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ABSTRACT  
With the advancement of Artificial Intelligence (AI) technologies and 
accumulation of big Earth data, Deep Learning (DL) has become an 
important method to discover patterns and understand Earth science 
processes in the past several years. While successful in many Earth 
science areas, AI/DL applications are often challenging for computing 
devices. In recent years, Graphics Processing Unit (GPU) devices have 
been leveraged to speed up AI/DL applications, yet computational 
performance still poses a major barrier for DL-based Earth science 
applications. To address these computational challenges, we selected 
five existing sample Earth science AI applications, revised the DL- 
based models/algorithms, and tested the performance of multiple 
GPU computing platforms to support the applications. Application 
software packages, performance comparisons across different 
platforms, along with other results, are summarized. This article can 
help understand how various AI/ML Earth science applications can be 
supported by GPU computing and help researchers in the Earth 
science domain better adopt GPU computing (such as supermicro, 
GPU clusters, and cloud computing-based) for their AI/ML 
applications, and to optimize their science applications to better 
leverage the computing device.
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1. Introduction

Earth science data is constantly growing and changing with new information collected via a var
iety of methods such as satellite platforms, sensor networks and citizen science. The unprece
dented big Earth data have the potential to bring significant benefits and advance our 
understanding of the home planet (Yang et al. 2019; Li et al. 2020). The accumulation of big 
Earth data also poses grand challenges for data processing, integration, and analysis, which 
require specialized techniques and resources to address. With the advancement of Artificial Intel
ligence (AI) technologies, Deep Learning (DL) has become an increasingly important method in 
Earth Science like in many other fields (VoPham et al. 2018; Janowicz et al. 2020). DL particularly 

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons. 
org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work 
is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or 
with their consent. 

CONTACT  Chaowei Yang cyang3@gmu.edu Department of Geography and Geoinformation Science, NSF Spatiotemporal 
Innovation Center, George Mason University, Fairfax, VA, USA

INTERNATIONAL JOURNAL OF DIGITAL EARTH 
2023, VOL. 16, NO. 1, 2660–2680 
https://doi.org/10.1080/17538947.2023.2233488

http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2023.2233488&domain=pdf&date_stamp=2023-07-11
http://orcid.org/0000-0002-7183-5166
http://orcid.org/0000-0002-3205-8464
http://orcid.org/0009-0006-7929-4452
http://orcid.org/0000-0001-7768-4066
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:cyang3@gmu.edu
http://www.digitalearth-isde.org/
http://english.aircas.ac.cn/
http://www.tandfonline.com


suits for Earth science applications since it has the capability to process large and complex data 
sets, and automatically extract useful information without the need for manual feature engineer
ing (Li and Hsu 2022). Artificial intelligence technologies could support addressing challenging 
tasks in Earth Science such as pattern recognition from satellite images and prediction from 
multi-source Earth observation data. For example, Deep Neural Network (DNN), Convolutional 
Neural Network (CNN), and Graph Neural Networks (GNN) can be used to analyse multi-source 
Earth observation data to support environmental phenomena monitoring, such as climate change 
(Yuval and O’Gorman 2020), weather prediction (Weyn, Durran, and Caruana 2019; Weyn, Dur
ran, and Caruana 2020; Singh et al. 2022; Schultz et al. 2021), air quality (Yu et al. 2022; Zhang 
et al. 2022; Subramaniam et al. 2022), land cover change (Chen, Ouyang, and Agam 2019), atmos
pheric studies (Bhowmik et al. 2022; Sekhar Biswas and Singh 2022), urban planning (Kamath 
et al. 2022), and ambient temperature forecasting (Ikram et al. 2019; Yang et al. 2022). DL has 
also been applied in natural disaster management for better preparedness and disaster mitigation, 
such as using the long short-term memory (LSTM) network to leverage past conditions to predict 
rapid intensifications of tropical cyclones (Li et al. 2017). DL has the potential to revolutionize 
traditional Earth science applications.

While DL has the potential to bring significant benefits to Earth science, AI/DL applications 
are often challenging for computing devices since AI/DL algorithms are computing intensive 
to train and run, and the data sets used in Earth science can be very large and complex but avail
able resources are usually limited. Thus, specialized hardware such as graphics processing units 
(GPUs) have been leveraged to run AI/DL applications efficiently. GPUs are specialized pro
cessors designed to handle the complex calculations required for graphics rendering. It has 
been widely used in distributed DL model training in recent years since they are well suited 
for the parallel processing needs of neural networks. With the support of GPUs on performing 
the matrix multiplications and other mathematical operations, the training process of neural net
works could be accelerated significantly compared to that of using a central processing unit 
(CPU). However, there are a few challenges to consider when using a GPU to accelerate DL. 
As an example, transferring data between CPU and GPUs can be slow and incur extra costs 
(Zhang and Xu 2023), which can limit the performance improvements gaining from using 
GPUs. Thus, a scientific investigation on the performance improvement of using GPU to accel
erate DL applications at different scenarios would benefit gaining a better understanding of the 
utilization of GPU in DL applications.

Meanwhile, computational performance still poses a major barrier for DL-based Earth science 
applications (Reichstein et al. 2019) because: (1) the input data size of DL-based Earth Science 
applications is usually very large and it may take several days to finish the training process for 
some applications without the support of GPU; (2) lacking knowledge for instructing Earth Science 
researcher to migrate their CPU-based DL applications to GPU; (3) lacking studies that compare 
performance of Earth science application on GPU and multi-GPU. To address these computational 
challenges, we highlighted five sample Earth science AI applications, revised the DL-based models/ 
algorithms to support GPU parallel training, and tested the performance of common computing 
platforms regarding the support of GPU computing. Application software packages, performance 
comparisons across different platforms, along with performance test results, are discussed in this 
study. This paper can be used to better understand how various AI/ML Earth science applications 
can be supported by GPU computing, and to help researchers in the Earth science domain better 
adopt GPU computing for their AI/ML applications, and to optimize their science applications to 
better leverage the computing device.

