10.1080/17538947.2023.2233488

 ISDE A Taylor &Francis
AIR Taylor & Francis Group

8 OPEN ACCESS

Adopting GPU computing to support DL-based Earth science
applications

Zifu Wang ©2, Yun Li ©2, Kevin Wang®, Jacob Cain®, Mary Salami ©¢, Daniel Q. Duffy?,
Michael M. Little® and Chaowei Yang ©°2

?Department of Geography and Geoinformation Science, NSF Spatiotemporal Innovation Center, George Mason
University, Fairfax, VA, USA; PDepartment of Electrical Engineering and Computer Science, University of California,
Berkeley, CA, USA; “Department of Geography, University of California Santa Barbar, Goleta, CA, USA; “NASA
Goddard, Computational and Information Sciences and Technology Office, Greenbelt, MD, USA

ABSTRACT ARTICLE HISTORY

With the advancement of Artificial Intelligence (Al) technologies and Received 2 January 2023

accumulation of big Earth data, Deep Learning (DL) has become an Accepted 2 July 2023

important method to discover patterns and understand Earth science

processes in the past several years. While successful in many Earth GPU . .
. o . . computing; GeoAl; open

science areas, Al/DL applications are often challenging for computing science: Earth science;

devices. In recent years, Graphics Processing Unit (GPU) devices have artificial intelligence

been leveraged to speed up AI/DL applications, yet computational

performance still poses a major barrier for DL-based Earth science

applications. To address these computational challenges, we selected

five existing sample Earth science Al applications, revised the DL-

based models/algorithms, and tested the performance of multiple

GPU computing platforms to support the applications. Application

software packages, performance comparisons across different

platforms, along with other results, are summarized. This article can

help understand how various Al/ML Earth science applications can be

supported by GPU computing and help researchers in the Earth

science domain better adopt GPU computing (such as supermicro,

GPU clusters, and cloud computing-based) for their Al/ML

applications, and to optimize their science applications to better

leverage the computing device.

KEYWORDS

1. Introduction

Earth science data is constantly growing and changing with new information collected via a var-
iety of methods such as satellite platforms, sensor networks and citizen science. The unprece-
dented big Earth data have the potential to bring significant benefits and advance our
understanding of the home planet (Yang et al. 2019; Li et al. 2020). The accumulation of big
Earth data also poses grand challenges for data processing, integration, and analysis, which
require specialized techniques and resources to address. With the advancement of Artificial Intel-
ligence (AI) technologies, Deep Learning (DL) has become an increasingly important method in
Earth Science like in many other fields (VoPham et al. 2018; Janowicz et al. 2020). DL particularly

CONTACT Chaowei Yang @ cyang3@gmu.edu @ Department of Geography and Geoinformation Science, NSF Spatiotemporal
Innovation Center, George Mason University, Fairfax, VA, USA

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.
org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work
is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or
with their consent.

http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2023.2233488&domain=pdf&date_stamp=2023-07-11
http://orcid.org/0000-0002-7183-5166
http://orcid.org/0000-0002-3205-8464
http://orcid.org/0009-0006-7929-4452
http://orcid.org/0000-0001-7768-4066
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:cyang3@gmu.edu
http://www.digitalearth-isde.org/
http://english.aircas.ac.cn/
http://www.tandfonline.com

INTERNATIONAL JOURNAL OF DIGITAL EARTH e 2661

suits for Earth science applications since it has the capability to process large and complex data
sets, and automatically extract useful information without the need for manual feature engineer-
ing (Li and Hsu 2022). Artificial intelligence technologies could support addressing challenging
tasks in Earth Science such as pattern recognition from satellite images and prediction from
multi-source Earth observation data. For example, Deep Neural Network (DNN), Convolutional
Neural Network (CNN), and Graph Neural Networks (GNN) can be used to analyse multi-source
Earth observation data to support environmental phenomena monitoring, such as climate change
(Yuval and O’Gorman 2020), weather prediction (Weyn, Durran, and Caruana 2019; Weyn, Dur-
ran, and Caruana 2020; Singh et al. 2022; Schultz et al. 2021), air quality (Yu et al. 2022; Zhang
et al. 2022; Subramaniam et al. 2022), land cover change (Chen, Ouyang, and Agam 2019), atmos-
pheric studies (Bhowmik et al. 2022; Sekhar Biswas and Singh 2022), urban planning (Kamath
et al. 2022), and ambient temperature forecasting (Ikram et al. 2019; Yang et al. 2022). DL has
also been applied in natural disaster management for better preparedness and disaster mitigation,
such as using the long short-term memory (LSTM) network to leverage past conditions to predict
rapid intensifications of tropical cyclones (Li et al. 2017). DL has the potential to revolutionize
traditional Earth science applications.

While DL has the potential to bring significant benefits to Earth science, AI/DL applications
are often challenging for computing devices since AI/DL algorithms are computing intensive
to train and run, and the data sets used in Earth science can be very large and complex but avail-
able resources are usually limited. Thus, specialized hardware such as graphics processing units
(GPUs) have been leveraged to run AI/DL applications efficiently. GPUs are specialized pro-
cessors designed to handle the complex calculations required for graphics rendering. It has
been widely used in distributed DL model training in recent years since they are well suited
for the parallel processing needs of neural networks. With the support of GPUs on performing
the matrix multiplications and other mathematical operations, the training process of neural net-
works could be accelerated significantly compared to that of using a central processing unit
(CPU). However, there are a few challenges to consider when using a GPU to accelerate DL.
As an example, transferring data between CPU and GPUs can be slow and incur extra costs
(Zhang and Xu 2023), which can limit the performance improvements gaining from using
GPUs. Thus, a scientific investigation on the performance improvement of using GPU to accel-
erate DL applications at different scenarios would benefit gaining a better understanding of the
utilization of GPU in DL applications.

Meanwhile, computational performance still poses a major barrier for DL-based Earth science
applications (Reichstein et al. 2019) because: (1) the input data size of DL-based Earth Science
applications is usually very large and it may take several days to finish the training process for
some applications without the support of GPU; (2) lacking knowledge for instructing Earth Science
researcher to migrate their CPU-based DL applications to GPU; (3) lacking studies that compare
performance of Earth science application on GPU and multi-GPU. To address these computational
challenges, we highlighted five sample Earth science AI applications, revised the DL-based models/
algorithms to support GPU parallel training, and tested the performance of common computing
platforms regarding the support of GPU computing. Application software packages, performance
comparisons across different platforms, along with performance test results, are discussed in this
study. This paper can be used to better understand how various AI/ML Earth science applications
can be supported by GPU computing, and to help researchers in the Earth science domain better
adopt GPU computing for their AI/ML applications, and to optimize their science applications to
better leverage the computing device.

The rest of this article is structured as follows. Section 2 reviews the literature about why we con-
ducted this research. Section 3 introduced the platforms used for testing and the five applications in
detail, as well as our methods for parallelized model training and optimization, Next, section 4 pre-
sents experiments that were carried out to compare the performance. Finally, section 5 concludes
and discusses future work.

2662 (&) Z.WANGETAL.

2. Related work

2.1 Lack of systematic study on how to migrate Earth science Al/ML application onto GPU
Platform

Processing large datasets in AI/ML Earth Science applications requires advanced technologies to
optimize their computing capacities (Yang et al. 2017). Many traditional Earth science AI/ML appli-
cations and experiments are usually based on CPU. Many researchers have implemented parallel
computing strategies based on CPU or GPU to optimize the performance of their AI/ML appli-
cations. For example, Oeser (2006) established a high-performance Linux cluster based on 128
CPU cores to solve the computing capacity problems when studying solid Earth simulation such
as seismic wave propagation, rupture, and fault dynamics in the lithosphere; Xie et al. (2010) par-
allelized a dust model to simulate dust storms for southwestern U.S. with an improved resolution to
ZIP-code level, and its speedup is about 13.3 when 36 CPU cores were used in parallel.

In recent years, many Earth Science researchers have also implemented GPU to construct their
applications. For example, Chao et al. (2011) utilized the parallel computing capabilities of GPUs
and proposed a spatial analysis algorithm in 3D scenes to improve the processing efficiency.
Feng et al. (2013) implemented GPU to make real-time numerical prediction of adverse space
weather events by accelerating the calculation of their solar wind background model. Torti et al.
(2016) developed a hybrid CPU-GPU real-time Hyperspectral Unmixing Chain to optimize the per-
formance of finding spectral signatures of the endmembers and their associated abundance frac-
tions. Singh et al. (2022) proposed a numerical weather prediction model to improve the spatial
pattern and magnitude of predicted precipitation.

