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Vibration-Theoretic Approach to Vulnerability
Analysis of Nonlinear Vehicle Platoons

Pengcheng Wang, Xinkai Wu, Xiaozheng He

Abstract—This research explores the inherent vulnerability of
nonlinear vehicle platoons characterized by the oscillatory
behavior triggered by external perturbations. The perturbation
exerted on the vehicle platoon is regarded as an external force on
an object. Following the mechanical vibration analysis in
mechanics, this research proposes a vibration-theoretic approach
that advances our understanding of platoon vulnerability from
two aspects. First, the proposed approach introduces damping
intensity to characterize vehicular platoon vulnerability, which
divides platoon oscillations into two types, i.e., underdamped and
overdamped. The damping intensity measures the platoon's
recovery strength in responding to perturbations. Second, the
proposed approach can obtain the resonance frequency of a
nonlinear vehicle platoon, where resonance amplifies platoon
oscillation magnitude when the external perturbation frequency
equals the platoon's damping oscillation frequency. The main
contribution of this research lies in the analytical derivation of the
closed-form formulas of damping intensity and resonance
frequency. In particular, the proposed approach formulates
platoon dynamics under perturbation as a second-order non-
homogeneous ordinary differential equation, enabling rigorous
derivations and analyses for platoons with complicated nonlinear
car-following behaviors. Through simulations built on real-world
data, this paper demonstrates that an overdamped vehicle platoon
is more robust against perturbations, and an underdamped
platoon can be destabilized easily by exerting a perturbation at the
platoon's resonance frequency. The theoretical derivations and
simulation results shed light on the design of reliable platooning
control, either for human-driven or automated vehicles, to
suppress the adverse effects of oscillations.

Index Terms—Vehicle Platoon; Vulnerability; Mechanical
vibration theory; Damping characteristics

[. INTRODUCTION

riving in smooth traffic flow enhances travel

comfort, reduces fuel consumption and emissions, and
mitigates  collision risks. Unfortunately, traffic
oscillation, or stop-and-go traffic, occurs frequently,
particularly in congested traffic [1]. This phenomenon is likely
to elicit a variety of adverse effects, such as increased travel
delay and crash risk, driving discomfort, and extra fuel
consumption and pollution [2, 3]. To mitigate these adverse
effects, extensive studies seek to identify and analyze the
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contributing factors and resulted impacts on traffic stream using
stability analysis [4].

The aim of stability or instability analysis is to describe
whether a perturbation decays or amplifies along with a string
of vehicles [5-7]. Researchers, such as Gratzer et al. [8], have
developed robust methods for ensuring string stability in
automated vehicle platoons through predictive control.
Vegamoor et al. [9] explored string analysis in connected-
vehicle platoons under lossy V2V communication. Monteil et
al. [10] discussed the impact of the heterogeneity of vehicles on
string stability. String stability is considered a performance-
oriented approach, which ensures that the spacing errors
generated within the platoon are not amplified as they propagate
downstream [11]. Moreover, Feng et al. [12] presented different
definitions of string stability and analysis methods.

However, such analysis is unable to reveal the features
inherent in vehicle platoons, e.g., damping characteristics.
Gong et al. [13] found that for a stable vehicle platoon system,
the oscillations in the vehicle platoon should be damped when
they reach the tail of the platoon. Hajidavalloo et al. [14]
proposed using damping characteristics to capture the vehicle’s
tendency to resist large speed variance. Hence, in addition to
stability and instability analyses, the damping behavior of
vehicle platoons is another major concern in analyzing vehicle
platoon vulnerability when facing perturbations.

Vulnerability is a crucial concept being studied in diverse
fields. As suggested by Chen et al. [15], vulnerability is subject
to perturbation and thus could cause the system to collapse. In
transportation, vulnerability is defined as the susceptibility to
incidents that can cause considerable serviceability reduction in
transportation network [16]. Growing research has identified
vehicles' vulnerabilities and analyzed potential impacts [17].
For example, Ploeg ef al. [18] claimed that Cooperative
Adaptive Cruise Control (CACC) is vulnerable to
communication impairments such as packet loss, in which case
it would effectively degrade to conventional Adaptive Cruise
Control (ACC). Meanwhile, Zhou et al. [19] found that due to
the vulnerability of the communication process, the cyber-
attack may be launched by hackers. Hence, vulnerability is an
inherent characteristic of the vehicle platoon. The platoon with
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different control models and with/without communication
schemes has different vulnerabilities. However, most studies
focus on assessing the consequences of vulnerable systems
without much attention paid to inherent attributes leading to
system vulnerability.