The rest of this article is structured as follows. Section 2 reviews the literature about why we con
ducted this research. Section 3 introduced the platforms used for testing and the five applications in 
detail, as well as our methods for parallelized model training and optimization, Next, section 4 pre
sents experiments that were carried out to compare the performance. Finally, section 5 concludes 
and discusses future work.
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2. Related work

2.1 Lack of systematic study on how to migrate Earth science AI/ML application onto GPU 
Platform

Processing large datasets in AI/ML Earth Science applications requires advanced technologies to 
optimize their computing capacities (Yang et al. 2017). Many traditional Earth science AI/ML appli
cations and experiments are usually based on CPU. Many researchers have implemented parallel 
computing strategies based on CPU or GPU to optimize the performance of their AI/ML appli
cations. For example, Oeser (2006) established a high-performance Linux cluster based on 128 
CPU cores to solve the computing capacity problems when studying solid Earth simulation such 
as seismic wave propagation, rupture, and fault dynamics in the lithosphere; Xie et al. (2010) par
allelized a dust model to simulate dust storms for southwestern U.S. with an improved resolution to 
ZIP-code level, and its speedup is about 13.3 when 36 CPU cores were used in parallel.

In recent years, many Earth Science researchers have also implemented GPU to construct their 
applications. For example, Chao et al. (2011) utilized the parallel computing capabilities of GPUs 
and proposed a spatial analysis algorithm in 3D scenes to improve the processing efficiency. 
Feng et al. (2013) implemented GPU to make real-time numerical prediction of adverse space 
weather events by accelerating the calculation of their solar wind background model. Torti et al. 
(2016) developed a hybrid CPU-GPU real-time Hyperspectral Unmixing Chain to optimize the per
formance of finding spectral signatures of the endmembers and their associated abundance frac
tions. Singh et al. (2022) proposed a numerical weather prediction model to improve the spatial 
pattern and magnitude of predicted precipitation.

Though there are research utilizing parallel computing strategies on CPUs and GPUs to accelerate 
AI/ML Earth Science application, there are no existing studies that provide detailed guidance on how 
to migrate the traditional CPU-based AI/ML Earth Science applications onto GPU and compare their 
performances on CPU and GPU. Although previous studies showed that GPU can speedup up to 
1000 times for applications with similar algorithms written for CPU, many of the performance com
parisons only consider the model performance process of the kernel execution on algorithms. It did 
not consider the running time before kernel launching and after kernel execution in a systematic 
fashion (Gregg and Hazelwood 2011). Data transmission through PCIe bus, preparation, and cleaning 
work for data transfer operations between CPU and GPU are time consuming. Especially when the 
program contains many kernel calls of GPU, its cost dramatically increased (Fu, Wang, and Zhai  
2017). To reduce cost of kernel calls, Zhang, Zhu, and Huang (2017) designed an adoptive Kernel 
Density Estimation algorithm to minimize the data exchange between host memory and device mem
ory. Therefore, migrating AI/ML Earth Science application from CPU onto GPU is not just using the 
same code on different processors. It is necessary to compare the CPU and GPU performance of 
different types of Earth science applications and provide comprehensive instructions on how to 
migrate Earth science AI/ML applications from CPU to GPU platforms for Earth science fields.

2.2 Lack of study on single and multiple GPU comparison and optimization for Earth 
science AI/ML applications

In recent years, multi-GPU architecture has also become a popular choice for researchers to 
implement their parallel-computing experiments (Sun et al. 2019). Multi-GPU architecture has 
also been implemented for AI/ML Earth Science applications. For example, Caraballo-Vega et al. 
(2021) developed NASA RAPIDS framework based on multi-GPU to speed up the deployment 
of AI/ML software for climate simulations. Okamoto et al. (2010) had also adopted the multi- 
GPU to accelerate the large-scale finite-difference simulation of seismic wave propagation. 
Zhang et al. (2014) have also implemented multi-GPU to simulate large areas synthetic aperture 
radar (SAR) raw data. Comparing to the simulation by single GPU, multi-GPU simulation achieved 
a 5x speedup after its additional optimization on the original model.
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However, it was found that multi-GPU performance can be limited by CPU-to-GPU and GPU- 
to-GPU synchronization (Sun et al. 2019). Although multi-GPU can accelerate the speed of an 
algorithm itself, it may cost more time when the whole program synchronizes the data and 
model among GPUs. Gao et al. (2019) proposed a multiple sub-ant-colony-based parallel design 
of ant colony optimization for endmember extraction. This method enables ant colony optimiz
ation for endmember extraction to be preferably executed on a multi-GPU system, but still needed 
to avoid synchronization among different GPUs to affect its performance. Zhang and Xu (2023) has 
also optimized their own single-GPU Kernel Density Estimation (KDE) algorithm into a multi- 
GPU-Parallel Kernal Density Estimation algorithm to accelerate spatial point pattern analysis. 
Comparing to KDE algorithm for single GPU, The Multi-GPU based algorithm implemented 
extra steps to partition and dispatch data to multiple GPUs, which incurs extra cost on transferring 
data between CPU and multiple GPUs. Therefore, directly migrating AI/ML Earth Science Appli
cations from single GPU to multi-GPU does not necessarily mean faster performance. Modifi
cations for single GPU applications are usually needed to migrate them into multi-GPU. It is 
also needed to compare the single GPU and multi-GPU performance of various types of Earth 
science applications and provide comprehensive instructions on how to migrate Earth science 
AI/ML applications from single GPU onto multi-GPU platforms for Earth science fields and esti
mate which option (single-GPU or multi-GPU) is the best.

