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Abstract: Advanced sensing technologies and communication capabilities of Connected and Auton-

omous Vehicles (CAVs) empower them to capture the dynamics of surrounding vehicles, including 

speeds and positions of those behind, enabling judicious responsive maneuvers. The acquired dy-

namics information of vehicles spurred the development of various cooperative platoon controls, 

particularly designed to enhance platoon stability with reduced spacing for reliable roadway capac-

ity increase. These controls leverage abundant information transmitted through various communi-

cation topologies. Despite these advancements, the impact of different vehicle dynamics infor-

mation on platoon safety remains underexplored, as current research predominantly focuses on sta-

bility analysis. This knowledge gap highlights the critical need for further investigation into how 

diverse vehicle dynamics information influences platoon safety. To address this gap, this research 

introduces a novel framework based on the concept of phase shift, aiming to scrutinize the tradeoffs 

between the safety and stability of CAV platoons formed upon bidirectional information flow topol-

ogy. Our investigation focuses on platoon controls built upon bidirectional information flow topol-

ogies using diverse dynamics information of vehicles. Our research findings emphasize that the 

integration of various types of information into CAV platoon controls does not universally yield 

benefits. Specifically, incorporating spacing information can enhance both platoon safety and string 

stability. In contrast, velocity difference information can improve either safety or string stability, but 

not both simultaneously. These findings offer valuable insights into the formulation of CAV platoon 

control principles built upon diverse communication topologies. This research contributes a nu-

anced understanding of the intricate interplay between safety and stability in CAV platoons, em-

phasizing the importance of information dynamics in shaping effective control strategies. 
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1. Introduction 

Platoon control aims to minimize speed variations among vehicles while ensuring 

consistent and secure spacing between them [1]. This approach offers a promising solu-

tion to several pressing concerns of today’s road transportation due to its potential to in-

crease highway capacity, enhance safety, and reduce fuel consumption [2]. The recent ad-

vent of CAV technologies has received much attention in platoon control, largely owing 

to the pivotal role of communication and information technologies, including advanced 

sensors, 5G network and a variety of communication protocols [3,4]. These technologies 

significantly enhance platoon safety and stability [5,6]. 

Leveraging communication technology, platoon controls can be developed based on 

Cooperative Adaptive Cruise Control (CACC), typically comprising four components 

[1,2]: (1) vehicle dynamics, especially longitudinal vehicle dynamics, which depict the be-

havior of each vehicle in the longitudinal direction, (2) information exchange that de-

scribes how vehicles communicate with other vehicles, including the exchanged infor-

mation and information flow topology (IFT) that determines the configuration of V2V 
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communication links in vehicle platoon, (3) a controller that uses information from other 

vehicles in the platoon to devise control strategies, and (4) formation geometry that de-

scribes the spatial arrangement of vehicles within the platoon. 

Among the four components, information exchange is crucial, facilitated by ad-

vanced information and communication technologies that support different information 

flow topologies for effective communication in CAV platoon control [7]. Various infor-

mation topologies offer both benefits and challenges to the design and analysis of multi-

vehicle systems, such as predecessor following topology, predecessor–leader following 

topology, multiple predecessor following topology, and bidirectional topology [8]. 

Among them, bidirectional topology stands out as popular and extensively applied in 

various studies due to its simple structure. In bidirectional topology, the subject vehicle 

adjusts its velocity by not only following the preceding vehicle but also taking into account 

the dynamics of the following vehicle. 

CAV platoon controls employing bidirectional topology are also referred to as bidi-

rectional car-following control models. Existing bidirectional models primarily aim to im-

prove overall platoon stability by integrating abundant information from vehicles travel-

ing behind. However, the incorporation of increasingly complex layers of information into 

these models comes with its drawbacks. One significant oversight in this pursuit of en-

hanced stability is the neglect of safety analysis—an essential aspect that remains under-

explored. The emphasis on stability often overshadows the potential safety implications 

of adding complexity to control protocols. It is crucial to acknowledge that the reception 

of back-looking information from following vehicles can affect the dynamics of preceding 

vehicles, leading to significant safety concerns. Current studies are examining the tradeoff 

between safety and stability in automated vehicles [9], but the impact of bidirectional com-

munication on this tradeoff is not thoroughly understood yet. Additionally, there is a lack 

of comprehensive investigation into the diverse effects resulting from different types of 

information in current research. 

To address these research gaps, this study introduces a novel framework utilizing 

the concept of phase shift to examine the influence of back-looking information on pla-

toons considering both stability and safety aspects. Employing the proposed framework, 

this research analyzes how spacing information and velocity difference information affect 

CAV platoon safety and stability. Theoretical analysis reveals that incorporating spacing 

information of the following vehicle improves both platoon string stability and safety. In 

contrast, adopting velocity difference information enhances either safety or stability, but 

not both simultaneously. These theoretical findings are validated through numerical ex-

periments conducted on both linear and non-linear car-following models. 

The remainder of this research is organized as follows. The subsequent section is the 

literature review of existing bidirectional models, offering a comprehensive background. 

Section 3 presents the methodology which encompasses an illustration of platoon vehicle 

dynamics with bidirectional information flow topology. Then, the proposed phase-shift-

based framework is introduced, followed by an analysis of the safety conditions and the 

derivation of string stability for two types of information. Additionally, the tradeoff be-

tween safety and stability is examined. Sections 4 and 5 validate the theoretical and nu-

merical analysis using specific linear and non-linear car-following models. The final sec-

tion summarizes the main findings and offers recommendations for future research. 

2. Literature Review 

The exchange of vehicle dynamics information is pivotal for CAV platoon control. 

The most commonly used vehicle dynamics information includes velocity and spacing 

[10–12]. Other types of vehicle information are also considered, such as acceleration [13], 

traffic jerk [14,15], visual angle [16], and electronic throttle opening angle [17,18]. Abun-

dant vehicle information can facilitate platoon control design to achieve better platoon 

performances in a coordinated manner.  
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This research focuses on bidirectional car-following control models. Existing bidirec-

tional models primarily depend on two prevalent types of vehicle dynamic information 

to maintain harmonized speeds with constant time headways: spacing, which is the dis-

tance between the target vehicle and the following vehicle, and the velocity difference be-

tween the target and following vehicles [19]. Table 1 categorizes existing bidirectional car-

following control models into three categories by types of back-looking information uti-

lized, including spacing information only, velocity difference information only and both 

types of information. 

Table 1. Car-following control models considering bidirectional information. 

Type of Information Used Publications 

Spacing [20–26] 

Velocity difference [27] 

Both spacing and velocity 

difference 
[19,28–32] 

The first category of bidirectional car-following control models utilizes spacing in-

formation only. Spacing information is widely used since it can be easily measured by 

sensors. For example, Nakayama et al. extended the optimal velocity model (OVM) by 

introducing a back-looking optimal velocity function. The modified model takes into ac-

count one preceding and one following vehicle, and it has been shown to improve traffic 

stability compared to the traditional OVM model [20]. Hasebe et al. extended the OVM 

model by considering the headway of multiple preceding and following vehicles. The 

study examined the linear stability of the modified model, revealing that it displayed dy-

namic properties capable of mitigating velocity fluctuations [21]. Ge et al. proposed an 

extension of the OVM model that takes into account an arbitrary number of vehicles ahead 

and one vehicle following. Linear stability analysis was conducted to demonstrate the en-

hanced stabilizing effect [22]. Chen et al. extended the full velocity difference (FVD) model 

by considering the driver’s sensory memory and the back-looking effect [23]. And Hou et 

al. further incorporated the bidirectional FVD models with the driver’s visual angle [24]. 

Ma et al. improved the FVD model by accounting for the time-delayed velocity difference 

and back-looking effect [25]. Yi et al. introduced a new bidirectional distance-balanced 

model that was built upon the Intelligent Driver Model (IDM). This model aims to balance 

the distance between the host vehicle and its nearest preceding and following vehicles. 

The authors conducted analyses on the local stability and string stability of the proposed 

model [26]. 

The second category solely utilizes velocity difference information. Models in this 

category are relatively rare. Herman et al. were the first to propose a bidirectional car-

following control model using velocity differences, taking into account both the velocity 

difference between the target vehicle and the preceding vehicle and the velocity difference 

between the target vehicle and the following vehicle. It was found that the local and string 

stability conditions improved as the weights of the forward-looking and back-looking de-

cisions increased [27]. 

Research in the third category combines spacing and velocity difference information 

when designing car-following control models. Yang et al. presented a new extension of 

the OVM model that considers an arbitrary number of preceding and following vehicles. 

The study found that the back-looking effect can help to stabilize traffic flow [28]. Hu et 

al. proposed an extension of the OVM model that considers bidirectional visual fields and 

multiple anticipations. A stability analysis of the model revealed that multiple anticipa-

tions can enhance the stability of traffic flow. The results demonstrated that the extended 

model is capable of reproducing the local clustering phenomenon observed in the traffic 

flow [19]. Sun et al. proposed a bidirectional car-following model based on the FVD 

model, which takes into account multiple preceding vehicles and only one following 
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vehicle [29]. Yang et al. introduced a bidirectional Gipps’ model and investigated the lin-

ear stability of traffic flow. The results indicated that the back-looking behavior has three 

types of effects on traffic flow stability: stabilizing, destabilizing, and generating non-

physical phenomena, which are more complex than the effects derived from OVM-based 

bidirectional models. Furthermore, the study discovered that drivers with shorter reaction 

times and larger additional delays can contribute to stabilizing traffic flow [30]. Horn and 

Wang incorporated the back-looking effect into Helly’s car-following model. This research 

developed the damped wave equation for stability analysis under bidirectional control, 

where the ‘damping’ component is critical to the dissipation of perturbations [31]. Yi et al. 

proposed an extended bidirectional car-following model based on the IDM in the CAV 

environment, which considers the desired distance of the following vehicle as a control 

term. The study investigated the linear stability of the model, and theoretical and simula-

tion results indicated that bidirectional IDM improves string stability. Furthermore, sta-

bility can be further enhanced by increasing the proportion of the desired distance of the 

following vehicle [32]. 