To advance our understanding of platoon vulnerability to
more generic circumstances, this study proposes to explore a
platoon's vulnerability using the mechanical theory of the
forced vibration of a damped system [20], where an external
force exerted on an object will cause vibrations in the system.
In line with mechanical vibration theory, perturbations can be
regarded as external forces causing a vehicle platoon to
oscillate. If a perturbation (or force) is imposed on a vehicle (or
an object), the vehicle state (or object) will oscillate (or vibrate);
and once the perturbation (or force) stops, the oscillating
vehicle platoon (or vibrating object) restores its equilibrium
state. Hence, a tiny but sustained perturbation can cause severe
impacts on a vehicle platoon, calling for in-depth analyses of
vehicle platoon vulnerability. Furthermore, this research
provides detailed analyses and theoretical proofs on deriving
damping characteristics, i.e., damping intensity and resonance
frequency, and how resonance phenomena could occur in a
perturbed travel environment.

In summary, the main contributions of this paper include the
following three aspects. First, this research analyzes the vehicle
platoon vulnerability by modeling the system as a second-order
non-homogeneous ordinary differential equation, incorporating
a generic platoon control model with periodic perturbation.
Second, the proposed approach provides closed-form formulas
for the damping intensity and resonance frequency that are new
metrics for vulnerability analysis of vehicle platoon and can be
used to analyze the vulnerability of any vehicle platoon,
regardless of whether the underlying vehicle dynamics model
is linear or nonlinear. These closed-form formulas are
particularly useful for protecting platoons under automated
control, such as adaptive cruise control systems. Third, the
research evaluates the effectiveness of the proposed approach,
which illustrates that the periodic perturbation with a frequency
equal to the platoon's resonance frequency will degrade the
vehicle platooning reliability and amplify oscillation amplitude.
The damping intensity and resonance frequency derived from
the proposed approach are powerful measures to analyze
vehicle platoon vulnerability and protect the vehicle platoon
from adverse perturbations.

In the remainder of this paper, Section II derives closed-form
formulas of damping intensity and resonance frequency for
characterizing vehicle platoon oscillations. Section III
elaborates on vehicle platoon vulnerability by applying the
proposed analysis approach to a nonlinear vehicle dynamics
model. Numerical studies are carried out to demonstrate the
theoretical properties in Section IV, followed by the section
summarizing findings and future research directions.

II. VIBRATION-THEORETIC APPROACH

This section analytically derives damping oscillation
characteristics of vehicle platoons. Section 2.1 introduces a
generic vehicle dynamics model with no perturbation. Section
2.2 reformulates the car-following model into a vibration
expression in the form of a homogeneous ordinary differential
equation (ODE) by employing the mechanical vibration theory.
The reformulated ODE enables us to solve for the damping
oscillation frequency and damping intensity analytically. The
closed-form solutions to the ODE establish a rigorous
relationship between damping intensity and platoon’s
oscillation patterns. Section 2.3 extends the analysis to a vehicle
platoon under periodic perturbation, which is formulated as a
second-order non-homogeneous ODE. The derived closed-form
solutions to the non-homogeneous ODE establish the
theoretical foundation for addressing the occurrence of
resonance phenomenon and helps to explore the effect of
perturbation frequency on vehicle platoon oscillation.

A. Car-following model

To enhance the transferability of our proposed approach,
This study considers a vehicle platoon consisting of N identical
members indexed by n=1,---, N .

To analyze traffic dynamics, various car-following models
have been developed since the pioneering work [21]. A typical
stimulus-response car-following model has a generic form:

?.f,,(f)=Vn(t), (1)
v, (0) = £ (s,(0),,(0),Av,()).

where s, =x,_, —x, -/

n n—1

is the space gap and Av, =v, |, —v,
is the velocity difference between two consecutive vehicles.
Define v¢ and s° as uniform speed and gap, respectively, u

and y as the offsets of the speed and space gap with respect to
v and s°, respectively, i.e.,
v, =vi+u, s, =8 +y. 2)

In a steady state, each following vehicle has the same speed
and space gap. Hence, the second equation of Eq. (1) is deduced
as f(s°,V(s°),00=0 at equilibrium. When a perturbation
occurs, vehicles start oscillating [22]. This is Similar to a
spring-mass system: after removing an external force, the mass
vibrates from its equilibrium position. Due to the damper force,
the mass eventually recovers its steady state. To this end, the

next section will employ the mechanical theory to investigate
the platoon's vulnerability.

