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Background: MacArthur and Wilson's theory of island biogeography has been a foun-

developing models that integrate across scales and disciplines. Historically, however,
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1 | INTRODUCTION

Macroecology

and Biogeography

these developments have focused on integration across ecological and macroevolution-
ary scales and on predicting patterns of species richness, abundance distributions, trait
data and/or phylogenies. The distribution of genetic variation across species within a
community is an emerging pattern that contains signatures of past population histories,
which might provide an historical lens for the study of contemporary communities. As
intraspecific genetic diversity data become increasingly available at the scale of entire
communities, there is an opportunity to integrate microevolutionary processes into our
models, moving towards development of a genetic theory of island biogeography.
Motivation/goal: We aim to promote the development of process-based biodiver-
sity models that predict community genetic diversity patterns together with other
community-scale patterns. To this end, we review models of ecological, microevolu-
tionary and macroevolutionary processes that are best suited to the creation of unified
models, and the patterns that these predict. We then discuss ongoing and potential
future efforts to unify models operating at different organizational levels, with the goal
of predicting multidimensional community-scale data including a genetic component.
Main conclusions: Our review of the literature shows that despite recent efforts, fur-
ther methodological developments are needed, not only to incorporate the genetic
component into existing island biogeography models, but also to unify processes
across scales of biological organization. To catalyse these developments, we outline
two potential ways forward, adopting either a top-down or a bottom-up approach.
Finally, we highlight key ecological and evolutionary questions that might be addressed
by unified models including a genetic component and establish hypotheses about how

processes across scales might impact patterns of community genetic diversity.

KEYWORDS
biodiversity dynamics, community ecology, community genetic diversity, metabarcoding,
metagenomics, population genetics, stochastic biodiversity models

of data has spurred efforts to develop models that also generate
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General interest in understanding the processes that have given rise
to current patterns of biodiversity has spurred the development of
diverse models to explain these patterns. One of the more influen-
tial is MacArthur and Wilson's equilibrium theory of island biogeog-
raphy (ETIB; MacArthur & Wilson, 1963, 1967). Although originally
developed to understand biodiversity patterns on islands, the ETIB
has been used more generally to predict community patterns, thanks
to the analogy between island and community assemblages, both of
which result from limited dispersal from a larger species pool. The
ETIB has catalysed >50years of research on models that represent
how species from regional or global pools (i.e., the metacommunity)
assemble into local communities (Chesson, 2000; Hubbell, 2001;
Leibold & Chase, 2017; Tilman, 2004; Vellend, 2016). These com-
munity assembly models provide explicit predictions about patterns
that can be measured in the field, such as species abundance dis-
tributions (SADs; McGill et al., 2007), spatial turnover (Nekola &
White, 1999), temporal turnover (Magurran et al., 2010) and species-
area relationships (Lomolino, 2000). The availability of other types

community-scale predictions for such data, including species traits
(Jacquet et al., 2017; Xu et al., 2020), interaction networks (Gravel
et al., 2011; Thébault & Fontaine, 2010) and phylogenetic trees
(Jabot & Chave, 2009; Morlon et al., 2011; Sanmartin et al., 2008;
Valente et al., 2015). These models often require integration across
disciplines to represent processes operating over different organi-
zational levels (individuals/genotypes/species) and spatial scales,
within the community or within the metacommunity, such as envi-
ronmental filtering, interspecific interactions, trait evolution, spe-
ciation and extinction. Such unified models are challenging to build,
but they allow a powerful inference of multiple processes potentially
operating at and interacting across various scales.

One dimension of biodiversity that remains largely absent from
predictions of such integrative models is the distribution of popula-
tion genetic variation across species within communities (Ellegren
& Galtier, 2016). This shortcoming means that community-level
data for genetic diversity cannot be used to reinforce inferences
of ecological and evolutionary processes using island biodiversity
models. This is unfortunate, because community-scale genetic
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data provide a record of the formation of ecological communities
on a population-genetic (intermediate) time-scale (on the order of
tens to tens of thousands of years), which can complement infor-
mation obtained from other community-scale patterns (Overcast
et al., 2020). For example, the strength of the correlation between
species abundance and genetic diversity might provide an indica-
tion of community age, because all species in young communities
(e.g., those on recently formed volcanic islands) should have low
genetic diversity (but see Caujapé-Castells et al., 2017), whereas
abundant species from old communities (e.g., those on relatively
ancient volcanic islands) might have accumulated more genetic di-
versity than rare species (Overcast et al., 2020). Genetic diversity
might also capture signatures of historical changes in population
size and cycles of genetic connectivity that drive incipient species
into and through the “grey zone” of speciation (Roux et al., 2016;
Salces-Castellano et al., 2020). Importantly, in the context of con-
sidering processes across organizational levels and spatial scales,
genetic diversity provides a snapshot of population history at a
time-scale that can shed light on the link between microevolution-
ary, ecological and macroevolutionary processes, which encompass
patterns of intraspecific allele frequencies, species abundances and
phylogenetic relationships, respectively. Therefore, the develop-
ment of unified models of biodiversity that provide predictions for
community-scale genetic data, along with other community-level
predictions, has the potential to provide insight into numerous key
ecological and evolutionary questions (Box 1).

Data availability is no longer a major obstacle to the integration
of microevolutionary processes in inferences from unified mod-
els of biodiversity. Obtaining genetic data at the community scale
has long been hindered by logistical constraints, but metagenetic
methods, including whole-organism community DNA metabarcod-
ing (Creedy et al., 2021; Deiner et al., 2017), environmental DNA
(Cordier et al., 2020; Taberlet et al., 2012) or mitochondrial metage-
nomics (Crampton-Platt et al., 2016; Gomez-Rodriguez et al., 2015,
2017), are increasingly removing this constraint. Conventionally,
these approaches have been implemented to approximate com-
munity profiles at the species level, but their potential also to
generate population-level genetic data for entire communities has
recently been revealed (Andujar et al., 2021; Arribas et al., 2021;
Elbrecht et al., 2018; Schloissnig et al., 2013; Tsuji et al., 2020; Turon
etal.,, 2020). As advances in sequencing technology continue to pro-
duce higher yields, metagenetics is increasingly being used for the
characterization and monitoring of biodiversity in marine, terrestrial
and freshwater environments. As a consequence, community-level
genetic data are accumulating in massive online repositories (e.g.,
GenBank; https://www.ncbi.nlm.nih.gov/genbank), such that it is
becoming increasingly possible to study intraspecific genetic vari-
ation across multiple communities from regional to global scales
(i.e., “macrogenetics”; Leigh et al., 2021; Miraldo et al., 2016). One
focus, therefore, is to encourage development of models that will
provide an explicit biogeographical context (Edwards et al., 2022)
for macrogenetic studies by integrating community-scale intraspe-
cific genetic variation into mechanistic models to understand and

predict how biodiversity accumulates across spatial scales and levels
of organization.