3. Methodology 

This section is structured to examine key components vital to our research. Section 

3.1 lays the groundwork by introducing vehicle longitudinal dynamics models with bidi-

rectional information flow. Subsequent sections 3.2 and 3.3 introduce phase shift effects 

and employ a framework rooted in this concept to analyze the interconnected behavior of 

vehicles within a platoon under bidirectional communication. Building upon this ground-

work, the study further evaluates the rear-end collision risk and conducts a stability anal-

ysis in Sections 3.4 and 3.5, respectively. And culminating findings are presented in Sec-

tion 3.6. 

3.1. Vehicle Longitudinal Dynamics Models with Bidirectional Information Flow 

In CAV environment, the dissemination of real-time data is essential for ensuring the 

safety and stability of vehicles within a platoon. This critical process is supported by ad-

vanced sensor and communication technologies, which are essential for enabling auto-

mated vehicles to share information seamlessly. Key sensor devices include RADAR, cam-

eras, and LIDAR, etc. Furthermore, advanced communication technologies, including 

Dedicated Short-Range Communications (DSRC) and 5G, are indispensable for facilitat-

ing Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Everything 

(V2X) communications [33]. 

Meanwhile, the effectiveness of information delivery within this communication net-

work heavily relies on communication protocols. These protocols are designed to ensure 

that necessary information is disseminated to the intended vehicle in a reliable and low-

latency manner [34]. The development and implementation of a variety of communication 

protocols have been proposed to significantly improve the safety and stability of vehicular 

platoons [3,4,35]. 

The integration of information technologies and protocols enables CAVs to exchange 

information seamlessly with each other. And the control system operates the vehicle using 

locally sensed information and information shared among vehicles [50]. In a CAV platoon, 

the control system operates the vehicle using locally sensed information and information 

shared among vehicles [36]. A car-following model can be used to describe the vehicle’s 

longitudinal dynamics. Note that, at present, our analysis is confined to a one-dimensional 

perspective. The car-following model, along with our safety and stability analysis, does 

not account for lateral dynamics, such as left and right turns. In the literature, continuous-

time car-following models have a generalized form, which can be expressed below [37,38]; 

we adapted this format to include additional information: 
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𝑥̇𝑛(𝑡) = 𝑣𝑛(𝑡) 

𝑣̇𝑛(𝑡) = 𝑓(𝑠𝑛(𝑡), 𝑣𝑛(𝑡), Δ𝑣𝑛(𝑡), 𝐾(𝑡)) 
(1) 

where 𝑣̇𝑛(𝑡) is the control variable, which represents the acceleration (or deceleration) of 

the nth vehicle at time t. This variable is what the control system aims to adjust through 

the function. 𝑥𝑛  and 𝑣𝑛  represent the position and velocity of vehicle 𝑛 , 𝑠𝑛 = 𝑥𝑛−1 −

𝑥𝑛 − 𝑙𝑛−1 represents the net distance between vehicle 𝑛 and vehicle 𝑛 − 1, 𝑙𝑛−1 indicates 

the length of vehicle 𝑛 − 1 , and Δ𝑣𝑛 = 𝑣𝑛 − 𝑣𝑛−1  represents the velocity difference be-

tween vehicle 𝑛 and vehicle 𝑛 − 1. In this study, we apply a broader interpretation of net 

distance, referring to it as “spacing.” In Equation (1), 𝐾(𝑡) symbolizes additional infor-

mation, encompassing vehicle dynamic data from the following vehicle in bidirectional 

car-following control, like velocity or spacing. Moreover, it extends to represent various 

other data types, such as acceleration [13], traffic jerk [14,15], visual angle [16], and elec-

tronic throttle opening angle [17,18]. 

For platoon control with bidirectional information flow topology, the target vehicle 

reacts not only to the preceding vehicle but also to the dynamics of the following vehicle 

to adjust its speed, as shown in Figure 1. Typically, bidirectional control utilizes two types 

of back-looking information from the following vehicle, i.e., spacing 𝑠𝑛+1 and velocity 

difference Δ𝑣𝑛+1 information. We denote as 𝑠𝑛+1 = 𝑥𝑛 − 𝑥𝑛+1 − 𝑙𝑛 the spacing between 

vehicle 𝑛+1 and vehicle 𝑛, and as Δ𝑣𝑛+1 = 𝑣𝑛+1 − 𝑣𝑛 the velocity difference between ve-

hicle 𝑛 + 1 and vehicle 𝑛. The car-following models with bidirectional communication 

topology have a generic form as in Equation (2). If only spacing information 𝑠𝑛+1 is uti-

lized, the resulting model is formulated in Equation (3) and referred to in this research as 

the spacing bidirectional control model. 

𝑥̇𝑛(𝑡) = 𝑣𝑛(𝑡) 

𝑣̇𝑛(𝑡) = 𝑓(𝑠𝑛(𝑡), 𝑣𝑛(𝑡), Δ𝑣𝑛(𝑡), 𝑠𝑛+1(𝑡), Δ𝑣𝑛+1(𝑡)) 
(2) 

If only spacing information 𝑠𝑛+1  is utilized, the resulting model is formulated in 

Equation (3) and referred to in this research as the spacing bidirectional control model. 

𝑣̇𝑛(𝑡) = 𝑓(𝑠𝑛(𝑡), 𝑣𝑛(𝑡), Δ𝑣𝑛(𝑡), 𝑠𝑛+1(𝑡)) (3) 

If only velocity difference information Δ𝑣𝑛+1 is utilized, the resulting model is for-

mulated in Equation (4) and referred to in this research as the velocity difference bidirec-

tional control model. 

𝑣̇𝑛(𝑡) = 𝑓(𝑠𝑛(𝑡), 𝑣𝑛(𝑡), Δ𝑣𝑛(𝑡), Δ𝑣𝑛+1(𝑡)) (4) 

 

Figure 1. Illustration of the platooned vehicles using bidirectional communication. 

3.2. Phase Shift Effects 

In a CAV system, the dynamics of vehicles are impacted by several factors, including 

the vehicle’s control mechanisms, types of exchanged information, communication de-

lays, packet losses, and the design of information flow topology. For instance, in CACC 

systems that utilize bidirectional information flow topology, vehicles take into account 

information from the following vehicle, which affects the dynamics of the preceding 
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vehicles, potentially giving rise to substantial safety concerns. However, there has not yet 

been a generalized model to comprehensively assess such impacts on vehicle dynamics. 

Inspired by our recent discovery that a perturbed vehicular platoon exhibits periodic 

oscillatory dynamics characterized by inherent frequency [39–41], this research proposed 

a generalized analysis model based on the concept of phase shift to capture the interac-

tions among connected vehicles’ dynamics. Our research demonstrated that the oscillation 

dynamics of a perturbed vehicle platoon can be described by a second-order non-homo-

geneous ordinary differential equation (ODE), resulting in periodic oscillations propagat-

ing within the platoon. In the context of a CAV platoon employing bidirectional commu-

nication, the effects of perturbations can be transmitted both forward and backward sim-

ultaneously, leading to an overlapping effect of two periodic oscillations. This overlap-

ping effect can be analyzed using the concept of phase shift.  

The concept of phase shift is commonly used in physics, for example, in acoustics 

and optics [42,43], to describe the differences, 𝜑(𝑡) = 𝜙𝐺(𝑡) − 𝜙𝐹(𝑡), between the phases 

of two periodic signals F and G, as depicted in Figure 2a. Specifically, when the difference 

is zero, the two signals are in phase (IP), as shown in Figure 2b, indicating perfect syn-

chronization. On the contrary, when the difference is not zero, implying 𝜑(𝑡) ≠ 0, the two 

signals are termed out-of-phase, as illustrated in Figure 2a. For sinusoidal signals, when 

difference 𝜑(𝑡) is 180°, the two phases are opposite, defined as opposite phase (OP), as 

illustrated in Figure 2c.  

The concept of phase shift provides a valuable framework for understanding the in-

teractions among vehicles through information exchange. In this framework, we distin-

guish between different vehicles involved in the information exchange process by catego-

rizing them as either the “source vehicle” or the “target vehicle”. The “source vehicle,” 

represented as signal F in Figure 2, refers to the vehicle that transmits stimulus infor-

mation. On the other hand, the “target vehicle,” denoted as signal G in Figure 2, refers to 

the vehicle that receives this stimulus information and responds accordingly. 

