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Vibration-Theoretic Approach to Vulnerability 

Analysis of Nonlinear Vehicle Platoons 
 

Pengcheng Wang, Xinkai Wu, Xiaozheng He 
 

 Abstract—This research explores the inherent vulnerability of 

nonlinear vehicle platoons characterized by the oscillatory 

behavior triggered by external perturbations. The perturbation 

exerted on the vehicle platoon is regarded as an external force on 

an object. Following the mechanical vibration analysis in 

mechanics, this research proposes a vibration-theoretic approach 

that advances our understanding of platoon vulnerability from 

two aspects. First, the proposed approach introduces damping 

intensity to characterize vehicular platoon vulnerability, which 

divides platoon oscillations into two types, i.e., underdamped and 

overdamped. The damping intensity measures the platoon's 

recovery strength in responding to perturbations. Second, the 

proposed approach can obtain the resonance frequency of a 

nonlinear vehicle platoon, where resonance amplifies platoon 

oscillation magnitude when the external perturbation frequency 

equals the platoon's damping oscillation frequency. The main 

contribution of this research lies in the analytical derivation of the 

closed-form formulas of damping intensity and resonance 

frequency. In particular, the proposed approach formulates 

platoon dynamics under perturbation as a second-order non-

homogeneous ordinary differential equation, enabling rigorous 

derivations and analyses for platoons with complicated nonlinear 

car-following behaviors. Through simulations built on real-world 

data, this paper demonstrates that an overdamped vehicle platoon 

is more robust against perturbations, and an underdamped 

platoon can be destabilized easily by exerting a perturbation at the 

platoon's resonance frequency. The theoretical derivations and 

simulation results shed light on the design of reliable platooning 

control, either for human-driven or automated vehicles, to 

suppress the adverse effects of oscillations. 

 
Index Terms—Vehicle Platoon; Vulnerability; Mechanical 

vibration theory; Damping characteristics 

 

I. INTRODUCTION 

riving in smooth traffic flow enhances travel 

comfort, reduces fuel consumption and emissions, and 

mitigates collision risks. Unfortunately, traffic 

oscillation, or stop-and-go traffic, occurs frequently, 

particularly in congested traffic [1]. This phenomenon is likely 

to elicit a variety of adverse effects, such as increased travel 

delay and crash risk, driving discomfort, and extra fuel 

consumption and pollution [2, 3]. To mitigate these adverse 

effects, extensive studies seek to identify and analyze the 
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contributing factors and resulted impacts on traffic stream using 

stability analysis [4].  

The aim of stability or instability analysis is to describe 

whether a perturbation decays or amplifies along with a string 

of vehicles [5-7]. Researchers, such as Gratzer et al. [8], have 

developed robust methods for ensuring string stability in 

automated vehicle platoons through predictive control. 

Vegamoor et al. [9] explored string analysis in connected-

vehicle platoons under lossy V2V communication. Monteil et 

al. [10] discussed the impact of the heterogeneity of vehicles on 

string stability. String stability is considered a performance-

oriented approach, which ensures that the spacing errors 

generated within the platoon are not amplified as they propagate 

downstream [11]. Moreover, Feng et al. [12] presented different 

definitions of string stability and analysis methods. 

However, such analysis is unable to reveal the features 

inherent in vehicle platoons, e.g., damping characteristics. 

Gong et al. [13] found that for a stable vehicle platoon system, 

the oscillations in the vehicle platoon should be damped when 

they reach the tail of the platoon. Hajidavalloo et al. [14] 

proposed using damping characteristics to capture the vehicle’s 

tendency to resist large speed variance. Hence, in addition to 

stability and instability analyses, the damping behavior of 

vehicle platoons is another major concern in analyzing vehicle 

platoon vulnerability when facing perturbations.  

Vulnerability is a crucial concept being studied in diverse 

fields. As suggested by Chen et al. [15], vulnerability is subject 

to perturbation and thus could cause the system to collapse. In 

transportation, vulnerability is defined as the susceptibility to 

incidents that can cause considerable serviceability reduction in 

transportation network [16]. Growing research has identified 

vehicles' vulnerabilities and analyzed potential impacts [17]. 

For example, Ploeg et al. [18] claimed that Cooperative 

Adaptive Cruise Control (CACC) is vulnerable to 

communication impairments such as packet loss, in which case 

it would effectively degrade to conventional Adaptive Cruise 

Control (ACC). Meanwhile, Zhou et al. [19] found that due to 

the vulnerability of the communication process, the cyber-

attack may be launched by hackers. Hence, vulnerability is an 

inherent characteristic of the vehicle platoon. The platoon with 
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different control models and with/without communication 

schemes has different vulnerabilities. However, most studies 

focus on assessing the consequences of vulnerable systems 

without much attention paid to inherent attributes leading to 

system vulnerability. 

To advance our understanding of platoon vulnerability to 

more generic circumstances, this study proposes to explore a 

platoon's vulnerability using the mechanical theory of the 

forced vibration of a damped system [20], where an external 

force exerted on an object will cause vibrations in the system. 

