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1 | INTRODUCTION

Abstract

The dynamic structure of ecological communities results from interactions among taxa
that change with shifts in species composition in space and time. However, our ability
to study the interplay of ecological and evolutionary processes on community assem-
bly remains relatively unexplored due to the difficulty of measuring community struc-
ture over long temporal scales. Here, we made use of a geological chronosequence
across the Hawaiian Islands, representing 50years to 4.15 million years of ecosystem
development, to sample 11 communities of arthropods and their associated plant taxa
using semiquantitative DNA metabarcoding. We then examined how ecological com-
munities changed with community age by calculating quantitative network statistics
for bipartite networks of arthropod-plant associations. The average number of inter-
actions per species (linkage density), ratio of plant to arthropod species (vulnerability)
and uniformity of energy flow (interaction evenness) increased significantly in concert
with community age. The index of specialization H’2 has a curvilinear relationship with
community age. Our analyses suggest that younger communities are characterized
by fewer but stronger interactions, while biotic associations become more even and
diverse as communities mature. These shifts in structure became especially promi-
nent on East Maui (~0.5 million years old) and older volcanos, after enough time had
elapsed for adaptation and specialization to act on populations in situ. Such natural
progression of specialization during community assembly is probably impeded by the
rapid infiltration of non-native species, with special risk to younger or more recently

disturbed communities that are composed of fewer specialized relationships.

KEYWORDS
community assembly, DNA metabarcoding, ecological networks, oceanic islands

is important for predicting the impacts of global change on

higher multispecies organization (Dell et al., 2019; Smith-Ramesh

Biodiversity is organized into complex ecological networks of in- et al., 2017; Staniczenko et al., 2017). A suite of analytical tools
teracting species that change through time in response to eco- (Delmas et al., 2019) exist to quantify changing community struc-
logical and evolutionary processes. Understanding these changes ture in response to a variety of perturbations (Aizen et al., 2008;
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Fricke et al., 2017; Vacher et al., 2010). A major challenge remaining
is to understand the configuration of ecological networks in a pre-
dictive context over long spatiotemporal scales (Poisot et al., 2015;
Trgjelsgaard & Olesen, 2016; Yeakel et al., 2014). Consequently, the
effect of community assembly processes on the structure of inter-
action networks describing ecological communities remains poorly
understood (Ponisio et al., 2019; Rominger et al., 2016).

Early research on community assembly often ignored ecologi-
cal interactions due to their complexity. Notably, neutral models
for community assembly are even agnostic to organismal identity
(Hubbell, 2001; Rosindell et al., 2011). As species identity and inter-
actions began to be incorporated into models, the initial “assembly
rules” of Diamond (1975) highlighted “forbidden species combina-
tions” and nonrandom patterns of co-occurrence. A growing recent
theme focuses on the effect of abiotic and biotic filters on a regional
species pool (Miinkemidiller et al., 2020) with varying temporal and
spatial filters dictating network structure (Peralta et al., 2019).
However, much of this work ignores the role of evolution in shap-
ing interactions through time. The extent of adaptation, and pos-
sible speciation, in shaping interactions as communities assemble
depends on the isolation of the community from the source pool
(Gillespie et al., 2020; Rosindell & Phillimore, 2011). At the extreme,
evolution will have shaped interactions among every member of a
community and the effects of filtering from a regional species pool
might thus appear relatively weak (Ponisio et al., 2019). While most
communities will include the role of both ecological filtering and
evolutionary adaptation, our ability to thread complex ecological
questions of network structure into an evolutionary framework has
presented a major obstacle.

Recognizing this impediment, recent work has examined avenues
to approach the problem. In particular, models of trait evolution on
phylogenies provide a means to understand how eco-evolutionary
feedbacks shape interactions as communities assemble (Segar
et al., 2020). Likewise, based on theory showing how change across
short timescales affects longer-term evolutionary dynamics, clade-
level phylogenetic comparative approaches can be applied to com-
munity data to understand the dynamics of network structure
(Weber et al., 2017). Both these approaches focus on the lineages
that make up communities, asking how interacting sets of lineages
affect each other. However, another approach is to focus explicitly
on the community rather than individual lineages, connecting large-
scale understanding of community interactions at a given time in a
spatially variable environment with the understanding of how the
integrated structure of biodiversity changes through time. Such an
approach attempts to address a major gap in the field by bridging
macroecology and macroevolution (McGill et al., 2019) and hence
showing how network structure changes across scales of space and
time within a whole-community context (Weber et al., 2017).

While theory indicates a clear role for biotic interactions leading
to individual and community specialization over long-term commu-
nity development, empirical evaluation has been challenging. One
difficulty is in obtaining measures of community composition and in-
teractions at relevant spatial scales, and another obstacle is the vast

time frame over which evolutionary phenomena occur. With their
short generation times that are amenable to laboratory studies, mi-
crobial systems provide exceptional cases that document community
assembly over evolutionary timescales (Boon et al., 2014; Koskella
et al., 2017; Koskella & Brockhurst, 2014; Venturelli et al., 2018). In
particular, studies of the plant phyllosphere showed a more promi-
nent role of non-neutral selection over time and an increase in the
strength of biotic interactions and community cohesion (Morella
et al., 2020). However, to infer the role of interactions in community
assembly of longer-lived macroorganisms requires very particular
systems. Here, we make use of two sets of circumstances that, to-
gether, provide an extraordinary opportunity to assess the nexus of
ecological and evolutionary community assembly in the context of
interaction networks.

First, we use the system provided by the Hawaiian Islands.
Islands in general provide discrete communities that can be used for
natural experiments in interaction dynamics (Brodie, 2017; Castro-
Urgal & Traveset, 2014; Olesen et al., 2002). In particular, oceanic ar-
chipelagos formed in situ over millions of years offer the opportunity
to study species interactions over evolutionary timescales (Hembry
et al., 2018; Ponisio et al., 2019; Rominger et al., 2016; Trgjelsgaard
etal.,2013). Moreover, the geological series of islands in the Hawaiian
archipelago represents a chronosequence (Vitousek, 2002; Walker
et al., 2010); each substrate age represents communities of differ-
ent ages, ranging from ~50years to ~5 million years (Myr) (Shaw &
Gillespie, 2016). Notably, the native montane forest of Hawaii is
dominated by just two canopy tree species (Metrosideros polymorpha
and Acacia koa), making it relatively simple ecologically and hence
more amenable to capturing and characterizing whole communities.

