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Abstract— Ultrasound localization microscopy is a
super-resolution imaging technique that exploits the unique
characteristics of contrast microbubbles to side-step the
fundamental trade-off between imaging resolution and pen-
etration depth. However, the conventional reconstruction
technique is confined to low microbubble concentrations
to avoid localization and tracking errors. Several research
groups have introduced sparsity- and deep learning-based
approaches to overcome this constraint to extract useful
vascular structural information from overlapping microbub-
ble signals, but these solutions have not been demonstrated
to produce blood flow velocity maps of the microcirculation.
Here, we introduce Deep-SMV, a localization free
super-resolution microbubble velocimetry technique,
based on a long short-term memory neural network, that
provides high imaging speed and robustness to high
microbubble concentrations, and directly outputs blood
velocity measurements at a super-resolution. Deep-SMV is
trained efficiently using microbubble flow simulation on real
in vivo vascular data and demonstrates real-time velocity
map reconstruction suitable for functional vascular imaging
and pulsatility mapping at super-resolution. The technique

Manuscript received 19 January 2023; accepted 25 February 2023.
Date of publication 1 March 2023; date of current version 1 August
2028. This work was supported by the National Cancer Institute, the
National Institute of Biomedical Imaging and Bioengineering, and the
National Institute on Aging of the National Institutes of Health under Grant
R0O0CA214523, Grant R21EB030072, Grant R21 AG077173, and Grant
R21 EB030072-01S1. (Corresponding author: Pengfei Song.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted
by the Institutional Animal Care and Use Committee (IACUC) at the
University of Illinois Urbana-Champaign under Protocol No. 22,033.

Xi Chen, Matthew R. Lowerison, and Zhijie Dong are with the
Department of Electrical and Computer Engineering, Beckman Insti-
tute for Advanced Science and Technology, University of lllinois
Urbana—Champaign, Urbana, IL 61801 USA (e-mail: xichen30@
illinois.edu; mloweri@illinois.edu; zhijied3@illinois.edu).

Nathiya Vaithiyalingam Chandra Sekaran and Daniel A. Llano are
with the School of Molecular and Cellular Biology, Beckman Insti-
tute for Advanced Science and Technology, University of lllinois
Urbana—Champaign, Urbana, IL 61801 USA (e-mail: nathiya@illinois.
edu; d-llano@illinois.edu).

Pengfei Song is with the Department of Electrical and Com-
puter Engineering, the Department of Bioengineering, Beckman Insti-
tute for Advanced Science and Technology, University of lllinois
Urbana—Champaign, Urbana, IL 61801 USA (e-mail: songp@illinois.
edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TMI.2023.3251197, provided by the authors.

Digital Object Identifier 10.1109/TMI.2023.3251197

is successfully applied to a wide variety of imaging
scenarios, include flow channel phantoms, chicken embryo
chorioallantoic membranes, and mouse brain imaging.
An implementation of Deep-SMV is openly available at
https://github.com/chenxiptz/SR_microvessel_velocimetry,
with two pre-trained models available at https://doi.org/10.
7910/DVN/SECUFD.

Index Terms— Contrast ultrasound, deep-learning, micro-
bubble, super-resolution imaging, ultrafast ultrasound.