In line with mechanical vibration theory, perturbations can be 

regarded as external forces causing a vehicle platoon to 

oscillate. If a perturbation (or force) is imposed on a vehicle (or 

an object), the vehicle state (or object) will oscillate (or vibrate); 

and once the perturbation (or force) stops, the oscillating 

vehicle platoon (or vibrating object) restores its equilibrium 

state. Hence, a tiny but sustained perturbation can cause severe 

impacts on a vehicle platoon, calling for in-depth analyses of 

vehicle platoon vulnerability. Furthermore, this research 

provides detailed analyses and theoretical proofs on deriving 

damping characteristics, i.e., damping intensity and resonance 

frequency, and how resonance phenomena could occur in a 

perturbed travel environment.  

In summary, the main contributions of this paper include the 

following three aspects. First, this research analyzes the vehicle 

platoon vulnerability by modeling the system as a second-order 

non-homogeneous ordinary differential equation, incorporating 

a generic platoon control model with periodic perturbation. 

Second, the proposed approach provides closed-form formulas 

for the damping intensity and resonance frequency that are new 

metrics for vulnerability analysis of vehicle platoon and can be 

used to analyze the vulnerability of any vehicle platoon, 

regardless of whether the underlying vehicle dynamics model 

is linear or nonlinear. These closed-form formulas are 

particularly useful for protecting platoons under automated 

control, such as adaptive cruise control systems. Third, the 

research evaluates the effectiveness of the proposed approach, 

which illustrates that the periodic perturbation with a frequency 

equal to the platoon's resonance frequency will degrade the 

vehicle platooning reliability and amplify oscillation amplitude. 

The damping intensity and resonance frequency derived from 

the proposed approach are powerful measures to analyze 

vehicle platoon vulnerability and protect the vehicle platoon 

from adverse perturbations. 

In the remainder of this paper, Section II derives closed-form 

formulas of damping intensity and resonance frequency for 

characterizing vehicle platoon oscillations. Section III 

elaborates on vehicle platoon vulnerability by applying the 

proposed analysis approach to a nonlinear vehicle dynamics 

model. Numerical studies are carried out to demonstrate the 

theoretical properties in Section IV, followed by the section 

summarizing findings and future research directions. 

II. VIBRATION-THEORETIC APPROACH 

This section analytically derives damping oscillation 

characteristics of vehicle platoons. Section 2.1 introduces a 

generic vehicle dynamics model with no perturbation. Section 

2.2 reformulates the car-following model into a vibration 

expression in the form of a homogeneous ordinary differential 

equation (ODE) by employing the mechanical vibration theory. 

The reformulated ODE enables us to solve for the damping 

oscillation frequency and damping intensity analytically. The 

closed-form solutions to the ODE establish a rigorous 

relationship between damping intensity and platoon’s 

oscillation patterns. Section 2.3 extends the analysis to a vehicle 

platoon under periodic perturbation, which is formulated as a 

second-order non-homogeneous ODE. The derived closed-form 

solutions to the non-homogeneous ODE establish the 

theoretical foundation for addressing the occurrence of 

resonance phenomenon and helps to explore the effect of 

perturbation frequency on vehicle platoon oscillation. 

A. Car-following model 

To enhance the transferability of our proposed approach, 

This study considers a vehicle platoon consisting of N identical 

members indexed by , ,1n N= .  

To analyze traffic dynamics, various car-following models 

have been developed since the pioneering work [21]. A typical 

stimulus-response car-following model has a generic form:  

 
( )

( ) ( ),

( ) ( ), ( ), ( .)

n n

n n n n

x t v t

v t f vs t v tt 

=

=
 (1) 

where 
1 1n n n ns x x l− −= − −  is the space gap and 

1n nn v vv −= −  

is the velocity difference between two consecutive vehicles. 

Define 
ev  and 

es  as uniform speed and gap, respectively,   

and y  as the offsets of the speed and space gap with respect to 

ev  and 
es , respectively, i.e., 

 ee , .n nsv sv y == + +  (2) 

In a steady state, each following vehicle has the same speed 

and space gap. Hence, the second equation of Eq. (1) is deduced 

as 
e e( , ( ),0) 0f s V s =  at equilibrium. When a perturbation 

occurs, vehicles start oscillating [22]. This is Similar to a 

spring-mass system: after removing an external force, the mass 

vibrates from its equilibrium position. Due to the damper force, 

the mass eventually recovers its steady state. To this end, the 

next section will employ the mechanical theory to investigate 

the platoon's vulnerability. 

B. Damping oscillation analysis without perturbation 

This section develops the damping characteristics of platoons 

without perturbations by applying the unforced damping 

vibration theory. For a spring-mass system, k  denotes the 

recovery constant and d  denotes the damper coefficient that 

linearly restraints the mass movement. The generic dynamic 

model of the spring-mass system is expressed as the following 

homogeneous ODE [23]: 
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 ( ) ( ) ( ) 0
d k

x t x t x t
m m

+ + = , (3) 

where ( )x t , ( )x t , and ( )x t  represent the position, speed and   

acceleration of the mass, respectively. 

Eq. (3) is a common expression of the spring-mass system 

[24]. As discussed, vehicle platoon oscillations are like 

mechanical vibrations. Hence, this study attempts to analyze the 

platoon's oscillations using mechanical vibration theory. Our 

previous study [25] has introduced Lemma 1 below, which 

describes the oscillation of platoon vehicles following a second-

order differential equation in the form of Eq. (3).  