Second, we make use of the emerging field of DNA metabar-
coding (Krehenwinkel, Wolf, et al., 2017; Yu et al., 2012), which
makes a comprehensive analysis of taxonomic composition possi-
ble, offering the opportunity to simultaneously assess thousands of
species rapidly, and offering enormous potential for reconstructing
complex ecological networks (Clare, 2014; Hrcek & Godfray, 2015;
Vacher et al,, 2016). Relative sequence abundances offer a proxy
for interaction strength (Lim et al., 2021), providing greater reliabil-
ity for co-occurrence studies to measure biotic associations (Balint
et al., 2018; Mata et al., 2021). Combining high-throughput se-
quencing with theoretical approaches, such as statistical modelling
(Faust & Raes, 2012; Newman & Girvan, 2004) and machine learning
(Bohan et al., 2011), shows considerable promise in helping to close
the gap on the historical impediments for comprehensive quantifica-
tion of interactions in ecological communities.

Here we use semiquantitative DNA metabarcoding to build
networks of arthropod-plant associations at 11 sites across the
Hawaiian chronosequence, using the substrate age at a site as a
measure of community age, and then use those networks to test a
range of expectations on how ecological and evolutionary processes
shape community structure over long timescales (e.g., Table 1). We
expect network size—both the number of nodes and number of
links—will increase with community age, but disproportionately, as
younger communities gain taxa through colonization only and older
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(a) d Q

Island age gradient: increasing specialization

(b)
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FIGURE 1 Study overview. (a) Study aims. As communities assemble over time species will be added through ecological and evolutionary
processes. Network size will increase over time. There will be a trend towards greater specialization as relationships among species are modified
through ecological fitting and evolutionary adaptation over extended time, young to old sites (top panel). Recently introduced species (i.e., non-
natives) evolved elsewhere and have not adapted in place to biotic and abiotic factors, thus limiting their specialization within communities at all
stages of development (bottom panel). (b) Study design. Within multiple 15-m-radius plots at 11 communities from ages 50years to 4.15 million
years, plant species were sampled for associated arthropods by vegetation beating according to their relative abundance. Each sample of
plant-associated arthropods was size sorted, counted and placed into a well of a 96-well plate, such that well “A1” contained sample 1, size
category 0-2mm, and well “A2” contained sample 1, size category 2-4mm, and so on. DNA extraction and PCR amplification with dual-indexing
was used to prepare the size-sorted samples into amplicon libraries which were sequenced on an Illlumina Miseq for the cytochrome oxidase |
locus. Ecological networks were constructed from the arthropod-plant associations for each community age. [Colour figure can be viewed at

wileyonlinelibrary.com]

communities assemble through colonization and evolutionary pro-
cesses. This allows tests of the following hypotheses for evolution-
ary assembly of networks (Figure 1). (H1) Starting from bare lava,
early successional communities offer low resource diversity yet are
necessarily composed of assemblages from nearby species pools.
Therefore, younger communities will have a high proportion of gen-
eralists—a subset of the nearby species pool most likely to persist
without particular interaction partners—but greater interaction fre-
quency on fewer interaction pathways because of resource hetero-
geneity. (H2) The set of biotic interactions that a given taxon will
experience will decrease with community age, and the evenness of
the interactions among resources will increase, resulting in greater
network specialization (Ponisio et al., 2019; Rominger et al., 2016).
One ideal component of this study is the large temporal span of
time for community assembly. We can assume that younger com-
munities will gain taxa only through colonization given that they are
not established long enough for in situ speciation to take place. Of
course, older communities will assemble through colonization and
evolutionary processes. We cannot tease apart the effects of both
processes at the oldest sites, but we can compare the youngest to

oldest sites and their related ecological networks for signatures of
assembly after evolutionary processes have taken effect. With an
increasing number of taxa that have evolved together in a commu-
nity it follows there will also be an increase in the specialization of
the interactions among these species that may be detectable at the

network architecture level.

2 | MATERIALS AND METHODS
2.1 | Site selection methods

The Hawaiian Islands are formed as the Pacific plate moves north-
westward across a stationary volcanic hotspot, and therefore the
archipelago represents a chronosequence of geological age from
the youngest island (Hawaii, ~0-0.5 Myr), to the oldest high island
of Kauai (~5 Myr) (Clague, 1996). Discrete volcanoes within islands
present additional contrasts in geological age, and the underlying
substrate age has been mapped in fine detail (Wolfe & Morris, 1996).
Metrosideros polymorpha (Myrtaceae) is the dominant canopy tree
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in these forests across islands, with patches of subdominant Acacia
koa (Fabaceae) and numerous associated understorey trees, shrubs,
herbs and ferns (Gagne & Cuddihy, 1990).

We selected 14 sites of varying geological age, ranging from 50
to 4.15 x 10° years old, across four islands of the archipelago: Hawaii,
Maui, Molokai, Kauai (Figure S1; Table S1). To control for climatic
differences and disturbance across sites, sites were constrained to
ranges of elevation (1000-1300m) and precipitation (average an-
nual precipitation 2500-3000mm) and within accessible protected
forest lands (Gap Analysis Project | U.S. Geological Survey, 2019;
Giambelluca et al., 2013).

For each potential site, spatial polygons were created based on
the intersections of these layers and initial field reconnaissance to
confirm remotely sensed data and feasibility of access. Within these
potential site polygons, airborne high-resolution laser scanning from
the Global Airborne Observatory (GAO; formerly named Carnegie
Airborne Observatory; Asner et al., 2012) was used to generate for-
est canopy height profiles using a physical model described in Asner
et al. (2008). The ground digital elevation model was also generated
using the method of Asner et al. (2007). The data were collected
at four laser shots per square metre, processed to height profiles
at 5-m resolution and then averaged at a grid cell spacing of 30m
(Figure S2; Table S2).

Twenty randomized candidate plots were generated for each
site, with the intention of ultimately selecting six, 15-m-radius plots.
These 20 randomized candidate plots were constrained to be a min-
imum distance of 200 m from all other plots and to be within the top
40% quantile of LiDAR-estimated canopy heights. Candidate plot
generation was achieved with custom scripts in the R programming
language (R Core Development Team, 2019) using a simple rejection
sampling algorithm: random sets of spatial locations are generated
within pixels of sufficient canopy height until a set of locations is
found which meet the requirement of being 200 m distant. The min-
imum distance of 200 m was a constraint to maximize independence
among sampling areas while capturing more spatial heterogeneity
within sites.

At each site, each of the 20 candidate plots were ground-truthed
to confirm the plot was dominated by native vegetation and min-
imally impacted by human use and/or invasive vertebrates. This
ground-truthing process eliminated a variable number of the ini-
tial 20 candidate plots. If fewer than six final plots remained after
ground-truthing, another set of candidate plots were generated and
ground-truthed to find a final set of six plots. If more than six plots
remained after ground-truthing, the final six plots were selected by

randomly selecting from the ground-truthed plots.