The field of population genetics has produced countless models
to infer historical processes of individual (or closely related) species
(e.g., Kingman, 1982; Wright, 1931). However, these models are not
well adapted to analyse community-scale data, because their focal
unit of study is individual species. Comparative phylogeographi-
cal models aggregate multiple individual-population genetic mod-
els for co-distributed species (Arbogast & Kenagy, 2001; Edwards
et al., 2022), but they lack an ecological (community) context. There
are a handful of precedent efforts to develop community-level mod-
els that include predictions for the genetic diversity of all constituent
species. Johnson et al. (2000) derived a population genetic model of
island biogeography that allowed estimation of rates of migration, ex-
tinction and speciation and that made explicit predictions about how
genetic divergence relates to island area and distance from the main-
land (Ricklefs & Bermingham, 2004). Inspired by the unified neutral
theory of biodiversity (UNTB; Hubbell, 2001), which is an individual-
based neutral model of community assembly following ETIB, Laroche
et al. (2015) developed a model that predicts the species genetic di-
versity correlation (SGDC), which measures the correlation between
the genetic diversity of a focal taxon and species richness in the local
community (Vellend, 2005). Empirical studies across a broad array
of taxa have found either positive (Lamy et al., 2013; Papadopoulou
et al, 2011) or negative genetic diversity-species richness cor-
relations (Marchesini et al., 2018; Xu et al., 2016), consistent with
predictions by Laroche et al. (2015). Finally, Overcast et al. (2020) de-
veloped the massive eco-evolutionary synthesis simulations (MESS)
model, which combines Hubbell's UNTB with the neutral model of
population genetics (Kimura, 1983). MESS provides predictions for
the correlation between genetic diversity and abundance and for the
species genetic distribution (SGD; Overcast et al., 2019), an analogue
to the SAD, but where species abundance is replaced by a measure of
species genetic diversity.

Given these few existing developments, the power of unified
models and trends towards increased access to community-level
population genetic data, we aim to promote the development of
process-based biodiversity models that predict community genetic
diversity patterns together with other community-scale patterns.
For simplicity, we focus on genetic diversity patterns obtained from
single-locus data, consistent with data that are typically generated
within metabarcoding studies, but note that modelling of multilo-
cus or metagenomic data is also possible and would only increase
the resolution of model predictions. We review current models for
studying biodiversity dynamics from the perspective of community
ecology, microevolution and macroevolution, with a focus on their
applicability to island-like systems. We highlight the strengths and
weaknesses of these existing models, in terms of integrating across
organizational levels and predicting realistic multidimensional com-
munity data including a genetic component. Finally, we discuss
ongoing and potential future efforts to unify models operating at
different organizational levels, in order to predict multidimensional
community-scale data better.
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BOX 1 Why are unified models including community-scale genetic variation important for understanding the
processes that generate and maintain biodiversity?

Many open questions remain concerning how the biodiversity we observe in nature has accumulated. For example, how do the
dynamics of adaptation, competition, speciation and colonization result in the communities that we observe today? And how have
local environmental conditions and human-mediated disturbance modulated these processes? These questions can be addressed, in
part, without unified models; for example, community ecology studies often suppose that the dynamics of community assembly play
out on time-scales so short that speciation can be ignored, and macroevolutionary investigations rarely consider processes such as
mutation and the accumulation of genetic diversity. The main value of unified models is precisely to facilitate investigation of feed-
back between such processes (i.e., addressing questions such as: how does in situ speciation reshape communities locally, and how
does it impact the genetic diversity of the two descendant species and of all other species in the community?). A growing awareness
of the importance of such feedback has bolstered interest in unified models (Cavender-Bares & Wilczek, 2003; McGill, 2010; Pennell
& Harmon, 2013). Unified models might also increase our ability to infer which, among a series of alternative eco-evolutionary sce-
narios, is most likely to have produced the data we observe, by simultaneously leveraging the complementary information contained
in multiple axes of biodiversity data. For example, scenarios that are not distinguishable from species abundance distributions alone
might be distinguishable when also including community genetic data. We identify here a non-exhaustive set of questions for which
models predicting individual (or few) types of data have had some, albeit limited, success in resolving, but for which the development
of unified models would provide further advances.

e Factors modulating commonness and rarity within communities. How much do colonization times and early establishment demo-
graphics determine which species are common and which are rare in contemporary communities (e.g., tropical forests in Hawaii;
Craven et al., 2019)? Have abundance relationships been maintained over time, and have historical changes in abundance followed
deterministic (niche partitioning) or stochastic (neutral assembly) processes (e.g., tropical forests in Panama; Wang et al., 2013)?
Ecological models of community assembly predicting only contemporary species abundances are unable to answer such questions,
but unified models including a population genetic component for predicting the past and present genetic diversity of contempo-
rary species could do so.

e Factors promoting species richness within communities. How much does in situ speciation contribute to the diversity of local com-
munities (e.g., Caribbean Anolis lizards; Losos & Schluter, 2000)? How much do the dynamics of speciation and extinction at the
metacommunity and community scales versus ecological limits imposed by local environmental conditions (e.g., mediated by total
abundance in the community) explain the diversity of local communities (e.g., Rabosky & Glor, 2010)? Standard community assem-
bly models do not account for diversification dynamics, whereas standard macroevolutionary models consider ecological limits at
the clade rather than community level. These processes could be untangled with unified models of lineage diversification with a
spatial local community component to generate nested local/global phylogenetic, richness and abundance patterns.

e Impact of community context on genetic diversity. Genetic diversity of individual species is the outcome of processes that take place
within a community context, yet this context is rarely considered in population genetic models. For example, dispersal limitation
between, competition (or other types of interactions) within, and adaptation to ecological conditions of islands or island-like
habitat patches will all contribute to shape individual (and collective) species genetic diversity (e.g., Malagasy herpetofauna; Kuhn
et al., 2022). Unified models of colonization, abundance and competition/interaction that predict abundance and genetic diversity
for all species can provide such a community context for population genetic models.

e Diversification and genetic diversity. How much do metacommunity diversification dynamics explain community-scale genetic di-
versity? How does in situ speciation impact the genetic diversity of descendant species, and how does this contribute to shaping
genetic diversity across the entire community (e.g., Neotropical cichlids; Kautt et al., 2020)? Answering these questions requires a

unified model of macroevolution, community assembly and population genetics.

2 | EXISTING MODELS OF COMMUNITY, and phylogenetic patterns (Figure 1) needs to incorporate processes