B. Damping oscillation analysis without perturbation

This section develops the damping characteristics of platoons
without perturbations by applying the unforced damping
vibration theory. For a spring-mass system, k& denotes the
recovery constant and d denotes the damper coefficient that
linearly restraints the mass movement. The generic dynamic

model of the spring-mass system is expressed as the following
homogeneous ODE [23]:
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k'(t)+ifc(t)+£x(t) =0, 3)
m m

where x(¢), x(¢), and X(¢) represent the position, speed and

acceleration of the mass, respectively.

Eq. (3) is a common expression of the spring-mass system
[24]. As discussed, vehicle platoon oscillations are like
mechanical vibrations. Hence, this study attempts to analyze the
platoon's oscillations using mechanical vibration theory. Our
previous study [25] has introduced Lemma 1 below, which
describes the oscillation of platoon vehicles following a second-
order differential equation in the form of Eq. (3).

Lemma 1. The vehicle platoon's oscillation dynamics follow
the second-order homogeneous ODE, i.e.,

Y 206 L1 iy =0, @
dr? 7 dt ’
L. N ; 9
whete ¢- (g o) ([T o= g po2r| e
2 ( ) ’ S o, °.5%) g os, 0555
and fAv :i
! aAvn (v°,5%)

In Lemma 1, notations w, and ¢ indicate the platoon's
resonance frequency and damping intensity against
perturbation. The ODE Eq. (4) can be solved by the
characteristic equation method. The closed-form solutions,
derived in Theorem 1, provide a rigorous way to analyze how
the damping intensity affects the vehicles' oscillations.

Theorem 1. Let y(0) and y(0) indicate the initial distance

offset and velocity offset, respectively. The solution of Eq. (4)
can be obtained in terms of different values of &:

(1) When & < 1,

y(t) = Ae > sin(w,t +¢,) (5)
2
where 2 [ 9(0)+Em,(0) _ o y0e, ]
A= [y(0 ST 20T g =t 4
\/y( : +( ’ ] homn [y(0)+cfwoy(0>
(ii) When & = 1,
y= e (yletwmlfz_il +yzeitwm/§2_71) (6)
where _Y(O)+(§+\/§2—1)woy(0) ) O -(6-E 1) 00
" 20,87 -1 T 20y4&* -1
(iii) When & > 1,
y=e™ (yle’“’“kz_'1 +yze"“°452_'l) (7
(0 2 —1 0 —(0)— _ 2 1 0
where ylzy( )+(§+\/§2 )a)gy( ),y2= (0) (:f \/i )a)oy()
20,4&" -1 20,4&" -1

Appendix A provides proof of Theorem 1. For the spring-
mass system, conditions § <1 and ¢ > 1 characterize the
underdamped and overdamped system, respectively. For a
underdamped system, the mass vibrates back and force around
the equilibrium; for an overdamped system, the mass hardly
vibrates and converges to its equilibrium without overshoot.
Applying this notion to a vehicle platoon, ¢ < 1 denotes that

vehicles could oscillate reciprocally around the steady state,
while & > 1 denotes that vehicles hardly oscillates and tend to
stabilize rapidly. Hence, the vehicle platoon system with & > 1
could make the platoon suppress the oscillating effect caused
by perturbations. This property helps to enhance platoon's

reliability in a perturbed travel environment.
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Fig. 1. Distance offset variations with different &

To illustrate the impacts of £ on platoon's oscillations, a set

of comparable oscillation curves can be constructed and
analyzed as follows. Fig. 1 plots four curves when &£ =0.1,

£=0.6, £=1 and £ =2. Other parameters are the same, i.e.,
y(0)=1, p(0)=1 and @, =0.5. This figure shows the decay
tendency of the oscillation with different values & . The two
curves with £ <1 (i.e., £=0.1 and £=0.6) present that the

distance offset fluctuates around the equilibrium line (i.e., y=0)
and decays gradually. When £2>1 (ie., £ =1 and £=2) the

distance offset converges to the equilibrium state without
overshoots. Hence, when a perturbation arises, an overdamped
system can restore its equilibrium state without much
oscillation compared to an underdamped system, implying a
lower risk of disruption. This section presents a vulnerability
analysis approach to vehicle platoon without perturbation. The
next section will extend this approach to explore the
vulnerability of vehicle platoons under perturbation.