Lemma 1. The vehicle platoon's oscillation dynamics follow 

the second-order homogeneous ODE, i.e.,   

 
2

2

02 0 02
d y dy

y
dtdt

 + + = ,  (4) 

where ( )
1

2

vv s

n n nf f f = − − , 2

0

s

nf = , 
e e( , )

=v

n

n v s

f
f

v





, 
e e( , )

=s

n

n v s

f
f

s





 

and 
e e( , )

v

n

n v s

f
f

v






=



. 

In Lemma 1, notations 𝜔0  and 𝜉  indicate the platoon's 

resonance frequency and damping intensity against 

perturbation. The ODE Eq. (4) can be solved by the 

characteristic equation method. The closed-form solutions, 

derived in Theorem 1, provide a rigorous way to analyze how 

the damping intensity affects the vehicles' oscillations.  

Theorem 1. Let (0)y  and (0)y  indicate the initial distance 

offset and velocity offset, respectively. The solution of Eq. (4) 

can be obtained in terms of different values of  : 

(i) When 𝜉 < 1, 

 ( )0( ) sin d d

t
y tt Ae

  −
+=  (5) 

where 0

2

2 (0)(0)
(0)

d

y
A

y
y





 +
= +  

 

, 1

0

(0)
tan

(0) (0)

d

d

y

y y






−  
=  

+ 

. 

(ii) When 𝜉 = 1, 

 ( )2 2
0 00 1 1

1 2

t tt
y e y e y e

    − − −−
= +  (6) 

where ( ) ( )
2

2 2

0 0

2 2
1

0 0 1

(0) (0) (0) (0)
,

2 2

1 1

1

y y y y
y y

     

   

+ − −
= =

+ − − −

− −

. 

(iii) When 𝜉 > 1, 

 ( )2 2
0 00 1 1

1 2

t tt
y e y e y e

    − − −−
= +  (7) 

where ( ) ( )
2

2 2

0 0

2 2
1

0 0 1

(0) (0) (0) (0)
,

2 2

1 1

1

y y y y
y y

     

   

+ − −
= =

+ − − −

− −

. 

Appendix A provides proof of Theorem 1. For the spring-

mass system, conditions 𝜉 < 1  and 𝜉 ≥ 1  characterize the 

underdamped and overdamped system, respectively. For a 

underdamped system, the mass vibrates back and force around 

the equilibrium; for an overdamped system, the mass hardly 

vibrates and converges to its equilibrium without overshoot. 

Applying this notion to a vehicle platoon, 𝜉 < 1 denotes that 

vehicles could oscillate reciprocally around the steady state, 

while 𝜉 ≥ 1 denotes that vehicles hardly oscillates and tend to 

stabilize rapidly. Hence, the vehicle platoon system with 𝜉 ≥ 1 

could make the platoon suppress the oscillating effect caused 

by perturbations. This property helps to enhance platoon's 

reliability in a perturbed travel environment.  

 
Fig. 1. Distance offset variations with different 𝜉 

To illustrate the impacts of   on platoon's oscillations, a set 

of comparable oscillation curves can be constructed and 

analyzed as follows. Fig. 1 plots four curves when 0.1 = , 

0.6 = , 1 =  and 2 = . Other parameters are the same, i.e., 

(0) 1y = , (0) 1y =  and 
0 0.5 = . This figure shows the decay 

tendency of the oscillation with different values  . The two 

curves with 1   (i.e., 0.1 =  and 0.6 = ) present that the 

distance offset fluctuates around the equilibrium line (i.e., y=0) 

and decays gradually. When 1   (i.e., 1 =  and 2 = ) the 

distance offset converges to the equilibrium state without 

overshoots. Hence, when a perturbation arises, an overdamped 

system can restore its equilibrium state without much 

oscillation compared to an underdamped system, implying a 

lower risk of disruption. This section presents a vulnerability 

analysis approach to vehicle platoon without perturbation. The 

next section will extend this approach to explore the 

vulnerability of vehicle platoons under perturbation. 

C. Damping oscillation analysis with periodic perturbation 

A perturbation on the vehicle platoon can be regarded as an 

external force exerted on a mechanical system. For simplicity, 

the perturbation is assumed to follow a periodic pattern, 

enabling us to derive closed-form solutions to the ODE. By 

introducing the external force to the vehicle platoon's 

oscillation dynamics, the right-hand side of the second-order 

ODE, i.e., Eq. (4), cannot maintain zero, yielding a non-

homogeneous ODE. The platoon oscillation characteristics 

under a periodic perturbation can be derived as follows. 

Lemma 2. A vehicle platoon's oscillation dynamics under 

perturbation follow the second-order non-homogeneous ODE: 

 0

2
2

02
2 ( )

d y dy
y

dtdt
t  + + = ,  (8) 

where ( )t  represents a periodic external perturbation. 