Due to lack of knowledge for guiding Earth Science researchers to migrate their CPU-based DL 
applications to GPU, lack of studies that compare performance of Earth science applications on 
CPU and GPU, and lack of studies that compare performance of Earth science application on 
GPU and multi-GPU. This study utilized five open-source Earth science AI applications with differ
ent DL algorithms and data sizes as examples to test how to migrate from CPU to GPU, and enable 
multi-GPU runs. This study also provides methodologies to optimize the GPU performance for 
Earth science applications and provides open-source support for all five applications. Earth Science 
researchers may use the open resources produced by these five applications as reference to decide if 
it is efficient to utilize the GPU to run their current applications and how to migrate their appli
cations from CPU to GPU and multi-GPU. This systematic fashion of adopting open source, devel
oping open source, and sharing results in open source also provide a case study for open sciences 
which are growing in popularity and necessity in recent years with significant benefits to researchers 
on aspects of citations, media attention, potential collaborator, job opportunities and funding 
opportunities (NASA Science 2023; McKiernan et al. 2016).

3. Sample application, platforms, and parallel training strategies

3.1 Selected Earth science applications

This research conducted a holistic analysis of research projects that take the criteria of various science 
domains, various input datasets, ML functionalities, relevant AI models, computational intensity, data 
intensity, and data dependency. The five applications were selected as denoted in Table 1.

Table 1. The five applications covering various domains, data types, ML functions and AI models.

Applications Input data type
ML 

functionalities
AI 

models
Computational 

intensity
Data 

intensity
Data 

dependency

ArcCI Satellite imagery Segmentation FCN High High High
Tweet 

classification
Text Classification CNN Low Low Moderate

Cloud 
classification

CSV Classification DNN High High Moderate

PM2.5 Retrieval CSV Regression DNN High High High
Satellite2Map Satellite Imagery & 

Map pairs
Data generation GAN High High Moderate
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ArcCI: The Arctic Sea ice region has become an increasingly important study area since it is not 
only a key driver of the Earth’s climate, but also a sensitive indicator of climate change. To model 
and validate sea ice changes, it is crucial to extract high-resolution geophysical features of sea ice 
from remote sensing data. This is accomplished through the development of an efficient geophysical 
feature extraction workflow based upon the object-based image analysis (OBIA) method alongside 
an on-demand web service for Arctic Cyberinfrastructure. By integrating ML classification 
approaches, the on-demand sea ice HSR imagery management and processing service and frame
work allows for efficient and accurate extraction of geophysical features and the spatiotemporal 
analysis of sea ice leads (Sha et al. 2020; Figure 1). This application was developed to classify the 
high spatial resolution aerial images DMS (Digital Mapping System) for four sea ice types (thick 
ice, thin ice, open water, and shadow) for the period of 2012–2018.

A kernel part of the feature extraction is a DL-based classification algorithm, which is extremely 
time consuming and hampers the on-demand analyses of sea ice analyses. The algorithm involves 
high computational intensity. The data required for this task would be substantial, including high- 
resolution images, as well as additional geospatial and environmental data to aid in classification, 
which also involves high data intensity. In addition, the DL-based classification algorithm also 
requires a significant amount of labelled training data to optimize its performance, which also 
involves substantial data dependency. Overall, this application involves a complex and resource- 
intensive workflow that requires management of both computational and data resources. The 
incorporation of GPU enablement would significantly speed up the process and enable on-demand 
analyses.

Tweet classification: The COVID-19 pandemic impacted the entire world disastrously. Millions 
of tweets were posted every day. It is important to understand public sentiment and attention from 
a spatiotemporal perspective but categorizing all social media contents for research will be very 
time-consuming. Therefore, this application categorizes COVID-19 related tweets into 7 categories 
(prevention, transmission, politics, economy, emotion, symptoms, treatment) by using a CNN 
model. We analysed tweets from January to August 2020 to mine the categories of COVID-19 
related tweets and discover what aspects publics cared about COVID-19 in different spatiotemporal 
scales. This open-source package was later utilized to discover the spatiotemporal patterns of public 
opinions on COVID-19 vaccines from October 1st, 2020, to May 21st, 2021, as shown in Figure 2 
(Wang et al. 2022).

This application contains a small-size training dataset, which only includes around 800 tweets 
with their corresponding labels. The training process only requires low computational intensity 
and data intensity. The accuracy of the model and the usefulness of the categorized tweets are 
dependent on the quality and amount of data used to train and test the model, but this model 
can train tweet datasets with several types of labels which only requires a moderate data 
dependency.

Cloud classification: Precipitation is one of the most significant contributing factors to destruc
tive natural disasters globally including hurricanes, floods, and droughts. Convective precipitation 
with abnormal activities of convective systems may lead to severe urban floods, landslides, and flash 

Figure 1. ArcCI utilizes ML models and algorithms to classify image into various types of ocean cover types.
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floods. To detect rainy and convective clouds with high efficiency, this application developed a 
DNN method to classify rainy and non-rainy clouds based on Brightness Temperature Differences 
(BTDs) and Reflectance (Ref) derived from Advanced Baseline Imager (ABI). Convective and strati
form rain clouds are also separated using similar spectral parameters expressing the characteristics 
of cloud properties. The precipitation events used for training and validation are obtained from the 
Integrated Multi-satellite Retrievals for GPM (IMERG) V05B data, which covered the south-eastern 
coast of the U.S. during the 2018 rainy season. This automatic cloud classification system could be 
deployed for extreme rainfall event detection, real-time forecasting, and decision-making support 
in rainfall-related disasters (Liu et al. 2019; Figure 3).