2.2 | Collection protocol

We collected arthropods using vegetation beating at six 15-m-radius
plots per site during May 2015 to January 2016, with plots sampled
randomly to avoid seasonality effects on arthropod composition. To
ensure equal sampling effort across sites, sampling was limited to a

total of 4205 in each plot. If after all arthropod collection processing
steps (described below) the total vegetation beating time for a plot
was not within one standard deviation of 420s sampling effort then
that plot was dropped from further analyses, resulting in a total of 50
plots from 11 sites (Table S1). As we were interested in characterizing
plant-arthropod associations, we sampled plant genera in each plot
proportional to their relative abundance. Percentage cover of each
understorey plant genus was estimated visually. Where plants could
not be identified to the genus level, we grouped them into morphotaxa
and sampled them accordingly. Vegetation beating was performed by
placing 1 x 1-m white beating sheets under individual plants and gen-
tly agitating the foliage using a 1-m-long PVC pole for timed second
intervals. Arthropods dislodged by the agitation which drop onto the
beating sheet are aspirated into a vial containing 95% ethanol. Each
plant-associated arthropod community sample was transferred to one
or more 2-mL vials containing fresh 95% ethanol, labelled and trans-
ported to the laboratory where it was stored at —20°C.

2.3 | Specimen sorting and DNA extraction

To reduce bias due to differently sized individuals contributing dis-
proportionate amounts of DNA (Elbrecht & Leese, 2015) specimens
were sorted following procedures described in Lim et al. (2021).
Each plant beating sample was sorted in Petri dishes on 1-mm graph
paper under a stereoscope into four size categories (0-2, 2-4, 4-7,
and =7 mm) based on the body size distribution found in a common
Hawaiian ecosystem. Individuals in each size category were counted
and placed with fresh ethanol into a single well in a 96-well plate.
Thus, all individuals from a particular plant genus at a particular plot
have their DNA extracted together and are prepared together using
a dual-indexing strategy described below into next-generation se-
quencing (NGS) amplicon libraries for sequencing. The Collembola
had considerably higher abundance than the remaining arthropods in
the small size categories, and therefore Collembola were separated
into 1.5-mL Eppendorf tubes and processed for DNA extraction and
sequencing parallel to the remaining arthropod community samples.

Specimens from public and private collections were also used to
generate a DNA barcode reference library for 57 species. We used
whole bodies of species from private collections where available be-
cause these were easiest to generate sequences from preserved ma-
terial (86% barcode generation success). Genomic DNA extraction of
size-sorted arthropod-plant community samples was performed in
600-pL volumes using the Tissue protocol described in the Qiagen
Puregene kit modified for automation (Lim et al., 2021). DNA was
eluted in 50 uL DNA Hydration Solution.

2.4 | Sequence analysis
Each size-sorted sample and a polymerase chain reaction (PCR)-

negative for each 96-well plate (containing no template DNA) was
amplified with a primer combination (ArF1/Fol-degen-rev; Gibson
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et al., 2014; Yu et al., 2012) that targets a 418-bp fragment in

the barcode region of the cytochrome oxidase | (COI) gene. This

primer pair has been suggested as the most appropriate for captur-
ing arthropod diversity in DNA metabarcoding studies (Elbrecht &
Leese, 2015) and has been shown to reliably amplify the Hawaiian
arthropod community (de Kerdrel et al., 2020). PCRs were run in
10-pL volumes using the Qiagen Multiplex PCR kit at an anneal-
ing temperature of 46°C, with 1 uL of DNA and 0.5 pL of each
10 pm primer. A first round of PCR consisted of 32cycles using
tailed primers; each primer additionally had a unique 6-bp inline
barcode so that multiple plates of the same primer can be pooled
together. PCR products were cleaned of residual primer using a
1x ratio of SPRI beads (Sera-Mag) and pooled together based on
band intensity (i.e., DNA concentration) on an agarose gel relative
to a DNA ladder (NEB) and using the Gel Doc XR System with the
QUANTITY ONE software (Bio-Rad). A second indexing PCR of six cy-
cles was performed with the pooled amplicons to introduce dual
indexes and lllumina TruSeq sequencing adapters to 5'-tails of the
locus-specific PCR primers (Lange et al., 2014), with a final 5'-3’
layout as Illumina adapter, 6-bp inline barcode and PCR primer as
described in de Kerdrel et al. (2020). The indexed products were
cleaned again with SPRI beads, quantified by electrophoresis,
and then pooled in equal amounts into a single tube. The samples
were then sequenced on an lllumina MiSeq using V3 (600 cycles)
chemistry according to the manufacturer's protocol (lllumina). We
aimed for a total of 30,000 reads per sample. Each PCR negative
was sequenced with each plate of specimen libraries regardless of
the absence of detectable PCR product on a gel.

We generated 2276 metabarcode libraries with each library
representing the total arthropods collected for each plant genus
for each plot (a sampling event), sorted into one of four size catego-
ries (a sequencing pool). Sequences were demultiplexed on lllumina
BaseSpace by sample well based on the two 8-bp indexes with no
mismatches allowed. We merged paired reads using pear (Zhang
et al., 2014) with a minimum overlap of 50 bp and a minimum quality
of Q20. Merged reads were quality filtered (290% of bases >Q30)
and transformed into fasta files using the rastx ToowkiT (Gordon &
Hannon, 2010). The resulting fasta files were demultiplexed by
PCR primer and 6-bp inline barcode combination, using the forward
and reverse primer sequences as indices with the grep command in
UNIX, and the primer sequences were then trimmed using the UNIX
stream editor.

2.5 | Rarefaction and pseudogene removal

We rarefied each sample using a custom unix command that drew
from the total reads of the metabarcoding analysis a number of
reads that was equivalent to the numerical abundance of individual
arthropods counted into each well of the 96-well plate, repeating the
draw of sequences 100x with replacement. The process of rarifying
by repeated random draw based on the expected individual speci-
men abundance should correct the disproportionate abundance

of sequences that accumulate for larger specimens compared to
smaller specimens, due to the amplification bias that is inherently
caused by differential starting tissue amounts (Lim et al., 2021).

We generated zero-radius operational taxonomic units
(zOTUs), from the rarefied raw reads with the unoise3 command
(Edgar, 2016) following the recommended protocols in the usearcH
version 11 pipeline (Edgar, 2010). Specifically, the quality trimmed
reads were dereplicated and clustered into zOTUs using the un-
oise3 command in usearcH. Chimeras were removed de novo in
USEARCH. The resulting zOTUs were compared against the NCBI
GenBank database and our custom-made DNA reference library
for Hawaiian taxa using BLASTN with a maximum of 10 target se-
quences. All nonarthropod zOTUs were removed after which 5046
zOTUs remained. We aligned these 5046 zOTUs using default
settings in cLusTAL oMEGA (Sievers et al., 2011). To remove putative
pseudogenes from the zOTU data set we ran METAMATE with default
specifications and the example specifications file to detail how per-
zOTU read frequencies should be assessed (Andujar et al., 2021).
Using the output of METAMATE we applied the least stringent Numt
removal strategy so that we could retain as many putatively true
zOTUs as possible (Graham et al., 2021); this reduced the number
of zOTUs from 5046 to 4330.