GENETIC AND COMPARATIVE ranging from ecological (e.g., dispersal, environmental filtering, de-
BIODIVERSITY DATA mographic processes modulated by environmental factors and intra-

and interspecific interactions) to microevolutionary (e.g., mutation,
A model that aims to incorporate predictions of genetic diversity, genetic drift and selection) and macroevolutionary (e.g., speciation,
as an additional dimension of community-scale patterns, together extinction and phenotypic evolution) (Figure 2). We expect that
with abundances, traits and/or network structure, species richness these processes will modulate community-scale genetic diversity
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FIGURE 1 Patterns of community genetic diversity. Hypothetical illustrations of numerous patterns of single-locus community genetic
diversity that can be envisioned within (a-d) and between (e, f) communities. Here, the focal summary statistic of the genetic data within
communities is nucleotide diversity (r; Nei & Li, 1979), although other statistics, such as Watterson's estimator of 6 (Watterson, 1975),
Tajima's D (Tajima, 1989) or the site frequency spectrum (Wright, 1938), could provide complementary information. Between communities,
we illustrate genetic divergence (ny; Nei & Li, 1979), but other population differentiation statistics, such as Fg; (Wright, 1965), could provide
complementary information. (a) The one-dimensional species genetic diversity distribution (1D-SGD) can be represented as a rank ordering
of n per species in the community. (b) The network-SGD is a pairwise histogram that summarizes = per species for two co-distributed
interacting guilds. Darker bins in the histogram indicate higher numbers of interacting species pairs occupying this joint genetic diversity bin.
(c) The At-SGD summarizes changes in genetic diversity through time given temporal samples from the same community. This is also a joint
histogram, but with samples on the x-axis illustrating the = distribution at time t; and samples on the y-axis time 7, ,. (d) The environment-=
correlation depicts the relationship across local communities (each black point is a local community) between average n per species within
each local community (x) and a relevant environmental condition (here, mean annual temperature). (€) The two-dimensional species genetic

diversity distribution (1D-SGD) summarizes the relationship between genetic diversity within species in the local community and genetic
divergence between local and metacommunity sister-species pairs. It is a joint histogram depicting local = and genetic divergence (ny)
from the metacommunity. (f) Isolation by distance (IBD) is a classic pattern in population genetics that represents the increase in genetic
divergence between two populations as a function of the geographical distance separating them. A community-wide pattern of IBD can

be formalized by calculating average ny (ny) across all species shared between pairs of communities (black points) and plotting them as a

function of the geographical distance separating the communities.

patterns (Box 2). If one is additionally interested in predicting spa-
tially explicit patterns, similar to the species-area relationship (SAR;
Durrett & Levin, 1996), the distance decay of similarity relationship
(Morlon et al., 2008) or equivalent patterns for networks (Brose
etal.,2004; Galiana et al., 2018), traits (Penone et al., 2016; Weinstein
et al., 2014), genetic diversity (Baselga et al., 2015; Papadopoulou
et al., 2011) and phylogenetic diversity (Morlon et al., 2011), then
the model needs to incorporate spatially explicit dispersal and, po-
tentially, environmental variation. Finally, prediction of temporal
patterns requires following how patterns unfold through time under
the chosen model (e.g., Missa et al., 2016). A rich suite of ecological,
microevolutionary and macroevolutionary models that predict some
of these patterns already exists. We begin with a short overview of
some of these models, evaluating which patterns they are able to
predict and whether the models provide realistic predictions, before
moving into integration of genetic data into community-level mod-
els. We consider models that can be fitted to data using a variety of
statistical techniques, ranging from likelihood-based to simulation-

based inference (Box 3).

2.1 | Ecological models derived from the theory of
island biogeography

The ETIB (MacArthur & Wilson, 1963, 1967) has been instru-
mental in ecology, inspiring many of the models that have subse-
quently been used in the field to predict community-scale data.
Under the assumption that species are functionally equivalent
(i.e., there are no interspecific differences in colonization or ex-
tinction rates), the theory predicts equilibrium richness as a
product of immigration, which is dictated by distance from the
mainland source, and extinction, which is affected by island size.
Beyond predicting biodiversity patterns on islands, the ETIB has
been used to predict community patterns, thanks to the anal-
ogy between continent-island and metacommunity-community
systems (Hanski, 1998). For example, the ETIB naturally predicts
SARs (Lomolino, 2000), and in general, these provide a reasonably
good fit to empirical systems (Warren et al., 2015). Body-size dis-
tributions can be predicted by modelling body-size variation (e.g.,

the allometric theory of island biogeography; Jacquet et al., 2017),
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FIGURE 2 Processes across organizational levels required to model multidimensional biodiversity patterns that incorporate a genetic
component. (a) At the macroevolutionary scale, speciation, extinction and trait evolution shape the phylogeny and traits of extant species

in the metacommunity. Depicted species have different traits that are represented by colour and body size. (b) At the ecological scale,
dispersal into and demographic processes within the local community, both of which are potentially modulated by trait values, shape local
species abundance distributions (SADs) and trait distributions. In addition, interaction rules can shape the structure of interaction networks.
Speciation, local extinction and trait selection can feed back on macroevolutionary processes. (c) At the microevolutionary scale, mutations
accumulate, and selection, migration and fluctuations of species abundances shape species genetic diversity. At the scale of all species in the
local community, patterns of community-scale genetic diversity [e.g., the species genetic distribution (SGD)] are predicted. Trait and genetic
differentiation can feed back on both ecological and macroevolutionary processes.

under the assumption that island area and isolation will have dif-
ferential impacts on colonization and extinction probability for
large- versus small-bodied organisms. Food web properties, such
as connectance (the fraction of realized interactions), can also
be predicted (Gravel et al., 2011; Harmon et al., 2019). Several
ETIB-inspired models can predict community-scale phylogenetic
patterns, including DAISIE (Valente et al., 2015, 2020), which
models immigration, extinction and speciation in an island/archi-
pelago context, and DAMOCLES (Pigot & Etienne, 2015), which
incorporates standard birth-death diversification processes at
the regional scale with colonization and local extinction (but not
speciation) processes at the local scale. The ETIB and its descend-
ants are lineage based and, as such, they do not make predictions
of abundance or genetic diversity. These models are also spatially
implicit, in the sense that, although the rate of colonization can be
a proxy for geographical distance, physical geography and land-
scape features are not modelled, hence they do not provide pre-
dictions of continuous spatial biodiversity patterns, such as the
distance decay of similarity relationship.

The UNTB (Hubbell, 2001; Rosindell et al., 2011) is an individual-
based model inspired by the ETIB, which models stochastic de-
mographic processes in a small local community, within which all
individuals of all species are functionally equivalent and which is at

an equilibrium between local extinction and colonizationfromalarge
source pool of potential immigrants (metacommunity). The UNTB
provides equilibrium predictions of species abundance distributions
at local scales (Etienne, 2005, 2007) that are a good fit to tempo-
rally static SADs (Hubbell, 2001; Matthews & Whittaker, 2014)
and can be relaxed to allow modelling of non-equilibrium abun-
dance dynamics (Manceau et al., 2015; Missa et al., 2016; Overcast
et al., 2019, 2020; Rosindell & Harmon, 2013), facilitating predic-
tions of temporal patterns, such as changes in community com-
position through time (e.g., Kalyuzhny et al., 2015). Body-size
distributions can be predicted within a UNTB-derived model by al-
lowing variation in survival probability given body-size differences,
while otherwise retaining ecological equivalence (e.g., O'Dwyer
et al., 2009). Further extensions of the UNTB provide predictions
for SADs on both sides of an interaction network, in addition to the
structure of the network (Canard et al., 2012; Maliet et al., 2020).
Spatially explicit temporal patterns of a- and B-diversity have also
been modelled under static (Durrett & Levin, 1996; O'Dwyer &
Green, 2010) or fluctuating (Gotelli et al., 2009; Jabot et al., 2020;
Pontarp & Wiens, 2017; Rangel et al., 2007) environmental con-
ditions, although how environmental stochasticity impacts spatial
and temporal abundance patterns remains to be investigated fully.
The UNTB also makes predictions of phylogenetic patterns at local
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BOX 2 Hypothesized effects of biodiversity processes on community genetic diversity patterns

Community-scale patterns of genetic diversity reflect processes at all scales. Figure 3 illustrates examples of hypothesized effects of
various processes on patterns described in Figure 1.