Though there are research utilizing parallel computing strategies on CPUs and GPUs to accelerate
AI/ML Earth Science application, there are no existing studies that provide detailed guidance on how
to migrate the traditional CPU-based AI/ML Earth Science applications onto GPU and compare their
performances on CPU and GPU. Although previous studies showed that GPU can speedup up to
1000 times for applications with similar algorithms written for CPU, many of the performance com-
parisons only consider the model performance process of the kernel execution on algorithms. It did
not consider the running time before kernel launching and after kernel execution in a systematic
fashion (Gregg and Hazelwood 2011). Data transmission through PCle bus, preparation, and cleaning
work for data transfer operations between CPU and GPU are time consuming. Especially when the
program contains many kernel calls of GPU, its cost dramatically increased (Fu, Wang, and Zhai
2017). To reduce cost of kernel calls, Zhang, Zhu, and Huang (2017) designed an adoptive Kernel
Density Estimation algorithm to minimize the data exchange between host memory and device mem-
ory. Therefore, migrating AI/ML Earth Science application from CPU onto GPU is not just using the
same code on different processors. It is necessary to compare the CPU and GPU performance of
different types of Earth science applications and provide comprehensive instructions on how to
migrate Earth science AI/ML applications from CPU to GPU platforms for Earth science fields.

2.2 Lack of study on single and multiple GPU comparison and optimization for Earth
science Al/ML applications

In recent years, multi-GPU architecture has also become a popular choice for researchers to
implement their parallel-computing experiments (Sun et al. 2019). Multi-GPU architecture has
also been implemented for AI/ML Earth Science applications. For example, Caraballo-Vega et al.
(2021) developed NASA RAPIDS framework based on multi-GPU to speed up the deployment
of AI/ML software for climate simulations. Okamoto et al. (2010) had also adopted the multi-
GPU to accelerate the large-scale finite-difference simulation of seismic wave propagation.
Zhang et al. (2014) have also implemented multi-GPU to simulate large areas synthetic aperture
radar (SAR) raw data. Comparing to the simulation by single GPU, multi-GPU simulation achieved
a 5x speedup after its additional optimization on the original model.

INTERNATIONAL JOURNAL OF DIGITAL EARTH e 2663

However, it was found that multi-GPU performance can be limited by CPU-to-GPU and GPU-
to-GPU synchronization (Sun et al. 2019). Although multi-GPU can accelerate the speed of an
algorithm itself, it may cost more time when the whole program synchronizes the data and
model among GPUs. Gao et al. (2019) proposed a multiple sub-ant-colony-based parallel design
of ant colony optimization for endmember extraction. This method enables ant colony optimiz-
ation for endmember extraction to be preferably executed on a multi-GPU system, but still needed
to avoid synchronization among different GPUs to affect its performance. Zhang and Xu (2023) has
also optimized their own single-GPU Kernel Density Estimation (KDE) algorithm into a multi-
GPU-Parallel Kernal Density Estimation algorithm to accelerate spatial point pattern analysis.
Comparing to KDE algorithm for single GPU, The Multi-GPU based algorithm implemented
extra steps to partition and dispatch data to multiple GPUs, which incurs extra cost on transferring
data between CPU and multiple GPUs. Therefore, directly migrating AI/ML Earth Science Appli-
cations from single GPU to multi-GPU does not necessarily mean faster performance. Modifi-
cations for single GPU applications are usually needed to migrate them into multi-GPU. It is
also needed to compare the single GPU and multi-GPU performance of various types of Earth
science applications and provide comprehensive instructions on how to migrate Earth science
AI/ML applications from single GPU onto multi-GPU platforms for Earth science fields and esti-
mate which option (single-GPU or multi-GPU) is the best.

Due to lack of knowledge for guiding Earth Science researchers to migrate their CPU-based DL
applications to GPU, lack of studies that compare performance of Earth science applications on
CPU and GPU, and lack of studies that compare performance of Earth science application on
GPU and multi-GPU. This study utilized five open-source Earth science Al applications with differ-
ent DL algorithms and data sizes as examples to test how to migrate from CPU to GPU, and enable
multi-GPU runs. This study also provides methodologies to optimize the GPU performance for
Earth science applications and provides open-source support for all five applications. Earth Science
researchers may use the open resources produced by these five applications as reference to decide if
it is efficient to utilize the GPU to run their current applications and how to migrate their appli-
cations from CPU to GPU and multi-GPU. This systematic fashion of adopting open source, devel-
oping open source, and sharing results in open source also provide a case study for open sciences
which are growing in popularity and necessity in recent years with significant benefits to researchers
on aspects of citations, media attention, potential collaborator, job opportunities and funding
opportunities (NASA Science 2023; McKiernan et al. 2016).

3. Sample application, platforms, and parallel training strategies
3.1 Selected Earth science applications

This research conducted a holistic analysis of research projects that take the criteria of various science
domains, various input datasets, ML functionalities, relevant AI models, computational intensity, data
intensity, and data dependency. The five applications were selected as denoted in Table 1.

Table 1. The five applications covering various domains, data types, ML functions and Al models.

ML Al Computational Data Data
Applications Input data type functionalities models intensity intensity dependency
ArcCl Satellite imagery Segmentation FCN High High High
Tweet Text Classification CNN Low Low Moderate
classification
Cloud csv Classification DNN High High Moderate
classification
PM2.5 Retrieval ~ CSV Regression DNN High High High
Satellite2Map Satellite Imagery & Data generation GAN High High Moderate

Map pairs

2664 Z.WANG ET AL.

0 mask o prediction
2 T—— L
1000 "f g 1000 .
2000 ')' 2000 |
3000 ¥ | 3000
4000 P & 4000
0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000

Figure 1. ArcCl utilizes ML models and algorithms to classify image into various types of ocean cover types.

ArcCI: The Arctic Sea ice region has become an increasingly important study area since it is not
only a key driver of the Earth’s climate, but also a sensitive indicator of climate change. To model
and validate sea ice changes, it is crucial to extract high-resolution geophysical features of sea ice
from remote sensing data. This is accomplished through the development of an efficient geophysical
feature extraction workflow based upon the object-based image analysis (OBIA) method alongside
an on-demand web service for Arctic Cyberinfrastructure. By integrating ML classification
approaches, the on-demand sea ice HSR imagery management and processing service and frame-
work allows for efficient and accurate extraction of geophysical features and the spatiotemporal
analysis of sea ice leads (Sha et al. 2020; Figure 1). This application was developed to classify the
high spatial resolution aerial images DMS (Digital Mapping System) for four sea ice types (thick
ice, thin ice, open water, and shadow) for the period of 2012-2018.

A kernel part of the feature extraction is a DL-based classification algorithm, which is extremely
time consuming and hampers the on-demand analyses of sea ice analyses. The algorithm involves
high computational intensity. The data required for this task would be substantial, including high-
resolution images, as well as additional geospatial and environmental data to aid in classification,
which also involves high data intensity. In addition, the DL-based classification algorithm also
requires a significant amount of labelled training data to optimize its performance, which also
involves substantial data dependency. Overall, this application involves a complex and resource-
intensive workflow that requires management of both computational and data resources. The
incorporation of GPU enablement would significantly speed up the process and enable on-demand
analyses.

Tweet classification: The COVID-19 pandemic impacted the entire world disastrously. Millions
of tweets were posted every day. It is important to understand public sentiment and attention from
a spatiotemporal perspective but categorizing all social media contents for research will be very
time-consuming. Therefore, this application categorizes COVID-19 related tweets into 7 categories
(prevention, transmission, politics, economy, emotion, symptoms, treatment) by using a CNN
model. We analysed tweets from January to August 2020 to mine the categories of COVID-19
related tweets and discover what aspects publics cared about COVID-19 in different spatiotemporal
scales. This open-source package was later utilized to discover the spatiotemporal patterns of public
opinions on COVID-19 vaccines from October 1st, 2020, to May 21st, 2021, as shown in Figure 2
(Wang et al. 2022).

This application contains a small-size training dataset, which only includes around 800 tweets
with their corresponding labels. The training process only requires low computational intensity
and data intensity. The accuracy of the model and the usefulness of the categorized tweets are
dependent on the quality and amount of data used to train and test the model, but this model
can train tweet datasets with several types of labels which only requires a moderate data
dependency.

Cloud classification: Precipitation is one of the most significant contributing factors to destruc-
tive natural disasters globally including hurricanes, floods, and droughts. Convective precipitation
with abnormal activities of convective systems may lead to severe urban floods, landslides, and flash

INTERNATIONAL JOURNAL OF DIGITAL EARTH e 2665

—~ <s 0.12

ST AT ...‘l',’ 'ﬁ.,.;°
v “n S £
> N . 0.10
b, % .
0.08
A
_ 0.06 =
. 0.04
! [,' \. : '002
3
§S. 0.00

Figure 2. Spatial distribution of Public Engagement Score (PES) in the United States from October 1st, 2020, to May 21st, 2021.

floods. To detect rainy and convective clouds with high efficiency, this application developed a
DNN method to classify rainy and non-rainy clouds based on Brightness Temperature Differences
(BTDs) and Reflectance (Ref) derived from Advanced Baseline Imager (ABI). Convective and strati-
form rain clouds are also separated using similar spectral parameters expressing the characteristics
of cloud properties. The precipitation events used for training and validation are obtained from the
Integrated Multi-satellite Retrievals for GPM (IMERG) V05B data, which covered the south-eastern
coast of the U.S. during the 2018 rainy season. This automatic cloud classification system could be
deployed for extreme rainfall event detection, real-time forecasting, and decision-making support
in rainfall-related disasters (Liu et al. 2019; Figure 3).