Phase shift plays a crucial role in depicting target vehicle response to stimulus infor-

mation, encompassing factors such as latency and response patterns. To represent latency, 

let us consider 𝑣̇𝑛(𝑡), which represents vehicle dynamics with delay 𝑡𝑑 indicating the la-

tency in the target vehicle’s response to perturbation from the source vehicle. In this con-

text, phase shift 𝜑(𝑡)  can serve as a representation of latency 𝑡𝑑 . The relationship be-

tween phase shift 𝜑(𝑡) and latency 𝑡𝑑 is associated with the wavelength of the resulting 

platoon oscillation, which can be analytically derived using the corresponding ODE [41]. 

Furthermore, phase shift can also be utilized in depicting response patterns. When phase 

shift 𝜑(𝑡) = 0 and there is no latency (𝑡𝑑 = 0), the dynamics of the two adjacent vehicles 

synchronize their responses to perturbation. If the target vehicle responds to the source 

vehicle in a synchronized manner, this can be denoted as “in-phase.” On the contrary, if 

the response is unsynchronized with phase shift 𝜑(𝑡) ≠ 0, it is denoted as being “out of 

phase”. If the response displays an adverse manner, it is characterized as “opposite-

phase.” 

 

Figure 2. Demonstration of phase shift. (a) Phase shift. (b) In Phase. (c) Opposite Phase. 
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3.3. Phase Shift Effects in Bidirectional Communication 

The present research employs the proposed framework centered around phase shift 

to characterize the interconnected behavior of the following vehicle and the target vehicle 

in a platoon under bidirectional communication topology. In this scenario, the following 

vehicle serves as the source vehicle, transmitting stimulus information, while the target 

vehicle receives this stimulus information and responds accordingly. As an initial step to 

analyze safety impacts, this research narrows the focus to two specific and extreme cases 

of phase shift without considering communication latency: the in-phase (IP) effect and the 

opposite-phase (OP) effect. The in-phase (IP) effect indicates a synchronized manner be-

tween the following vehicle and the target vehicle. For instance, if the following vehicle 

accelerates abruptly, the target vehicle also accelerates, as depicted in Figure 3a. In con-

trast, the opposite-phase (OP) effect reflects an adverse manner. For instance, if the fol-

lowing vehicle accelerates abruptly, the target vehicle decelerates to adjust its speed, as 

shown in Figure 3b. 

The rest of this section outlines the conditions for the IP and OP effects in the spacing 

bidirectional control model and the velocity difference bidirectional control model. Con-

sidering that a platoon of CAVs runs on a single lane with all vehicles in an equilibrium 

state, i.e., maintaining the same spacing and velocity, perturbation is introduced to the 

following vehicle 𝑛 +1 at time 𝑡 , resulting in a deviation denoted as velocity deviation 

𝜇𝑛+1(𝑡) = 𝑣𝑛+1 − 𝑣𝑛  and spacing deviation 𝜑𝑛+1(𝑡) = 𝑠𝑛+1(𝑡) − 𝑠𝑒  , where 𝑠𝑒   represents 

spacing at the equilibrium state. We have  

𝜇𝑛+1(𝑡) = −𝜑̇𝑛+1(𝑡) 

𝜑𝑛+1(𝑡) ∗ 𝜇𝑛+1(𝑡) < 0 
(5) 

In a bidirectional control model, the velocity deviation of the following vehicle 𝑛+1 

prompts the target vehicle 𝑛 to adjust its speed. By taking the first-order Taylor expansion 

of Equation (3) of the spacing bidirectional control model, we can express the acceleration 

of target vehicle n as shown in Equation (6).  

𝑣̇𝑛(𝑡) = 𝑓𝑠𝑛+1𝜑𝑛+1(𝑡) (6) 

By taking the first-order Taylor expansion of Equation (4) of the velocity difference 

bidirectional control model, the acceleration of the target vehicle 𝑛 can be expressed as in 

Equation (7). 

𝑣̇𝑛(𝑡) = 𝑓Δ𝑣𝑛+1𝜇𝑛+1(𝑡) (7) 

Where 𝑓𝑠𝑛+1 =
𝜕𝑓𝑛

𝜕𝑠𝑛+1
|
(𝑣̅,𝑠̅)

 represents velocity differential with respect to spacing change, 

and 𝑓Δ𝑣𝑛+1 =
𝜕𝑓𝑛

𝜕Δ𝑣𝑛+1
|
(𝑣̅,𝑠̅)

 represents velocity differential with respect to velocity difference 

change. 

Let us first concentrate on the IP effect. When 𝜑𝑛+1(𝑡) ∗ 𝑣̇𝑛(𝑡) < 0  or 𝜇𝑛+1(𝑡) ∗

𝑣̇𝑛(𝑡) > 0 , it implies that if vehicle 𝑛 +1 accelerates or decelerates, target vehicle 𝑛  will 

also accelerate or decelerate, as demonstrated in Figure 3a. The IP effect is determined by 

the positivity or negativity of 𝑓𝑠𝑛+1   and 𝑓Δ𝑣𝑛+1 . If 𝑓𝑠𝑛+1 < 0 , then 𝜑𝑛+1(𝑡) ∗ 𝑣̇𝑛(𝑡) < 0 . If 

𝑓Δ𝑣𝑛+1 > 0, then 𝜇𝑛+1(𝑡) ∗ 𝑣̇𝑛(𝑡) > 0. 
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Figure 3. Illustration of the (a) in-phase effect (b) opposite-phase effect. 

Correspondingly, when 𝜑𝑛+1(𝑡) ∗ 𝑣̇𝑛(𝑡) > 0 or 𝜇𝑛+1(𝑡) ∗ 𝑣̇𝑛(𝑡) < 0, it means that if 

vehicle 𝑛+1 accelerates or decelerates, the target vehicle 𝑛 will respond oppositely by de-

celerating or accelerating; this phenomenon is denoted as the OP effect, as illustrated in 

Figure 3b. The OP effect is determined by the positivity or negativity of 𝑓𝑠𝑛+1 and 𝑓Δ𝑣𝑛+1 . 

If 𝑓𝑠𝑛+1 > 0, then 𝜑𝑛+1(𝑡) ∗ 𝑣̇𝑛(𝑡) > 0. If 𝑓Δ𝑣𝑛+1 < 0, then 𝜇𝑛+1(𝑡) ∗ 𝑣̇𝑛(𝑡) < 0. The OP ef-

fect increases the risk of rear-end collisions since the target vehicle and the following ve-

hicle exhibit opposite behaviors, especially when the following vehicle experiences sud-

den acceleration. 

Factors 𝑓𝑠𝑛+1 , 𝑓Δ𝑣𝑛+1  are identified as crucial elements that dictate whether a platoon 

operates in in-phase (IP) or opposite-phase (OP) modes, a distinction that is pivotal for 

understanding the platoon’s reaction to internal disturbances. This identification of key 

factors is fundamental to our further analysis concerning safety and string stability in pla-

toon dynamics. We delve deeper into these aspects in Equations (10) and (12), which relate 

to safety, and Equations (25) and (27), which concern string stability. 

3.4. Assessment of Rear-End Collision Risk 

Rear-end collisions are prevalent on freeways, representing one of the most common 

types of accidents [44]. The advent of vehicle-to-vehicle (V2V) and vehicle-to-infrastruc-

ture (V2I) communications has made it possible to use individual vehicle information to 

assess collision risks and enhance traffic safety. Therefore, this section focuses on assessing 

the collision risk associated with the bidirectional control model. 

In this research, surrogate safety measures (SSMs) are utilized to evaluate collision 

risks. SSMs are safety performance indicators that estimate accident risks based on micro-

scopic traffic parameters like speed, space headway, and time headway [44]. Several SSMs 

have been developed for estimating collision risks. Time to collision (TTC) is one of the 

most used SSMs. The concept of TTC, introduced in [45], refers to the time remaining until 

collision occurs between the leading and the following vehicle if velocity difference is 

maintained.  

This research adopts TTC as a metric to analyze the risk of rear-end collisions. Given 

that perturbation is introduced to the following vehicle 𝑛+1 at time 𝑡, it impacts the dy-

namics of vehicle 𝑛 due to the bidirectional control mechanism. Our analysis specifically 

focuses on the collision risk between vehicle 𝑛+1 and vehicle 𝑛, as this pair presents a 
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heightened risk of collision, particularly when the following vehicle 𝑛+1 undergoes sud-

den acceleration. The TTC for vehicle 𝑛+1 is calculated as follows: 

𝑇𝑇𝐶𝑛+1(𝑡) = {

𝑥𝑛(𝑡) − 𝑥𝑛+1(𝑡) − 𝑙𝑛
𝑣𝑛+1(𝑡) − 𝑣𝑛(𝑡)

, 𝑖𝑓 𝑣𝑛+1(𝑡) > 𝑣𝑛(𝑡)

∞, 𝑖𝑓 𝑣𝑛+1(𝑡) < 𝑣𝑛(𝑡)

 (8) 

where 𝑇𝑇𝐶𝑛+1(𝑡) denotes the TTC value of vehicle 𝑛 + 1 at time 𝑡, 𝑥𝑛 and 𝑥𝑛+1 are the 

positions of vehicles 𝑛 and 𝑛 + 1, 𝑣𝑛 and 𝑣𝑛+1 are the velocities of vehicles 𝑛 and 𝑛 +

1, and 𝑙𝑛 is the length of vehicle 𝑛. A smaller TTC value indicates a higher risk of colli-

sion. 