Proof. This Lemma is self-explanatory.  
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Note that the external force can be formulated as a Fourier 

series as a superposition of a series of sinusoidal and cosine 

functions. And any periodic functions can be transformed into 

a Fourier series [26]. For simplicity, the following analysis 

adopts a simple sinusoidal function, i.e., ( ) sin( )ft B t = , in 

which B is the maximum perturbation amplitude and f  the 

perturbation frequency. Based on the non-homogeneous ODE 

Eq. (8), the analytical relationship between the resonance 

frequency 
0  and perturbation frequency f  can be derived 

rigorously as follows.  

Theorem 2. For an underdamped platoon, the solution to Eq. 

(8) is represented by 

 ( ) ( ) ( )h py t y t y t= +  (9) 

where 𝑦ℎ(𝑡)  is the homogeneous solution and 𝑦𝑝(𝑡)  is a 

particular solution. In particular, 

02 10

0

2

(0)
( ) (0) sin

(0) (0)
tan

(0) (0)

d

d

d

t

h

y
y t

y y
y e t

y y

 


 

− −
  +

= +     


 
+  

+   

and 

( ) ( )

( )

( )
0

22
2 2

00

2

0

2
sin arctan

12

( )
f

f

ff f

p

B
y t t

  


    

= −


−

 
 

 

−+

. 

Appendix B provides proof of this Theorem. According to 

the closed-form solutions, 02 fY B  =  when 𝜔0 = 𝜔𝑓 . 

Under this condition, the particular solution, 𝑦𝑝(𝑡) reaches the 

maximum amplitude. Namely, if perturbation frequency 𝜔𝑓 is 

equal to frequency 𝜔0 , traffic flow would have the severest 

oscillation with the maximum amplitude. In the mechanical 

vibration system, this phenomenon is called resonance. The 

above theoretical analyses lead to the following remarks.  

Remark 1. The severest oscillation of the vehicle platoon 

occurs when the perturbation is at the resonance frequency. 

Remark 2. The damping analysis of a vehicle platoon differs 

from platoon (in)stability analysis. The damping intensity 

derived from the damping process characterizes the platoon's 

recovery strength against perturbation. 

Remark 3. The proposed approach is general enough to be 

applied to analyze the vulnerability of vehicle platoons with 

linear or nonlinear car-following behavior. 

Remark 4. Periodic or pulse perturbations can be 

approximated as a combination of multiple harmonic functions. 

Thus, these types of perturbations can be captured by ( )t on 

the right-hand side of non-homogeneous ODE (8). 

III. APPLICATION TO A PLATOON WITH NONLINEAR CAR-

FOLLOWING BEHAVIOR 

Car-following models are commonly used to describe vehicle 

interactions and platoon dynamics. An overview of car-

following models can be found in [27]. Linear car-following 

models include Pipes model, Helly's model, and Gazis–

Herman–Rothery model. Nonlinear car-following models 

include Newell's model, optimal velocity model, and the 

Intelligent Driver Model (IDM). The fundamental difference 

between these two types of car-following models is that the 

nonlinear models capture a nonlinear relation with respect to 

changes in the equilibrium speed and space gap. This section 

specifies the vehicle dynamics using a nonlinear car-following 

model, IDM, to demonstrate the applicability of our proposed 

vibration-theoretic approach and enable detailed theoretical 

validation and experimental analyses.  

Compared to linear car-following models, nonlinear car-

following models are more suitable for describing the real 

traffic flow due to their nonlinearity and sophistication in 

capturing complex vehicle dynamics. This research adopts the 

IDM due to its advantages as follows. First, the IDM is a multi-

regime model that could describe more realism than other 

nonlinear models when characterizing the congested traffic 

flow [28]. Second, the IDM ensures collision-free vehicle 

movements, which would not cause unrealistic 

acceleration/deceleration shown in other car-following models 

[29]. The formulation of the IDM is expressed as follows [30]:  

 

4 2

0

0

( ) *( ( ), )
( ) 1 with

(

( )
*( ( ), ,

( )

) ( )
2

)

( )
( )

n n

n

n

n n

n

n

n

n

v

v

v t s v t t
v t a

v s t

v t t
s v t t sv Tv t

ab

    
 = − −   
    

=




+ −





 (10) 

where 𝑎  represents the maximum acceleration, 𝑏  the desired 

deceleration, 𝑣0  the maximum speed, 𝑠∗ the desired safety 

space gap, 𝑠0 the minimum space gap in congestion, and 𝑇 the 

desired time gap. In the steady state, each vehicle travels with 

identical velocity 
ev  and space gap 

es . Eq. (10) yields the 

uniform space gap as follows: 

 ( )
1 2

4
e

e e

0

0

( ) 1 .
v

s v s Tv
v

−

  
 = + −  
   

  (11) 

Nevertheless, once a perturbation occurs, the uniform space 

gap and speed cannot maintain. Based on Eq. (4) in Lemma 1, 

the inherent characteristics of a platoon with the nonlinear car-

following model IDM are provided below. 

 ( )0

1
,

2
,s v

n

v s

n n nf f f f  = = − +  (12) 

where 
2

e

0

e e

2s

n

s Tva
f

s s

 +
=  

 

, 
ee 3

0

4 e 2

0

)24

( )

(

(

)

)

(v

n

aa
f

v

T s Tv

s

v +
= − − , 

ee

0

e en

v a s Tvv
f

bs s

 +
= . 