Figure 3a Diversification processes naturally impact genetic diversity. We can hypothesize that communities assembled from meta-
communities within which the average speciation rate is high will have a reduced average genetic diversity at the community scale
(continuous line). When descendant lineages are isolated by barriers to gene flow, and unless all segregating variation persists in both
offspring lineages, there will be a net decrease of = in descendant lineages, relative to the ancestor. If the speciation rate outpaces the
ability of offspring lineages to return to ancestral levels of genetic diversity, there will be a net decrease of average = at the commu-
nity scale. We can also hypothesize that, in metacommunities subject to frequent extinction, the preferential extinction of genetically
depauperate species (which have a reduced capacity for adaptation and increased potential for inbreeding depression) will elevate
average = of the species remaining in the community (dashed line).

Figure 3b The nature of species interactions (e.g., antagonistic vs. mutualistic) impacts the structure of ecological networks, with
potential cascading impacts on genetic diversity on both sides of the network. In mutualistic networks, few (abundant) generalists in
general interact with many (rare) specialists (nested structure; Thébault & Fontaine, 2010), such that species abundance distributions
[and therefore species genetic distributions (SGDs)] on each sid_eof the network are expected to be more uneven, and abundances
between interacting species more asymmetric (and therefore Am;; larger) than in neutral or antagonistic networks.

Figure 3¢ The relative strength of selection versus ecological and genetic drift (neutral processes) modulates fluctuations in abun-
dances that will influence fluctuations in genetic diversity across species in the community. Communities that change composition
through time only as a result of drift will show large average At-SGD, owing to unconstrained fluctuations of abundances (and there-
fore n). Selection within the focal community will tend to constrain abundances, with well-adapted species obtaining and remaining
at high abundance and with less well-adapted species existing primarily at low abundance or going locally extinct.

Figure 3d Differences in environmental conditions at different sampling sites will be correlated with community-scale genetic di-
versity to the extent that the environmental variable considered is biologically relevant. Under neutrality, species abundances are
insensitive to the environment, fluctuating only as a function of drift, and therefore, average r in the community will not be correlated
with environmental variables. In the presence of suitable environmental conditions, selection should reduce the local extinction
rate and promote long-term persistence of species, increasing average =. In contrast, unsuitable conditions should act to increase
demographic stochasticity, leading to elevated local extinction rates and reduced average =. The sensitivity of the community to any
particular environmental variable will dictate the strength of its correlation with average =.

Figure 3e All things being equal, dispersal among communities should show a similar effect on community-scale genetic diversity
to dispersal between structured populations of individual species, with increasing rates of migration increasing nucleotide diver-
dashed line) among, subdivided populations (Nei, 1973, 1987;
Wright, 1965). However, variation in colonization time, effective population size and dispersal capacity among community members

sity (m; continuous line) within, and decreasing genetic distance (ny;
will cloud these signals. Investigating joint patterns of = and ny (e.g., the 2D-SGD) could shed light on both community history and
variation in dispersal capacity. For example, controlling for effective population size, a relatively older, isolated species and a younger
species connected by migration to the metacommunity might have similar = values, yet differ substantially regarding ny.

Figure 3f Community isolation by distance (IBD) should respond to dispersal in a similar way to classic (i.e., species-level) IBD, with low
dispersal increasing average ny among sites with increasing geographical distance, increasing the slope of community IBD. With high
dispersal, genetic divergence should erode more slowly with geographical distance, reducing the slope of community IBD. Variation
in dispersal capacity among species within the community will cloud this signal, and therefore, accounting for this variation in calcu-
lating community IBD is an avenue for further study.

and metacommunity scales that fit the tree imbalance observed 2.2 | Microevolutionary models for genetic

within empirical phylogenies reasonably well (Davies et al., 2011,
Jabot & Chave, 2009). These have been improved by incorpora-
tion of protracted (Rosindell et al., 2010) or genealogical (Manceau
et al., 2015; Rosindell et al., 2015) models of speciation. The UNTB
has also served as a starting point for more general (including
non-neutral) models of community structure (e.g., Haegeman &
Etienne, 2017; Rosindell & Phillimore, 2011).

diversity data

Population genetic models seek to represent the fundamental forces
of evolution acting within species, including mutation, genetic drift,
natural selection and migration, in the context of demographic
history over time-scales of tens or hundreds to thousands of gen-
erations. They are typically applied to DNA sequence data from
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BOX 3 Statistical approaches for fitting models of community assembly to multidimensional biodiversity data

Numerous statistical approaches exist for performing inference from real data, making trade-offs associated with model complexity,
analytical and computational tractability, statistical power and accuracy, quantification of uncertainty, and interpretability.

When analytical likelihood formulas are available, these methods are a classical and powerful approach for fitting models to data.
Likelihood-based approaches involve computing the probability of the data (e.g., a phylogeny or an abundance distribution) under
a given model characterized by a set of parameters. In practice, likelihood methods do not always scale well to large datasets, in
which case a composite likelihood approach approximating the full likelihood as a product of independent sub-likelihoods can be
adopted (Varin et al., 2011). Alternatively, a data-augmentation approach (which consists of enhancing the data with unobserved
events, such as extinctions) can simplify the computation of the likelihood and increase efficiency (Maliet & Morlon, 2020; Quintero
& Landis, 2020). When used in combination with Bayesian statistics, such as Markov chain Monte Carlo (MCMC) sampling, likelihood-
based methods naturally quantify uncertainty. Likelihood-based methods are the gold standard for most comparative phylogenetic
methods (Morlon, 2014) and have also been used extensively to fit data to ecological (Rosindell et al., 2011) and microevolutionary
(Kuhner et al., 1998; Pritchard et al., 2000) models.

For models of increasing complexity where likelihoods cannot be computed, a simulation-based approach can be adopted in an ap-
proximate Bayesian computation (ABC) framework (Beaumont, 2010; Csilléry et al., 2010). ABC approximates posterior model prob-
abilities and parameter estimate distributions by comparing summary statistics calculated on the real data with identical summary
statistics calculated on simulated data from tens of thousands or millions of simulations. The posteriors are constructed based on the
proportion of simulated models and parameter values of a small fraction of retained simulations that are “closest” to the observed
data. Classical ABC can be computationally demanding, because the number of simulations needed to sample parameter space grows
exponentially with the number of parameters, although recent advances in combining machine learning with ABC have reduced this
burden (Pudlo et al., 2015; Raynal et al., 2019). Sequential sampling methods (Beaumont et al., 2009; Lenormand et al., 2013) in-
crease efficiency by iteratively sampling from regions of parameter space with the highest likelihood. ABC methods have seen broad
adoption for numerous applications in population genetics (Beaumont, 2010). They has been used less frequently in ecological and
macroevolutionary studies, particularly to infer model parameters (Jabot & Chave, 2009; Jabot & Lohier, 2016; Janzen et al., 2015;
Overcast et al., 2019; Pontarp et al., 2019; Slater et al., 2012).