As discussed earlier, the OP effect increases the risk of collisions, especially when the 

following vehicle experiences sudden acceleration. Thus, we consider the perturbation in 

Section 3.2 when 𝜇𝑛+1(𝑡) > 0 (𝜑𝑛+1(𝑡) < 0). The TTC of vehicle 𝑛 + 1 after time Δ𝑡 for 

spacing and velocity difference bidirectional control can be represented using Equations 

(9) and (11), respectively. 

For the spacing bidirectional control model, 𝑇𝑇𝐶𝑛+1(𝑡 + Δ𝑡), denoted as 𝑇𝑇𝐶𝑛+1
𝑠 (𝑡 +

Δ𝑡), is expressed as follows: 

𝑇𝑇𝐶𝑛+1
𝑠 (𝑡 + Δ𝑡) =

𝑥𝑛(𝑡 + Δ𝑡) − 𝑥𝑛+1(𝑡 + Δ𝑡) − 𝑙𝑛
𝑣𝑛+1(𝑡 + Δ𝑡) − 𝑣𝑛(𝑡 + Δ𝑡)

 

=
𝜑𝑛+1(𝑡 + Δ𝑡) + 𝑠𝑒

𝜇𝑛+1(𝑡 + Δ𝑡) − 𝑓𝑠𝑛+1𝜑𝑛+1(𝑡)Δ𝑡
 

(9) 

By taking partial derivation of Equation (9) with respect to 𝑓𝑠𝑛+1 , we obtain the fol-

lowing equation: 

𝜕𝑇𝑇𝐶𝑛+1
𝑠 (𝑡 + Δ𝑡)

𝜕𝑓𝑠𝑛+1
|
(𝑣̅,𝑠̅)

=
(𝜑𝑛+1(𝑡 + Δ𝑡) + 𝑠𝑒)𝜑𝑛+1(𝑡)Δ𝑡

(𝜇𝑛+1(𝑡 + Δ𝑡) − 𝑓𝑠𝑛+1𝜑𝑛+1(𝑡)Δ𝑡)
2
 (10) 

Given that perturbation 𝜑𝑛+1(𝑡) is small and does not result in an immediate colli-

sion, we can infer that 𝜑𝑛+1(𝑡 + Δ𝑡) + 𝑠𝑒 > 0. Thus, we can conclude that 
𝜕𝑇𝑇𝐶𝑛+1(𝑡+Δ𝑡)

𝜕𝑓𝑠𝑛+1
<

0. 

Since 
𝜕𝑇𝑇𝐶𝑛+1

𝑠 (𝑡+Δ𝑡)

𝜕𝑓𝑠𝑛+1
< 0, it can be observed that when 𝑓𝑠𝑛+1 < 0 (IP), 𝑇𝑇𝐶𝑛+1(𝑡 + Δ𝑡) 

increases, resulting in lower collision risk and improved safety. On the contrary, when 

𝑓𝑠𝑛+1 > 0 (OP), 𝑇𝑇𝐶𝑛+1(𝑡 + Δ𝑡) decreases, leading to higher collision risk. 

For the velocity difference bidirectional control model, 𝑇𝑇𝐶𝑛+1(𝑡 + Δ𝑡), denoted as 

𝑇𝑇𝐶𝑛+1
Δ𝑣 (𝑡 + Δ𝑡), is expressed as follows: 

𝑇𝑇𝐶𝑛+1
Δ𝑣 (𝑡 + Δ𝑡) =

𝜑𝑛+1(𝑡 + Δ𝑡) + 𝑠𝑒
𝜇𝑛+1(𝑡 + Δ𝑡) − 𝑓Δ𝑣𝑛+1𝜇𝑛+1(𝑡)Δ𝑡

 (11) 

By taking partial derivation of Equation (11) with respect to 𝑓𝑛+1
Δ𝑣 , we obtain the fol-

lowing equation: 

𝜕𝑇𝑇𝐶𝑛+1
Δ𝑣 (𝑡 + Δ𝑡)

𝜕𝑓Δ𝑣𝑛+1
|
(𝑣̅,𝑠̅)

=
(𝜑𝑛+1(𝑡 + Δ𝑡) + 𝑠𝑒)𝜇𝑛+1(𝑡)Δ𝑡

(𝜇𝑛+1(𝑡 + Δ𝑡) − 𝑓Δ𝑣𝑛+1𝜇𝑛+1(𝑡)Δ𝑡)
2
 (12) 

Since 
𝜕𝑇𝑇𝐶𝑛+1

Δ𝑣 (𝑡+Δ𝑡)

𝜕𝑓Δ𝑣𝑛+1
> 0, it can be observed that when 𝑓Δ𝑣𝑛+1 > 0 (IP), 𝑇𝑇𝐶𝑛+1

Δ𝑣 (𝑡 + Δ𝑡) 

increases, resulting in lower collision risk and improved safety. On the contrary, when 

𝑓Δ𝑣𝑛+1 < 0 (OP), 𝑇𝑇𝐶𝑛+1
Δ𝑣 (𝑡 + Δ𝑡) decreases, leading to higher collision risk. 

Based on the analysis presented above, we can conclude that for both the spacing and 

velocity difference bidirectional control models, the IP effect decreases rear-end collision 

risk, while the OP effect increases the risk. 
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3.5. String Stability Analysis 

This section derives the string stability of the bidirectional control model. String sta-

bility represents the ability of one vehicle to withstand small perturbations and progress 

to the steady state where vehicles travel with an identical gap and speed in homogenous 

traffic [46]. This research adopts the linear stability analysis method described in 

[21,32,47,48] to analyze string stability. We first derive the stability condition for the ge-

neric model, which adopts both spacing and velocity difference information in Equation 

(2). We then derive the stability condition for the specific models that only use one type of 

information. 

Considering a platoon with N vehicles, in the steady state, each vehicle can be repre-

sented as 

𝑥̅𝑛(𝑡) = (𝑁 − 𝑛)ℎ0 + 𝑣̅𝑡, 𝑛 = 1, … ,𝑁 (13) 

where ℎ0 denotes the average headway of adjacent vehicles in the steady state in homog-

enous traffic, 𝑣̅ represents the velocity of vehicles in the steady state, and 𝑥̅𝑛(𝑡) is the 

location of vehicle 𝑛 at time 𝑡. 

We assume that a small perturbation affects the steady state solution of vehicle 𝑛 at 

time 𝑡. We denote the perturbation by 𝑦𝑛(𝑡) that has a linear Fourier-mode expansion, 

𝑦𝑛(𝑡) = 𝑐𝑒𝑖𝛼𝑘𝑛+𝑧𝑡 = 𝑥𝑛(𝑡) − 𝑥̅𝑛(𝑡), 𝑦𝑛(𝑡) → 0, 𝛼𝑘 =
 𝜋𝑘

𝑁
 (14) 

where 𝑐 is a constant and 𝛼𝑘 =
2𝜋𝑘

𝑁
 (𝑘 = 0, 1, … , 𝑁 − 1) 

Taking the second derivative of both sides of Equation (14), we obtain 

𝑦̈𝑛(𝑡 + 𝑡𝑑) = 𝑥̈𝑛(𝑡 + 𝑡𝑑) − (𝑥 ̅𝑛(𝑡 + 𝑡𝑑))
′′
= 𝑥̈𝑛(𝑡 + 𝑡𝑑) =

𝑑𝑣𝑛(𝑡 + 𝑡𝑑)

𝑑𝑡
 (15) 

Based on Equation (2), we rewrite Equation (15) as 

𝑦̈𝑛(𝑡 + 𝑡𝑑) = 𝑓𝑛(𝑠𝑛(𝑡), 𝑣𝑛(𝑡), Δ𝑣𝑛(𝑡), 𝑠𝑛+1(𝑡), Δ𝑣𝑛+1(𝑡)) (16) 

By linearizing Equation (16), we can derive the following equation: 

𝑦̈𝑛(𝑡 + 𝑡𝑑) = 𝑓𝑠𝑛(𝑦𝑛−1(𝑡) − 𝑦𝑛(𝑡)) + 𝑓𝑣𝑛𝑦̇𝑛(𝑡) + 𝑓Δ𝑣𝑛(𝑦̇𝑛−1(𝑡) − 𝑦̇𝑛(𝑡))

+ 𝑓𝑠𝑛+1(𝑦𝑛(𝑡) − 𝑦𝑛+1(𝑡)) + 𝑓Δ𝑣𝑛+1(𝑦̇𝑛(𝑡) − 𝑦̇𝑛+1(𝑡))) 
(17) 

where 𝑓𝑠𝑛 =
𝜕𝑓𝑛

𝜕𝑠𝑛
|
(𝑣̅,𝑠̅)

> 0 , 𝑓𝑣𝑛 =
𝜕𝑓𝑛

𝜕𝑣𝑛
|
(𝑣̅,𝑠̅)

< 0 , 𝑓Δ𝑣𝑛 =
𝜕𝑓𝑛

𝜕Δ𝑣𝑛
|
(𝑣̅,𝑠̅)

< 0 , 𝑓𝑠𝑛+1 =
𝜕𝑓𝑛

𝜕𝑠𝑛+1
|
(𝑣̅,𝑠̅)

 , and 

𝑓Δ𝑣𝑛+1 =
𝜕𝑓𝑛

𝜕Δ𝑣𝑛+1
|
(𝑣̅,𝑠̅)

. 