C. Damping oscillation analysis with periodic perturbation
A perturbation on the vehicle platoon can be regarded as an
external force exerted on a mechanical system. For simplicity,
the perturbation is assumed to follow a periodic pattern,
enabling us to derive closed-form solutions to the ODE. By
introducing the external force to the vehicle platoon's
oscillation dynamics, the right-hand side of the second-order
ODE, i.e., Eq. (4), cannot maintain zero, yielding a non-
homogeneous ODE. The platoon oscillation characteristics
under a periodic perturbation can be derived as follows.
Lemma 2. A vehicle platoon's oscillation dynamics under
perturbation follow the second-order non-homogeneous ODE:
2
L 206 L v oy -, ®)
where u(¢) represents a periodic external perturbation.

Proof. This Lemma is self-explanatory.
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Note that the external force can be formulated as a Fourier
series as a superposition of a series of sinusoidal and cosine
functions. And any periodic functions can be transformed into
a Fourier series [26]. For simplicity, the following analysis
adopts a simple sinusoidal function, i.e., ()= Bsin(®,?) , in
which B is the maximum perturbation amplitude and @, the
perturbation frequency. Based on the non-homogeneous ODE
Eq. (8), the analytical relationship between the resonance
frequency @, and perturbation frequency @, can be derived
rigorously as follows.

Theorem 2. For an underdamped platoon, the solution to Eq.
(8) is represented by

) =y,O+y,® ©)
where yj(t) is the homogeneous solution and y,(t) is a
particular solution. In particular,

_ oo o[ 3@+ E@ Y O,
Y, ()= \/y(O) +[ o, j e sm[(ut,t + tan [y(0)+§m0y(0) j)
and .
v, 0= = - Si"[ 2lejen) Q)J
\/(a)oz—a)f) +(2a)0§a),) 1_(“)1/010)
Appendix B provides proof of this Theorem. According to
the closed-form solutions, Y = B/ 2v,$o, when wy = wy .

C()/ t —arctan

Under this condition, the particular solution, ¥, (t) reaches the
maximum amplitude. Namely, if perturbation frequency Wy is
equal to frequency w,, traffic flow would have the severest
oscillation with the maximum amplitude. In the mechanical
vibration system, this phenomenon is called resonance. The
above theoretical analyses lead to the following remarks.

Remark 1. The severest oscillation of the vehicle platoon
occurs when the perturbation is at the resonance frequency.

Remark 2. The damping analysis of a vehicle platoon differs
from platoon (in)stability analysis. The damping intensity
derived from the damping process characterizes the platoon's
recovery strength against perturbation.

Remark 3. The proposed approach is general enough to be
applied to analyze the vulnerability of vehicle platoons with
linear or nonlinear car-following behavior.

Remark 4. Periodic or pulse perturbations can be
approximated as a combination of multiple harmonic functions.
Thus, these types of perturbations can be captured by x(¢) on

the right-hand side of non-homogeneous ODE (8).

III. APPLICATION TO A PLATOON WITH NONLINEAR CAR-
FOLLOWING BEHAVIOR

Car-following models are commonly used to describe vehicle
interactions and platoon dynamics. An overview of car-
following models can be found in [27]. Linear car-following
models include Pipes model, Helly's model, and Gazis—
Herman—Rothery model. Nonlinear car-following models
include Newell's model, optimal velocity model, and the
Intelligent Driver Model (IDM). The fundamental difference
between these two types of car-following models is that the

nonlinear models capture a nonlinear relation with respect to
changes in the equilibrium speed and space gap. This section
specifies the vehicle dynamics using a nonlinear car-following
model, IDM, to demonstrate the applicability of our proposed
vibration-theoretic approach and enable detailed theoretical
validation and experimental analyses.

Compared to linear car-following models, nonlinear car-
following models are more suitable for describing the real
traffic flow due to their nonlinearity and sophistication in
capturing complex vehicle dynamics. This research adopts the
IDM due to its advantages as follows. First, the IDM is a multi-
regime model that could describe more realism than other
nonlinear models when characterizing the congested traffic
flow [28]. Second, the IDM ensures collision-free vehicle
movements, which would not cause unrealistic
acceleration/deceleration shown in other car-following models
[29]. The formulation of the IDM is expressed as follows [30]:

. O (s*0,@,80,) Y )
v,,(t)a[l[vvo j 7[7é Y, s”(t)v ] anh (10)

v, (D)-Av, ()

2Jab
where a represents the maximum acceleration, b the desired
deceleration, v, the maximum speed, s*the desired safety
space gap, Sy the minimum space gap in congestion, and T the
desired time gap. In the steady state, each vehicle travels with
. Eq. (10) yields the

sEW, (), Av, (1)) =5, +Tv,(t)—

identical velocity v° and space gap s°
uniform space gap as follows:

AN-12
e _ e _ Le
s(v)—(sO+Tv )[1 (VOJJ .