2.6 | Taxonomic matching and
abundance estimates

About a quarter of the zOTUs (n = 901) were matched to the BLasT
or voucher DNA reference library with less than 85% similarity. To
validate the taxonomic identification for each zOTU at higher taxo-
nomic levels (e.g., order, family) we compared the top 10 sLast and
reference library hits with phylogenetic clustering from a maximum-
likelihood (ML) tree. An ML tree with bootstop autoMRE bootstrap
support was generated by running raxmL-HPC version 8 on XSEDE
on the Cipres science gateway (Miller et al., 2010) under the GTR
model with a gamma distribution plus invariant sites. For 28 zOTUs,
taxonomic order could not be determined via sequence similarity to
databases or phylogenetic clustering and were thus removed from
downstream analysis. Taxonomic assignment was considered trust-
worthy if the percentage similarity of the metabarcoding sequence
to the NCBI GenBank or DNA reference voucher was: 88%-94% for
family, 94%-98% for genus and >98% similarity for species, while
matches below 88% similarity were made only to order. These
threshold values were arbitrarily chosen based on previous inves-
tigations using mock communities or photo voucher integrative
taxonomy of selected taxa from the same high-elevation wet forest
communities of Hawaiian arthropods and amplified using the same
COI marker (Krehenwinkel, Kennedy, et al., 2017; Krehenwinkel,
Wolf, et al., 2017, de Kerdrel et al., 2020).

To create a table with OTU abundances for community analy-
ses we mapped a query set of raw reads to the filtered and taxo-
nomically identified search database of zOTUs in useArcH version
11 (Edgar, 2010) using the otutab command with the default 97%
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similarity mapping threshold. After OTU mapping and read removal
based on the PCR-negative control sequencing pool, the number of
unique sequences was reduced by 133 zOTUs to 4197 OTUs.

To use relative sequence abundance of arthropod OTUs as an
approximation of arthropod-plant associations, we adopted a semi-
quantitative processing pipeline (Lim et al., 2021) to ameliorate dif-
ferences in sampling effort, body size of specimens and genomic
procedures. To review: (i) for each site (community) there were six
plots, (ii) within each plot each plant taxon was sampled by seconds
of time corresponding to its relative abundance in the plot, (iii) we
sorted bulk arthropod samples by size and counted the individuals,
(iv) sequences were generated using a DNA region with demon-
strated success for Hawaiian arthropod taxa (de Kerdrel et al., 2020)
and false reads (pseudogenes) were removed (Graham et al., 2021),
(v) we randomly sampled the sequencing reads based on the count of
individuals in each size class and (vi) sequence reads were summed

across size classes and plots (Figure 1b).

2.7 | Calculation of quantitative ecological
network metrics

Using bipartite networks of arthropod-plant associations at each
community age, we tested our hypotheses by calculating quantita-
tive (weighted) and qualitative (binary) network metrics (Table 2)
expected to occur in the transition from younger communities to
older communities (Table 1). Data processing and statistical analy-
ses were performed in R version 4.0.2. To distinguish between taxa
that have colonized the archipelago historically or more recently,
we characterized the probable native and non-native composition
for each aged community based solely on sequence characteristics
as outlined in Andersen et al. (2019). The approach considers both
the evolutionary distances between species and the genetic diver-
sity within species. Sequence characteristics of OTUs show a higher
amount of neutral (or otherwise) sequence variation among endemic
taxa, as they have evolved from a common ancestor on the islands,
when compared to non-native taxa that evolved elsewhere and have
no close relatives. The approach was implemented into a machine
learning strategy using random forests in skLearN and packaged with
multiple utilities and a graphical user interface in NicLassiFy (https://
github.com/tokebe/niclassify). By annotating the nativeness status
for sequences which are identifiable to species level (98% or above
match to databases), NicLassiFy can accurately assign status for the
remaining sequences. As part of the NicLassIFy classifications an out-
put of accuracy is obtained by withholding species with known sta-
tuses during the training, and then comparing the results for those
samples based on the classifications. These samples are randomly
selected by the program, so biases with regard to well- vs. under-
sampled taxa are not expected to influence the training.

We aggregated the sequence abundance for each arthropod
OTU according to its association with a particular plant genus within

a site. For example, we found the sum of the sequence abundances

for OTU “X,” a Hemiptera from the genus Nesodyne, that was as-
sociated with (i.e., collected on) plants in the genus Coprosma. We
configured the arthropod-plant abundance data as a matrix with
arthropods as columns and plants as rows; there were 11 matrices,
one for each site of different substrate age. As such, we measure the
strength of an interaction as the sequence abundance of the arthro-
pod that was collected on a particular plant species, as it is an aggre-
gated assessment of the arthropod-plant association across multiple
plants and multiple plots within a site. We also graphed quantitative
and qualitative metrics for matrices of arthropod-plant interactions
at each plot within a site. However, we constrain our discussion to
the aggregated network data because our confidence in the network
statistics increases with the size of the networks. This was a particu-
lar issue for some plots at the youngest and most depauperate sites,
where fewer than plant species were sampled within the plot radius
and networks would be small.

We plotted the ecological network matrix for each community
age using the “plotweb” command in the R package siparTITE. For
each network, lower bars represent plant abundance based on sam-
pling time and upper bars represent arthropod abundance based
on OTU frequency. For visual simplicity, we grouped upper bars by
arthropod order. As described above, link width represents relative
read abundance of arthropod OTUs collected on each plant taxon
(Alberdi et al., 2019); in other words, link width corresponds to the
relative frequency of each association.