We rewrite Equation (17) and substitute 𝑦𝑛(𝑡) = 𝑐𝑒𝑖𝛼𝑘𝑛+𝑧𝑡  and 𝑦̇𝑛(𝑡) = 𝑧𝑐𝑒𝑖𝛼𝑘𝑛+𝑧𝑡 

into Equation (17). Simplifying the resulting equation, we can obtain 

(𝑒𝑡𝑑𝑧 − 1)[𝑧𝑒𝑡𝑑𝑧 − 𝑓𝑣𝑛 + (𝑒−𝑖𝑎𝑘 − 1)(𝑓∆𝑣𝑛 + 𝑒𝑖𝑎𝑘𝑓∆𝑣𝑛+1)] 

= 𝑡𝑑 ⋅ (𝑒
−𝑖𝑎𝑘 − 1)(𝑓𝑠𝑛 + 𝑒𝑖𝑎𝑘𝑓𝑠𝑛+1) 

(18) 

We expand z in a power series solution, where 𝑧 = 𝑧1(𝑖𝑎𝑘) + 𝑧2(𝑖𝑎𝑘)
2 +⋯  and 

𝑒𝑡𝑑𝑧 = 1 + 𝑡𝑑𝑧 +
𝑡𝑑
2𝑧2

2
+⋯. We can insert this solution into Equation (18) to derive the first-

order and second-order terms of coefficients in expression of z, given, respectively, the 

following:  

𝑧1 =
𝑓𝑠𝑛 + 𝑓𝑠𝑛+1

𝑓𝑣𝑛
 (19) 

𝑧2 =
𝑧1
2 − 𝑧1(𝑓Δ𝑣𝑛 + 𝑓Δ𝑣𝑛+1) −

1
 
(𝑓𝑠𝑛 − 𝑓𝑠𝑛+1)

𝑓𝑣𝑛
−
1

 
(𝑧1

2𝑡𝑑) (20) 
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The platoon is string stable if 𝑧2 > 0. The string stability condition is derived as fol-

lows, assuming no time delays (𝑡𝑑 = 0): 

 (𝑓𝑠)
2 −

(𝑓𝑣𝑛)
2

 
(𝑓𝑠𝑛 − 𝑓𝑠𝑛+1) − 𝑓𝑠𝑓𝑣𝑛𝑓∆𝑣 < 0 (21) 

where 𝑓𝑠 = 𝑓𝑠𝑛 + 𝑓𝑠𝑛+1 , 𝑓∆𝑣 = 𝑓Δ𝑣𝑛 + 𝑓Δ𝑣𝑛+1   

If 𝑓𝑠𝑛+1 = 0 and 𝑓∆𝑣𝑛+1 = 0, the equation then simplifies to 𝑓𝑠𝑛 −
(𝑓𝑛

𝑣)2 

2
− 𝑓𝑣𝑛𝑓Δ𝑣𝑛 < 0, 

which matches the string stability condition of the traditional predecessor following 

scheme [40,49,50]. 

This section first derives the stability condition of the spacing bidirectional control 

model based on Equation (21) when 𝑓Δ𝑣𝑛+1 = 0  and 𝑓sn+1 ≠ 0 . The platoon is stable if 

𝜂𝑠 < 0, which is formulated in Equation (22), 

𝜂𝑠 =  (𝑓𝑠)
2 −

(𝑓𝑣𝑛)
2

 
(𝑓𝑠𝑛 − 𝑓𝑠𝑛+1) − 𝑓𝑠𝑓𝑣𝑛𝑓Δ𝑣𝑛 (22) 

It should be noted that in the spacing bidirectional control model, spacing infor-

mation 𝑠𝑛+1 from the following vehicle is usually coupled with spacing information 𝑠𝑛 

from the preceding vehicle as a stimulative term, 𝑤(𝑠𝑛+1) − 𝑤(𝑠𝑛). Therefore, 𝑓𝑛
𝑠 is com-

posed of two parts, denoted as 𝑓𝑛
𝑠1 and 𝑓𝑛

𝑠2, where 𝑓𝑛
𝑠1 represents the original part in 

Equation (1) and 𝑓𝑛
𝑠2 = −𝑓𝑛+1

s  represent the part in a stimulative term as shown in the 

equation below: 

𝑓𝑠𝑛 = 𝑓𝑠𝑛
1 + 𝑓𝑠𝑛

2  (23) 

where 𝑓𝑠𝑛
2 = −𝑓𝑠𝑛+1 .  

Then, the stability condition of the spacing bidirectional control model can be rewrit-

ten as shown in Equation (24), 

𝜂𝑠 = (𝑓𝑛
𝑠1)2 −

(𝑓𝑣𝑛)
2

 
(𝑓𝑠𝑛

1 −  𝑓𝑠𝑛+1) − 𝑓𝑠𝑛
1 𝑓𝑣𝑛𝑓Δ𝑣𝑛  (24) 

Taking the partial derivative of Equation (24) with respect to 𝑓𝑛+1
s  yields Equation 

(25) as follows: 

𝜕𝜂𝑠

𝜕𝑓𝑠𝑛+1
= (𝑓𝑣𝑛)

2 (25) 

Since 
𝜕𝜂𝑠

𝜕𝑓𝑠𝑛+1
> 0, it can be observed that when 𝑓𝑠𝑛+1 < 0 (IP), 𝜂𝑠 decreases, indicat-

ing an improvement in string stability. On the contrary, when 𝑓𝑠𝑛+1 > 0  (OP), 𝜂𝑠  in-

creases, leading to worse stability. 

In this section, we derive the stability condition of the velocity difference bidirectional 

control model based on Equation (21) when 𝑓Δ𝑣𝑛+1 ≠ 0 and 𝑓sn+1 = 0. The platoon is sta-

ble if 𝜂Δ𝑣 < 0, which is formulated in Equation (26),  

𝜂Δ𝑣 = (𝑓𝑠𝑛)
2 −

(𝑓𝑣𝑛)
2

 
𝑓𝑠𝑛 − 𝑓𝑠𝑛𝑓𝑣𝑛𝑓∆𝑣 (26) 

Taking the partial derivative of Equation (26) with respect to 𝑓Δ𝑣𝑛+1 yields Equation 

(27), 

𝜕𝜂∆𝑣

𝜕𝑓Δ𝑣𝑛+1
= − 𝑓𝑠𝑛𝑓𝑣𝑛  (27) 

where 𝑓𝑠𝑛 > 0 and 𝑓𝑣𝑛 < 0.  

Since 
𝜕𝜂∆𝑣

𝜕𝑓Δ𝑣𝑛+1
> 0, it can be observed that when 𝑓Δ𝑣𝑛+1 < 0 (OP), 𝜂Δ𝑣 decreases, re-

sulting in improved stability. On the contrary, when 𝑓Δ𝑣𝑛+1 > 0 (IP), 𝜂Δ𝑣 increases, lead-

ing to worse stability.  
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3.6. Tradeoff between Platoon Safety and String Stability 

Sections 3.4 and 3.5 investigate the collision risk and string stability of the spacing 

and velocity difference bidirectional control models. In this section, we synthesize the 

findings and discuss the tradeoff between platoon safety and stability. 

First, we direct our attention to the spacing bidirectional control model. The analyses 

conducted in Sections 3.4 and 3.5 indicate that a bidirectional control model exhibiting the 

in-phase (IP) effect has the potential to reduce the risk of rear-end collisions and enhance 

string stability. Conversely, a model featuring the opposite-phase (OP) effect can increase 

the likelihood of rear-end collisions and worsen instability. These observations are sum-

marized in Table 2, highlighting that incorporating spacing information with the IP effect 

can effectively improve both platoon stability and safety. 

Table 2. Impact of spacing information on platoon safety and stability. 

Control Model Spacing Information 
Rear-End Collision 

Risk 
String Stability 

In-Phase Effect 𝑓𝑠𝑛+1 < 0 Decreased Improved 

Opposite-Phase Effect 𝑓𝑠𝑛+1 > 0 Increased Worsened 

Next, our attention turns to the evaluation of the velocity difference bidirectional con-

trol model. The analysis conducted in Sections 3.4 and 3.5 reveals notable observations: 

the IP effect can decrease the risk of rear-end collisions, albeit at the cost of worsening 

stability. Conversely, the OP effect can increase the risk of rear-end collisions but has the 

potential to improve string stability. Table 3 summarizes these findings, emphasizing that 

the utilization of velocity difference information can only enhance either safety or stabil-

ity, but not both simultaneously. 

Table 3. Impact of velocity difference information on platoon safety and stability. 

Control Model 
Velocity Difference In-

formation 

Rear-End Collision 

Risk 
String Stability 

In-Phase Effect 𝑓Δ𝑣𝑛+1 > 0 Decreased Worsened 

Opposite-Phase Effect 𝑓Δ𝑣𝑛+1 < 0 Increased Improved 

4. Analytical Verification on Specific Car-Following Models 

The objective of this section is to provide detailed analytical validation for the theo-

retical findings presented in the previous sections. This is accomplished by examining the 

safety and stability of two distinct car-following models: one linear model (i.e., Helly’s 

model) and one non-linear model (i.e., the IDM). Both of them are prominent in modeling 

CAV behaviors [33,51–53]. Incorporating both a linear and a non-linear model allows an-

alytical verification to provide comprehensive insights. 