Nevertheless, once a perturbation occurs, the uniform space
gap and speed cannot maintain. Based on Eq. (4) in Lemma 1,
the inherent characteristics of a platoon with the nonlinear car-
following model IDM are provided below.

o =Nf s e=—2(rer)nT . (2

where 7 2a(s0+Tv J , f‘.:_4a(ve)3_M fA"zi\/Eﬂ.
¢ n n e b e

(In

S B T
These formulas imply that, because the steady space gap is

determined by steady velocity based on Eq. (11), the platoon's

vulnerability or inherent oscillation frequency @, is

determined by vehicles' mobility characteristics, including
maximum acceleration, desired time gap, and steady velocity.
Besides, the value of & is associated with other parameters,

1nclud1ng but not limited to desired decelerauon and velocity.

0.9

N 0.8
i 07
06

0.5

0.4

0.3

1
04 06 08 1 17. 14 16 18 2




>REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

(a) Damping intensity & (b) Resonance frequency @,
Fig. 2. Damping intensity and resonance frequency variations
To articulate how damping intensity ¢ and resonance

frequency w, are affected by different parameters, Fig. 2

depicts the variations of @, and ¢ with respect to a and T.

Other parameters are assumed as follows: s, =2m, b =4
m/s?, vy = 33m/s. The color bar on the right in Fig. 2a indicates
the value of £, and the color bar on the right in Fig. 2b indicates

the value of @, . These figures show that the resonance

frequency and damping intensity vary with parameters forming
in convex surfaces for a nonlinear car-following model. The
dashed line in Fig. 2a indicates the condition ¢ = 1, which
devides the region into two scenarios. Below the dashed line
that means & < 1, representing that the platoon system is
underdamped; otherwise, any platoon with parameters above
the dashed line, i.e., & > 1, represents an overdamped platoon
system. As Fig. 1 has illustrated, for an underdamped system
after perturbation, the distance offset fluctuates around the
equilibrium state and decays gradually; while for a perturbed
overdamped system, the distance offset converges to the
equilibrium state quickly without overshoots.

By far, the analytical solutions to the second-order non-
homogeneous ODE (8) reveal the resonance occurrence
condition and explain the relationship between perturbation
frequency and the vehicle platoon's oscillation patterns. In fact,
our proposed method could be further extended to platoons with
lane-change scenarios using models [31] beyond the scope of
this study. The next section will use simulation to verify these
theoretical results and further investigate the vehicle platoon
vulnerability under perturbations.

IV. SIMULATION STUDY

This section presents simulation studies to demonstrate the
effectiveness of the proposed vulnerability analysis approach.
The platoon is composed of 10 cars. The simulation applies the
IDM, Eq. (10), to update each platoon vehicle's kinematic state.
All cars' velocity is set as 15m/s, and every following car's
spacing gap is given by 10m. The total simulated time is 160 s.
Other parameters' values are provided below: maximum
velocity v, =33 /s, length of the car / =5 m, safe space gap

©
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s, =2m , desired acceleration a=4m/s* , and maximum

deceleration b =4 m/s’ as suggested in [22, 32].

Our simulation considers three scenarios: no perturbations,
with periodic perturbations, and the lead vehicle following a
real-world vehicle trajectory. Scenario I aims to uncover the
platooned vehicles' behaviors in underdamped and overdamped
systems. Scenario II presents the platoon's behaviors under
periodic perturbations. Scenario III applies our approach to a
real-world dataset.

A. Scenario I: without perturbations

The first scenario is used as a benchmark to show the impacts
of platoon's parameters on its oscillations without perturbations.
As shown in Eq. (12), different parameters could generate
different resonance frequencies and damping intensities. This
simulation scenario contains three cases. The first case is a =
4m/s?> and T = 1s. We can derive £ =1.01>1 based on Eq.

(12), which indicates an overdamped system as illustrated by
Fig. 3. The second case is a=1.5m/s’ and T =1s , with
corresponding & =0.86 <1 as illustrated by Fig. 4. The third
case is a=15m/s*> and T=12s with £=0.84<1 , as

illustrated by Fig. 5. The last two cases indicate an
underdamped system.

Fig. 3 and Fig. 4 present patterns of the platoon's dynamics
for the underdamped and overdamped systems. Fig. 3 shows a
rapid convergence to the equilibrium state, while Fig. 4 shows
the platoon's oscillation behavior. The main difference between
the two figures lies in the fluctuation amplitude. The curves of
speed, and space gap in Fig. 4 have not traversed the
equilibrium lines, but curves in Fig. 3 have traversed the
equilibrium lines, also known as overshoots.