DNN models are computationally intensive due to their large number of parameters and the 
need for extensive training on large datasets. Additionally, this application involves analyzing 
data from the ABI and the IMERG V05B dataset. These datasets contain substantial amounts of 
satellite imagery data, and the accuracy of the results are highly dependent on the quality and 

Figure 2. Spatial distribution of Public Engagement Score (PES) in the United States from October 1st, 2020, to May 21st, 2021.

Figure 3. Cloud classification categorizes the cloud into various classes to identify the rainy cloud for disaster response.
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amount of data analyzed, but different cloud data can be selected as training datasets. Therefore, 
this model requires high data intensity but moderate dependency.

PM2.5 Retrieval: Particulate Matter (PM) consists of a complex mixture of solid and liquid par
ticles of organic and inorganic substances suspended in the air. As a common proxy indicator for air 
pollution, PM2.5 is extremely hazardous to human health as it can be easily inhaled into the human 
chest and enter the respiratory system, (Song et al. 2019) and causes millions premature deaths 
annually around the world. This application aims to develop an innovative methodology to retrieve 
the PM2.5 over global scale and further downscale the spatiotemporal resolution to 1 km and 
hourly level in some key regions using AI/DL methods (Figure 4). The results generate a high 
spatiotemporal resolution to provide data basis for public health decision making and air quality 
pattern analytics.

This application requires complex calculations and significant computing resources, as it involves 
processing and analysing vast amounts of data to generate high-resolution outputs. The accuracy of 
the PM2.5 estimates is affected by the quality and coverage of satellite observations, as well as the 
availability and accuracy of ground-based measurements used for validation. Therefore, this appli
cation also involves high computational intensity, high data intensity, and high data dependency.

Satellite2Map: Theme maps have become increasingly common in the technological era, but 
creating map is expensive and time consuming (Kamil and Shaikh 2019). The simplicity of 
theme maps allows them to be a key feature of various mapping applications. This application 
uses Conditional Generative Adversarial Network (GAN) to automatically convert Earth Obser
vation (EO) imagery into a real map through identifying features on images, such as water, 
roads, buildings, plant life, and other features as shown in Figure 5 (Ganguli, Garzon, and Glaser  
2019). The Earth observation data is downloaded from Google Earth and latent space vectors are 
extracted from satellite image. Latent space vectors are compressed depictions of the satellite 
images, and they are inputted into the GAN model to create new maps.

This application is also computationally intensive and data-intensive because GAN consists of 
two neural networks competing against each other, with one trying to generate realistic data (in 
this case, a map) and the other trying to distinguish between real and generated data. a large amount 
of Earth Observation (EO) imagery is required for training the GAN model. In addition, the accu
racy of the generated maps also depends on the quality and quantity of the input data, but any pairs 

Figure 4. PM2.5 values are retrieved from GOES-16/17 and MERRA-2 data based on ground observations and AI/ML models/ 
algorithms.
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of Earth observation data and latent space vectors can be selected as training dataset. Therefore, this 
application only requires a moderate data dependency.

3.2 Platform introduction

We engaged 5 different types of platforms in the study from the most popular (PC) to specialized 
(GPU cluster). Their specific configurations are introduced in the Table 2. 

(1) Windows desktop with a NVIDIA GeForce RTX 3070 GPU

The windows desktop is used for benchmarking and serves as an initial reference. All appli
cations were originally designed and programmed on this computer. All other platforms have 
the same running environment configuration as this desktop, such as Python and Python package 
version. This platform is suitable for individual researchers who work on small to medium-sized 
datasets and can perform their computations locally on their desktop. However, the accessibility 
of this platform is limited to the researcher’s research resource, and it may not be suitable for 
large-scale computations or collaborations with other researchers. 

(2) AWS G4dn instances

Figure 5. Satellite2Map generates a theme map based on Earth observation data (Ganguli, Garzon, and Glaser 2019).

Table 2. Hardware configuration of each computing platform.

Hardware 
\platform Desktop Google Colab AWS NASA supermicro Microsoft

CPU (Core #: 
Speed Ghz)

8 cores Intel(R) Core 
(TM) i7-10700 K 
CPU @ 3.80 GHz 
3.79 GHz

2 vCPUs Xeon 
Processor 
(2.2 GHz)

48 vCPUs, Intel 
Xeon Scalable 
(Cascade Lake), 
∼3.2 GHz

NVLink Dual Intel Xeon 
Cascade Lake Gold 
6248 CPUs, 20 cores 
each (2.50 GHz)

Intel(R) Xeon(R) 
CPU E5-2690 v4 
@ 2.60 GHz 6 
cores

GPU (Core #, 
Speed Ghz, 
Memory size)

1x NVIDIA GeForce 
RTX 3070 with 8 
GB of VRAM

1x NVIDIA Tesla 
T4 GPU with 
16 GB of VRAM

4x NVIDIA Tesla T4 
GPUs with 16 GB 
of VRAM

4x NVIDIA V100 GPUs 
with 32 GB of VRAM

1x GV100GL 
[Tesla V100 PCIe 
16GB]

RAM size 32.0 GB 12.6 GB 192 GB 768 GB 112 GB
Storage SN730 NVMe WDC 

256G
33 GB on Google 

Drive
900 GB NVMe 

storage
3.8 TB of RAID protected 

NVMe drives
SCSI virtual Disk 

1TB
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AWS provides G4dn instances that are optimized for graphics-intensive workloads, such as 3D ren
dering, video encoding, and machine learning. They provide cloud-based computing resources with 
high-performance GPUs, making it an attractive option for domain scientists who need to process 
large amounts of data. The Tesla T4 GPUs are optimized for DL workloads and provide fast training 
times. The cloud-based nature of this platform makes it accessible from anywhere with an Internet con
nection, and it also allows for scalability as researchers can increase or decrease resources as needed. 