4.1. Linear Car-following Model 

Car-following models have been developed for more than half a century, and numer-

ous models have been proposed to model the longitudinal behaviors of vehicles. Among 

them, Helly’s linear car-following model has been widely applied to describe CAV behav-

ior [54] due to its simple and intuitive feature [40]. This research adopts Helly’s car-fol-

lowing model to model the linear following behavior of CAVs and bidirectional infor-

mation flow topology effects. The formulation of the Helly’s model is denoted as below 

[55]: 

𝑣̇𝑛(𝑡) = 𝜆𝑥(𝑠𝑛(𝑡) − 𝜏𝑣𝑛(𝑡) − 𝑠0) − 𝜆𝑣∆𝑣𝑛(𝑡) (28) 

where 𝜆𝑣 represents the sensitivity to velocity difference between target vehicle and pre-

ceding vehicle, 𝜆𝑥  represents the sensitivity to spacing between target vehicle and 
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preceding vehicle, 𝑠0 is the minimum distance allowed as a safety gap, and 𝜏 represents 

reaction time. Note that 𝜏𝑣𝑛(𝑡) + 𝑠0 indicates the desired space gap. In this model, the 

acceleration of a vehicle presents a linear relationship with deviation from spacing and 

velocity difference between two successive vehicles. 

Incorporating the information from the nearest following vehicle, the bidirectional 

Helly’s model can be expressed as: 

𝑣̇𝑛(𝑡) = 𝜆𝑥(𝑠𝑛(𝑡) − 𝜏𝑣𝑛(𝑡) − 𝑠0) − 𝜆𝑣∆𝑣𝑛(𝑡) 

+𝛾𝑥(𝑠𝑛+1(𝑡)−𝑠𝑛(𝑡)) + 𝛾𝑣∆𝑣𝑛+1(𝑡) 
(29) 

where 𝑠𝑛+1, Δ𝑣𝑛+1 represent the spacing and velocity difference information from the fol-

lowing vehicle, respectively. Difference 𝑠𝑛+1(𝑡)−𝑠𝑛(𝑡)  represents the spacing stimulus. 

𝛾𝑥 represents sensitivity to spacing, and 𝛾𝑣 represents sensitivity to velocity difference. 

By setting 𝛾𝑣 = 0 and 𝛾𝑥 = 0, the spacing and the velocity difference bidirectional Helly’s 

model can be obtained, respectively. 

We can obtain the analytic expressions of the partial differential equations for the 

bidirectional Helly’s model, as shown in the equations below: 

𝑓𝑠𝑛
1 = 𝜆𝑥 ,  𝑓𝑠𝑛

2 = −𝛾𝑥,  𝑓𝑣𝑛 = −𝜆𝑥𝜏,  𝑓∆𝑣𝑛 = −𝜆𝑣 , 

𝑓𝑠𝑛+1 = 𝛾𝑥, 𝑓∆𝑣𝑛+1 = 𝛾𝑣 
(30) 

For the spacing bidirectional Helly’s model, by applying the partial differential equa-

tions to Equation (10), we obtain Equation (31). 

𝜕𝑇𝑇𝐶𝑛+1
𝑠 (𝑡 + Δ𝑡)

𝜕𝑓𝑠𝑛+1
|
(𝑣̅,𝑠̅)

=
(𝜑𝑛+1(𝑡 + Δ𝑡) + 𝑠𝑒)𝜑𝑛+1(𝑡)Δ𝑡

(𝜇𝑛+1(𝑡 + Δ𝑡) − 𝛾𝑥𝜑𝑛+1(𝑡)Δ𝑡)
2

 (31) 

Since 
𝜕𝑇𝑇𝐶𝑛+1

𝑠 (𝑡+Δ𝑡)

𝜕𝑓𝑠𝑛+1
< 0, it can be observed that when 𝑓𝑠𝑛+1 < 0 (IP), 𝑇𝑇𝐶𝑛+1(𝑡 + Δ𝑡) 

increases, resulting in lower collision risk. On the contrary, when 𝑓𝑠𝑛+1 > 0  (OP), 

𝑇𝑇𝐶𝑛+1(𝑡 + Δ𝑡) decreases, leading to higher collision risk. 

For the velocity difference bidirectional Helly’s model, by applying the partial differ-

ential equations to Equation (12), we obtain Equation (32). 

𝜕𝑇𝑇𝐶𝑛+1
Δ𝑣 (𝑡 + Δ𝑡)

𝜕𝑓Δ𝑣𝑛+1
|
(𝑣̅,𝑠̅)

=
(𝜑𝑛+1(𝑡 + Δ𝑡) + 𝑠𝑒)𝜇𝑛+1(𝑡)Δ𝑡

(𝜇𝑛+1(𝑡 + Δ𝑡) − 𝛾𝑣𝜇𝑛+1(𝑡)Δ𝑡)
2

 (32) 

Since 
𝜕𝑇𝑇𝐶𝑛+1

Δ𝑣 (𝑡+Δ𝑡)

𝜕𝑓Δ𝑣𝑛+1
> 0, it can be observed that when 𝑓Δ𝑣𝑛+1 > 0 (IP), 𝑇𝑇𝐶𝑛+1

Δ𝑣 (𝑡 + Δ𝑡) 

increases, implying lower collision risk. On the contrary, when 𝑓Δ𝑣𝑛+1 < 0  (OP), 

𝑇𝑇𝐶𝑛+1
Δ𝑣 (𝑡 + Δ𝑡) decreases, leading to higher collision risk. The above rear-end collision 

risk analyses on Helly’s model demonstrate the findings presented in Tables 2 and 3. 

We now proceed to derive the stability condition of the bidirectional Helly’s model. 

Applying the partial differential equations to Equations (22) and (26), we can obtain the 

stability transition curves for both the spacing and velocity difference bidirectional models 

from the neutral stability criterion. Figure 4 presents the stability transition curves for both 

models. Figure 4a shows the stability transition curve of the spacing bidirectional Helly’s 

model, while Figure 4b shows the stability transition curve of the velocity difference bidi-

rectional Helly’s model. The traffic flow is considered stable when the equilibrium space 

gap lies above the stability line. The black dashed line represents the phase transition 

curve of Helly’s model when 𝛾𝑥 = 0 and 𝛾𝑣 = 0. 

Figure 4a for the spacing bidirectional Helly’s model indicates that the stability re-

gion expands when 𝛾𝑥 < 0 (IP). On the contrary, when 𝛾𝑥 > 0 (OP), the stability region 

shrinks. Figure 4b for the velocity difference bidirectional Helly’s model reveals that when 

𝛾𝑣 > 0  (IP), the stability region shrinks, and the stability region expands when 𝛾𝑣 < 0 

(OP). The above string stability analyses on Helly’s model demonstrate the findings pre-

sented in Tables 2 and 3. 
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Figure 4. Stability transition curves for (a) spacing, (b) velocity difference bidirectional Helly’s 

model. 

4.2. Non-Linear Car-following Model 

The research further employs the Intelligent Driver Model (IDM) car-following 

model, proposed by Treiber et al. [12], to describe the non-linear following behavior of 

CAVs due to several of its advantages. First, the IDM is a multi-regime model, which cap-

tures the dynamics of different traffic congestion levels more realistically than other mod-

els [33]. Second, it provides collision-free behavior and smooth traffic flow [56]. Third, it 

is well-accepted to model connected automated vehicles’ longitudinal dynamics [57].  

In the IDM model, the acceleration of vehicle 𝑛 at time t is determined by its current 

velocity 𝑣𝑛, headway 𝑠𝑛, and velocity difference Δ𝑣𝑛 to the preceding vehicle, which can 

be expressed as 

𝑣𝑛̇(𝑡) = 𝑎 (1 − (
𝑣𝑛(𝑡)

𝑣0
)

𝛿

− (
𝑠∗(𝑣𝑛(𝑡), ∆𝑣𝑛(𝑡))

𝑠𝑛(𝑡)
)

2

) 

𝑠∗(𝑣𝑛(𝑡), ∆𝑣𝑛(𝑡)) = 𝑠0 + 𝑣𝑛(𝑡)𝑇 + 
𝑣𝑛(𝑡) ∙ ∆𝑣𝑛(𝑡)

 √𝑎𝑏
 

(33) 

where 𝑣𝑛̇(𝑡) and 𝑣𝑛 denote the acceleration and speed of vehicle n at time t; 𝑎 and 𝑏 

denote the maximum acceleration and deceleration of the vehicle, respectively; 𝑣0  de-

notes the free-flow speed; 𝛿  is the acceleration exponent parameter; 𝑠0  represents the 

minimum bumper-to-bumper gap in traffic jam states; T is the desired time gap; 𝑠𝑛 de-

notes the net distance, 𝑠𝑛 = 𝑥𝑛 − 𝑥𝑛−1 − 𝑙, between vehicle n and its preceding vehicle n − 

1, where 𝑙 is vehicle length and 𝑥𝑛 denotes the position of vehicle n at time t. ∆𝑣𝑛 de-

notes the velocity difference between vehicle n and its preceding vehicle n − 1. 