Moreover, Fig. 5 shows the impact of desired time gap T on
the vehicle platoon dynamics after a perturbation. The vehicle
platoon systems in Fig. 4 and Fig. 5 are underdamped due to &

<1 in both cases. It can be found that the larger desired time gap
would lead to a larger fluctuation amplitude and a slower
recovery process to the equilibrium. Figs. 3-5 illustrate that the
value of ¢ is correlated to the fluctuation pattern of platoons.

The simulation results are in line with the theoretical results.
The proposed vibration-theoretic approach provides such an

effective measure to characterize vehicle platoon's oscillation.
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Fig. 3. Plots of position, velocity, and gap variations when @ =4 m/s* and T =1s
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B. Scenario II: with periodical perturbations

The second scenario focuses on the impacts of periodical
perturbations on the vehicle platoon's oscillation behavior.
External perturbations can influence the vehicles' behaviors
through falsifying velocity, position, and acceleration messages
[33, 34]. Different perturbation patterns cause different
vehicles' behaviors. Without loss of generality, this simulation
scenario assumes the leading vehicle's speed is perturbed in a
sinusoidal fashion, i.e.,

(t) = w(t) + Bsin(ar) , (13)
where V(¢) is the falsified velocity, B is the maximum

amplitude of the velocity deviation, and Bsin(wt) indicates the
perturbation pattern of the velocity deviation.

For comparison, same as Fig. 4, assume a = 15 m/s?,
T =1.2's and the initialized velocity 15m/s . Then, the steady

gap is calculated as 20.44 m based on Eq. (11). The vehicle
platoon's resonance frequency can be obtained as @, =0.37
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rad/s. Meanwhile, the damping intensity is derived as & =
0.84 < 1, indicating a underdamped system. Assume the
perturbation occurs at t = 10s and lasts 100 seconds.

In Fig. 6 to Fig. 8, the perturbation occurs between the two
dashed lines. These three figures illustrate the impacts of
different perturbation frequencies on vehicles' dynamics. In
detail, Fig. 6-8 show the impacts of the perturbation frequency
with w = wy — 0.2 =0.17 w = wy, =037, and w = Wy +
0.2 = 0.57 rad/s on vehicles' dynamics, respectively. Here, the
perturbation amplitude is set as B = 5 m/s.

Comparing these figures, one can find that a perturbation
with the resonance frequency leads to the most significant
oscillations in terms of position, velocity, and gap. This
phenomenon is consistent with mechanical resonance in the
spring-mass system. In addition, these simulation results
demonstrate that our proposed approach is meaningful and
effective in revealing the vulnerability of a vehicle platoon.
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Fig. 9 Plots of vehicle #2930 from the reconstructed NGSIM data

C. Scenario I1I: leading vehicle following a trajectory from
the NGSIM dataset

This scenario assumes that the leading vehicle follows a
practical vehicle's trajectory from the real world provided by
the NGSIM dataset, which is a set of human-driven vehicle data
available for traffic phenomena interpretation, parameters
calibration, and theory validation [35]. Practical trajectory data
used in this study are from the northbound traffic on I80 in
Emeryville, California, which records from 4:00 p.m. to 4:15
p-m. on April 13, 2005, in NGSIM 180-1 dataset [36]. Our
simulation adopts this data to analyze vehicles' behaviors under
underdamped and overdamped conditions. The leading car
adopts the practical vehicle's trajectory data and the nine
following adopt the IDM platoon control strategy. Other
parameters' values are same as Scenarios I and II. Note that
some data quality problems including data missing, incorrect
data and redundant data in the original NGSIM data. Hence, this
study adopts the filtered and reconstructed data [37, 38] to
mitigate the data noise. Herein, the leading vehicle uses the data

of vehicle #2930 in the reconstructed dataset that shows
significant undulating position, velocity, and acceleration.
Vehicle #2930 is travelling in Lane 2 from 4:00 p.m. to 4:15
p-m. on April 13, 2005. This vehicle’s trajectory is presented in
Fig. 9.

This simulation scenario contains three cases. In the first
case, a=5m/s’ and T =1.6s. Accordingly, we can derive
£=1.02>1 using Eq. (12), which corresponds to an
overdamped system. In the second case, a =5m/s’, T=1s .
We can derive £ =0.98 <1 corresponding to an underdamped
system. In the third case, a=3m/s*> and T=0.6s , with
£ =0.89<1 based on Eq. (12), which also corresponds to an
underdamped platoon system.