The information contained in ecological networks can be sum-
marized in various ways. Qualitative properties used to describe
networks, which treat all interactions as equal irrespective of their
magnitude or frequency, tend to be highly sensitive to variation
in sampling effort (Goldwasser & Roughgarden, 1997; Martinez
et al., 1999). Quantitative metrics that weight each taxon by the
total amount of its incoming and outgoing biomass flows (Bersier
et al,, 2002) are more robust to sampling differences (Banasek-
Richter et al., 2004). Using the “networklevel” commands in the R
package siparRTITE (Dormann et al., 2008) we calculated six quanti-
tative indices for our bipartite networks of arthropods and associ-
ated plants: (i) linkage density, (ii) connectance, (iii) generality, (iv)
vulnerability, (v) interaction evenness and (vi) the index of special-
ization H’2 (Table 2), that we reasoned would be associated with net-
work specialization (Table 1). We converted each matrix to a binary
presence—absence matrix and calculated the qualitative equivalent
of: (i) linkage density, (ii) connectance, (iii) generality and (iv) vulner-
ability. We additionally calculated the ratio of resource species to
consumers for the qualitative matrices, which is the ratio of plant
genera to arthropod OTUs. These metrics represent the most fun-
damental biological and ecological properties of a community. We
reasoned that the simplest metrics are a reasonable starting point
given the limited understanding of how evolution shapes network
structure, which would be necessary to justify the application of
more involved network metrics. Further, these metrics have values
that are interpretable with respect to their effect on specialization

over time.
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Total number of species (S) or “nodes”
is equal to the number of prey or
resource species (R; lower-level)
plus the number of consumer

Total number of interactions or “links”

Average number of resource species

Shannon entropy of weights for a given

Shannon entropy of weights for a given

Effective number of resource spp. for a

Effective number of consumer spp. for

Average number of interactions per

Average number of resource sp. per

Average number of consumer sp. per

Shannon entropy of interaction

Equation or
Summary statistic notation Description
Number of nodes B S=R+C
species (C; upper-level)
Number of links L
Ratio resource: R/C[1]
consumers per consumer species
Diversity of inflows w HN,k’ (5) [1]
consumer sp.
Diversity of w Hp o (6) [1]
outflows resource sp.
Log-reciprocal of (5) W Ny (7) [1]
given consumer sp.
Log-reciprocal of (6) W n_,,(8) [1]
a given resource sp.
Link density B LD =L/S [1]
species
w LDq, (14) [1] Weighted version
Connectance B Conn =L/(RxC) [1] Proportion of realized links
W ConnCI = LDq/S [1] Weighted version
Generality B G=L/C[1]
consumer sp.
W Gq, (25) [1] Weighted version
Vulnerability B V=L/R[1]
resource sp.
W Vq, (27) [1] Weighted version
Interaction evenness W I.E. [2]
weights
Index of W H,, [3]

specialization

Ranges between 0 and 1.0 for extreme
generalization and specialization,
respectively

Note: Metrics calculated from binary (i.e. unweighted, presence-absence) matrices are easily
interpretable but sensitive to sampling differences (Banasek-Richter et al., 2004). Quantitative
versions based on information theory are more conservative when comparing differences among
sites. Each metric incorporates the diversity of individuals comprising the resource (H,, the
diversity of inflows) and of that going to the consumers (H,, the diversity of outflows) for each
species k. The quantitative metrics are then based on the reciprocals of these Shannon entropy
values (nN,k’ and Np o respectively). The notation q is applied to the quantitative version of that

TABLE 2 Binary (B) and weighted (W)
network summary statistics.

metric. All equations and notations reference [1] Bersier et al. (2002), [2] Tylianakis et al. (2007) and

[3] Bliithgen et al. (2006).

2.8 | Tests of network metric significance and
correlation between network properties

We used null models (Vazquez & Aizen, 2006) to test the statisti-
cal significance of empirical network metric values for the weighted
data. For each weighted empirical network, we generated 1000
synthetic networks so that the total number of interactions and the
identity of interaction partners is maintained while the weight as-
sociated with each interaction is shuffled (Staniczenko et al., 2013).
With this simple quantitative null model, the distribution of in-
teraction weights is conserved, along with the pattern of binary

interactions, but not the identities of which interaction partners are
associated with which weights. In terms of biological reasoning, the
null model assumes that the identities of any two species involved in
a nonforbidden interaction are unimportant for explaining network
metrics. We calculated p-values and z-scores for each combination
of empirical network and metric by comparing the observed metric
value calculated from the empirical network to the distribution of
metric values calculated from synthetic matrices generated by the
null model; that is, the p-value quantifies how unlikely the observed,
empirical metric value is to have been generated by the null model.
To compare the effect of community assembly on network
size, arthropod diversity and network metrics, we regressed the
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dependent variables by mean substrate age for each collection site.
The untransformed substrate age data departed significantly from
normality, so comparisons were performed using regressions on nat-
ural log-transformed substrate age data (Cowie, 1995; Gruner, 2007).
We tested the significance of the correlation between network size
and community age, each network metric and community age, and
each network metric and network size, using Spearman's correlation
tests. Additionally, we fitted a second-degree polynomial equation
for the curvilinear relationship between the index of specialization

H’2 and community age.

3 | RESULTS

3.1 | Composition of communities

Sites were selected using climatic and lidar data to restrict abiotic
and biotic variation between sites so the effect of community age
on ecological network structure could best be explored (Tables S1
and S2). There was some variation in forest structure as would be
expected with sites during primary succession (e.g., forest height
and density changes; Figure S2). Our ecological networks document
34 plant genera and 3517 arthropod OTUs, distributed across six
classes: Entognatha, Crustacea (Amphipods and Isopods), Insecta,
Arachnida, Chilopoda and Diplopoda. The arthropod-plant as-
sociations in our networks represent many kinds of trophic and
nontrophic biotic interactions that capture functional differences
among species of the understorey of the Hawaiian native forest. The
barcode reference library increased taxonomic assignment from low

6497
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taxonomic resolution to genus or species for 401 OTUs. Confident
assignment was accomplished for a percentage of OTUs at each tax-
onomic level: Order 99.9%, Family 67.3%, Genus 38.1% and Species
24.9% (Table S3).

There were 2747 OTUs classified as native and 770 classified
as non-native using NicLassiFy. The overall accuracy for our data set
predictions of nativeness using NicLassiFy was 99.9%. Of the native
OTUs, Hemiptera were the dominant order (652 OTUs), followed
by Araneae (467 OTUs), Diptera (327 OTUs) and Coleoptera (266
OTUs). We found a highly significant (Table S4) increase in network
size with community age for both nodes and links, with a dispropor-
tionate increase in the number of links (interactions) after several
hundred years of community development (Figure 2a). The number
of native arthropod species increases dramatically over both ecolog-
ical and evolutionary time while the number of non-native arthropod
species remains relatively steady (Figure 2b). The abundance of na-
tive and non-native arthropods peaks in the middle-aged commu-
nities but the proportion of non-native taxon abundance is highest
in younger communities (Figure 2c). Plant diversity increased with

community age (Figure 2d).