[. INTRODUCTION

LTRASOUND localization microscopy (ULM) is a
Usuper-resolution imaging technique that relies on the
localization and tracking of intravascular microbubble (MB)
contrast agents to reconstruct microvasculature. It has been
demonstrated by multiple research groups that MBs can
act as acoustic point sources that can be localized at a
sub-diffraction precision, achieving micrometer-scale vascular
fidelity at clinical frequencies without sacrificing imaging
depth [1], [2], [3], [4], [5]. Furthermore, a unique feature
of ULM is the ability to measure the blood flow velocity of
the microvasculature, which serves as a sensitive biomarker
for numerous physiological and pathological states. The ULM
MB localization protocol side-steps a fundamental trade-off
between imaging resolution, which is dictated by wavelength,
and imaging penetration depth, which is limited by attenua-
tion. However, ULM introduces a new consideration between
MB localization precision and acquisition time. High-fidelity
MB localization requires non-overlapping MB signals; but
the dilution of MBs used to achieve spatially sparse sig-
nals necessitates a long imaging duration to ensure the full
perfusion of all patent vasculature [6], [7]. This exasperates
the pragmatic challenges associated with super-resolution vas-
cular reconstruction, including sources of tissue motion and
time-varying changes in vascular flow, which severely limit
the clinical application of the technology. High concentration
MB injections will perfuse through more of the vasculature
over the same duration, permitting shorter imaging acquisition
windows but at the expense of MB localization precision
with increased spurious events and erroneously reconstructed
features. Rectifying these two contradictory requirements for
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ULM is an area of ongoing and active research for super-
resolution ultrasound.

Several ULM approaches have been specifically intro-
duced to handle overlapping MB signals from high-
concentration contrast injections. Sparse recovery strategies
[8], [9], such as sparsity-based ultrasound super-resolution
hemodynamic imaging (SUSHI), utilize a structurally sparse
prior-representing vasculature to resolve overlapping MB
point-spread functions (PSF). This localization-free approach
improves imaging speed but cannot measure blood flow veloc-
ity. Compressive sensing algorithms have demonstrated the
ability to resolve high density MB localizations [10], [11]
and deconvolution-based approaches can iteratively shrink the
imaging PSF, resulting in better localization accuracy for
overlapping MB signals [12], [13]. These approaches improve
localization accuracy and can generate high-fidelity microvas-
cular density maps but sacrifice the ability to track individual
flowing MB trajectories. Super-resolution with acoustically
activated nanodroplets has demonstrated extremely short data
acquisition times in vivo preclinical studies [14], [15]. Deep-
learning (DL) solutions are also gaining popularity for ULM
imaging, with numerous classes of neural network architecture
and training data generation showing promise in improving
localization accuracy, particularly for high MB concentrations,
and for accelerating the time-consuming ULM processing
pipeline. Specifically, van Sloun et al. [16] and Liu et al. [17]
used neural network architectures to extract point target loca-
tions representing MB centroids from B-mode images in
the spatial domain. Lok et al. [18] and Milecki et al. [19]
used spatiotemporal data and a fully convolutional network to
improve localization confidence. These proposed DL solutions
directly generate super-resolved microvessel maps but, as with
the above approaches, have not been demonstrated to produce
blood flow velocity maps. Thus, despite these promising
results, a true high-speed super-resolution technology that can
handle high concentration MB injections and offer all the
features of conventional ULM (that is, microvascular structure
and velocity) has not been previously reported. In principle,
frame-to-frame pairing and tracking can be applied after high-
concentration localization strategies, such as in [20] and [21],
to supply velocity information. However, such data association
solutions are challenging for high density localization datasets.

Here we introduce DL-based super-resolution microvessel
velocimetry (Deep-SMV), a localization free approach that
provides high imaging speed and robustness to high MB
concentrations, and directly outputs blood velocity measure-
ments at a super-resolution without explicit data association
for MB tracking. Deep-SMV leverages the rich spatiotemporal
information embedded in ultrasound MB imaging data with
a convolutional neural network including long short-term
memory (LSTM) blocks to provide both structural super-
resolution imaging and time-resolved velocimetry of tissue
vasculature, permitting super-resolution pulsatility mapping.
LSTM is a type of recurrent neural network (RNN) archi-
tecture [22], [23] which is typically characterized as neural
networks with “feedback loop” mechanisms that use previous
output as input and maintain internal hidden states. Compared
to using feedforward networks for temporal inference with