The velocity data of the lead vehicle, illustrated in Fig. 9,
clearly show that the platoon cannot travel with a constant state,
and thus it can be regarded as traveling in a continuously
perturbed environment. In this perturbed environment, the
platoon oscillation characteristics depends heavily on the



>REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

damping intensity. When the vehicle platoon is overdamped,
oscillations of the following vehicles decay over the platoon
(see Fig. 10). By contrast, oscillations of the following vehicles
do not decay over the string when the platoon system is
underdamped. Especially, in Fig. 12, the oscillations grow over
the platoon. These figures illustrate that there are serious
oscillations in the underdamped vehicle platoon system but no
significant oscillations appear in the overdamped vehicle
platoon system when comparing Fig. 10 to Fig. 11 and Fig. 12.
These results confirm that an overdamped system has stronger
resistance against perturbations than an underdamped system.
Through these numerical experiments, we have verified the

theoretical results derived in Section 2 and illustrated the
400 14

300

O}f” Last car

Position (m)
Velocity (m/s)

-100

vehicle platoon dynamics under various perturbations. The
simulation results of Scenario I showed that an overdamped
platoon system oscillates less than an underdamped platoon
system when there is no external perturbations. Scenario II
shows that resonance frequency could make the vehicle platoon
oscillate the most violently. And Scenario III presents that the
developed method is verified to be effective to investigate
vehicle platoon’s oscillation behaviors in a real-world travel
environment. All these results demonstrate that the derived
damping intensity is an effective tool that can well characterize
the oscillations for vehicle paltoons traveling in a perturbed
environment.
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V. CONCLUSIONS

Our research employs the mechanical vibration theory to
analyze vehicle platoon vulnerability and elaborated on the
vulnerability of the platoon associated with its resonance
frequency and damping intensity. Simulations are carried out to
verify the effectivenss of our proposed method.

Our main findings are summarized as follows. (1) This paper
explores the resonance phenomena of nonlinear vehicle
platoons under perturbations through rigorous theoretical
analysis and proofs, leading to a closed-form formula for the
oscillation amplitude under resonance. (2) A new approach has
been developed that applies damping intensity to evaluate the
vulnerability of vehicle platoons, by categorizing platoon
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oscillations into two types: underdamped and overdamped. An
overdamped system is more resilient to perturbations than an
underdamped system. (3) This paper applies human-driven
vehicle trajectory data from the NGSIM dataset to validate their
findings through simulation. The simulation results are
consistent with their theoretical analysis. (4) The analysis and
simulation results suggest that perturbations with the resonance
frequency can lead to the most significant oscillations. (5) Our
proposed method has significant practical implications,
especially for the safety of CAV systems. For example, a hacker
could send a sequence of malicious messages to AVs or CAVs,
leading to oscillations coinciding with platoon resonance
frequency, to achieve disastrous impacts. Therefore, avoiding
resonance perturbations is crucial to safeguard vehicle platoon
safety and resist large amplitude oscillations.

However, there still exist some limitations of our method. For
broader applications in the future, the proposed approach can
be extended to incorporate complex communication topologies
such as bidirectional and multiple predecessor-following types
for connected automated vehicle (CAV) platoons. In particular,
communication latency is an essential feature of CAV systems.
Its effect on platoon vulnerability is worth an in-depth
investigation. In CAV systems impacted by time-varying
communication topology and/or communication latency,
vehicle dynamics will change and affect the system's resonance
and damping behaviors. Moreover, the proposed approach
cannot used to analyze heterogeneous traffic. Future research
will design innovative vehicle platooning control protocols to
help heterogeneous vehicles against exerted perturbations in
real-time by leveraging the findings of platoon vulnerability in
this study. In addition, this study has not explained how to avoid
the resonance perturbation on vehicles. There are many ways to
avoid resonance perturbations. For example, applying the
compensation control [39, 40] to reduce the magnitude or avoid
resonance. However, developing such solutions requires
another thorough study, which left for future study.

APPENDIX
A. Proof of Theorem 1

Note that the vehicle's oscillation amplitude is determined by
the size of the space gap error y. It is necessary to solve the
ordinary differential equation Eq. (4). Applying the
characteristic equation method [41], a specific solution is
obtained as follows:

y(1) = 4e”, (14)
where s = iw is a Laplace variable and A4 is an amplitude to be
determined. Take the first and second derivatives of Eq. (14) to
determine the velocity and acceleration, respectively, i.e.,

J(t)=sde” and J(t) =s"Ade". (15)

Substituting Egs. (14) and (15) into Eq (4) results in

s*Ae” +2w,Esde” + ) de” =0 .