These formulas imply that, because the steady space gap is 

determined by steady velocity based on Eq. (11), the platoon's 

vulnerability or inherent oscillation frequency 
0  is 

determined by vehicles' mobility characteristics, including 

maximum acceleration, desired time gap, and steady velocity. 

Besides, the value of   is associated with other parameters, 

including but not limited to desired deceleration and velocity. 
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(a) Damping intensity   (b) Resonance frequency 
0  

Fig. 2. Damping intensity and resonance frequency variations  

To articulate how damping intensity 𝜉  and resonance 

frequency 𝜔0  are affected by different parameters, Fig. 2 

depicts the variations of 
0  and   with respect to a and T. 

Other parameters are assumed as follows: 𝑠0 = 2 m, 𝑏 = 4 

m/s2, 𝑣0 = 33m/s. The color bar on the right in Fig. 2a indicates 

the value of  , and the color bar on the right in Fig. 2b indicates 

the value of 
0 . These figures show that the resonance 

frequency and damping intensity vary with parameters forming 

in convex surfaces for a nonlinear car-following model. The 

dashed line in Fig. 2a indicates the condition 𝜉 = 1 , which 

devides the region into two scenarios. Below the dashed line 

that means 𝜉 < 1 , representing that the platoon system is 

underdamped; otherwise, any platoon with parameters above 

the dashed line, i.e., 𝜉 > 1, represents an overdamped platoon 

system. As Fig. 1 has illustrated, for an underdamped system 

after perturbation, the distance offset fluctuates around the 

equilibrium state and decays gradually; while for a perturbed 

overdamped system, the distance offset converges to the 

equilibrium state quickly without overshoots.  

By far, the analytical solutions to the second-order non-

homogeneous ODE (8) reveal the resonance occurrence 

condition and explain the relationship between perturbation 

frequency and the vehicle platoon's oscillation patterns. In fact, 

our proposed method could be further extended to platoons with 

lane-change scenarios using models [31] beyond the scope of 

this study. The next section will use simulation to verify these 

theoretical results and further investigate the vehicle platoon 

vulnerability under perturbations. 

IV. SIMULATION STUDY 

This section presents simulation studies to demonstrate the 

effectiveness of the proposed vulnerability analysis approach. 

The platoon is composed of 10 cars. The simulation applies the 

IDM, Eq. (10), to update each platoon vehicle's kinematic state. 

All cars' velocity is set as 15m/s, and every following car's 

spacing gap is given by 10m. The total simulated time is 160 s. 

Other parameters' values are provided below: maximum 

velocity 
0 33 m/sv = , length of the car 5 ml = , safe space gap 

0 2 ms = , desired acceleration 24 m/sa = , and maximum 

deceleration 24 m/sb =  as suggested in [22, 32].  

Our simulation considers three scenarios: no perturbations, 

with periodic perturbations, and the lead vehicle following a 

real-world vehicle trajectory. Scenario I aims to uncover the 

platooned vehicles' behaviors in underdamped and overdamped 

systems. Scenario II presents the platoon's behaviors under 

periodic perturbations. Scenario III applies our approach to a 

real-world dataset.  

A. Scenario I: without perturbations 

The first scenario is used as a benchmark to show the impacts 

of platoon's parameters on its oscillations without perturbations. 

As shown in Eq. (12), different parameters could generate 

different resonance frequencies and damping intensities. This 

simulation scenario contains three cases. The first case is 𝑎 =

4m/s2 and 𝑇 = 1s. We can derive 1.01 1 =   based on Eq. 

(12), which indicates an overdamped system as illustrated by 

Fig. 3. The second case is 21.5 m/sa = and 1sT = , with 

corresponding 0.86 1 =   as illustrated by Fig. 4. The third 

case is 21.5 m/sa =  and 1.2 sT =  with 0.84 1 =  , as 

illustrated by Fig. 5. The last two cases indicate an 

underdamped system.  

Fig. 3 and Fig. 4 present patterns of the platoon's dynamics 

for the underdamped and overdamped systems. Fig. 3 shows a 

rapid convergence to the equilibrium state, while Fig. 4 shows 

the platoon's oscillation behavior. The main difference between 

the two figures lies in the fluctuation amplitude. The curves of 

speed, and space gap in Fig. 4 have not traversed the 

equilibrium lines, but curves in Fig. 3 have traversed the 

equilibrium lines, also known as overshoots.  

Moreover, Fig. 5 shows the impact of desired time gap T on 

the vehicle platoon dynamics after a perturbation. The vehicle 

platoon systems in Fig. 4 and Fig. 5 are underdamped due to 

<1 in both cases. It can be found that the larger desired time gap 

would lead to a larger fluctuation amplitude and a slower 

recovery process to the equilibrium. Figs. 3-5 illustrate that the 

value of   is correlated to the fluctuation pattern of platoons.  

The simulation results are in line with the theoretical results. 

The proposed vibration-theoretic approach provides such an 

effective measure to characterize vehicle platoon's oscillation.  