DNN models are computationally intensive due to their large number of parameters and the
need for extensive training on large datasets. Additionally, this application involves analyzing
data from the ABI and the IMERG V05B dataset. These datasets contain substantial amounts of
satellite imagery data, and the accuracy of the results are highly dependent on the quality and

Rain types classification by DNN models (day) Rain types of IMERG(day)

= Non-rainy
= Stratiform
= Convective

= Non-rainy
= Stratiform
= Convective

36.05°N 36.05°N

33.05°N 33.05°N

30.05°N 30.05°N

82.95°W 82.95°W 79.95°W 76.95°W

Figure 3. Cloud classification categorizes the cloud into various classes to identify the rainy cloud for disaster response.

2666 (&) Z.WANGETAL.

50°N

40°N

30°N

¥ {
4
UTC: 20200122:2000
=3
o s Produced by Qlan Liu from STC at GMU

80°W

I
10 12 14 16 18 20
PM 2.5 (ug/m3)

Figure 4. PM2.5 values are retrieved from GOES-16/17 and MERRA-2 data based on ground observations and Al/ML models/
algorithms.

amount of data analyzed, but different cloud data can be selected as training datasets. Therefore,
this model requires high data intensity but moderate dependency.

PM2.5 Retrieval: Particulate Matter (PM) consists of a complex mixture of solid and liquid par-
ticles of organic and inorganic substances suspended in the air. As a common proxy indicator for air
pollution, PM2.5 is extremely hazardous to human health as it can be easily inhaled into the human
chest and enter the respiratory system, (Song et al. 2019) and causes millions premature deaths
annually around the world. This application aims to develop an innovative methodology to retrieve
the PM2.5 over global scale and further downscale the spatiotemporal resolution to 1 km and
hourly level in some key regions using AI/DL methods (Figure 4). The results generate a high
spatiotemporal resolution to provide data basis for public health decision making and air quality
pattern analytics.

This application requires complex calculations and significant computing resources, as it involves
processing and analysing vast amounts of data to generate high-resolution outputs. The accuracy of
the PM2.5 estimates is affected by the quality and coverage of satellite observations, as well as the
availability and accuracy of ground-based measurements used for validation. Therefore, this appli-
cation also involves high computational intensity, high data intensity, and high data dependency.

Satellite2Map: Theme maps have become increasingly common in the technological era, but
creating map is expensive and time consuming (Kamil and Shaikh 2019). The simplicity of
theme maps allows them to be a key feature of various mapping applications. This application
uses Conditional Generative Adversarial Network (GAN) to automatically convert Earth Obser-
vation (EO) imagery into a real map through identifying features on images, such as water,
roads, buildings, plant life, and other features as shown in Figure 5 (Ganguli, Garzon, and Glaser
2019). The Earth observation data is downloaded from Google Earth and latent space vectors are
extracted from satellite image. Latent space vectors are compressed depictions of the satellite
images, and they are inputted into the GAN model to create new maps.

This application is also computationally intensive and data-intensive because GAN consists of
two neural networks competing against each other, with one trying to generate realistic data (in
this case, a map) and the other trying to distinguish between real and generated data. a large amount
of Earth Observation (EO) imagery is required for training the GAN model. In addition, the accu-
racy of the generated maps also depends on the quality and quantity of the input data, but any pairs

INTERNATIONAL JOURNAL OF DIGITAL EARTH e 2667

. . _. « « - « « x . « " « « ” . .

Figure 5. Satellite2Map generates a theme map based on Earth observation data (Ganguli, Garzon, and Glaser 2019).

of Earth observation data and latent space vectors can be selected as training dataset. Therefore, this
application only requires a moderate data dependency.

3.2 Platform introduction

We engaged 5 different types of platforms in the study from the most popular (PC) to specialized
(GPU cluster). Their specific configurations are introduced in the Table 2.

(1) Windows desktop with a NVIDIA GeForce RTX 3070 GPU

The windows desktop is used for benchmarking and serves as an initial reference. All appli-
cations were originally designed and programmed on this computer. All other platforms have
the same running environment configuration as this desktop, such as Python and Python package
version. This platform is suitable for individual researchers who work on small to medium-sized
datasets and can perform their computations locally on their desktop. However, the accessibility
of this platform is limited to the researcher’s research resource, and it may not be suitable for
large-scale computations or collaborations with other researchers.

(2) AWS G4dn instances

Table 2. Hardware configuration of each computing platform.

Hardware
\platform Desktop Google Colab AWS NASA supermicro Microsoft
CPU (Core #: 8 cores Intel(R) Core 2 vCPUs Xeon 48 vCPUs, Intel NVLink Dual Intel Xeon Intel(R) Xeon(R)
Speed Ghz) (TM) i7-10700 K Processor Xeon Scalable Cascade Lake Gold CPU E5-2690 v4
CPU @ 3.80 GHz (2.2 GHz) (Cascade Lake), 6248 CPUs, 20 cores @ 2.60GHz 6
3.79 GHz ~3.2 GHz each (2.50 GHz) cores
GPU (Core 4, 1x NVIDIA GeForce 1x NVIDIA Tesla ~ 4x NVIDIA Tesla T4 4x NVIDIA V100 GPUs 1x GV100GL
Speed Ghz, RTX 3070 with 8 T4 GPU with GPUs with 16 GB with 32 GB of VRAM [Tesla V100 PCle
Memory size) GB of VRAM 16 GB of VRAM of VRAM 16GB]
RAM size 320 GB 12.6 GB 192 GB 768 GB 112 GB
Storage SN730 NVMe WDC 33 GB on Google 900 GB NVMe 3.8 TB of RAID protected SCSI virtual Disk
256G Drive storage NVMe drives 1TB

2668 (&) Z.WANGETAL.

AWS provides G4dn instances that are optimized for graphics-intensive workloads, such as 3D ren-
dering, video encoding, and machine learning. They provide cloud-based computing resources with
high-performance GPUs, making it an attractive option for domain scientists who need to process
large amounts of data. The Tesla T4 GPUs are optimized for DL workloads and provide fast training
times. The cloud-based nature of this platform makes it accessible from anywhere with an Internet con-
nection, and it also allows for scalability as researchers can increase or decrease resources as needed.

(3) Google Colab

Google Colab is a free online platform that allows users to run and execute code in a variety of
programming languages, including Python, R, and Julia. It is a cloud-based platform that provides
free access to GPUs and CPUs for research and education purposes. It is a suitable option for
researchers who have limited resources or are new to DL and need to experiment with small to
medium-sized datasets. The platform is easily accessible, and users can collaborate and share
their work with others.

(4) Microsoft Azure

Microsoft Azure provides cloud-based computing resources with a range of GPU options suit-
able for different workloads, including ML and DL. The platform offers scalability and can handle
large-scale computations, making it an attractive option for domain scientists who need to process
substantial amounts of data. It also provides collaboration and sharing features, making it easy for
researchers to work together.

(5) NASA Supermicro

NASA Supermicro provides high-performance computing resources for scientific research,
including ML and DL. The platform is designed to handle large-scale computations and is suitable
for domain scientists who need to process large datasets or run complex simulations. However, the
platform cannot be easily accessible to individual researchers due to security restrictions, and it
requires specialized knowledge to use effectively. This project has applied and was approved for
using NASA supermicro to test the performance of all 5 applications.

3.3 Model parallel training strategies

Two common approaches have been developed to support model parallel training, including data
parallelism (Krizhevsky 2014) and model parallelism (Dean et al. 2012). In the data parallelism
approach, the same model is distributed to multiple GPUs and each GPU is responsible for training
the model on a different subset of data (Krizhevsky 2014). In model parallelism, a model is split into
several parts which are then sent to multiple GPUs to train separately (Dean et al. 2012). These
strategies allow the model to be trained in parallel, making it possible to significantly reduce the
time required to train larger and more accurate models.