Machine learning (ML) methods offer a likelihood-free approach and are gaining significant attention for application to ecological and
evolutionary questions (Schrider & Kern, 2018; Sheehan & Song, 2016). In the context of inference from multidimensional biodiver-
sity data, we focus on supervised methods that allow both model selection and parameter estimation, unlike unsupervised “cluster-
ing” methods, such as principal component analysis. All supervised methods share a common process: (1) generate simulations under
different models and parameter values; (2) train the ML on a subset of simulations; (3) test the ML model on held-out simulations to
evaluate accuracy and recall; and (4) confront the ML with observed data to perform model classification and parameter estimation.
Example applications of supervised ML include demographic model selection using population genetic summary statistics (e.g., Smith
et al., 2017) and inference of historical population sizes using whole-genome data (e.g., Sanchez et al., 2020). ML has seen increasing
use in macroevolutionary studies, for example to estimate phylogenies (Bhattacharjee & Bayzid, 2020) and for correlation of evolu-
tionary rates (Tao et al., 2019). Early adoption of ML for ecological questions has been concentrated within the species distribution
modelling literature (Gobeyn et al., 2019), with comparatively few applications in community ecology and with those being primarily
focused on predicting microbial community structure (Thomas et al., 2018) and interaction patterns in ecological networks (Pichler
et al., 2020). ML methods can be accurate and computationally efficient for inference under highly complex models. They avoid the
curse of dimensionality (high-dimensional data are handled well), but suffer from reduced interpretability (but see Azodi et al., 2020)
and difficulty in quantifying uncertainty around predictions, although this is an active area of research (Alaa & Van Der Schaar, 2020;
Coulston et al., 2016).

Global Ecology el Wl LEYH

homologous regions of DNA sampled from multiple individuals, but
seldom in a community context. Individual-based population genetic
models are typically constructed following either the forward-time
classical Wright-Fisher (Wright, 1931) discrete time model of sto-
chastic drift in finite populations or its backward-time coalescent
(approximate) equivalent (Kingman, 1982; Tajima, 1983). Population
genetic models tend to focus on individual neutrally evolving loci

(e.g., Hudson, 2002; Kelleher et al., 2016), although effects of nu-
merous types of selection can be included and are widely studied
(see Bank et al., 2014) to predict non-neutral genetic diversity or
the effect of drift and mutation on phenotypic trait variation within
and among populations (Chakraborty & Nei, 1982; Lande, 1976).
Population genetic models can also accommodate a spatial and eco-
logical component to model demographic and adaptive histories of
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FIGURE 3 Examples of hypothesized effects of biodiversity processes on community genetic diversity patterns. The hypothesized
effects are explained in Box 2. (a) The mean genetic diversity of species in the local community is denoted by . (b) The mean difference inn
between all interacting species pairs, i and j, in the network is denoted by Am;;. (c) The mean difference in n values measured across species
at two times separated by 7 is denoted by A_Jf (d) The correlation coefficient of the environment-z correlation is denoted by Corr(x, Env). (e)
The mean across species of genetic divergence between the local community and the metacommunity is denoted by Dyy. (f) The slope of the
relationship between Dy, across pairs of communities and the geographical distance separating them is denoted by the isolation-by-distance

(IBD) slope. For other definitions, see legend to Figure 1.

arbitrary complexity. In the simplest scenarios, space is modelled
implicitly, with isolation and migration models assuming connec-
tivity between a small number of discrete panmictic populations
(Wright, 1931), and genetic variation is modelled as a function of
divergence times and migration rates among populations. Treating
space explicitly opens the door for studying patterns such as iso-
lation by distance (IBD; Wright, 1943), range expansion (Excoffier
et al., 2008) and how intraspecific genetic diversity increases with
area (e.g., Baselga et al., 2015). Furthermore, consideration of heter-
ogeneous ecological landscapes that finely constrain migration and
local adaptation gave rise to models integrating population genet-
ics and landscape ecology (landscape genetics; Manel et al., 2003;
Manel & Holderegger, 2013). One such contemporary spatially ex-
plicit coalescent approach entails a forward-in-time simulation of de-
mography and migration, followed by a backward-in-time simulation
of genealogies and genetic variation (Currat et al., 2019), allowing
for modelling temporal patterns of genetic variation in a geographi-
cal context (e.g., Silva et al., 2018). Spatially explicit forward-in-time
models based on Wright-Fisher processes are more computationally
intensive than coalescent approaches, yet allow for much greater
flexibility in modelling complex evolutionary scenarios incorporating
fitness differences and selection on quantitative traits, allowing for
modelling patterns of genetic variation, in addition to trait values
across the landscape (e.g., Haller & Messer, 2019). In the past dec-
ade, models were also developed to predict population turnover and
genetic offset based on ecological and genetic data (Fitzpatrick &

Keller, 2015; Jay et al., 2012), akin to species distribution modelling,
but at the intraspecific level. Nonetheless, population genetic mod-
els are predominantly designed to investigate processes within or
among closely related species and, as such, they most often do not
provide predictions for patterns above the species level (i.e., phy-
logenetic relationships or community-scale patterns of abundance).

Efforts to scale up microevolutionary models from the species
level to multiple co-distributed species have occurred in comparative
phylogeography (Arbogast & Kenagy, 2001; Edwards et al., 2022).
Classic comparative phylogeographical studies attempted to infer
histories of community assembly (e.g., Hewitt, 2000) from shared
patterns of genetic variation across the landscape. The emergence of
model-based comparative phylogeography (Hickerson et al., 2007;
Huang et al., 2011; Xue & Hickerson, 2020) provided for explicit
modelling of joint patterns of community-scale genetic variation
under co-demographic processes, such as changes in population
size (Gehara et al., 2017), while also accounting for vicariance and
dispersal (Smith et al., 2014; Thom et al., 2020). These models im-
plement a hierarchical, simulation-based approach, whereby coales-
cent simulations per focal taxon are parameterized conditional on
hyperparameters that describe the assemblage-wide process (e.g.,
the proportion of co-expanding or co-diverging taxa). Although they
describe patterns above the species level, comparative phylogeo-
graphical models lack an explicit ecological context and also do not
consider or model phylogenetic relationships among co-distributed

taxa.
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2.3 | Macroevolutionary models for comparative
data

The primary focus of macroevolutionary models is to represent the
processes of diversification (speciation and extinction) and trait evo-
lution for entire clades over time-scales of millions of years (Cornuault
& Sanmartin, 2022; Morlon, 2014; Pennell & Harmon, 2013). They
are typically applied to so-called “comparative data”; that is, the
phylogenies and traits of extant species for taxonomically restricted
groups of species. By focusing on taxonomically restricted groups
of species, macroevolutionary models are not adapted a priori to
modelling community-scale phylogenetic and trait patterns, yet they
constitute an appropriate framework for communities arising from
in situ radiations, as is the case for many radiations on isolated is-
land archipelagos (Harmon et al., 2003; Mahler et al., 2010) or lakes
(Janzen & Etienne, 2017).