(3) Google Colab

Google Colab is a free online platform that allows users to run and execute code in a variety of 
programming languages, including Python, R, and Julia. It is a cloud-based platform that provides 
free access to GPUs and CPUs for research and education purposes. It is a suitable option for 
researchers who have limited resources or are new to DL and need to experiment with small to 
medium-sized datasets. The platform is easily accessible, and users can collaborate and share 
their work with others. 

(4) Microsoft Azure

Microsoft Azure provides cloud-based computing resources with a range of GPU options suit
able for different workloads, including ML and DL. The platform offers scalability and can handle 
large-scale computations, making it an attractive option for domain scientists who need to process 
substantial amounts of data. It also provides collaboration and sharing features, making it easy for 
researchers to work together. 

(5) NASA Supermicro

NASA Supermicro provides high-performance computing resources for scientific research, 
including ML and DL. The platform is designed to handle large-scale computations and is suitable 
for domain scientists who need to process large datasets or run complex simulations. However, the 
platform cannot be easily accessible to individual researchers due to security restrictions, and it 
requires specialized knowledge to use effectively. This project has applied and was approved for 
using NASA supermicro to test the performance of all 5 applications.

3.3 Model parallel training strategies

Two common approaches have been developed to support model parallel training, including data 
parallelism (Krizhevsky 2014) and model parallelism (Dean et al. 2012). In the data parallelism 
approach, the same model is distributed to multiple GPUs and each GPU is responsible for training 
the model on a different subset of data (Krizhevsky 2014). In model parallelism, a model is split into 
several parts which are then sent to multiple GPUs to train separately (Dean et al. 2012). These 
strategies allow the model to be trained in parallel, making it possible to significantly reduce the 
time required to train larger and more accurate models.

Data parallelism is the most common model parallel training strategy. It is suitable for computa
tionally intensive layers with a relatively small number of parameters. As shown in Figure 6, the data 
parallelism approach typically runs iteratively with the following initial weights and updates: (1) data
set is divided into smaller chunks and each chunk is assigned to a different GPU. Each GPU has a 
completed model and assigned data chunks; (2) a parameter server initializes model weights and 
sends weights to multiple GPUs; (3) every GPU trains the model on its assigned chunk of data 
and calculates the gradient; (4) GPUs send the computed gradient to the parameter server; (5) the 
parameter server produces a single and updated model based on gradients collected from all 
GPUs; (6) the parameter server sends the updated model weights to all GPU devices; (7) the above 
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steps are repeated until the model has converged. Data parallelism strategy benefits distributed GPU 
computing by significantly reducing train time as the model could be trained in parallel on multiple 
GPUs. It also enables high scalability since the data parallelism strategy could be deployed on a large 
number of GPUs by simply dividing data into small chunks. Noticeably, data parallelism is relatively 
easy to implement since it did not require significant changes to the model or the training process.

Model parallelism is suitable for layers with a large number of parameters (e.g. fully connected 
layer). Compared to data parallel training, it is more complicated. Model parallelism strategy typi
cally involves steps as follows: (1) divide the model into several layers or blocks of layers that can be 
trained in different GPUs; (2) assign model blocks to multiple GPUs; (3) divide training data into 
batches and assign each batch to a specific GPU; (4) model block on each GPU are trained with 
assigned training data and then gradients and model parameters are synchronized among GPUs 
at each training step; (5) the gradients from all GPUs are aggregated to update model parameters; 
(6) the above steps are repeated until the model has converged. Noticeability, although model par
allelism strategy makes it possible to train larger and more accurate models in a shorter amount of 
time, it can be complex to implement the strategy since the original model needs to split into differ
ent parts and model parameters, and gradient should be synchronized among multiple GPUs.

We will only focus on adopting data parallelism strategy to support distributed training DL- 
based Earth science applications in this study. We will optimize the open-source applications to 
support model parallelism in future studies.

4. Experiment design and performance evaluation

4.1 Experiment setup and design

We compared applications with different AI/ML algorithms that run on CPU, GPU, and multi- 
GPU. The workflow including package installation, model preparation, cluster enablement, testing 
and validation is illustrated in Figure 7. When an application runs on CPU, all data and model are 

Figure 6. An example workflow of the data parallel training approach with iterative weights and updates.
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processed by CPU. When an application runs on GPU, Sequential CPU code and data will pass to 
CPU to process, GPU code will pass to GPU to process, then CPU will pass the data to CPU Mem
ory then to GPU Memory. Once the GPU receives the code, the GPU kernel will be launched to pass 
the same piece of code to different threads and process all data passed from GPU memory. CUDA 
API will invoke multithreaded streaming multiprocessors in GPU to generate the results and even
tually the results will be passed from GPU memory to CPU memory then to CPU (Figure 8).

Each application was tested with and without GPU enabled on a Desktop. Each application was 
also tested with single-GPU and multi-GPU (4 GPUs) on NASA Supermicro, AWS G4dn, and 
Microsoft Azure. Google Colab only provided an environment with single GPU. The total running 
time of each application was recorded.

Figure 7. The workflow of testbed process including analysis, package installation, model preparation, cluster enablement, test
ing and validation.