Data parallelism is the most common model parallel training strategy. It is suitable for computa-
tionally intensive layers with a relatively small number of parameters. As shown in Figure 6, the data
parallelism approach typically runs iteratively with the following initial weights and updates: (1) data-
set is divided into smaller chunks and each chunk is assigned to a different GPU. Each GPU has a
completed model and assigned data chunks; (2) a parameter server initializes model weights and
sends weights to multiple GPUs; (3) every GPU trains the model on its assigned chunk of data
and calculates the gradient; (4) GPUs send the computed gradient to the parameter server; (5) the
parameter server produces a single and updated model based on gradients collected from all
GPUs; (6) the parameter server sends the updated model weights to all GPU devices; (7) the above

INTERNATIONAL JOURNAL OF DIGITAL EARTH e 2669

Receive weights Receive updated weights
Train on batch in each GPU (e.g., & Train on batch in each GPU (e.g., 8

.. tilrall
Epoch Paramieter Parameter batchosiars =
p server senver § N
1 trained \
Updaté weight ‘
)
/’//
Calculate gradients Calculate gradients o =5
//Rseeivé'Wé}é/hi; Regeive updatgd weights
" Train on batch in each GPU (e.g., 8 Train on batch in each GPU (e.g., 8
> image images

Epoch

2 i Parameter L tillall
il senver batches
are
Updaté weight '(ralh\ed
\
i |
Calculate gradients el |
Epoch R)
3 e

< S ——

Figure 6. An example workflow of the data parallel training approach with iterative weights and updates.

steps are repeated until the model has converged. Data parallelism strategy benefits distributed GPU
computing by significantly reducing train time as the model could be trained in parallel on multiple
GPUs. It also enables high scalability since the data parallelism strategy could be deployed on a large
number of GPUs by simply dividing data into small chunks. Noticeably, data parallelism is relatively
easy to implement since it did not require significant changes to the model or the training process.

Model parallelism is suitable for layers with a large number of parameters (e.g. fully connected
layer). Compared to data parallel training, it is more complicated. Model parallelism strategy typi-
cally involves steps as follows: (1) divide the model into several layers or blocks of layers that can be
trained in different GPUs; (2) assign model blocks to multiple GPUs; (3) divide training data into
batches and assign each batch to a specific GPU; (4) model block on each GPU are trained with
assigned training data and then gradients and model parameters are synchronized among GPUs
at each training step; (5) the gradients from all GPUs are aggregated to update model parameters;
(6) the above steps are repeated until the model has converged. Noticeability, although model par-
allelism strategy makes it possible to train larger and more accurate models in a shorter amount of
time, it can be complex to implement the strategy since the original model needs to split into differ-
ent parts and model parameters, and gradient should be synchronized among multiple GPUs.

We will only focus on adopting data parallelism strategy to support distributed training DL-
based Earth science applications in this study. We will optimize the open-source applications to
support model parallelism in future studies.

4. Experiment design and performance evaluation
4.1 Experiment setup and design

We compared applications with different AI/ML algorithms that run on CPU, GPU, and multi-
GPU. The workflow including package installation, model preparation, cluster enablement, testing
and validation is illustrated in Figure 7. When an application runs on CPU, all data and model are

2670 (&) Z.WANGETAL.

Analyze Problem Package Installation Model Training Preparation Cluster Enablement Selection Testing and Validation
__ (e it Sttt SRS
I Scientific Problem Analyses I General Packages For Al Data and Parallel Training I CPU & GPU | Default Training
| a. Scientific significance | python 3.x, numpy, a. Identify and prepare | a. Applications with DL | Parameters

' tensorflow, sklearn, itertools, a. Epoch: how many rounds
the dataset will be trained
b. Batch Size: the training

|
|
: samples in one batch
|
|

| b. DL engagement
| ¢. Computing Intensity

training datasets, and
package sample training

|

|

1

: algorithms can be run on

|

1
datasets shared in public I

|

|

|

|

|

|

|

|

i

both CPUs and GPUs !
b. Enable GPU I
|

& |
|

I

|

|

|

1

|

|

|

|

: | pandas, keras, LSTM, gdal,
: ctypes, cython, scipy,
|

|

|

|

|

Application Model Type | argparse, p P y . Enable Multi-GPU

a. DNN : stata, etc. b. Relatively simple and the c. Validate results

b. GAN : most widely used parallel

c. CNN *P-clﬂges Installation strategy | | Change Platforms

d. FCN c. Suitable for computation- ‘ ‘a, Run applications on
Intensity Type : packages application need small number of

: Change Applications

| a. Run different versions
| (CPU, GPU or multiple

| GPU) of the same

: Write a configuration file to
| install all packages by one

|
|
|
| parameters
|

Hi

1| command

I

|

|

1

|

|

b. Computing intensive

Processor Type |

I I
| |
| |
| |
I |
| |
| |
I |
I |
| |
| |
| |
| |
| |
| |
| Create anaconda |
environment and install the I‘ intensive layers with a different platforms :
I I
| |
| |
| |
| |
| |
I |
I |
| |
| I
| |
I I
| I
I |
| |
| |

|
|
|
|
|
|
|
|
|
|
|
|
H 2 K
: a. Data intensive
|
|
|
|
|
|
|
|
|
|
|
|

a. CPU : Platform preparation : application in the same
b. GPU | Desktop | platform
¢. GPU Cluster W I Google colab i
. r Amazon AWS :
ke | NASA Cluster I
o gy B | | — MR | | N S — B S . | iy TR

Figure 7. The workflow of testbed process including analysis, package installation, model preparation, cluster enablement, test-
ing and validation.

processed by CPU. When an application runs on GPU, Sequential CPU code and data will pass to
CPU to process, GPU code will pass to GPU to process, then CPU will pass the data to CPU Mem-
ory then to GPU Memory. Once the GPU receives the code, the GPU kernel will be launched to pass
the same piece of code to different threads and process all data passed from GPU memory. CUDA
API will invoke multithreaded streaming multiprocessors in GPU to generate the results and even-
tually the results will be passed from GPU memory to CPU memory then to CPU (Figure 8).

Each application was tested with and without GPU enabled on a Desktop. Each application was
also tested with single-GPU and multi-GPU (4 GPUs) on NASA Supermicro, AWS G4dn, and
Microsoft Azure. Google Colab only provided an environment with single GPU. The total running
time of each application was recorded.

Per-Device Global Memory

CPU Memory GPU Memory

2.Pass Data to

GPU Memory
(GPU Kernel 1 GPU Kernel N 1

3. Pass the same code Threads are arranged as a grid of
2.C . to an array of threads = thread blocks (Device to Device)

1. Pass Data to
CPU Memory
(input)

—

1." Sequential CPU Code|
(Host compute)

2
=

Host

Intensive Functions
(Kernel Launch

Time) Grid

Thread || Thread Thread Thread || Thread Thread
Biocko || slock 1 [slockN-1 Blo(ko slock1 | BlockN-1

4. CaII CUDA API to invoke a scalable array of
(Device compute)

v v . v v v v v v v
CUDA Streaming CUDA Streaming CUDA Streaming CUDA Streaming
Multiprocessors Multiprocessors Multiprocessors. Multiprocessors

5. Generate Results (Compilation)

8. Pass Results to
cPU 7. Pass Results to 6. Pass Results to GPU Memory
CPU Memory (Output)

peaJyL Ndo 03 ssed e1eq ‘g

@IHIIIIﬂ

Per-Device Global Memory

Figure 8. The dataflow between GPU and CPU in a GPU-based DL application.

INTERNATIONAL JOURNAL OF DIGITAL EARTH e 2671

4.2 Experiment results

4.2.1 Runtime performance

The following table shows the running time of each application with different types of processors.
The NASA platform on Multiple GPU has the shortest runtime of 46 m on the cloud classification
application, whereas the desktop platform on CPU has the longest run time of 3h 29 m on the
application. The PM2.5 application on the Google Colab single GPU has the lowest runtime of
7 m while the NASA GPU has the highest runtime of 24 m. NASA single GPU recorded the lowest
runtime of 2 h 44 m on the ArcClI application while the desktop CPU recorded the maximum run-
time of 94 h 37 m on the ArcCI application. The AWS platform on the single GPU has the shortest
runtime of 7s for the Tweets Classification application while the Microsoft Single GPU has the high-
est runtime of 45s. The NASA multi-GPU has the lowest runtime of 2 h 38s for the Satellite2map
application while the desktop CPU has the highest runtime of 70 h 21 m for the Satellite2map.
Table 3 shows the details for runtime of five applications in different platforms, and Figure 9
shows the percentage for runtime of five applications in different platforms by comparing to the
runtime on desktop CPU (assuming the runtime on desktop is 100%).

4.2.2 Single-GPU experiment results correlation analysis

Correlation analysis is conducted to produce a correlation coefficient r as shown in the equation (1)
where x represents hardware configurations in a computing environment. The coefficient r is a
numerical value that ranges between —1 and 1. —1 indicates a perfect negative correlation between
the variables, while 1 indicates a perfect positive correlation and 0 indicates no correlation between
the variables. In this study, a correlation analysis was done between the configurations of single
GPU VMs and the runtime of each application to understand the relationship between VM
configurations and runtime performance.