The research adapts the bidirectional distance balanced model (BDBM) proposed in 

[26] and further modifies it by incorporating velocity difference information from the 

nearest following vehicle. The structure of the new bidirectional IDM model is expressed 

as follows: 

𝑣𝑛̇(𝑡) = 𝑎 (1 − (
𝑣𝑛(𝑡)

𝑣0
)

𝛿

− (
𝑠∗(𝑣𝑛(𝑡), ∆𝑣𝑛(𝑡))

𝑠𝑛(𝑡)
)

2

) 

𝑠∗(𝑣𝑛(𝑡), ∆𝑣𝑛(𝑡)) = 𝑠0 + 𝑣𝑛(𝑡)𝑇 +
𝑣𝑛(𝑡) ∙ ∆𝑣𝑛(𝑡)

 √𝑎𝑏
 

+𝛾𝑥(𝑠𝑛+1,𝑡(𝑡) − 𝑠𝑛,𝑡(𝑡)) + 𝛾𝑣∆𝑣𝑛+1(𝑡) 

(34) 

where 𝑠𝑛+1 and Δ𝑣𝑛+1 denote the spacing and velocity difference information received 

from the following vehicle, respectively. 𝛾𝑥  represents the sensitivity to spacing and 

𝛾𝑣 represents the sensitivity to velocity difference. By setting 𝛾𝑣 = 0 and 𝛾𝑥 = 0, the spac-

ing and the velocity difference bidirectional IDM model can be obtained, respectively. 
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We can obtain the analytic expressions of the partial differential equations for the 

bidirectional IDM model, as shown in the equations below: 

𝑓𝑠𝑛
1 =

 𝑎𝑠∗2

𝑠3
,  𝑓𝑠𝑛

2 =
 𝑎𝑠∗𝛾𝑥
𝑠2

,  𝑓𝑣𝑛 = −
4𝑎𝑣𝑒

3

𝑣𝑜
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−
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𝑠2
, 

 
𝑓
∆𝑣𝑛

= −
√𝑎𝑣𝑠∗

𝑠2√𝑏
, 𝑓𝑠𝑛+1 = −

 𝑎𝑠∗𝛾𝑥
𝑠2

 , 𝑓∆𝑣𝑛+1 = −
 𝑎𝑠∗𝛾𝑣
𝑠2

 

(35) 

For the spacing bidirectional IDM, by applying the partial differential equations in 

Equation (35) to Equation (10), we obtain Equation (36). 

𝜕𝑇𝑇𝐶𝑛+1
𝑠 (𝑡 + Δ𝑡)

𝜕𝑓𝑠𝑛+1
|
(𝑣̅,𝑠̅)

=
(𝜑𝑛+1(𝑡 + Δ𝑡) + 𝑠𝑒)𝜑𝑛+1(𝑡)Δ𝑡

(𝜇𝑛+1(𝑡 + Δ𝑡) +
 𝑎𝑠∗𝛾𝑥
𝑠2

𝜑𝑛+1(𝑡)Δ𝑡)
2

 (36) 

Since 
𝜕𝑇𝑇𝐶𝑛+1

𝑠 (𝑡+Δ𝑡)

𝜕𝑓𝑠𝑛+1
< 0 , it can be observed that when 𝛾𝑥 > 0  and 𝑓𝑠𝑛+1 < 0  (IP), 

𝑇𝑇𝐶𝑛+1(𝑡 + Δ𝑡) increases, resulting in lower collision risk. On the contrary, when 𝛾𝑥 < 0 

and 𝑓𝑠𝑛+1 > 0 (OP), 𝑇𝑇𝐶𝑛+1(𝑡 + Δ𝑡) decreases, leading to higher collision risk. 

For the velocity difference bidirectional IDM, by applying the partial differential 

equations in Equation (35) to Equation (12), we can obtain  

𝜕𝑇𝑇𝐶𝑛+1
Δ𝑣 (𝑡 + Δ𝑡)

𝜕𝑓Δ𝑣𝑛+1
|
(𝑣̅,𝑠̅)

=
(𝜑𝑛+1(𝑡 + Δ𝑡) + 𝑠𝑒)𝜇𝑛+1(𝑡)Δ𝑡

(𝜇𝑛+1(𝑡 + Δ𝑡) +
 𝑎𝑠∗𝛾𝑣
𝑠2

𝜇𝑛+1(𝑡)Δ𝑡)
2

 (37) 

Since 
𝜕𝑇𝑇𝐶𝑛+1

Δ𝑣 (𝑡+Δ𝑡)

𝜕𝑓Δ𝑣𝑛+1
> 0 , it can be observed that when 𝛾𝑣 < 0  and 𝑓Δ𝑣𝑛+1 > 0  (IP), 

𝑇𝑇𝐶𝑛+1
Δ𝑣 (𝑡 + Δ𝑡) increases, resulting in lower collision risk. On the contrary, when 𝛾𝑣 > 0 

and 𝑓Δ𝑣𝑛+1 < 0  (OP), 𝑇𝑇𝐶𝑛+1
Δ𝑣 (𝑡 + Δ𝑡)  decreases, leading to higher collision risk. The 

above rear-end collision risk analyses on the bidirectional IDM model validate the find-

ings presented in Tables 2 and 3. 

We now derive the stability condition of the bidirectional IDM model, using the pa-

rameters in [46] listed in Table 4. By applying the partial differential equations in Equation 

(35) to Equations (22) and (26), we can obtain the stability transition curves for both the 

spacing and velocity difference bidirectional IDM models from the neutral stability crite-

rion. 

Figure 5 illustrates the stability transition curves for both models. The figure to the 

left shows the stability transition curve of the spacing bidirectional IDM model, while the 

figure to the right shows the stability transition curve of the velocity difference bidirec-

tional IDM model. The traffic flow is considered stable when the equilibrium space gap 

lies above the stability line. The black dashed line represents the phase transition curve of 

the IDM model when 𝛾𝑥 = 0 and 𝛾𝑣 = 0. 

The figure to the left for the spacing bidirectional IDM model indicates that the sta-

bility region expands when 𝛾𝑥 > 0 (IP). On the contrary, the stability region shrinks when 

𝛾𝑥 < 0 (OP). The figure to the right for the velocity difference bidirectional IDM model 

reveals that the stability region shrinks when 𝛾𝑣 < 0 (IP) and the stability region expands 

when 𝛾𝑣 > 0 (OP). The above string stability analyses on the bidirectional IDM model 

validate the findings presented in Tables 2 and 3. 
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Figure 5. Stability transition curve for (a) spacing, (b) velocity difference bidirectional IDM model. 

Table 4. Parameters used in the IDM model. 

𝒂 (𝐦 ∗ 𝐬−𝟐) 𝒃 (𝐦 ∗ 𝐬−𝟐) 𝒗𝒅 (𝐤𝐦 ∗ 𝐡−𝟏) 𝒔𝟎 (𝐦) 

1 2 120 2 

5. Numerical Verification 

In this section, we perform numerical experiments using the bidirectional Helly’s 

model and the bidirectional IDM model to validate the analytical findings presented in 

Sections 3 and 4. The simulations are initialized as follows: A platoon consisting of 20 

vehicles operates on a single lane with an open boundary condition. All vehicles have an 

identical initial velocity of 15 m/s and are spaced equidistantly. To investigate the impact 

of back-looking information on vehicle dynamics, perturbation is introduced to the 10th 

vehicle in the platoon. The 10th vehicle is programmed to follow a trapezoidal-type speed 

profile, simulating a typical congested traffic scenario characterized by sudden accelera-

tion and deceleration. 

5.1. Numerical Investigation on Helly’s Model with Bidirectional Information 

Numerical experiments using the spacing bidirectional Helly’s model are first carried 

out. The values of model parameters are from [58] as summarized in Table 5. 

Table 5. Parameters in Helly’s model. 

Initial Speed (m/s) 𝝀𝒙 𝝀𝒗 𝝉 

15 1 1 0.8 

The simulation results are shown below. Figures 6–8 show vehicle speed profiles 

when 𝛾𝑥= −0.4, 0 and 0.4, respectively. Note that when 𝛾𝑥 = 0, the model degenerates to 

Helly’s model. In each figure, Figures 6a, 7a and 8a show the speed profile of the perturbed 

vehicle and its preceding vehicles, demonstrating how back-looking information impacts 

downstream vehicle dynamics, especially in terms of safety. Figures 6b, 7b and 8b show 

the speed profile of the perturbed vehicle and its following vehicles, demonstrating how 

back-looking information impacts upstream vehicles dynamics, especially in terms of 

string stability. Figure 9 illustrates the minimum TTC value between the perturbed vehicle 

and its nearest preceding vehicle. 

When 𝛾𝑥 = −0.4 and 𝑓𝑛+1
𝑠 < 0, based on the analysis in Table 2, spacing information 

results in the IP effect. As shown in Figure 6a, when the perturbed 10th vehicle undergoes 

abrupt acceleration and deceleration, the nearest preceding 9th vehicle also accelerates 

and decelerates. In Figure 9, a larger minimum TTC value is observed when 𝛾𝑥 = −0.4 

compared to the value when 𝛾𝑥 = 0 , indicating lower collision risk. Figure 6b 
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demonstrates that the following vehicles smoothly converge to steady speed without sig-

nificant oscillations. These results validate that incorporating spacing information with 

the IP effect can reduce collision risk and improve platoon stability. 