3.2 | Arthropod-plant association networks

Arthropod OTU richness, plant diversity and number of interactions
increased with the geological age of the site. Bipartite networks of
younger communities contain linkage widths between the few domi-
nant taxa (e.g., Hemiptera and Metrosideros) while older communi-
ties contain smaller linkage widths representative of the many more

@) -+ No.ofLinks @ No. of Nodes
2000 - + n T
1500 + +
_|_
1000 *. o ® 0o ® o
500 t o
6 9 12 15

Ln Substrate Age

. Native . Non-native

(b)
No. arthropod OTUs Arthropod read abundance No. plant taxa

10001 4e+05 151

7501 3e+05 10-

500 1 2e+05

250 A 1e+05 5

0- : . . — 0e+00 - : : — 0+ - . . -
6 9 12 15 6 9 12 15 6 9 12 15

Ln Substrate Age

FIGURE 2 Effect of community assembly over evolutionary time on network size and diversity of native and non-native taxa. (a) The
number of nodes (arthropod and plant richness) and the number of links (arthropod-plant associations) significantly increase in concert with
community age. Spearman's correlation test values are given in Table S4. (b) Native arthropod richness increases, while non-native richness
does not increase, with community age. (c) Abundance of native and non-native arthropod species peaks at middle-aged communities but
the abundance of non-native taxa is proportionately higher in the youngest communities. (d) Native plant richness increases with community

age. [Colour figure can be viewed at wileyonlinelibrary.com]
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associations distributed among the greater diversity of both higher
and lower level taxa (Figure 3; Figure S3).

For the null model analyses of the weighted matrices, some
observed network metric values were not significantly different
(p <.05) from metric values produced from the synthetic matrices
(Table S5; Figure S6).

Results of the Spearman's correlation tests show linkage
density (average number of interactions per species), network
vulnerability (a measure of the ratio of plant generic richness to ar-
thropod OTU richness) and interaction evenness (a measure of the

Kilauea: 1973 lava flow 50 yo

Mauna Loa: Olaa 7,500 yo

Kohala: Kohala 365,000 yo

FIGURE 3 Quantitative arthropod-
plant networks along a gradient of

S increasing community assembly (top to

<> bottom). For each network, lower bars
represent plant abundance based on
sampling time and upper bars represent
arthropod abundance based on OTU
frequency. Each network is plotted in
order of the most abundant taxa from left
to right so that the turnover in arthropod-

T plant association can be seen for each

b community. Linkage width indicates
the frequency of each association

as measured using arthropod read
abundance. As a summary, the networks
show interaction data pooled across all
plots for each community age with OTUs
pooled by arthropod order, but analyses
were performed at the OTU per plant
) genus level. The bipartite graphs from

b each of the 11 sampled sites are given in
Figure S3. Arthropod and plant ID codes
are given in Table S3. [Colour figure can
be viewed at wileyonlinelibrary.com]

Maui: Waikamoi 545,000 yo

Molokai: Kamakou 1.4 myo

Kauai: Kokee 4.15 myo

uniformity of energy flows along different pathways) increased
significantly with community age (Figure 4; Table 3). Both gener-
ality (a measure of the ratio of arthropod OTU richness to plant
generic richness) and the index of specialization H/2 increased with
community age but were not significantly positively correlated.
The index of specialization H’2 has a curvilinear relationship with
community age, first decreasing then increasing. A second-degree
polynomial provides the best approximation of the relationship
between H’2 and community age (F = 6.85, R? =.5392, p <.05). By
beat sampling and sequencing all plant-associated arthropods, our
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FIGURE 4 The effect of community - - -
age on quantitative ecological network linkage density b”e'ghted connectance
metrics. Statistical measures of network 404 . 0.08
architecture indicating changes in 0.06 -
arthropod-plant associations in concert 0.04 - . .
with community age. Each network was 0.02- * “ .
weighted with the read abundance of 1 ! I ] : . :
the arthropod OTU associated with the 6 9 12 15 6 9 12 15
plant genus it was collected from, across ;
all plots for a community age. Three generality vulnerability ' —
metrics show significant relationships 5 1 ' 801 e @® Mauna Loa
with community assembly, increasing 4 ae “ 60 - @ Kohala
over time: linkage density, vulnerability 3 ( 40 ’ ‘
and interaction evenness. Spearman's 2 20 @ ) Maui
correlation test values are given in m ! ! ! : I I ! ' Molokai
Table 3. Results of the null model analysis 6 9 12 15 6 9 12 15
for the quantitative ecological networks ' Kauai
metrics are presented in Figure S6 and interaction evenness H2
Table S5. A graph of the results when 0.9-
analysed for each of the sampled plots 0.8 .,.
within a community age site is presented 0.7 1 '
in Figure S7. [Colour figure can be viewed 0.6 ‘
at wileyonlinelibrary.com] 0.5 ; . . :
6 9 12 15

TABLE 3 Spearman's correlation tests for network metrics and

community age.
S p-Value Spearman's rho

Quantitative (weighted) x community age

Linkage density 76 .033 0.65
Weighted connectance 154 371 0.30
Generality 124 .183 0.44
Vulnerability 80 .040 0.64
Interaction evenness 70  .025 0.68
Index of specialization H,, 134 .237 0.39

Note: Spearman's correlation tests were used to determine the
significance of the relationship between each quantitative network
metric value and In substrate age (community age). Graphs of
regressions are shown in Figure 4.

sampling of arthropod taxa is at finer taxonomic resolution than
that of plants. As a result, generality (links/arthropods) is very
close arithmetically to linkage density (links/arthropods + plants)
in our data set because the number of arthropod OTUs is many
times greater than the number of plant genera for all communities.
Connectance (proportion of realized interactions) was not signifi-
cantly correlated with increasing community age, but instead is
highest at the youngest site, and relatively constant for the re-
mainder of the sites.

For the qualitative metrics calculated from the binary matri-
ces, linkage density (links/species), connectance links/(arthro-
pods*plants) and generality (links/arthropods) were significantly
correlated with community age, while vulnerability (links/plants) and

Log Substrate Age

the ratio of resource species to consumers (plants/arthropods) was
not (Figure S4; Table S4). The results from plot-level analysis are con-
sistent with the site-level data and the variance among plots at the
same sites is minimal (Figure S7). These results help corroborate the
trend of increasing specialization over time.

For the regressions of network metrics against network size,
with the exception of generality, quantitative network metrics
were not significantly correlated with network size (Figure S5A;
Table S4). By contrast, qualitative metrics were significantly
correlated with network size with the exception of the ratio of
resource species to consumers, and vulnerability (Figure S5B;
Table S4).