> [(runtime; — runtime)(x; — X)]

= 1
A/ Y (runtime; — runtime)2 3 (x —%)* W

Table 3. Average runtime of the five applications and standard deviations (SD) of runtime for 5 iterations in different platforms
with varying CPU and GPU usages.

Google
Desktop NASA Supermicro Cole?b AWS G4dn instance Microsoft Azure

Single Multiple Single Single Multiple Single Multiple
CPU/SD GPU/SD GPU/SD GPU/SD GPU/SD GPU/SD GPU/SD GPU/SD GPU/SD

Cloud 3h29 m/ 48 m/ 140 m/ 46 m/ 79 m/ 55m/ 51 m/ 87 m/ 108 m/
classification 0.03 0.02 0.04 0.03 0.03 0.02 0.01 0.01 0.02

PM2.5 21 m/ 7m/0.01 24 m/ 22m/0.02 2m/0.01 9m30s/ 10m/0.01 11 m/ 15 m/0.01
retrieval 0.02 0.02 0.01 0.01

Arctic Sea lce 94h22m/ 4h25m 2h44 m/ N/A(2) N/A 9h36m/ N/A(2) 3h2 m/ N/A
classification 0.80 1/ 0.05 0.96 0.03

0.04

Tweet 23s/0.44 31s/0.54 25s/1.41 34s5/2.68 Tm25s/ 7s/2.32 12s/1.87 45s/3.67 38s/1.30
classification 2.54

Sat2Map 70h21m/ 3h34m/ 3 h/0.04 2h23 m/ >7h(3) 8h/0.11 6h4dm/ 7h17m/ 8h12m/

0.39 0.05 0.05 0.13 0.17 0.16

Note: 1. when the ArcCl application was run in desktop using GPU mode, batch size was changed to 10 from 60, otherwise, the
GPU would be out of memory. The batch size was set to 60 when the application was run on NASA Supermicro.

2. The ArcCl application cannot be run with multiple GPU mode since the DL package it utilizes cannot successfully support mul-
tiple GPUs.

3. The sat2map runtime in google Colab records runtime about 168 epochs and other experiments set epochs to 1000. We cannot
have the exact time on Google Colab due to session timeout so we cannot find the standard deviation.

4. NAN values were removed in the Google Colab platform due to an error caused by null values, thus the size of the train dataset
is different from that on other platforms.

5. The Standard deviation for tweet classifications is based on seconds, and rest of four applications are based on hours. For
standard deviation lower than 0.01 we count as 0.01.

2672 (&) Z.WANGETAL.

400.00
350.00
300.00
250.00
200.00
150.00
100.00

50.00

0.00

Desktop CPL Desktop GPU NASA NASA Google Colab AWS Single GPU AWS Multiple ~ Microsoft Single Microsoft Multiple
(supermicro) (supermicro) Single GPU GPU GPU GPU
Single GPU Multiple GPU

——Cloud classification =~ ===PM2.5 retrieval Arctic Sea Ice classification Tweet classification ~ =——Sat2Map

Figure 9. The runtime comparison of five applications in percentage among different platforms by comparing to the runtime on
desktop CPU (assuming the runtime for each application on desktop is 100%).

Table 4. Correlation between runtime and VM configuration for the five single-GPU based applications.

Cloud PM2.5 ArcCl Sat2Map Tweets
CPU Core —0.13652 0.266838 0.896987 0.273313 —0.48629
CPU Speed —0.66137 —0.14398 —0.0781 —0.25496 0.213986
GPU Memory 0.942456 0.845117 —0.00328 —0.33031 —0.56639
GPU core 0.392476 0.674978 0.570109 —0.09861 —0.34954
Storage & Motherboard speed —0.32522 —0.04566 0.663085 0.633881 —0.11338
Ram Size 0.857276 0.95662 —0.10479 —0.54898 0.345172

Table 4 shows the correlation between each application and configuration elements based on exper-
iment results. In general, the runtime is negatively related to the CPU speed for single-GPU appli-
cations. The faster the CPU speed, the less runtime the application will take. The GPU core and
memory are not fully utilized since the applications are single-GPU bases, thus the correlation
between runtime and GPU memory/core are positive for some applications. It indicates that
improving the number of GPUs cannot guarantee runtime performance improvement for DL appli-
cations without parallelism strategy.

4.2.3 Multiple-GPU experiment results correlation analysis

Similar correlation analysis was done for the five multiple-GPU based applications and VM
configuration as shown in Table 5. The analytical results show that the CPU speed also plays a sig-
nificant role for multiple-GPU applications. The correlation between GPU core and runtime are
positive for all applications as expected.

4.2.4 Optimization

TensorFlow Profiler (Figure 10), part of TensorFlow’s visualization toolkit, is used to quantify the
running time of each application and identify the performance bottleneck in each step. Target
metrics gathered include kernel launch time and device compute time as part of a high-level sum-
mary of model performance across step-time. Each runtime experiment is conducted in a similar
manner. The times at which the model begins and finishes training is logged as well as information
on the compute node used and performance metrics gathered using TensorFlow profiler.
Additional metrics including model accuracy are also logged for comparison to scientifically pub-
lished results.

INTERNATIONAL JOURNAL OF DIGITAL EARTH e 2673

Table 5. Correlation between runtime and VM configuration for the five multiple-GPU based applications.

Cloud PM2.5 ArcCl Sat2Map Tweets
CPU Core —0.70642 —0.57924 - —0.04515 0.984778
CPU Speed —0.31314 —0.88371 - —0.48913 —0.95789
GPU Memory —0.56154 0.909935 - 0.989512 0.356689
GPU core —0.99736 0.674978 - 0.619854 —0.63063
Storage & Motherboard speed 0.642519 —0.86321 - —0.99906 0.250144
Ram Size —0.6505 0.857879 - 0.999457 —0.26026

Performance Summary

Average Step Time

4.6 ms

Step-time Graph

0.9 ms
Step Time (in milliseconds)
« Compiation Time 8
i s 0.0 ms All others
=== Compilation
5 ~ == Output
« Output Time
= 0.0 ms 6 = Input
Kemel launch
« Input Time Host compute
oo 0.3 ms 4 e
Device collectives
Device to device
« Kernel Launch Time 19ms 2 Device compute
0.3ms
0
train train train train train train train train train train train train train
Time 2 3 4 5 6 4 8 9 10 1" 12 13 14
= 0.0ms
Step Number
+ Device to Device Time 0.0ms

« Device Compute Time

1.1ms

Figure 10. TF Profiler step-time results in milliseconds for Cloud Classification without XLA Compiler.

From the TensorFlow profiler, we discovered the total running time was majorly spent on the
kernel launch time and device compute time. To reduce the kernel launch time and device compute
time, XLA compiler was utilized. XLA (Accelerated Linear Algebra) is a domain-specific compiler
for linear algebra that can accelerate TensorFlow models. It compiles the TensorFlow graph into a
sequence of computation kernels generated specifically for the given model (Tensorflow 2022).
Since these kernels are unique to the model, they can exploit model-specific information for optim-
ization. When a model is trained regularly, the graph launches three kernels for three different func-
tionalities: multiplication, addition, and reduction (Tensorflow 2022). However, XLA can optimize
the graph so that it computes the result in a single kernel launch. It does this by ‘fusing’ the addition,
multiplication, and reduction into a single GPU kernel, so that it also reduces the compute time for
each GPU (Tensorflow 2022).

Using cloud classification as an example, as the results showing in Figures 10 and 11, with
implementation of XLA compiler, the kernel launch time is reduced from 1.9 ms to 1.0 ms. The
Device Compute Time is reduced from 1.1 ms to 0.2 ms. It greatly optimized computing perform-
ance in each step of the training process, meanwhile the model accuracy only changed 1% as shown
in the Table 6.

2674 (&) Z.WANGETAL.

Performance Summary

Average Step Time

24 ms

Step-time Graph

« All Others Time 0.7ms Step Time (in milliseconds)

0.0ms

« Compilation Time

« Output Time 0.017is

< o o 2 \/\/\/\

« Kemel Launch Time {.0ms 1

« Host Compute Time 02ms

0

= All others

=== Compilation

== Output

= Input
Kernel launch
Host compute
Device collectives
Device to device
Device compute

train train train train train train train train train train train train train

9 0 1 12 13 14

« Device Collective Communication Time 0.0ms
‘ L Step Number

. 3:\@ to :\‘e\‘ce Time 0.0 ms

« Device Compute Time

0.2ms

Figure 11. Cloud Classification Performance results for each step in milliseconds with XLA Compiler.

Table 6. Cloud Classification performance comparison with and without implementation of XLA compiler.