   
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 
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Fig. 3. Plots of position, velocity, and gap variations when 24 m/sa =  and 1sT =   

   
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 

Fig. 4. Plots of position, velocity, and gap variations when 21.5 m/sa =  and 1sT =  

   
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 

Fig. 5. Plots of position, velocity, and gap variations when 21.5 m/sa =  and 1.2 sT =  

B. Scenario II: with periodical perturbations 

The second scenario focuses on the impacts of periodical 

perturbations on the vehicle platoon's oscillation behavior. 

External perturbations can influence the vehicles' behaviors 

through falsifying velocity, position, and acceleration messages 

[33, 34]. Different perturbation patterns cause different 

vehicles' behaviors. Without loss of generality, this simulation 

scenario assumes the leading vehicle's speed is perturbed in a 

sinusoidal fashion, i.e., 

 ( ) ( ) sin( )v t v t B t= + , (13) 

where ( )v t  is the falsified velocity, B is the maximum 

amplitude of the velocity deviation, and 𝐵sin(𝜔𝑡) indicates the 

perturbation pattern of the velocity deviation.  

For comparison, same as Fig. 4, assume 𝑎 = 15 m/s2, 

1.2 sT =  and the initialized velocity 15m/s . Then, the steady 

gap is calculated as 20.44 m based on Eq. (11). The vehicle 

platoon's resonance frequency can be obtained as 
0 0.37 =

rad/s. Meanwhile, the damping intensity is derived as 𝜉 =

0.84 < 1 , indicating a underdamped system. Assume the 

perturbation occurs at 𝑡 = 10s and lasts 100 seconds. 

In Fig. 6 to Fig. 8, the perturbation occurs between the two 

dashed lines. These three figures illustrate the impacts of 

different perturbation frequencies on vehicles' dynamics. In 

detail, Fig. 6-8 show the impacts of the perturbation frequency 

with 𝜔 = 𝜔0 − 0.2 = 0.17  𝜔 = 𝜔0 = 0.37 , and 𝜔 = 𝜔0 +

0.2 = 0.57 rad/s on vehicles' dynamics, respectively. Here, the 

perturbation amplitude is set as 𝐵 = 5 m/s.  

Comparing these figures, one can find that a perturbation 

with the resonance frequency leads to the most significant 

oscillations in terms of position, velocity, and gap. This 

phenomenon is consistent with mechanical resonance in the 

spring-mass system. In addition, these simulation results 

demonstrate that our proposed approach is meaningful and 

effective in revealing the vulnerability of a vehicle platoon. 

   
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 
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Fig. 6. Impacts of perturbation frequency with 𝜔 = 𝜔0 − 0.2 = 0.17 rad/s on the platoon dynamics 

   
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 

Fig. 7. Impacts of perturbation frequency with 𝜔 = 𝜔0 = 0.37 rad/s on the platoon dynamics 

   
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 

Fig. 8. Impacts of perturbation frequency with 𝜔 = 𝜔0 + 0.2 = 0.57 rad/s on the platoon dynamics 

   
(a) Position vs. time (b) Velocity vs. time (c) Acceleration vs. time 

Fig. 9 Plots of vehicle #2930 from the reconstructed NGSIM data 

C. Scenario III: leading vehicle following a trajectory from 

the NGSIM dataset  

This scenario assumes that the leading vehicle follows a 

practical vehicle's trajectory from the real world provided by 

the NGSIM dataset, which is a set of human-driven vehicle data 

available for traffic phenomena interpretation, parameters 

calibration, and theory validation [35]. Practical trajectory data 

used in this study are from the northbound traffic on I80 in 

Emeryville, California, which records from 4:00 p.m. to 4:15 

p.m. on April 13, 2005, in NGSIM I80-1 dataset [36]. Our 

simulation adopts this data to analyze vehicles' behaviors under 

underdamped and overdamped conditions. The leading car 

adopts the practical vehicle's trajectory data and the nine 

following adopt the IDM platoon control strategy. Other 

parameters' values are same as Scenarios I and II. Note that 

some data quality problems including data missing, incorrect 

data and redundant data in the original NGSIM data. Hence, this 

study adopts the filtered and reconstructed data [37, 38] to 

mitigate the data noise. Herein, the leading vehicle uses the data 

of vehicle #2930 in the reconstructed dataset that shows 

significant undulating position, velocity, and acceleration. 

Vehicle #2930 is travelling in Lane 2 from 4:00 p.m. to 4:15 

p.m. on April 13, 2005. This vehicle’s trajectory is presented in 

Fig. 9. 

This simulation scenario contains three cases. In the first 

case, 25 m/sa =  and 1.6 sT = . Accordingly, we can derive 

1.02 1 =   using Eq. (12), which corresponds to an 

overdamped system. In the second case, 
25 m/sa = , 1sT = . 

We can derive 0.98 1 =   corresponding to an underdamped 

system. In the third case, 
23 m/sa =  and 0.6 sT = , with 

0.89 1 =   based on Eq. (12), which also corresponds to an 

underdamped platoon system.   