4 | DISCUSSION

Using a data set of biotic associations during the course of com-
munity assembly, we present strong evidence of increasing spe-
cialization within arthropod communities through evolutionary
time. Our DNA metabarcoding data have allowed us to collect a
large sample of the arthropods from the understorey of Hawaiian
forests, representing a broad swathe of trophic and nontrophic
arthropod-plant associations. As expected, the qualitative met-
rics were strongly biased by network size (Banasek-Richter
et al., 2004; Goldwasser & Roughgarden, 1997) and showed higher
linkage density, generality, vulnerability, interaction evenness and
lower connectance in older communities, because the diversity of
plants and arthropods was higher in these communities (Figure S4;
Table S4). Our null model analysis helped to demonstrate that the
distribution of link weights was itself an important feature of the
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observed network structure (i.e., not which species they are be-
tween). We present clear signatures of change in quantitative,
weighted network metrics with community age (Figure 4; Table 3)
that resulted from changing community composition and ecologi-
cal dynamics.

4.1 | Ecological processes dominate younger
communities

Theory suggests that the composition of the youngest communi-
ties is shaped through colonization from a regional species pool.
This expectation is supported by our results, with the younger
communities having significantly lower linkage density, vulnerabil-
ity and interaction evenness (Figure 4). These results indicate that
species in younger communities are interacting with greater fre-
quency along less uniform interaction pathways, compared to spe-
cies assemblages at older sites. However, notably the very youngest
site, the 1973 lava flow, is an outlier. At the 1973 lava flow, linkage
density is high (LD = 24.2), probably reflecting strong environmen-
tal filtering and an opportunistic community of generalist species
(Bufford et al., 2020; Kortsch et al., 2015) suited for survival dur-
ing primary succession. At other young sites, linkage density is low,
from <10 (Tree Planting Rd.), whereas it peaks and levels off at Maui
(LD = 38.6) and Kauai (LD = 38.9), respectively. Thus, linkage den-
sity was low at young sites with low resource diversity while the di-
versity of interactions increased over evolutionary time in step with
increasing community complexity.

Interaction evenness was low, as expected, on the youngest
sites, again with the exception of the 1973 flow. As a measure
of the uniformity of energy flows along different pathways, we
expected interaction evenness to be low in young communities
because some interaction partners would dominate the asso-
ciations in the network. For example, a large proportion of in-
teractions on the youngest sites (<300years old) belong to the
associations of Hemiptera and Collembola species with early suc-
cessional plant species, Metrosideros polymorpha and Dicranopteris
linearis (Figure 3; Figure S3). Low interaction evenness has also
been demonstrated among bees and wasps and their associated
natural enemies (e.g., parasitoids) under conditions of intensive
management (Staniczenko et al., 2017; Tylianakis et al., 2007). The
early successional communities in Hawaii are ecologically similar
to highly modified sites, due to the recent disturbance from lava
and the paucity of resource diversity. We suggest that the higher
interaction evenness at the 1973 lava flow is due to the extremely
limited resources (plants) on the sparsely vegetated lava substrate.
At this site colonists may be joined by a relatively large represen-
tation of transient arthropods, which may be less host-specific and
appear randomly associated with the available plants, increasing
interaction evenness. Connectance also peaked in the youngest
community (1973 lava flow) probably due to the greater repre-
sentation of generalists within this network (Kortsch et al., 2015;
Ponisio et al., 2019).

The network metric values are less consistent among the young-
est sites compared to the older sites (Figure 4). This is probably due
to the relatively rapid changes in community composition in early
primary succession (Atkinson, 1970; Roderick et al., 2012) compared
to older established sites. An alternative explanation is that change
in the composition of the understorey plants (Figure 3; Figure S3)
and canopy structure (Figure S2; Table S2) results in the network
metric variation at the youngest sites. The higher variation among
network values at the youngest sites may also point to the different
rates of specialization and adaptation among different lineages of
arthropods. Among functional groups of beetles (e.g., xylophages,
fungivores, predators), community composition and network spe-
cialization changed differently during early succession (Wende et al.,
2017).

4.2 | Specialization increases through
evolutionary time

For a given taxon on average, the number of biotic interactions it
is involved in decreases with community age, resulting in greater
network specialization. This is reflected in the increased linkage
density with community age, as early colonizing species gave way
to a greater diversity of associations (Figure 4). However, weighted
connectance stabilized at around the same level for the remainder of
the communities after the 1973 lava flow. This may be explained by
the “constant connectance” hypothesis (Martinez, 1992) that posits
that species are linked to a fixed fraction of species in a network,
independent of the number of species in a community. A similar
pattern of constant connectance and community age was found
in arthropods recolonizing defaunated mangrove islands (Piechnik
et al., 2008). For the Hawaiian Islands, several factors probably
produce constant connectance over long-term community develop-
ment. First, resource availability limits specialists at early stages; for
example, Escape Road (~300years) is dominated by a single species
of fern. Next, over evolutionary time, the Hawaiian fauna is charac-
terized by a remarkably high rate of lineage diversification (Gillespie
etal., 2020; Gillespie, 2016; Zimmerman, 1970) that has added novel
species and associations. Finally, at more recent timescales (after
human arrival) immigration of non-natives has been sufficiently high
so as to add generalist taxa across all stages of community develop-
ment (Figure 2b).

A previous study which used an island chronosequence to ex-
amine how pollinator interactions change through extended time
(Trajelsgaard et al., 2013) also found connectance was poorly ex-
plained by age. However, contrary to our results, the Canary Islands
study showed hump-shaped relationships of interaction richness and
specialization with island age. One reason for the different results
is that we used a natural log scale for the skewness of island age.
For the Hawaiian islands, values for linkage density, vulnerability,
interaction evenness and index of specialization H’2 were especially
high on the volcano of East Maui. The islands of Maui Nui are also
where richness peaks for many native arthropod lineages (Gillespie
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& Baldwin, 2009; Gruner, 2007). However, unlike the Canary Island
pollinators, our values of linkage density were highest on the oldest
island, and values for interaction evenness, vulnerability and index
of specialization H’2 were nearly as high, indicating that the overall
changes in network structure were more linear than hump-shaped.
An alternative explanation for the difference in the results is that the
older islands of the Canary archipelago have environments that are
very different from the younger islands. Although the Canary Island
study focused on communities that were characterized by the plant
species Euphorbia balsamifera, the abiotic environment changes sig-
nificantly across their chronosequence, with the older islands being
much lower and drier (Juan et al., 2000). Thus, the finding of a hump-
shaped relationship in the Canary Islands is associated with the
combined effects of time, island geomorphological transitions and
associated change in climate regimes. In contrast, the current study
in the Hawaiian Islands aimed to standardize environments (eleva-
tion, precipitation and forest cover, with sampling from standardized
plots across the islands). Therefore, any confounding environmen-
tal differences were minimized and changes in network properties
should largely reflect the influence of community age.