Figure 8. The dataflow between GPU and CPU in a GPU-based DL application.
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4.2 Experiment results

4.2.1 Runtime performance
The following table shows the running time of each application with different types of processors. 
The NASA platform on Multiple GPU has the shortest runtime of 46 m on the cloud classification 
application, whereas the desktop platform on CPU has the longest run time of 3 h 29 m on the 
application. The PM2.5 application on the Google Colab single GPU has the lowest runtime of 
7 m while the NASA GPU has the highest runtime of 24 m. NASA single GPU recorded the lowest 
runtime of 2 h 44 m on the ArcCI application while the desktop CPU recorded the maximum run
time of 94 h 37 m on the ArcCI application. The AWS platform on the single GPU has the shortest 
runtime of 7s for the Tweets Classification application while the Microsoft Single GPU has the high
est runtime of 45s. The NASA multi-GPU has the lowest runtime of 2 h 38s for the Satellite2map 
application while the desktop CPU has the highest runtime of 70 h 21 m for the Satellite2map.  
Table 3 shows the details for runtime of five applications in different platforms, and Figure 9 
shows the percentage for runtime of five applications in different platforms by comparing to the 
runtime on desktop CPU (assuming the runtime on desktop is 100%).

4.2.2 Single-GPU experiment results correlation analysis
Correlation analysis is conducted to produce a correlation coefficient r as shown in the equation (1) 
where x represents hardware configurations in a computing environment. The coefficient r is a 
numerical value that ranges between −1 and 1. −1 indicates a perfect negative correlation between 
the variables, while 1 indicates a perfect positive correlation and 0 indicates no correlation between 
the variables. In this study, a correlation analysis was done between the configurations of single 
GPU VMs and the runtime of each application to understand the relationship between VM 
configurations and runtime performance.

r =

􏽐
[(runtimei − runtime)(xi − x̅)]

√􏽐
(runtimei − runtime)2􏽐 (xi − x̅)2

(1) 

Table 3. Average runtime of the five applications and standard deviations (SD) of runtime for 5 iterations in different platforms 
with varying CPU and GPU usages.

Desktop NASA Supermicro
Google 
Colab AWS G4dn instance Microsoft Azure

CPU/SD GPU/SD
Single 

GPU/SD
Multiple 
GPU/SD

Single 
GPU/SD

Single 
GPU/SD

Multiple 
GPU/SD

Single 
GPU/SD

Multiple 
GPU/SD

Cloud 
classification

3h29 m/ 
0.03

48 m/ 
0.02

140 m/ 
0.04

46 m/ 
0.03

79 m/ 
0.03

55 m / 
0.02

51 m/ 
0.01

87 m/ 
0.01

108 m/ 
0.02

PM2.5 
retrieval

21 m/ 
0.02

7 m/0.01 24 m/ 
0.02

22 m/0.02 2 m/0.01 9m30s/ 
0.01

10 m/0.01 11 m/ 
0.01

15 m/0.01

Arctic Sea Ice 
classification

94h22 m/ 
0.80

4h25 m 
(1)/ 
0.04

2h44 m/ 
0.05

N/A(2) N/A 9h36m/ 
0.96

N/A(2) 3h2 m/ 
0.03

N/A

Tweet 
classification

23s/0.44 31s/0.54 25s/1.41 34s/2.68 1m25s/ 
2.54

7s/2.32 12s/1.87 45s/3.67 38s/1.30

Sat2Map 70h21 m/ 
0.39

3h34 m/ 
0.05

3 h/0.04 2h23 m/ 
0.05

>7 h (3) 8 h/0.11 6h4 m/ 
0.13

7h17 m/ 
0.17

8h12 m/ 
0.16

Note: 1. when the ArcCI application was run in desktop using GPU mode, batch size was changed to 10 from 60, otherwise, the 
GPU would be out of memory. The batch size was set to 60 when the application was run on NASA Supermicro. 

2. The ArcCI application cannot be run with multiple GPU mode since the DL package it utilizes cannot successfully support mul
tiple GPUs. 

3. The sat2map runtime in google Colab records runtime about 168 epochs and other experiments set epochs to 1000. We cannot 
have the exact time on Google Colab due to session timeout so we cannot find the standard deviation. 

4. NAN values were removed in the Google Colab platform due to an error caused by null values, thus the size of the train dataset 
is different from that on other platforms. 

5. The Standard deviation for tweet classifications is based on seconds, and rest of four applications are based on hours. For 
standard deviation lower than 0.01 we count as 0.01.
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Table 4 shows the correlation between each application and configuration elements based on exper
iment results. In general, the runtime is negatively related to the CPU speed for single-GPU appli
cations. The faster the CPU speed, the less runtime the application will take. The GPU core and 
memory are not fully utilized since the applications are single-GPU bases, thus the correlation 
between runtime and GPU memory/core are positive for some applications. It indicates that 
improving the number of GPUs cannot guarantee runtime performance improvement for DL appli
cations without parallelism strategy.

4.2.3 Multiple-GPU experiment results correlation analysis
Similar correlation analysis was done for the five multiple-GPU based applications and VM 
configuration as shown in Table 5. The analytical results show that the CPU speed also plays a sig
nificant role for multiple-GPU applications. The correlation between GPU core and runtime are 
positive for all applications as expected.

4.2.4 Optimization
TensorFlow Profiler (Figure 10), part of TensorFlow’s visualization toolkit, is used to quantify the 
running time of each application and identify the performance bottleneck in each step. Target 
metrics gathered include kernel launch time and device compute time as part of a high-level sum
mary of model performance across step-time. Each runtime experiment is conducted in a similar 
manner. The times at which the model begins and finishes training is logged as well as information 
on the compute node used and performance metrics gathered using TensorFlow profiler. 
Additional metrics including model accuracy are also logged for comparison to scientifically pub
lished results.