The velocity data of the lead vehicle, illustrated in Fig. 9, 

clearly show that the platoon cannot travel with a constant state, 

and thus it can be regarded as traveling in a continuously 

perturbed environment. In this perturbed environment, the 

platoon oscillation characteristics depends heavily on the 
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damping intensity. When the vehicle platoon is overdamped, 

oscillations of the following vehicles decay over the platoon 

(see Fig. 10). By contrast, oscillations of the following vehicles 

do not decay over the string when the platoon system is 

underdamped. Especially, in Fig. 12, the oscillations grow over 

the platoon. These figures illustrate that there are serious 

oscillations in the underdamped vehicle platoon system but no 

significant oscillations appear in the overdamped vehicle 

platoon system when comparing Fig. 10 to Fig. 11 and  Fig. 12. 

These results confirm that an overdamped system has stronger 

resistance against perturbations than an underdamped system.  

Through these numerical experiments, we have verified the 

theoretical results derived in Section 2 and illustrated the 

vehicle platoon dynamics under various perturbations. The 

simulation results of Scenario I showed that an overdamped 

platoon system oscillates less than an underdamped platoon 

system when there is no external perturbations. Scenario II 

shows that resonance frequency could make the vehicle platoon 

oscillate the most violently. And Scenario III presents that the 

developed method is verified to be effective to investigate 

vehicle platoon’s oscillation behaviors in a real-world travel 

environment. All these results demonstrate that the derived 

damping intensity is an effective tool that can well characterize 

the oscillations for vehicle paltoons traveling in a perturbed 

environment. 

 

   
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 

Fig. 10. Plots of position, velocity, and gap variations when 25 m/sa =  and 1.6 sT =  

   
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 

Fig. 11. Plots of position, velocity, and gap variations when 25 m/sa =  and 1sT =  

   
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 

Fig. 12. Plots of position, velocity, and gap variations when 
21.5 m/sa =  and 1sT =  

V. CONCLUSIONS 

Our research employs the mechanical vibration theory to 

analyze vehicle platoon vulnerability and elaborated on the 

vulnerability of the platoon associated with its resonance 

frequency and damping intensity. Simulations are carried out to 

verify the effectivenss of our proposed method.  

Our main findings are summarized as follows. (1) This paper 

explores the resonance phenomena of nonlinear vehicle 

platoons under perturbations through rigorous theoretical 

analysis and proofs, leading to a closed-form formula for the 

oscillation amplitude under resonance. (2) A new approach has 

been developed that applies damping intensity to evaluate the 

vulnerability of vehicle platoons, by categorizing platoon 
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oscillations into two types: underdamped and overdamped. An 

overdamped system is more resilient to perturbations than an 

underdamped system. (3) This paper applies human-driven 

vehicle trajectory data from the NGSIM dataset to validate their 

findings through simulation. The simulation results are 

consistent with their theoretical analysis. (4) The analysis and 

simulation results suggest that perturbations with the resonance 

frequency can lead to the most significant oscillations. (5) Our 

proposed method has significant practical implications, 

especially for the safety of CAV systems. For example, a hacker 

could send a sequence of malicious messages to AVs or CAVs, 

leading to oscillations coinciding with platoon resonance 

frequency, to achieve disastrous impacts. Therefore, avoiding 

resonance perturbations is crucial to safeguard vehicle platoon 

safety and resist large amplitude oscillations. 

However, there still exist some limitations of our method. For 

broader applications in the future, the proposed approach can 

be extended to incorporate complex communication topologies 

such as bidirectional and multiple predecessor-following types 

for connected automated vehicle (CAV) platoons. In particular, 

communication latency is an essential feature of CAV systems. 

Its effect on platoon vulnerability is worth an in-depth 

investigation. In CAV systems impacted by time-varying 

communication topology and/or communication latency, 

vehicle dynamics will change and affect the system's resonance 

and damping behaviors. Moreover, the proposed approach 

cannot used to analyze heterogeneous traffic. Future research 

will design innovative vehicle platooning control protocols to 

help heterogeneous vehicles against exerted perturbations in 

real-time by leveraging the findings of platoon vulnerability in 

this study. In addition, this study has not explained how to avoid 

the resonance perturbation on vehicles. There are many ways to 

avoid resonance perturbations. For example, applying the 

compensation control [39, 40] to reduce the magnitude or avoid 

resonance. However, developing such solutions requires 

another thorough study, which left for future study.  

APPENDIX 

A. Proof of Theorem 1 

Note that the vehicle's oscillation amplitude is determined by 

the size of the space gap error 𝑦. It is necessary to solve the 

ordinary differential equation Eq. (4). Applying the 

characteristic equation method [41], a specific solution is 

obtained as follows: 

 ( ) sty t Ae= ,  (14) 

where 𝑠 = 𝑖𝜔 is a Laplace variable and A is an amplitude to be 

determined. Take the first and second derivatives of Eq. (14) to 

determine the velocity and acceleration, respectively, i.e., 

 
2( ) and ( )st sty t sAe y t s Ae= = .  (15) 

Substituting Eqs. (14) and (15) into Eq (4) results in 

 
22

0 02 0st st sts Ae sAe Ae  + + = .  (16) 

Grouping term gives ( )2

0

2

02 0sts s Ae + + = . Obviously, 

at least one of two terms is equivalent to zero. If 0stAe = , it 

represents there is no oscillation. Note that our focus is on 

investigating the vehicle platoon's oscillations, i.e.: 

 0

2 2

0 02s s + + = .  (17) 

Eq. (17) is used to obtain our fluctuation solution. We can 

identify the inherent oscillation frequency when the platoon 

oscillates. Using the quadratic formula, we can have two roots: 

 ( ) 0

2 1s   = −  − .  (18) 

The form of the solution of Eq. (18) depends upon 𝜉. There 

are three possibilities depending on whether 𝜉 is greater, less 

than, or equal to 1. 