(16)

Grouping term gives (s2 +2w,Es+ )Ae“" =0. Obviously,

at least one of two terms is equivalent to zero. If Ae” =0, it

represents there is no oscillation. Note that our focus is on

investigating the vehicle platoon's oscillations, i.e.:
s +2a)s+a) =0. (17

Eq. (17) is used to obtain our fluctuation solution. We can

identify the inherent oscillation frequency when the platoon

oscillates. Using the quadratic formula, we can have two roots:

s=(—§i\/f,‘2_—1)a)o. (18)

The form of the solution of Eq. (18) depends upon &. There
are three possibilities depending on whether ¢ is greater, less
than, or equal to 1.

(i) When &£ <1, the characteristic roots equation (17)
becomes

s, :(—.§+i./1—§2 )a)o and s, = (—g—i,/l—gz )a)o. (19)
Hence, the general solution of Eq. (4)is given by
y(t) — e—fwot (yleitw0 1-£2 _,’_yze—it(u0 1-&2 ) .

The underdamped motion is oscillatory with a diminishing

(20)

amplitude. The inherent frequency @, is introduced to capture
the vibration frequency of the damper system, i.e.,
o, =o1-& . (21)
Furthermore, the solution of Eq. (4) can be rewritten as
Yy = (ne ™ + 7). (22)

An alternative form of the solution Eq. (22) is developed by
using the trigonometric identity and Euler's identity,

y(1)=Ae** sin(w,t+¢,),

Where A _\/y(O)Z +[y(0)+§a)(]y(0)j2 ’ ¢d _ tan][

d

(23)

y(O)e, J
7(0)+ S, ¥(0)

(il)) When & = 1, there is only one root w,. This indicates a
transition between the oscillatory and the aperiodic damped
oscillations. Due to the repeated roots, an additional term

te ™" is needed to keep the necessary number of arbitrary
constants to satisfy both the initial conditions. Hence, the
common solution is derived as

y(@)= (yl +y2t)e_wﬂt >

where y, = y(0), and y, = y(0)+,»(0).
Even if the algebraic growth t, the solution still returns to its
steady position as ¢ —> oo since the exponential decay is much

24

stronger than an algebraic growth. In this case, the perturbation
of traffic flow will return to an equilibrium state in the shortest
possible time without oscillation.

(iii) When ¢ > 1, Eq. (17) has two real roots, and the motion
is overdamped, i.e.,

s]=(—§+\/§2_—1)a)0 and s2=(—§—\/ﬁ)a)o.(25)

Hence, the solution of Eq. (4) is
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(26)

- \/ 21 - J 2
y=e fw"t(yle’w" ¢ +ye 1§ )’

where  JO+HEETN)ay© gng  —O-(6-JE 1) a0
_ ), =

b 2
1 20,4E -1 2 -1

The proof of Theorem 1 is complete.

B. Proof of Theorem 2

Note that Eq. (8) is a non-homogenous ODE. According to
the characteristic equation method and the superposition
solution [24], the common solution of Eq. (8) can be given by

y(@) =y, (O +y,@) 27)
where y,(t) is a homogeneous solution, the solution is
obtained if u(t) = 0 and y,(t) is a specific solution which is
specific to u(t).

When p(t) = 0, Eq. (8) degenerates to Eq. (4). Thus, for an
underdamped platoon system, the solution of Eq. (4) is equal to
Eq. (5),i.e.,

v, ()= ,"(0)Z +(7y(0)+ §a)oy(0)J e .sin (a{,t +tan”" [7)}(0)@" D : (28)
o, 7(0)+ 0, 1(0)

When u(7) = Bsin(w,1) #0, y,(¢) is a particular solution
that is specific to u(¢) . Hence, we can assume the particular
solution to be of the form of

v, ) =Ysin(o,t-4¢), (29)
where Y is the oscillation amplitude and ¢ is the displacement

phase with respect to the periodic perturbation.
Substituting Eq. (29) into Eq. (8), we can derive

sin(a)ft)[(ij—Ywi)cos¢+2w0§Ya)f sin¢—BJ (30)

+cos(w, 1) [—(a)gY— Ya);)singb +20, Y0, cosﬂ =0
Because functions sin(w,#) and cos(®,7) are independent
[42], Eq. (30) implies that
(Y — Y] )cos g+ 20,EY o, sing— B =0 31)
~(@Y —Y ) )sing+2m,EYw, cosg=0
Based on Eq. (31), we have
¢ = arctan 725(60”/@")2 and B :
1=~(o, /@) J@i -2 + (2o, |

The proof is complete.
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