Table 4. Correlation between runtime and VM configuration for the five single-GPU based applications.

Cloud PM2.5 ArcCI Sat2Map Tweets

CPU Core −0.13652 0.266838 0.896987 0.273313 −0.48629
CPU Speed −0.66137 −0.14398 −0.0781 −0.25496 0.213986
GPU Memory 0.942456 0.845117 −0.00328 −0.33031 −0.56639
GPU core 0.392476 0.674978 0.570109 −0.09861 −0.34954
Storage & Motherboard speed −0.32522 −0.04566 0.663085 0.633881 −0.11338
Ram Size 0.857276 0.95662 −0.10479 −0.54898 0.345172

Figure 9. The runtime comparison of five applications in percentage among different platforms by comparing to the runtime on 
desktop CPU (assuming the runtime for each application on desktop is 100%).
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From the TensorFlow profiler, we discovered the total running time was majorly spent on the 
kernel launch time and device compute time. To reduce the kernel launch time and device compute 
time, XLA compiler was utilized. XLA (Accelerated Linear Algebra) is a domain-specific compiler 
for linear algebra that can accelerate TensorFlow models. It compiles the TensorFlow graph into a 
sequence of computation kernels generated specifically for the given model (Tensorflow 2022). 
Since these kernels are unique to the model, they can exploit model-specific information for optim
ization. When a model is trained regularly, the graph launches three kernels for three different func
tionalities: multiplication, addition, and reduction (Tensorflow 2022). However, XLA can optimize 
the graph so that it computes the result in a single kernel launch. It does this by ‘fusing’ the addition, 
multiplication, and reduction into a single GPU kernel, so that it also reduces the compute time for 
each GPU (Tensorflow 2022).

Using cloud classification as an example, as the results showing in Figures 10 and 11, with 
implementation of XLA compiler, the kernel launch time is reduced from 1.9 ms to 1.0 ms. The 
Device Compute Time is reduced from 1.1 ms to 0.2 ms. It greatly optimized computing perform
ance in each step of the training process, meanwhile the model accuracy only changed 1% as shown 
in the Table 6.

Table 5. Correlation between runtime and VM configuration for the five multiple-GPU based applications.

Cloud PM2.5 ArcCI Sat2Map Tweets

CPU Core −0.70642 −0.57924 – −0.04515 0.984778
CPU Speed −0.31314 −0.88371 – −0.48913 −0.95789
GPU Memory −0.56154 0.909935 – 0.989512 0.356689
GPU core −0.99736 0.674978 – 0.619854 −0.63063
Storage & Motherboard speed 0.642519 −0.86321 – −0.99906 0.250144
Ram Size −0.6505 0.857879 – 0.999457 −0.26026

Figure 10. TF Profiler step-time results in milliseconds for Cloud Classification without XLA Compiler.
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4.3. Discussion

To migrate Earth science AI/ML application onto GPU Platform and compare performance among 
CPU, single-GPU, and multi-GPU, we conclude a step list that researchers need to go through.  
Table 7 shows what steps each application in this study had taken. 

A. Analyze DL model and DL package used by the application: before migrating an Earth science 
DL application to GPU, researchers need to analyze the DL model and the DL package used by 
the application. They should check if the package has GPU support, the DL model complexity, 
the size of the dataset, and the computational requirements. This analysis helps to determine if 
the application will benefit from GPU acceleration.

B. Check whether the package supports GPU: Researchers need to check if the DL package used 
by the application supports GPU acceleration. Many DL packages such as TensorFlow, 
PyTorch, and Keras provide GPU support. Researchers should also ensure that the GPU driver 
is compatible with the DL package.

Figure 11. Cloud Classification Performance results for each step in milliseconds with XLA Compiler.

Table 6. Cloud Classification performance comparison with and without implementation of XLA compiler.

Total Time in each 
step

Kernel Launch 
Time

Device compute 
time

Total Time for the whole 
application

Model 
accuracy

Without 
XLA

4.6ms 1.9ms 1.1ms 48 m 0.8612

With XLA 2.4ms 1.0ms 0.2ms 29m 0.8565

Table 7. Steps for each application to be migrated onto GPU Platform and to compare their performance among CPU, single- 
GPU, and multi-GPU.

A B C D E F G H I

ArcCI X X X X X X X
Tweet classification X X X X X X X X X
Cloud classification X X X X X X X X X
PM2.5 Retrieval X X X X X X X X X
Satellite2Map X X X X X X X X X
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C. Redevelop the application using packages that support GPU: If the DL package used by the 
application does not support GPU acceleration, researchers should consider redeveloping 
the application using packages that support GPU acceleration. This may require additional 
time and resources, but it can significantly improve runtime performance.

D. Configure GPU environment library based on DL package version: Researchers need to confi
gure the GPU environment library based on the DL package version used by the application. 
The GPU environment library includes CUDA and CUDNN, and their versions should be 
compatible with the DL package and Python version used by the application.

E. Check whether the application code supports multiple GPU: Researchers should check if the 
application code supports multiple GPUs. If the application code does not support multiple 
GPUs, it may require modification to partition and distribute the data and models on 
multi-GPU.

F. Redevelop code to support multiple-GPU by partitioning and distributing the data and models 
on multi-GPU: If the application code does not support multiple GPUs, researchers need to 
redevelop the code to partition and distribute the data and models on multi-GPU. This can 
significantly improve runtime performance.

G. Install performance monitoring tools to collect host activities and GPU traces: Researchers 
should install performance monitoring tools such TF-Profiler for Tensorflow to collect host 
activities and GPU traces. These tools help identify bottlenecks and performance issues during 
GPU acceleration.