When 𝛾𝑥 = 0.4 and 𝑓𝑛+1
𝑠 > 0, spacing information results in the OP effect. As shown 

in Figure 8a, when the perturbed 10th vehicle undergoes abrupt acceleration and deceler-

ation, the nearest preceding 9th vehicle reacts by decelerating and then accelerating ad-

versely. The speed variation of the ninth vehicle also affects the eighth vehicle, resulting 

in adverse behavior with respect to the ninth vehicle. In Figure 9, a smaller minimum TTC 

value is observed when 𝛾𝑥 = 0.4, indicating higher collision risk. Figure 8b shows that the 

speed fluctuations are enlarged upstream in the platoon due to string instability. These 

results validate that incorporating spacing information with the OP effect can increase 

collision risk and worsen platoon stability. 

 

Figure 6. Vehicle speed profile under the bidirectional Helly’s model when 𝛾𝑥 = −0.4: (a) 1st–10th 

vehicles, (b) 10th–20th vehicles. 

 

Figure 7. Vehicle speed profile under the bidirectional Helly’s model when 𝛾𝑥 = 0: (a) 1st–10th 

vehicles, (b) 10th–20th vehicles. 
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Figure 8. Vehicle speed profile under the bidirectional Helly’s model when 𝛾𝑥 = 0.4: (a) 1st–10th 

vehicles, (b) 10th–20th vehicles. 

Figure 9 demonstrates that an increase in 𝛾𝑥 leads to a smaller minimum TTC value, 

indicating higher collision risk. When 𝛾𝑥 approaches 0.6, the perturbed 10th vehicle col-

lides with the 9th vehicle due to the OP effect. 

 

Figure 9. Minimum TTC variation with respect to 𝛾𝑥 in the bidirectional Helly’s model. 

Numerical experiments using the velocity difference bidirectional Helly’s model are 

then carried out. Figures 10–12 show the vehicle speed profiles when 𝛾𝑣= 0.4, 0 and −0.4, 

respectively. Figure 13 illustrates the minimum TTC value between the perturbed vehicle 

and its nearest preceding vehicle. 

When 𝛾𝑣 = 0.4 and 𝑓𝑛+1
∆𝑣 > 0, the velocity difference information results in the IP ef-

fect. As shown in Figure 10a, when the perturbed 10th vehicle undergoes abrupt acceler-

ation and deceleration, the nearest preceding 9th vehicle also accelerates and decelerates. 

The minimum TTC value increases in Figure 13, indicating lower collision risk. In Figure 

10b, the speed fluctuations are enlarged upstream in the platoon due to string instability. 

These results validate that incorporating velocity information with the IP effect can reduce 

collision risk but worsen platoon stability. 

When 𝛾𝑣 = −0.4 and 𝑓𝑛+1
∆𝑣 < 0, velocity difference information results in the OP ef-

fect. As shown in Figure 12a, when the perturbed 10th vehicle undergoes abrupt acceler-

ation and deceleration, the nearest preceding 9th vehicle reacts by decelerating and then 

accelerating adversely. In Figure 13, a smaller minimum TTC value is observed, indicating 

higher collision risk. Figure 12b demonstrates that the following vehicles smoothly con-

verge to steady speed without significant oscillation. These results confirm that incorpo-

rating velocity information with the OP effect can improve platoon stability but increase 

collision risk. 
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Figure 10. Vehicle speed profile under the bidirectional Helly’s model when 𝛾𝑣 = 0.4: (a) 1st–10th 

vehicles, (b) 10th–20th vehicles. 

 

Figure 11. Vehicle speed profile under the bidirectional Helly’s model when 𝛾𝑣 = 0: (a) 1st–10th 

vehicles, (b) 10th–20th vehicles. 

 

Figure 12. Vehicle speed profile under the bidirectional Helly’s model when 𝛾𝑣 = −0.4: (a) 1st–

10th vehicles, (b) 10th–20th vehicles. 

Figure 13 illustrates that as parameter 𝛾𝑣 increases, there is a reduction in the mini-

mum TTC value. This trend suggests a decreased risk of collision. Moreover, it is observed 

that no collisions occur across the entire range of 𝛾𝑣 values examined. 
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Figure 13. Minimum TTC variation with respect to 𝛾𝑣 in the bidirectional Helly’s model. 

5.2. Numerical Investigation on the IDM with Bidirectional Information 

The spacing bidirectional IDM is subject to numerical experiments to validate the 

findings. The parameters used in the experiments are identical to those in Table 5. Figures 

14–16 demonstrate the vehicle speed profiles when 𝛾𝑥= 0.4, 0 and −0.4, respectively. Figure 

17 depicts the minimum TTC value among 1st–10th vehicles. These simulation outcomes 

are consistent with the previous simulation results obtained using Helly’s model. Specif-

ically, utilizing spacing information with the IP effect can effectively reduce collision risk 

and enhance platoon stability. On the contrary, incorporating spacing information with 

the OP effect can increase collision risk and worsen platoon stability. 

 

Figure 14. Vehicle speed profile under the bidirectional IDM when 𝛾𝑥 = 0.4: (a) 1st–10th vehicles, 

(b) 10th–20th vehicles. 
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Figure 15. Vehicle speed profile under the bidirectional IDM when 𝛾𝑥 = 0: (a) 1st–10th vehicles, 

(b) 10th–20th vehicles. 

 

Figure 16. Vehicle speed profile under the bidirectional IDM when 𝛾𝑥 = −0.4: (a) 1st–10th vehi-

cles, (b) 10th–20th vehicles. 

 

Figure 17. Minimum TTC variation with respect to 𝛾𝑥 in the bidirectional IDM. 

Numerical experiments are further conducted using the velocity difference bidirec-

tional IDM model. Figures 18–20 depict the vehicle speed profiles when 𝛾𝑣= −1.5, 0 and 

1.5, respectively. Figure 21 displays the minimum TTC value. The simulation results are 

in line with the previous findings obtained using Helly’s model. Specifically, using veloc-

ity difference information with the IP effect can reduce collision risk but worsen platoon 

stability, whereas velocity difference information with the OP effect can improve platoon 

stability but increase collision risk. 
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Figure 18. Vehicle speed profile under the bidirectional IDM when 𝛾𝑣 = −1. : (a) 1st–10th vehi-

cles, (b) 10th–20th vehicles. 

 

Figure 19. Vehicle speed profile under the bidirectional IDM when 𝛾𝑣 = 0: (a) 1st–10th vehicles, 

(b) 10th–20th vehicles. 

 

Figure 20. Vehicle speed profile under the bidirectional IDM when 𝛾𝑣 = 1. : (a) 1st–10th vehicles, 

(b) 10th–20th vehicles. 

 

Figure 21. Minimum TTC variation with respect to 𝛾𝑣 in the bidirectional IDM. 

In conclusion, the numerical analyses conducted on both linear and nonlinear models 

verify the findings presented in Tables 3 and 4. The use of spacing information can en-

hance both platoon string stability and safety. However, the use of velocity difference in-

formation can only enhance either safety or stability. 
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6. Conclusions 

This paper introduces a novel framework based on the concept of phase shift to in-

vestigate the influence of bidirectional information flow topology on platoons in terms of 

both stability and safety. This research sheds light on the effects of phase shift, particularly 

focusing on two specific cases: the in-phase (IP) effect and the opposite-phase (OP) effect. 

The IP effect contributes to enhanced platoon safety, while the OP effect significantly in-

creases the risk of rear-end collisions. By employing the proposed framework, the research 

investigates the impact of different types of dynamics information of vehicles on platoons. 

Theoretical analyses pertaining to string stability and rear-end collision risk reveal that 

the integration of diverse information into the models does not universally yield benefits. 

Specifically, incorporating spacing information can concurrently improve both platoon 

safety and stability. However, the integration of velocity difference information can only 

enhance either safety or stability, but not both simultaneously. To validate these theoreti-

cal analyses, numerical experiments are conducted on both linear and non-linear car-fol-

lowing models, with simulation results confirming theoretical analyses.  

There are several potential directions for future research in this field. While this re-

search focuses on uncovering the effects of phase shift on CAV platoons, it primarily ex-

amines the IP and OP effects which represent two extreme cases of phase shift. Other 

communication factors, such as delay and packet loss, might result in different phase shift 

effects beyond those already examined. Undertaking a comprehensive investigation of 

phase shift effects would be a valuable direction to explore. Furthermore, while this re-

search concentrates on the bidirectional communication topology, it is important to con-

sider other communication topologies such as predecessor–leader following topology, 

multiple predecessor following topology, etc., as well. Exploring different communication 

architectures and their implications for platoon dynamics could yield valuable findings. 

In addition, the present study primarily evaluates the impacts of spacing and velocity dif-

ference information on CAV platoons. Nevertheless, incorporating other types of infor-

mation, such as acceleration, traffic jerks, and electronic throttle opening angle, could pro-

vide a more comprehensive analysis of communication side impacts on CAV traffic. More-

over, our current analysis is limited to a one-dimensional perspective. Exploring the ef-

fects of lateral dynamics, such as left or right turns, on platoon performance represents a 

promising avenue for future research. Additionally, this research initially concentrated on 

introducing a theoretical framework. It is essential to expand the studies to include more 

comprehensive validation processes in subsequent research. Lastly, while this research 

mainly evaluates traffic performance by examining string stability and rear-end collision 

risk, there are other aspects that could be explored. Investigating the damping behavior 

and energy efficiency of CAV platoons, for example, would offer a more holistic assess-

ment of the impacts of communication on CAV traffic. 
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