Macroevolutionary models consider diversification and phe-
notypic evolution either separately (in this case, the processes are
modelled hierarchically) or jointly (in this case, traits can influence di-
versification and vice versa; Maddison et al., 2007). The latter models,
referred to as state-dependent speciation-extinction (SSE) models,
have been reviewed elsewhere (Fitzjohn, 2012; Fitzjohn et al., 2009;
Maddison & Fitzjohn, 2015). Recent advances in diversification
modelling produce more realistic tree shapes by allowing variation in
rate among lineages and through time (Maliet et al., 2019; Rabosky
et al., 2013). Additional processes incorporated into lineage-based
macroevolutionary models include protracted speciation (Etienne &
Rosindell, 2012), clade-wise diversity-dependent speciation or ex-
tinction (Etienne et al., 2012; Mahler et al., 2010), inter- and/or in-
traspecific competition (Aristide & Morlon, 2019; Clarke et al., 2017,
Drury et al., 2016; Xu et al., 2020), co-evolution across interacting
lineages (Manceau et al., 2017) and the influence of environmen-
tal variation on macroevolutionary rates (Clavel & Morlon, 2017,
Condamine et al., 2013). Some of these models include the mod-
elling of dispersal events (Goldberg et al., 2011; Landis et al., 2013,
2021; Ree et al., 2005) and can be co-opted to make predictions
about spatial patterns of biodiversity. They can potentially incorpo-
rate the effect of competition on trait evolution (Drury et al., 2018)
or jointly on trait evolution and range occupancy (Quintero &
Landis, 2020), allowing for the prediction of patterns of trait distri-
bution and endemicity (for a more complete treatment of dispersal
in macroevolutionary models, see Hackel & Sanmartin, 2021). These
models incorporate more processes and can predict patterns that
more closely match empirical ones, but they do not predict patterns
other than the phylogenies and/or traits of extant taxa.

By construction, lineage-based models do not represent the
individual-level processes of demography, mutation, genetic drift
and both allele and trait selection that contribute to fluctuating spe-
cies abundances and the accumulation of intraspecific genetic and
trait diversity. The few individual-based models that also make pre-
dictions of macroevolutionary patterns include the UNTB, as already
discussed above (Davies et al., 2011; Jabot & Chave, 2009; Missa
et al., 2016), the model of Manceau et al. (2015), which is grounded

and Biogeography Macroschogy

in UNTB but relaxes both the zero-sum assumption and the point-
mutation mode of speciation, and models that evolve species abun-
dances and the traits of individuals along a phylogeny, which is either
taken as data (Nuismer & Harmon, 2015) or simulated dynamically
within the model (Duchen et al., 2020; McPeek, 2008). In principle,
these latter models generate SADs while also modelling intraspecific
genetic variation (Manceau et al., 2015) and inter- (McPeek, 2008)
or intraspecific (Duchen et al., 2020; Nuismer & Harmon, 2015) trait
variation; however, the predicted patterns have yet to be explored

fully.

3 | TOWARDS A UNIFIED
MULTIDIMENSIONAL COMMUNITY-SCALE
THEORY OF ISLAND BIOGEOGRAPHY
INCLUDING A GENETIC COMPONENT

To model multidimensional community data arising from processes
across different organizational levels and spatial scales and including
the genetic component, which was absent from many of the mod-
els described above, one must choose whether to model from the
top down or bottom up. Top-down begins at the macroevolutionary
scale and works down to the ecological and then microevolutionary
scale (Figure 4). Bottom-up begins at the microevolutionary scale and
naturally builds up to higher scales by letting patterns at all scales
emerge from the underlying processes. Both strategies have advan-
tages and disadvantages. Top-down models tend to scale well and
can model clades of biologically meaningful phylogenetic diversity
(hundreds of tips) but are, perhaps, less flexible in terms of modelling
very complex processes. In addition, top-down models tend to be
amenable to analytical likelihood expressions (Box 3), which makes
them very computationally efficient. Bottom-up models tend to be
based on individuals, which makes them costly to operate at biologi-
cally realistic scales, in particular up to the macroevolutionary scale,
the trade-off being that they are more mechanistic (McGill, 2019).
Any of these models can be fitted to multidimensional community-
scale data to answer a variety of questions about the generation and
maintenance of biological diversity (Box 1), using appropriate statis-

tical inference techniques (Box 3).

3.1 | Top-down approaches

3.1.1 | From the macroevolutionary to the
ecological scale

One top-down approach to combine macroevolutionary and eco-
logical models consists of creating hybrid models that merge the
metacommunity-scale dynamics of speciation and extinction with
an ETIB-like community assembly process (Figure 4a). DAMOCLES
(Pigot & Etienne, 2015), which incorporates standard birth-death
diversification processes at the regional scale with colonization
and local extinction processes at the local scale, is such a model.

o ‘1 ‘€20T ‘8€7899¥1

1[uo//:sdny woyy papeoy!

ASUDDIT SUOWIO)) AN dqeoijdde oy) Aq pousoaoS a1e sa[onIR Y s Jo sd[ni 10j A1eIqi duljuQ) A9[IAL UO (SUOHIPUOI-PUB-SULID)/ W00 Kd[1m " AIeIqi[oul[uo//:sd)iy) SuonIpuo)) pue suLo |, oy 998 “[$70z/€0/10] uo Areiqiy sutjuQ A[iA\ ‘KNSIOAIUN PIOJXO Aq £09E1°GS/[ [ 11°01/10p/wod Kd[im K.



OVERCAST ET AL.

14 Wl LEY- Global Ecology Adournal of

and Biogeography Hemow

Macroevolutionary scale (a) axtinction b
Models of species diversification
with abundances

and trait evolution

e L

Models of species diversification speciation

and trait evolution
. speciation
Metacommunity

predictions abundances (e.g. Brownian motion and

split at speciation)
extinction when abundance reaches 0

trait value
a2
\ |
a4 2&
abundances

5 e trait evolution
time (million years)

Ecological scale

<

time (million years)
species pool & associated abundances

species pool & associated traits

»

<}
Metacommunity

ETIB UNTB

(individual-based) death

2 mt&j

L) U o
Local community
dispersal
environmental filtering

time (years)

dispersal .
environmental filtering  (lineage-based)

#ﬁ ’\ extinction Community

53 predictions

%*°

predict abundances
using correlation with 2
traits, e.g. body size:

8 :

Local : s s
community 2 <3
3 F

®© ©

Microevolutionary scale colonization time and

(© abundances (Ne)

gene genealogy

mutation

1
: g Ne individuals
1
colonization >

time time (in years)

FIGURE 4 Top-down modelling approaches. Top-down modelling approaches linking macroevolutionary, ecological and
microevolutionary scales can be formalized in two ways: (a) via a lineage-based approach using the equilibrium theory of island biogeography
(ETIB) at the community scale; or (b) via an individual-based approach adopting the unified neutral theory of biodiversity (UNTB) at the
community scale. (a) The lineage-based approach begins with a model of diversification and trait evolution, generating a global phylogeny
and associated traits that constitute the source pool (metacommunity) for the ecological process. Dispersal to and extinction within the
local community are mediated by the trait values of each lineage. Finally, abundances are predicted based on classical hypotheses regarding
correlations between trait values (e.g., body size) and local abundance. (b) The individual-based approach begins by jointly modelling
diversification and trait evolution, while additionally evolving species abundances along the branches. This constitutes the metacommunity
source pool for ecological processes. Dispersal to the local community can be a function of abundance in the metacommunity and trait
values. Fluctuations in abundances in the local community, including local extinction, emerge out of the individual-based birth-death-
colonization process. Colonization times and historical changes in abundance per species are tracked throughout the process. (c) Both
lineage-based and individual-based approaches produce predictions of colonization time and abundance, which can be used to parameterize
microevolutionary models of coalescence and mutation for each species, resulting in patterns of community-scale genetic variation.