H. Performance comparison (runtime, accuracy, precision): Researchers should conduct a per
formance comparison among the original CPU-based application, the single-GPU-accelerated 
application, and the multi-GPU-accelerated application. The comparison should include run
time, accuracy, and precision.

I. Optimize the performance based on detected bottleneck from performance monitoring tools: 
Researchers need to optimize the performance of the GPU-accelerated application based on 
the detected bottleneck from the performance monitoring tools. This may require further 
code optimization, data preprocessing, or tuning of hyperparameters. The goal is to achieve 
the best possible runtime performance without compromising accuracy and precision.

In this study, five different Earth science applications with different parameter inputs and DL 
algorithms were run on different platforms in CPU, single-GPU, and multi-GPU modes. The run
time of the same application varies on these platforms with different machine configurations. In 
general, the runtime of experiments running on CPU is longer than that of experiments running 
on GPU except for the tweet classification application, the input data size of which is very small. 
The total runtime of the tweet classification application is less than half a minute on a desktop 
using the CPU model, and from the experiment results, we can find that it is hard to improve run
time performance with GPU when the input data size and computation is very small since the com
putational time is smaller compared to the time of data transmission.

By comparing the runtime of experiments on the same platform running with single-GPU and 
multiple-GPU, the decrease in the runtime is not as significant as expected for most applications. 
One plausible reason is that an application may cost extra time when the whole program synchro
nizes the data and model among GPUs and CPU (Sun et al. 2019). Based on the experiment results, 
we found that the decrease in the runtime is not linearly related to the increment of GPU numbers, 
especially for applications with relatively small input data sizes.

In addition, we implemented a simple and direct data-parallel strategy to run these applications 
with the support of multiple-GPU on different platforms. However, the percentage of GPU usage 
varies across platforms even with the same code. Taking cloud classification as an example, the per
centage of GPU usage is quite different on different platforms. When the application was run on 
AWS and Azure with 4 GPUs, the utilization percentage of each GPU was around 20% on the 
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AWS platform. However, the percentage was 0% for each GPU on the Azure platform. The differ
ence in GPU utilization needs further investigation between application developers and platform 
providers since different platforms demonstrate different results to identify the reason and potential 
improvements. However, the results of the experiments indicate that each GPU may not be able to 
be fully utilized with the built-in parallel strategy.

For a given Earth science DL application, researchers could follow the workflow (Figure 12) to 
enable the application to support single-GPU or multiple-GPU to improve runtime performance. 
However, to optimize the runtime performance of these applications, it is crucial to enable support 
for single-GPU or multiple-GPU. Specifically, we recommend giving special attention to appli
cations initially designed for CPUs, as their code often requires modification to be compatible 
with GPUs. Moreover, even applications originally designed for single GPU must be parallelized 
to work on multi-GPU. It is worth noting that increasing the number of GPUs does not necessarily 
guarantee faster running times, highlighting the importance of proper parallelization strategies.

Additionally, it should be noted that different GPUs require specific GPU drivers, such as 
CUDA, and driver libraries, such as CUDNN. It is essential to ensure that each driver and library 
version is compatible with the corresponding Python version and package version. For example, the 
required versions of CUDA, CUDNN, Python, and TensorFlow for this project are CUDA 11.0, 
CUDNN 8.0, Python 3.8.12, and TensorFlow 2.4.1, respectively. Any mismatches between these 
versions may result in the failure of running applications.

For the next steps of this study, we will study how to optimize the performance of GPU and 
multi-GPU based on these five existing applications such as reducing the synchronization time 
of data and model among CPUs and GPUs. In addition, considering GPU utilization with the 
same code varied in different platforms, investigating the reason causes different GPU utilizations 
and optimizing the GPU utilization across different platforms will also be conducted.

5. Conclusion

In this study, we highlighted five existing sample Earth science AI applications, revised the DL- 
based models/algorithms to support GPU parallel training, delivered application source code and 

Figure 12. Recommendation workflow of utilizing GPU to support Earth science applications.
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tutorials, and tested performance of common computing platforms (e.g. Amazon AWS, Google 
Colab and Microsoft Azure) about the support to the applications. Application software packages, 
performance comparisons across different platforms, along with performance results. This study 
provides a better understanding of how various AI/ML Earth science applications can be supported 
by GPU computing and could help researchers in the Earth science domain better adopt GPU com
puting for their AI/ML research. Relevant software package and user guide have been made publicly 
available in GitHub.

We found that GPU should be considered to run Earth science DL applications, because gener
ally, adopting GPU can reduce the running time. However, if the input data size of a DL application 
is small, we would suggest using single-GPU to reduce the cost. It is hard to improve runtime per
formance with multi-GPU when the input data size is very small, especially when the computational 
time is smaller compared to the time of data transmission. In addition, utilizing multiple GPU and 
data-parallel strategies does not guarantee a speed-up, because DL algorithms vary for different 
applications. Lastly, we suggest paying more attention to applications initially designed for CPUs 
that will require extra efforts, such as adding extra or even replacing existing programming 
packages. Applications originally designed for single GPU also need parallelization to make 
them work on multi-GPU, meanwhile, more GPUs do not necessarily mean faster running time.

In the future, more experiments could be conducted to optimize the utilization of GPU to sup
port parallel training in Earth Science AI applications. The impact factors and bottlenecks of CPU, 
GPU, and multi-GPU utilization need more investigation to best utilize GPU in Earth AI research. 
Additional Earth science applications that utilize different types of AI models such as graph neural 
networks and recurrent neural networks could be added to the testbed to cover the most advanced 
DL models.
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