Both vulnerability and generality show positive correlations with
community age (Figure 4; Table 3), and thus the average number of
arthropods per plant species (vulnerability) and the average number
of plant species per arthropod (generality) are increasing over time.
This is consistent with our expectation that specialization increases
resource overlap when a reduction in antagonistic interactions leads
to some level of resource redundancy and an increase in diversity
of beneficial interactions leads to greater resource complementar-
ity (Table 1). In other words, over evolutionary time, if two species
are in direct competition for resources, they can evolve traits that
allow them to coexist. One result of trait matching between interac-
tion partners is decreasing niche breadth (i.e., decreasing diversity
of resources used). Thus, our results are consistent with decreas-
ing niche breadth with island age found previously from literature
for herbivores (Ponisio et al., 2019). Moreover, although the rate of
specialization and adaptation, such as occurs through trait matching
and decreasing niche breadth, can vary among functional groups in a
community, our data show that community specialization is happen-
ing at the network level, averaging over the high variation in rates of
specialization.

The network-level specialization index H’2 is largely unaffected
by network size, network architecture or total number of inter-
actions for a fixed matrix size (Blithgen et al., 2006), making it an
ideal metric compare between different networks for understand-
ing specialization over time. We find that the index of specialization
increases over time but is better fit by a second-degree polynomial
equation. In early-stage communities from 50 to 575 years the index
of specialization is decreasing. This drop in specialization in the first
several hundred years is followed by an increase over the next tens
of thousands of years. For random associations H, is usually close
to zero. On Maui it reaches a value of 0.6 then levels out to 0.5 on
Molokai and Kauai. This pattern is consistent with other metrics in
our analysis suggesting that very young communities are organized
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by assembly rules making them appear specialized. After ecologi-
cal sorting and the impact of in situ evolution in later stage com-
munities we see organization at a secondary, evolutionary stage of

development.

4.3 | Resilience of communities increases
through time

While communities sampled from the youngest sites are com-
posed primarily of native species from the regional pool (Figure 2b),
younger communities have proportionally higher abundances of
non-native species infiltrating the system (Figure 2c). Thus, it ap-
pears that young communities are more invasive, which is consist-
ent with previous studies showing that communities composed of
endemic generalist taxa are more vulnerable to infiltration by non-
natives (Olesen et al., 2002). By increasing connectance and lowering
network specialization, higher numbers of alien species may in turn
facilitate increasing numbers and impacts of invasions (Simberloff &
Von Holle, 1999; Simberloff., 2006).

However, this result runs counter to work suggesting that
higher-connectance food webs tend to host fewer invaders and
exert stronger biotic resistance compared to low-connectance
webs (Smith-Ramesh et al., 2017). Further, community resistance
to invasion is known to increase with native species diversity
(Gallien & Carboni, 2017) and network complexity (Wei et al., 2015).
Considering the results from our study within the context of this
previous work, older communities, which are characterized by low
connectance and high specialization, may be more resistant to in-
vasion; however, individual taxa may be more susceptible to extinc-
tion. From an individual species level, because all species are linked
together either directly or indirectly (Montoya et al., 2006), individ-
ual species with high specialization and low connectance are sus-
ceptible to extinction because of secondary extinctions occurring
when specialized consumers lose their only prey (Dunne et al., 2002;
Staniczenko et al., 2010). From a network level, as communities age,
several species may be associated with the same resource (resource
redundancy) or utilize a single resource more effectively (resource
complementarity), minimizing variability in the functioning of an
ecosystem, for example when some consumer species decline in
number (Peralta et al., 2014).

Although ecological processes, such as interspecific inter-
actions or disturbance, are often attributed to the geographical
differences in exotic species richness (Lockwood et al., 2013) an
alternative explanation for the apparent reduced biotic resistance
to invasion of younger communities may be that they experience
increased propagule pressure (Lockwood et al., 2005). The younger
sites on Kilauea volcano are accessed more frequently by tourists
compared to the older sites, which require greater on foot distances
to reach or special access permits. Furthermore, while our study
directly assesses arthropod-plant associations, it only indirectly
measures the effect of higher trophic associations. Differential
top-down pressure (e.g., predator turnover) during community

0 ‘€T ‘€20T Xb6TSIET

sy woy papeoy

9SUDDIT Suowwoy) dAnea1) o[qestjdde oy) Aq pauIoA0S a1 S[OIIE V() oSN JO AN 10f A1eiqi ouljuQ) AJ]IA\ UO (SUONIPUOI-PUE-SULIS)/ W00 K[ 1M Areiqijaut[uo//:sdny) suonipuoy) pue swd [, oY1 998 “[$707/€0/10] uo Areiqi sutjuQ A9ip ‘KNSIOAIUN PIOJXO £q €£89] 09U/ [ [ ] ['(]/10P/WOd Ko[Im"



GRAHAM ET AL.

6502
—I—WI |l A& MOLECULAR ECOLOGY

assembly probably also changes biotic resistance to invasion; for
example, generalist insectivorous birds reduced infiltration of an
invasive species of spider at the 133-year-old Tree Planting Rd.

community (Gruner, 2005).

4.4 | Conclusions and outlook

Our study uses whole-community DNA metabarcoding data to as-
sess the biotic associations of thousands of arthropod OTUs on
plants across a geological chronosequence. By including relative
abundance data, we achieve a signature of interaction strength
(Popovic et al, 2019) not captured for co-occurrences with
presence-absence observations (Blanchet et al., 2020). Although
DNA metabarcoding can be used for observation of trophic interac-
tions (Alberdi et al., 2019; Krehenwinkel, Kennedy, et al., 2017), our
analysis instead includes all biotic associations between arthropod-
plant communities, including those that can be difficult to detect
(e.g., involving cryptic species, new non-natives, endangered spe-
cies, juveniles). Thus, we are able to include complex community in-
teractions including substrates chosen for acoustic signalling (Mullet
etal.,, 2017), predator avoidance (Lindstedt et al., 2019; Stachowicz &
Hay, 1999) and gregarious plant-feeding insects (Hunter, 2000) that
are often overlooked in traditional network studies. Compared to
the limitations of small, unweighted early food web studies (Cohen
etal., 1993; Hall & Raffaelli, 1991), DNA metabarcoding offers excit-
ing avenues forward for capturing community complexity.

This research revealed a strong association between the network
structure of ecological communities and community development
over evolutionary time. Quantitative network metrics demonstrate
that younger communities are composed of more generalist species
that interact with greater frequency along fewer interaction path-
ways, with individual and network specialization increasing with
community age. Our data highlight the utility of DNA metabarcoding
for understanding longstanding questions of ecology and evolution-
ary biology that remain time consuming (e.g., keying out morpholog-
ical species) or impossible (e.g., identification of juveniles) to assess
with traditional methods. From a conservation perspective, our re-
sults indicate that habitat disturbance erodes a complex web of bi-
otic associations, far greater than the sum of the community metrics
of richness and abundance, that have evolved in situ over thousands
to millions of years.
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