The spatial macroevolutionary models of diversification discussed
above could also, in principle, serve this role, if they are configured
to generate metacommunity-community patterns. For example, this
could be achieved within the two-area GeoSSE model (Goldberg
et al., 2011) by setting the dispersal rate from one of the areas (the
community) to the other (the metacommunity) to zero. This would
lead to a model representing processes very similar to those included
in DAMOCLES, but with the additional advantage of representing
speciation both within and between areas. Taking into considera-
tion the metacommunity birth-death processes in DAISIE (Valente
et al., 2015) would be an alternative approach to developing a similar
hybrid model. These models illustrate the feasibility and usefulness
of macroevolutionary-ecological models and pave the way for in-
tegrating more advanced ETIB-like community assembly processes
(e.g., those accounting for interspecific interactions) within more
advanced macroevolutionary models (e.g., those accounting for di-
versification rate heterogeneities, interspecific interactions and/or
palaeoenvironmental fluctuations).

Unified neutral theory of biodiversity-like models can be used
instead of ETIB-like models at the community scale as an alternative
approach to creating hybrid models (Figure 4b), as implemented in
MESS (Overcast et al., 2020). A key consideration for hybrid mod-
els is how to account for species abundances in macroevolutionary
models in a principled way. In MESS, the metacommunity-scale
phylogeny is generated with a birth-death lineage-based specia-
tion process, and contemporary abundances are sampled from a
logarithmic series distribution and assigned to species randomly. A
more process-based approach would be to evolve abundances di-
rectly along phylogenetic branches as the lineage-based macroevo-
lutionary process unfolds. In such a model, extinction events would
naturally arise when species abundance falls below one, or any re-
alistic minimum viable population size estimate. Speciation events
would arise as the realization of a Poisson process, with rates follow-
ing any of the models considered in macroevolution. Finally, there
are several ways to evolve abundances. They could, for example,
evolve as a Brownian process, with splits by random fission at each
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speciation event (Etienne & Haegeman, 2011; Hubbell & Lake, 2003).
Alternatively, species-specific growth rates controlling changes in
abundance could be evolved along branches as a Brownian process.
The feedback from the ecological to the macroevolutionary scale
might be realized by incorporating a protracted model of speciation
(Rosindell et al., 2010), with the abundance structure of incipient
lineages modulating the duration of speciation, whether complete
speciation occurs and/or whether incipient species go extinct. Once
a global phylogeny with abundances is generated by such a process,
local community abundance distributions and phylogenetic relation-
ships can be sampled following a classical UNTB individual-based
simulation procedure.

From these neutral models, which assume that species are de-
mographically and functionally equivalent, and following the same
reasoning, several useful extensions are possible. In particular, ex-
isting macroevolutionary models of trait evolution could be used at
the metacommunity scale to generate trait histories along phyloge-
netic branches, in addition to species-specific trait values at the tips,
from which local community trait distributions can be sampled. In
the non-neutral version of DAMOCLES, for example, traits influence
colonization rates through either habitat filtering or competition
with residents. In the non-neutral version of MESS, relaxation of
the ecological neutrality assumption allows the influence of biotic
and abiotic interaction to modulate individual survival. Although
MESS has explored simple models of competition and environmen-
tal filtering, variation within an ecologically relevant trait (e.g., body
size) could influence species abundances through more biologically
realistic interspecific interactions, such as mutualism or facilitation.
Recent lineage-based models of phenotypic trait evolution that
model inter- and intraspecific variation jointly (Gaboriau et al., 2020;
Kostikova et al., 2016) could also be included within macro-ETIB and
macro-UNTB approaches, allowing for more fine-grained modelling

of ecological interactions.

3.1.2 | From the ecological to the
microevolutionary scale

After developing top-down models linking macroevolutionary
and ecological processes, the next step is to extend these to the
microevolutionary scale. To achieve this, one possibility is to con-
strain microevolutionary models per species to be contingent on
divergence times and abundance histories predicted by the linked
macroevolutionary-ecological model (e.g. Overcast et al., 2020).
These constraints are justified by the observed correlation be-
tween census and effective size in natural populations (James &
Eyre-Walker, 2020). This approach assumes that there is no post-
divergence gene flow between sister species and that all lineages
have sorted at the time of sampling. These simplifying assumptions
are reasonable under low rates of diversification and/or small effec-
tive population sizes with respect to branching times. However, in
cases where post-divergence gene flow cannot be ignored, species
ages can be scaled to generation time, and migration rates among
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lineages can be modelled in a fully parameterized coalescent frame-
work for the entire community.

This general approach can be applied to either macro-ETIB or
macro-UNTB macroevolutionary-ecological models. As a prelude
to this, Johnson et al. (2000) derived formulas based on the ETIB
for average genetic divergence between island and mainland taxa
as functions of time, island area and distance from the mainland.
However, their model did not consider community-scale intraspe-
cific diversity. ETIB models can naturally provide predictions for
colonization times, but are not directly adapted to predicting fluctu-
ations in species abundances required for genetic diversity predic-
tions. The crux would be to use presupposed correlations between
species abundances and characteristics of the species represented
in these models. For example, the allometric theory of island bio-
geography (Jacquet et al., 2017) accounts for body-size differences
across species and could be coupled with a documented relationship
between body size and abundances (Damuth's law; Damuth, 1981) to
provide community-level genetic diversity predictions at mutation-
drift equilibrium. The trophic theory of island biogeography (Gravel
etal.,, 2011) accounts for dietary breadth differences across species;
by assuming that abundance scales with dietary breadth (i.e., gen-
eralists have greater abundance than specialists), community-level
genetic diversity predictions at mutation-drift equilibrium could be
obtained.

Macro-UNTB macroevolutionary-ecological models generate
direct predictions of fluctuations in abundance within communi-
ties, which can be used to constrain microevolutionary models at
the scale of individual species. Two such individual-based simu-
lation approaches have been developed (Laroche et al.,, 2015;
Overcast et al., 2019). Both are inspired by the UNTB, but they
differ in the model used to predict genetic diversity. Laroche
et al. (2015) paired a UNTB-inspired patch-based model with
a forward-in-time mutational process for one focal taxon in the
local community to predict the relationship between species di-
versity and intraspecific genetic diversity (the SGDC). This model
could be generalized to predict genetic diversity for all the spe-
cies in the local community, rather than for only an individual
taxon. Overcast et al. (2019) developed gimmeSAD, which pairs
a forward-time UNTB continent-island model tracking abundance
and colonization time per species with a backward-in-time coales-
cent model per species to predict SADs and the community-level
genetic diversity distribution jointly (SGD; Figure 2a). Another ap-
proach that suggests itself is to parameterize hierarchical compar-
ative phylogeographical models directly using expectations from
a macro-UNTB model. Indeed, lacking both a colonization and a
community-assembly process, comparative phylogeographical
models assume that all species have occupied the local landscape
for the same amount of time and that the effective population sizes
of individual species are sampled independently. Conditioning hy-
perparameter distributions on theoretical macro-UNTB expec-
tations of species age and abundance would allow relaxation of
these assumptions. Ultimately, these different approaches will
result in a model representing the same processes.
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These outlines of ETIB- and UNTB-based linked ecological
and microevolutionary processes suggest numerous further av-
enues for development. For example, an eco-microevolutionary
model of interactions among species of co-distributed guilds (e.g.,
plants-pollinators or hosts-parasites) could allow joint predictions
of community genetic diversity and network structure, a possibil-
ity foreshadowed by recent work (Bunnefeld et al., 2018; Satler &
Carstens, 2017; Stone et al., 2012). Linked spatially explicit models
(Currat et al., 2019; Haller & Messer, 2019) would allow for eco-
logically informed predictions for novel community-scale spatial
patterns of genetic diversity, such as the genetic diversity-area re-
lationship, the correlation between genetic and species p-diversity,
and the distance decay of genetic diversity (i.e., community-scale

isolation by distance).