Total Time in each Kernel Launch Device compute Total Time for the whole Model
step Time time application accuracy
Without 4.6ms 1.9ms 1.1ms 48 m 0.8612
XLA
With XLA 2.4ms 1.0ms 0.2ms 29m 0.8565

4.3. Discussion

To migrate Earth science AI/ML application onto GPU Platform and compare performance among
CPU, single-GPU, and multi-GPU, we conclude a step list that researchers need to go through.

Table 7 shows what steps each application in this study had taken.

A. Analyze DL model and DL package used by the application: before migrating an Earth science
DL application to GPU, researchers need to analyze the DL model and the DL package used by
the application. They should check if the package has GPU support, the DL model complexity,
the size of the dataset, and the computational requirements. This analysis helps to determine if

the application will benefit from GPU acceleration.

B. Check whether the package supports GPU: Researchers need to check if the DL package used
by the application supports GPU acceleration. Many DL packages such as TensorFlow,
PyTorch, and Keras provide GPU support. Researchers should also ensure that the GPU driver

is compatible with the DL package.

Table 7. Steps for each application to be migrated onto GPU Platform and to compare their performance among CPU, single-

GPU, and multi-GPU.

A B C D E F G H |
ArcCl X X X X X X X
Tweet classification X X X X X X X X X
Cloud classification X X X X X X X X X
PM2.5 Retrieval X X X X X X X X X
Satellite2Map X X X X X X X X X

INTERNATIONAL JOURNAL OF DIGITAL EARTH e 2675

C. Redevelop the application using packages that support GPU: If the DL package used by the
application does not support GPU acceleration, researchers should consider redeveloping
the application using packages that support GPU acceleration. This may require additional
time and resources, but it can significantly improve runtime performance.

D. Configure GPU environment library based on DL package version: Researchers need to confi-
gure the GPU environment library based on the DL package version used by the application.
The GPU environment library includes CUDA and CUDNN, and their versions should be
compatible with the DL package and Python version used by the application.

E. Check whether the application code supports multiple GPU: Researchers should check if the
application code supports multiple GPUs. If the application code does not support multiple
GPUs, it may require modification to partition and distribute the data and models on
multi-GPU.

F. Redevelop code to support multiple-GPU by partitioning and distributing the data and models
on multi-GPU: If the application code does not support multiple GPUs, researchers need to
redevelop the code to partition and distribute the data and models on multi-GPU. This can
significantly improve runtime performance.

G. Install performance monitoring tools to collect host activities and GPU traces: Researchers
should install performance monitoring tools such TF-Profiler for Tensorflow to collect host
activities and GPU traces. These tools help identify bottlenecks and performance issues during
GPU acceleration.

H. Performance comparison (runtime, accuracy, precision): Researchers should conduct a per-
formance comparison among the original CPU-based application, the single-GPU-accelerated
application, and the multi-GPU-accelerated application. The comparison should include run-
time, accuracy, and precision.

I. Optimize the performance based on detected bottleneck from performance monitoring tools:
Researchers need to optimize the performance of the GPU-accelerated application based on
the detected bottleneck from the performance monitoring tools. This may require further
code optimization, data preprocessing, or tuning of hyperparameters. The goal is to achieve
the best possible runtime performance without compromising accuracy and precision.

In this study, five different Earth science applications with different parameter inputs and DL
algorithms were run on different platforms in CPU, single-GPU, and multi-GPU modes. The run-
time of the same application varies on these platforms with different machine configurations. In
general, the runtime of experiments running on CPU is longer than that of experiments running
on GPU except for the tweet classification application, the input data size of which is very small.
The total runtime of the tweet classification application is less than half a minute on a desktop
using the CPU model, and from the experiment results, we can find that it is hard to improve run-
time performance with GPU when the input data size and computation is very small since the com-
putational time is smaller compared to the time of data transmission.

By comparing the runtime of experiments on the same platform running with single-GPU and
multiple-GPU, the decrease in the runtime is not as significant as expected for most applications.
One plausible reason is that an application may cost extra time when the whole program synchro-
nizes the data and model among GPUs and CPU (Sun et al. 2019). Based on the experiment results,
we found that the decrease in the runtime is not linearly related to the increment of GPU numbers,
especially for applications with relatively small input data sizes.

In addition, we implemented a simple and direct data-parallel strategy to run these applications
with the support of multiple-GPU on different platforms. However, the percentage of GPU usage
varies across platforms even with the same code. Taking cloud classification as an example, the per-
centage of GPU usage is quite different on different platforms. When the application was run on
AWS and Azure with 4 GPUs, the utilization percentage of each GPU was around 20% on the

2676 (&) Z.WANGETAL.

5. Redevelop the application using
packages that support GPU

Check whether
the package
upports GPU

1. Earth science DL 2. Analyze DL model and

applications deep learning package

l

3. Test code using CPU
only

4. Configure GPU environment
(e.g. install CUDA)

9. Performance
comparison (runtime,
accuracy, precision)

6. Test code using single-
GPU

Check whether the
application code
supports multiple

7. Redevelop code to
support multiple-GPU

8. Test code using multiple-
GPU

Figure 12. Recommendation workflow of utilizing GPU to support Earth science applications.

AWS platform. However, the percentage was 0% for each GPU on the Azure platform. The differ-
ence in GPU utilization needs further investigation between application developers and platform
providers since different platforms demonstrate different results to identify the reason and potential
improvements. However, the results of the experiments indicate that each GPU may not be able to
be fully utilized with the built-in parallel strategy.

For a given Earth science DL application, researchers could follow the workflow (Figure 12) to
enable the application to support single-GPU or multiple-GPU to improve runtime performance.
However, to optimize the runtime performance of these applications, it is crucial to enable support
for single-GPU or multiple-GPU. Specifically, we recommend giving special attention to appli-
cations initially designed for CPUs, as their code often requires modification to be compatible
with GPUs. Moreover, even applications originally designed for single GPU must be parallelized
to work on multi-GPU. It is worth noting that increasing the number of GPUs does not necessarily
guarantee faster running times, highlighting the importance of proper parallelization strategies.

Additionally, it should be noted that different GPUs require specific GPU drivers, such as
CUDA, and driver libraries, such as CUDNN. It is essential to ensure that each driver and library
version is compatible with the corresponding Python version and package version. For example, the
required versions of CUDA, CUDNN, Python, and TensorFlow for this project are CUDA 11.0,
CUDNN 8.0, Python 3.8.12, and TensorFlow 2.4.1, respectively. Any mismatches between these
versions may result in the failure of running applications.

For the next steps of this study, we will study how to optimize the performance of GPU and
multi-GPU based on these five existing applications such as reducing the synchronization time
of data and model among CPUs and GPUs. In addition, considering GPU utilization with the
same code varied in different platforms, investigating the reason causes different GPU utilizations
and optimizing the GPU utilization across different platforms will also be conducted.

5. Conclusion

In this study, we highlighted five existing sample Earth science Al applications, revised the DL-
based models/algorithms to support GPU parallel training, delivered application source code and

INTERNATIONAL JOURNAL OF DIGITAL EARTH e 2677

tutorials, and tested performance of common computing platforms (e.g. Amazon AWS, Google
Colab and Microsoft Azure) about the support to the applications. Application software packages,
performance comparisons across different platforms, along with performance results. This study
provides a better understanding of how various AI/ML Earth science applications can be supported
by GPU computing and could help researchers in the Earth science domain better adopt GPU com-
puting for their AI/ML research. Relevant software package and user guide have been made publicly
available in GitHub.

We found that GPU should be considered to run Earth science DL applications, because gener-
ally, adopting GPU can reduce the running time. However, if the input data size of a DL application
is small, we would suggest using single-GPU to reduce the cost. It is hard to improve runtime per-
formance with multi-GPU when the input data size is very small, especially when the computational
time is smaller compared to the time of data transmission. In addition, utilizing multiple GPU and
data-parallel strategies does not guarantee a speed-up, because DL algorithms vary for different
applications. Lastly, we suggest paying more attention to applications initially designed for CPUs
that will require extra efforts, such as adding extra or even replacing existing programming
packages. Applications originally designed for single GPU also need parallelization to make
them work on multi-GPU, meanwhile, more GPUs do not necessarily mean faster running time.

In the future, more experiments could be conducted to optimize the utilization of GPU to sup-
port parallel training in Earth Science AI applications. The impact factors and bottlenecks of CPU,
GPU, and multi-GPU utilization need more investigation to best utilize GPU in Earth AI research.
Additional Earth science applications that utilize different types of AI models such as graph neural
networks and recurrent neural networks could be added to the testbed to cover the most advanced
DL models.

Acknowledgements

NASA Center for Climate Simulations provided partial GPU resources for the test. The applications were developed
by various researchers. IBM, Mircosoft, AWS, and Google for collaborated with us on GPU environment configur-
ation. We thank the anonymous reviewers for their valuable comments.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding
This work is financially supported by NSF I/UCRC (1841520), NASA Goddard CISTO, and NASA AIST programs.