(i) When 𝜉 < 1 , the characteristic roots equation (17) 

becomes 

 ( ) ( )0

2

0

2

1 21 and .1s i s i   = − + − = − − −  (19) 

Hence, the general solution of Eq. (4)is given by 

 ( )2
00

2
01 1

1 2( )
it itt

y t e y e y e
    − − −−

= + .  (20) 

The underdamped motion is oscillatory with a diminishing 

amplitude. The inherent frequency d  is introduced to capture 

the vibration frequency of the damper system, i.e., 

 2

0 1d  = − .  (21) 

Furthermore, the solution of Eq. (4) can be rewritten as 

 ( )0

1 2( ) d dt i t i t
y t e y e y e

  − −
= + . (22) 

An alternative form of the solution Eq. (22) is developed by 

using the trigonometric identity and Euler's identity, 

 ( )0( ) sin d d

t
y tt Ae

  −
+= , (23) 

where 0

2

2 (0)(0)
(0)

d

y
A

y
y





 +
= +  

 

, 1

0

(0)
tan

(0) (0)

d

d

y

y y






−  
=  

+ 

. 

(ii) When 𝜉 = 1, there is only one root 𝜔0. This indicates a 

transition between the oscillatory and the aperiodic damped 

oscillations. Due to the repeated roots, an additional term 

0t
te

−
 is needed to keep the necessary number of arbitrary 

constants to satisfy both the initial conditions. Hence, the 

common solution is derived as 

 ( ) 0

1 2( )
t

y t y y t e
−

= + ,  (24) 

where 1 (0),y y= and 02 (0) (0)y y y= + . 

Even if the algebraic growth 𝑡, the solution still returns to its 

steady position as t →   since the exponential decay is much 

stronger than an algebraic growth. In this case, the perturbation 

of traffic flow will return to an equilibrium state in the shortest 

possible time without oscillation. 

(iii) When 𝜉 > 1, Eq. (17) has two real roots, and the motion 

is overdamped, i.e., 

 ( ) ( ) 0

2

1 20

2 1 and 1s s     = − + − = − − − . (25) 

Hence, the solution of Eq. (4) is 
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 ( )2 2
0 00 1 1

1 2

t tt
y e y e y e

    − − −−
= + ,  (26) 

where ( )2

1

0

2

0

1

1

(0) (0)

2

y y
y

  

 

++ −
=

−

 and ( ) 0

2

2

2

0

(0)

1

(0)1

2

y y
y

  

 

− − −−
=

−

. 

The proof of Theorem 1 is complete.  

B. Proof of Theorem 2 

Note that Eq. (8) is a non-homogenous ODE. According to 

the characteristic equation method and the superposition 

solution [24], the common solution of Eq. (8) can be given by 

 ( ) ( ) ( )h py t y t y t= +  (27) 

where 𝑦ℎ(𝑡)  is a homogeneous solution, the solution is 

obtained if 𝜇(𝑡) = 0 and 𝑦𝑝(𝑡)  is a specific solution which is 

specific to 𝜇(𝑡).  

When 𝜇(𝑡) = 0, Eq. (8) degenerates to Eq. (4). Thus, for an 

underdamped platoon system, the solution of Eq. (4) is equal to 

Eq. (5), i.e.,  

 
02 10

0

2

(0)
( ) (0) sin

(0) (0)
tan

(0) (0)

d

d

d

t

h

y
y t y e

y y
t

y y

 


 

− −
  +



 
+  = +   

+
 

   

. (28) 

When ( ) sin( ) 0ft B t =  , ( )py t  is a particular solution 

that is specific to ( )t . Hence, we can assume the particular 

solution to be of the form of 

 ( ) sin( )fpy t Y t = − , (29) 

where Y is the oscillation amplitude and   is the displacement 

phase with respect to the periodic perturbation. 

Substituting Eq. (29) into Eq. (8), we can derive 

 
( )

( )

2 2

0 0

2 2

0 0

2

cos 2 0

sin( ) cos sin

( ) sin cos

f f f

f f f

t Y Y

t Y Y

Y B

Y

       

       

 

−

+ −

 −

−


+


+




=

 (30) 

Because functions sin( )f t  and cos( )f t  are independent 

[42], Eq. (30) implies that 

 
( )

( )

2 2

0 0

2 2

0 0

cos sin

sin cos

2 0

2 0

f f

f f

Y Y

Y Y

Y B

Y

      

      

−

− =

 + − =


− +


 (31) 

Based on Eq. (31), we have 

( )

( )
0

2

0

2
arctan

1

f

f

  


 −
=

 and 

( ) ( )
2

2 2

0 0

2

2f f

Y
B

   

=

− +

. 

The proof is complete.  
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