3.1.3 | From the macroevolutionary to the
microevolutionary scale

There are existing conceptual frameworks that go directly from
the macroevolutionary to the microevolutionary scale, without a
community assembly component. Models that consider both inter-
specific and intraspecific divergences, such as the multispecies coa-
lescent (MSC; Degnan & Rosenberg, 2009), the generalized mixed
Yule coalescent (GMYC; Pons et al., 2006), the polymorphisms-
aware phylogenetic model (POMO; De Maio et al., 2015) and au-
tomatic barcode gap discovery (ABGD; Puillandre et al., 2012),
provide such a framework, although initially developed as species-
delimitation or phylogenetic inference methods. Simulations under
these frameworks model: (1) a species tree using typical Yule or
birth-death macroevolutionary processes; (2) gene trees (MSC,
POMO and ABGD) or intraspecific divergences (GMYC), using typi-
cal coalescent microevolutionary processes, with or without incom-
plete lineage sorting; and (3) potentially, lay down mutations on the
gene trees. Obtaining community-scale patterns from these existing
frameworks would require sampling species from the species tree,
which could be done following either the macro-ETIB or macro-
UNTB approach detailed above. Although this would lead to a model
that converges to the macro-eco-micro model described above, it
might provide additional possibilities. For example, pairing the multi-
species coalescent with a mutational model underlying quantitative
trait loci can generate phenotypic trait distributions in the presence

of gene tree discordance (Mendes et al., 2018).

3.2 | Bottom-up unification approaches

A key obstacle for building bottom-up biodiversity models is to
model speciation by the accumulation of genetic incompatibilities
between populations (Orr, 1995). Among these microevolutionary
models, those incorporating trait variation governed by an explicit
genetic component can link demographic and speciation processes
to differences in fitness within an ecological context and predict

patterns above the species level (e.g., for a radiating clade; Gavrilets
& Losos, 2009). Several such models have been proposed (e.g.,
Aguilée et al., 2018; Garwood et al., 2019; Gavrilets & Vose, 2005),
all of which are individual-based birth-death processes that model
genetic evolution via mutation and recombination within an ecologi-
cal context. Including biotic interactions in such models is a path-
way to more biologically relevant bottom-up models (e.g., Pontarp
& Wiens, 2017; Thompson et al., 2020). Given that these models
are primarily concerned with speciation, patterns of intraspe-
cific genetic diversity are generated, but have not been evaluated.
Additionally, these genetically explicit models tend to represent
closed systems suitable for modelling in situ radiations, but lack a
colonization process adapted to modelling the community structure
of spatially isolated local communities (but see Aguilée et al., 2018;
Gascuel et al., 2015, which model space explicitly). Opportunities
remain for the development of models underpinned by a genetically
explicit speciation process to make predictions about linked patterns
of SADs, the distributions of traits and genetic variation, and phylo-
genetic and network structure.

Alternative attempts to model speciation from the accumulation
of population genetic incompatibilities have been made using mod-
els either derived from or inspired by the UNTB. Instead of the tra-
ditional phenomenological models of speciation (e.g., point mutation
and various derivations; Hubbell & Lake, 2003; Rosindell et al., 2010),
speciation processes governed by an underlying process of genomic
evolution and accumulation of incompatibility have been incor-
porated (e.g., de Aguiar et al., 2009; Hagen et al., 2021; Manceau
et al.,, 2015; Marin et al., 2020; Melian et al., 2010). In these neutral
models, speciation proceeds by the accumulation of genetic differ-
entiation and is governed by a threshold effect (Gavrilets, 2004),
whereby subpopulations that are differentiated by a given amount
of genetic divergence are considered to be species. Although these
models typically implement a fixed speciation threshold, sampling
from a distribution of speciation thresholds per species would better
align with observations of the “grey zone” of speciation in empiri-
cal systems (Roux et al., 2016). These models make joint predictions
about community genetic diversity, abundance and phylogenetic
structure (Costa et al., 2019) and, in some cases, spatial genetic pat-
terns (Baptestini et al., 2013; de Aguiar et al., 2009), although these
patterns have yet to be explored fully. These models are neutral
with respect to genetics, hence there are neither fitness differences
nor selection, and therefore, no direct effect of genetics on species
abundance. Models incorporating both neutral and adaptive genetic
components have been proposed (e.g., Aguilée et al., 2018; Gascuel
et al., 2015), and investigating their predictions of community-scale
genetic diversity and fitting these to empirical data will be fruitful
avenues of future research.

4 | CONCLUSIONS

The distribution of genetic diversity, within and among species
within ecological communities, is an emerging area of interest, but
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methodological development is needed to shed light on how eco-
logical and evolutionary processes structure such diversity. Models
of community-scale genetic diversity are in their infancy, with some
limited but promising progress. Our focus in this perspective has
been the modelling of single-locus data derived from metabarcoding
studies, which are the predominant community-scale genetic data-
sets that are becoming widely obtainable. As sequencing throughput
continues to increase, it should become possible to move beyond
the generation of single-locus community genetic data to whole-
community reduced representation sequencing datasets, consist-
ing of thousands or tens of thousands of independent anonymous
loci (Andrews et al., 2016), or even beyond, to community whole-
genome data (e.g., Forster et al., 2016). For some model systems,
such community-scale genomic data exist already (e.g., Neotropical
cichlids; Kautt et al., 2020), providing opportunities to elucidate the
role of genomic architecture in driving eco-evolutionary dynamics
(Rudman et al., 2018). Population genetic models capturing complex
genomic processes, including multilocus selection and fine-scale
genome-wide mutation and recombination rate variation, allow for
modelling these new types of genetic data (Haller & Messer, 2019;
Kelleher et al., 2016). Integration of these models within the unify-
ing frameworks highlighted here has the potential to provide even
greater insights into the processes shaping biodiversity across scales.
Our assessment of different potential approaches for building mod-
els that integrate processes across scales highlights that, despite the
diversity of models developed in community ecology, population
genetics and macroevolution, distinct envisioned efforts to expand
their application across scales lead to convergent models. This leads
us to conclude on the optimistic note that the long-sought, truly uni-
fied theory of biodiversity might be within close reach.
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