ORCID

Zifu Wang (2 http://orcid.org/0000-0002-7183-5166
Yun Li (¥ http://orcid.org/0000-0002-3205-8464

Mary Salami (© http://orcid.org/0009-0006-7929-4452
Chaowei Yang 2 http://orcid.org/0000-0001-7768-4066

References

Bhowmik, Moumita, Manmeet Singh, Suryachandra Rao, and Souvik Paul. 2022. “DeepClouds. ai: Deep learning
enabled computationally cheap direct numerical simulations.” arXiv preprint arXiv:2208.08956.

Caraballo-Vega, Jordan, Mark Carroll, Jian Li, and Daniel Dufty. 2021. “Towards Scalable and GPU Accelerated
Earth Science Imagery Processing: An AI/ML Case Study.” AGU Fall Meeting Abstracts 2021: N21A-28.

http://orcid.org/0000-0002-7183-5166
http://orcid.org/0000-0002-3205-8464
http://orcid.org/0009-0006-7929-4452
http://orcid.org/0000-0001-7768-4066

2678 (&) Z.WANGETAL.

Chao, Fang, Yang Chongjun, Chen Zhuo, Yao Xiaojing, and Guo Hantao. 2011. “Parallel Algorithm for Viewshed
Analysis on a Modern GPU.” International Journal of Digital Earth 4 (6): 471-486. https://doi.org/10.1080/
17538947.2011.555565.

Che, Shuai, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, and Kevin Skadron. 2008. “A
Performance Study of General-Purpose Applications on Graphics Processors Using CUDA.” Journal of Parallel
and Distributed Computing 68 (10): 1370-1380. https://doi.org/10.1016/j.jpdc.2008.05.014.

Chen, Ying, Xu Ouyang, and Gady Agam. 2019. “ChangeNet.” In Proceedings of the 3rd ACM SIGSPATIAL
International Workshop on Al for Geographic Knowledge Discovery, 24-31. https://doi.org/10.1145/3356471.
3365232

Dean, Jeffrey, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, et al. 2012. “Large
Scale Distributed Deep Networks.” Advances in Neural Information Processing Systems 25.

Feng, XueShang, DingKun Zhong, ChangQing Xiang, and Yao Zhang. 2013. “GPU-accelerated Computing of Three-
Dimensional Solar Wind Background.” Science China Earth Sciences 56 (11): 1864-1880. https://doi.org/10.1007/
s11430-013-4661-y.

Fu, Cong, Zhenhua Wang, and Yanlong Zhai. 2017. “A CPU-GPU Data Transfer Optimization Approach Based on
Code Migration and Merging.”In 16th International Symposium on Distributed Computing and Applications to
Business, Engineering and Science (DCABES), 23-26.

Ganguli, Swetava, Pedro Garzon, and Noa Glaser. 2019. “GeoGAN: A conditional GAN with reconstruction and style
loss to generate standard layer of maps from satellite images.” arXiv preprint arXiv:1902.05611.

Gao, Jianwei, Yi Sun, Bing Zhang, Zhengchao Chen, Lianru Gao, and Wenjuan Zhang. 2019. “Multi-GPU Based
Parallel Design of the ant Colony Optimization Algorithm for Endmember Extraction from Hyperspectral
Images.” Sensors 19 (3): 598. https://doi.org/10.3390/519030598.

Gregg, Chris, and Kim Hazelwood. 2011. “Where is the Data? Why you Cannot Debate CPU vs. GPU Performance
Without the Answer.” (IEEE ISPASS) IEEE International Symposium on Performance Analysis of Systems and
Software, 134-144. https://doi.org/10.1109/ISPASS.2011.5762730.

Ikram, Ben Abdel Ouahab, Boudhir Anouar Abdelhakim, Astito Abdelali, Bassam Zafar, and Bouhorma
Mohammed. 2019. “Deep Learning Architecture for Temperature Forecasting in an IoT LoRa Based System.”
In Proceedings of the 2nd International Conference on Networking, Information Systems & Security, 1-6.

Janowicz, Krzysztof, Song Gao, Grant McKenzie, Yingjie Hu, and Budhendra Bhaduri. 2020. “GeoAl: Spatially
Explicit Artificial Intelligence Techniques for Geographic Knowledge Discovery and Beyond.” International
Journal of Geographical Information Science 34 (4): 625-636. https://doi.org/10.1080/13658816.2019.1684500.

Kamath, Harsh G., Manmeet Singh, Lori A. Magruder, Zong-Liang Yang, and Dev Niyogi. 2022. “GLOBUS: GLObal
Building heights for Urban Studies.” arXiv:2205.12224.

Kamil, Anwar, and Talal Shaikh. 2019. “Literature Review of Generative Models for Image-to-Image Translation
Problems.” In 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE),
340-345. IEEE.

Krizhevsky, Alex. 2014. “One weird trick for parallelizing convolutional neural networks.” arXiv preprint
arXiv:1404.5997.

Li, Wenwen, and Chia-Yu Hsu. 2022. “GeoAlI for Large-Scale Image Analysis and Machine Vision: Recent Progress of
Artificial Intelligence in Geography.” ISPRS International Journal of Geo-Information 11 (7): 385. https://doi.org/
10.3390/ijgi11070385.

Li, Yun, Ruixin Yang, Chaowei Yang, Manzhu Yu, Fei Hu, and Yongyao Jiang. 2017. “Leveraging LSTM for Rapid
Intensifications Prediction of Tropical Cyclones.” ISPRS Annals of Photogrammetry, Remote Sensing & Spatial
Information Sciences 4: 101-105.

Li, Yun, Manzhu Yu, Mengchao Xu, Jingchao Yang, Dexuan Sha, Qian Liu, and Chaowei Yang. 2020. “Big Data and
Cloud Computing.” Manual of Digital Earth, 325-355.

Liu, Qian, Yun Li, Manzhu Yu, Long S Chiu, Xianjun Hao, Daniel Q Duffy, and Chaowei Yang. 2019. “Daytime rainy
cloud detection and convective precipitation delineation based on a deep neural Network method using GOES-16
ABI images.” Remote Sensing 11 (21).

McKiernan, Erin C., Philip E. Bourne, C. Titus Brown, Stuart Buck, Amye Kenall, Jennifer Lin, Damon McDougall,
et al. 2016. “How open science helps researchers succeed.” eLife 5.

NASA Science “Open-Source Science Initiative / Science Mission Directorate,” 2023. https://science.nasa.gov/open-
science-overview.

Oeser, Jens, Hans-Peter Bunge, and Marcus Mohr. 2006. International conference on high performance computing and
communications, 31-40. Springer.

Okamoto, Taro, Hiroshi Takenaka, Takeshi Nakamura, and Takayuki Aoki. 2010. “Accelerating Large-Scale
Simulation of Seismic Wave Propagation by Multi-GPUs and Three-Dimensional Domain Decomposition.”
Earth, Planets and Space 62 (12): 939-942. https://doi.org/10.5047/eps.2010.11.009.

Reichstein, Markus, Gustau Camps-Valls, Bjorn Stevens, Martin Jung, Joachim Denzler, Nuno Carvalhais, and
Prabhat. 2019. “Deep Learning and Process Understanding for Data-Driven Earth System Science.” Nature 566
(7743): 195-204. https://doi.org/10.1038/541586-019-0912-1.

https://doi.org/10.1080/17538947.2011.555565
https://doi.org/10.1080/17538947.2011.555565
https://doi.org/10.1016/j.jpdc.2008.05.014
https://doi.org/10.1145/3356471.3365232
https://doi.org/10.1145/3356471.3365232
https://doi.org/10.1007/s11430-013-4661-y
https://doi.org/10.1007/s11430-013-4661-y
https://doi.org/10.3390/s19030598
https://doi.org/10.1109/ISPASS.2011.5762730
https://doi.org/10.1080/13658816.2019.1684500
https://doi.org/10.3390/ijgi11070385
https://doi.org/10.3390/ijgi11070385
https://science.nasa.gov/open-science-overview
https://science.nasa.gov/open-science-overview
https://doi.org/10.5047/eps.2010.11.009
https://doi.org/10.1038/s41586-019-0912-1

INTERNATIONAL JOURNAL OF DIGITAL EARTH e 2679

Ryoo, Shane, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk, and Wen-mei W. Hwu. 2008.
“Optimization Principles and Application Performance Evaluation of a Multithreaded GPU Using CUDA.” 13th
ACM SIG-PLAN Symposium on Principles and Practice of Parallel Programming, 73-82.

Schultz, Martin G., Clara Betancourt, Bing Gong, Felix Kleinert, Michael Langguth, Lukas Hubert Leufen, Amirpasha
Mozaftari, and Scarlet Stadtler. 2021. “Can Deep Learning Beat Numerical Weather Prediction?.” Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379 (2194): 20200097.
https://doi.org/10.1098/rsta.2020.0097.

Sekhar Biswas, Mriganka, and Manmeet Singh. 2022. “Trustworthy modelling of atmospheric formaldehyde powered
by deep learning.” arXiv e-prints: arXiv-2209.

Sha, Dexuan, Xin Miao, Mengchao Xu, Chaowei Yang, Hongjie Xie, Alberto M Mestas-Nuilez, Yun Li, Qian Liu, and
Jingchao Yang. 2020. An on-demand service for managing and analyzing arctic sea ice high spatial resolution ima-
gery 5.

Singh, Manmeet, Nachiketa Acharya, Suryachandra A. Rao, Bipin Kumar, Zong-Liang Yang, and Dev Niyogi. 2022.
“Short-range forecasts of global precipitation using deep learning-augmented numerical weather prediction.”
arXiv preprint arXiv:2206.11669.

Song, Yimeng, Bo Huang, Qingging He, Bin Chen, Jing Wei, and Rashed Mahmood. 2019. “Dynamic assessment of
PM2. 5 exposure and health risk using remote sensing and geo-spatial big data.” Environmental Pollution 253:
288-296.

Subramaniam, Shankar, Naveenkumar Raju, Abbas Ganesan, Nithyaprakash Rajavel, Maheswari Chenniappan,
Chander Prakash, Alokesh Pramanik, Animesh Kumar Basak, and Saurav Dixit. 2022. “Artificial Intelligence
Technologies for Forecasting Air Pollution and Human Health: A Narrative Review.” Sustainability 14 (16):
9951. https://doi.org/10.3390/su14169951.

Sun, Yifan, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong, Shane Treadway, Yuhui Bao, et al. 2019.
“MGPUSim: Enabling Multi-GPU Performance Modeling and Optimization.” Proceedings of the 46th
International Symposium on Computer Architecture 197-209.

TensorFlow. 2022. XLA: Optimizing Compiler for TensorFlow. https://www.tensorflow.org/xla.[Online; accessed 19-
December-2022].

Torti, Emanuele, Giovanni Danese, Francesco Leporati, and Antonio Plaza. 2016. “A Hybrid CPU-GPU Real-Time
Hyperspectral Unmixing Chain.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 9 (2): 945-951. https://doi.org/10.1109/JSTARS.2015.2485399.

VoPham, Trang, Jaime E. Hart, Francine Laden, and Yao-Yi Chiang. 2018. “Hair Product Use, Age at Menarche and
Mammographic Breast Density in Multiethnic Urban Women.” Environmental Health 17 (1): 1-6. https://doi.org/
10.1186/512940-017-0345-y.

Wang, Zifu, Yudi Chen, Yun Li, Devika Kakkar, Wendy Guan, Wenying Ji, Jacob Cain, et al. 2022. “Public Opinions
on COVID-19 Vaccines—A Spatiotemporal Perspective on Races and Topics Using a Bayesian-Based Method.”
Vaccines 10 (9): 1486. https://doi.org/10.3390/vaccines10091486.

Weyn, Jonathan A., Dale R. Durran, and Rich Caruana. 2019. “Can Machines Learn to Predict Weather? Using Deep
Learning to Predict Gridded 500-hPa Geopotential Height from Historical Weather Data.” Journal of Advances in
Modeling Earth Systems 11 (8): 2680-2693. https://doi.org/10.1029/2019MS001705.

Weyn, Jonathan A., Dale R. Durran, and Rich Caruana. 2020. “Improving Data-Driven Global Weather Prediction
Using Deep Convolutional Neural Networks on a Cubed Sphere.” Journal of Advances in Modeling Earth Systems
12 (9): €2020MS002109.

Xie, Jibo, Chaowei Yang, Bin Zhou, and Qunying Huang. 2010. “High-performance Computing for the Simulation of
Dust Storms.” Computers, Environment and Urban Systems 34 (4): 278-290. https://doi.org/10.1016/j.
compenvurbsys.2009.08.002.

Yang, Chaowei, Qunying Huang, Zhenlong Li, Kai Liu, and Fei Hu. 2017. “Big Data and Cloud Computing:
Innovation Opportunities and Challenges.” International Journal of Digital Earth 10 (1): 13-53. https://doi.org/
10.1080/17538947.2016.1239771.

Yang, Chaowei, Qunying Huang, Zhenlong Li, Kai Liu, and Fei Hu. 2020. “Big Data and Cloud Computing.” In
Manual of Digital Earth, 325-355. Singapore: Springer.

Yang, Chaowei, Manzhu Yu, Yun Li, Fei Hu, Yongyao Jiang, Qian Liu, Dexuan Sha, Mengchao Xu, and Juan Gu.
2019. “Big Earth Data Analytics: A Survey.” Big Earth Data 3 (2): 83-107. https://doi.org/10.1080/20964471.
2019.1611175.

Yang, Jingchao, Manzhu Yu, Qian Liu, Yun Li, Daniel Q. Duffy, and Chaowei Yang. 2022. “A High Spatiotemporal
Resolution Framework for Urban Temperature Prediction Using IoT Data.” Computers ¢ Geosciences 159:
104991. https://doi.org/10.1016/j.cageo.2021.104991.

Yu, Dazhou, Guangji Bai, Yun Li, and Liang Zhao. 2022. “Deep Spatial Domain Generalization.” arXiv preprint
arXiv:2210.00729.

Yuval, Janni, and Paul A. O’Gorman. 2020. “Stable Machine-Learning Parameterization of Subgrid Processes for
Climate Modeling at a Range of Resolutions.” Nature Communications 11 (1): 3295. https://doi.org/10.1038/
541467-020-17142-3.

https://doi.org/10.1098/rsta.2020.0097
https://doi.org/10.3390/su14169951
https://www.tensorflow.org/xla.[Online
https://doi.org/10.1109/JSTARS.2015.2485399
https://doi.org/10.1186/s12940-017-0345-y
https://doi.org/10.1186/s12940-017-0345-y
https://doi.org/10.3390/vaccines10091486
https://doi.org/10.1029/2019MS001705
https://doi.org/10.1016/j.compenvurbsys.2009.08.002
https://doi.org/10.1016/j.compenvurbsys.2009.08.002
https://doi.org/10.1080/17538947.2016.1239771
https://doi.org/10.1080/17538947.2016.1239771
https://doi.org/10.1080/20964471.2019.1611175
https://doi.org/10.1080/20964471.2019.1611175
https://doi.org/10.1016/j.cageo.2021.104991
https://doi.org/10.1038/s41467-020-17142-3
https://doi.org/10.1038/s41467-020-17142-3

2680 (&) Z.WANGETAL.

Zhang, Fan, Chen Hu, Wei Li, Wei Hu, and Heng-Chao Li. 2014. “Accelerating Time-Domain SAR raw Data
Simulation for Large Areas Using Multi-GPUs.” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 7 (9): 3956-3966. https://doi.org/10.1109/JSTARS.2014.2330333.

Zhang, Guiming, and Jin Xu. 2023. “Multi-GPU-Parallel and Tile-Based Kernel Density Estimation for Large-Scale
Spatial Point Pattern Analysis.” ISPRS International Journal of Geo-Information 12 (2): 31. https://doi.org/10.3390/
ijgi12020031.

Zhang, Minxing, Dazhou Yu, Yun Li, and Liang Zhao. 2022. “Deep Geometric Neural Network for Spatial
Interpolation.” Proceedings of the 30th International Conference on Advances in Geographic Information
Systems, 1-4.

Zhang, Guiming, A-Xing Zhu, and Qunying Huang. 2017. “A GPU-Accelerated Adaptive Kernel Density Estimation
Approach for Efficient Point Pattern Analysis on Spatial big Data.” International Journal of Geographical
Information Science 31 (10): 2068-2097. https://doi.org/10.1080/13658816.2017.1324975.

https://doi.org/10.1109/JSTARS.2014.2330333
https://doi.org/10.3390/ijgi12020031
https://doi.org/10.3390/ijgi12020031
https://doi.org/10.1080/13658816.2017.1324975

	Abstract
	1. Introduction
	2. Related work
	2.1 Lack of systematic study on how to migrate Earth science AI/ML application onto GPU Platform
	2.2 Lack of study on single and multiple GPU comparison and optimization for Earth science AI/ML applications

	3. Sample application, platforms, and parallel training strategies
	3.1 Selected Earth science applications
	3.2 Platform introduction
	3.3 Model parallel training strategies

	4. Experiment design and performance evaluation
	4.1 Experiment setup and design
	4.2 Experiment results
	4.2.1 Runtime performance
	4.2.2 Single-GPU experiment results correlation analysis
	4.2.3 Multiple-GPU experiment results correlation analysis
	4.2.4 Optimization

	4.3. Discussion

	5. Conclusion
	Acknowledgements
	Disclosure statement
	ORCID
	References