an additional dimension representing the temporal dimension,
RNN:gs, designed specifically to handle temporal sequences, are
usually more efficient in learning temporal features. By keep-
ing internal hidden states that are constantly updated with new
input, RNNs retain memory of past inputs that affects the pro-
cessing of the current input. The length of the historical events
that an RNN keeps track of can be potentially infinite. LSTM
addresses the vanishing gradient problem in classical RNNs
by introducing gates to modulate information flow within the
network. RNNs and LSTM have been successfully applied
to various tasks such as machine translation, object tracking
and motion prediction [24], [25], [26]. In this implementation,
Deep-SMV was trained to recognize diffraction-limited MB
signals, ranging from spatially sparse to heavily overlapping
conditions, to generate super-resolved microvascular structural
and velocity maps. By eliminating the need for the highly inef-
ficient process of MB localization and tracking, Deep-SMV
provides effective and fast super-resolution imaging by more
efficiently exploiting the spatiotemporal information from the
input data. We first evaluate the performance of Deep-SMV
using in vitro flow channel phantoms and then on in vivo
ultrasound MB data taken from the chorioallantoic membrane
(CAM) of chicken embryos, which provides an optical ref-
erence standard. We then demonstrate Deep-SMV’s ability to
handle more complex microvascular dynamics by applying the
technique to super-resolution velocimetry of the mouse brain.

[I. METHODS
A. Deep-SMV Architecture and Design

Our NN model adopts the convolutional LSTM-UNet struc-
ture, where the bottleneck layers of the classical UNet were
replaced by LSTM layers (Fig. 1, Fig. 2). The feature
extraction path of the network starts with an input block
that contains two convolution layers with 3*3 kernel size,
each followed by a batch normalization layer and a Rectified
Linear Unit (ReLU) activation function. The encoder block
contains a 2*2 max pooling layer, two 3*3 convolution layers
each followed by a batch normalization layer and ReLU
activation function. Each encoder block reduces all spatial
dimensions of its input by a factor of two and expands the
feature dimension by a factor of two. Each frame of 2-D
spatial input will be fed into the feature extraction blocks
separately. The resulting feature maps were concatenated along
the temporal dimension before being fed to the convolutional-
LSTM layers as a feature map sequence. This approach allows
for the Deep-SMV network to directly train for the output
of blood flow velocity from the raw spatiotemporal features,
without explicitly relying on inefficient MB localization and
tracking processes. This permits the network to use high
concentration and overlapping MB signals more efficiently
for large vascular lumens while retaining high fidelity for
microvascular reconstruction.

The convolutional-LSTM block takes a new input and the
previous hidden state output as it inputs, while maintaining an
internal cell status variable. The inputs will first go through
a 3*3 convolution layer. The convolution layer output will be
split along the channel dimension into four parts, where three
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Fig. 1. Deep-SMV data workflow. The Deep-SMV network takes a spatiotemporal (2D spatial + time) input of ultrasound data, passes this through
encoder blocks to extract spatial features, uses LSTM blocks to extract temporal features, and then reconstructs a super-resolved velocimetry map

from the spatiotemporal features via decoder blocks.
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Fig. 2. Deep neural network architecture for Deep-SMV. The main
network design is a classic UNet structure with long short-term memory
(LSTM) blocks in the bottleneck layers to provide flow velocity measure-
ments, with input consisting of spatial-temporal (2D spatial + time) ultra-
sound data and output of super-resolution velocity and structure maps.
The LSTM, input, encoder, and decoder block designs are provided in
detail at the top of the figure. The text above each block indicates the
input channel size to the unit, and the text under each block indicates the
output channel size from the unit.
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will go through a sigmoid activation function and operate as
the forget gate, the input gate, and the output gate, respectively.
A hyperbolic tangent (tanh) function will be applied to the
remaining part. The forget gate determines which part of the
previous cell status will be discarded. The input gate deter-
mines whether parts of the new input contribute to updating
the cell status. A tanh activation function will be applied to the
new cell status. Finally, the output gate determines how the cell
status propagates to the output. The convolutional LSTM block
will reduce the input sequence along the temporal dimension.

The decoder block is constructed similarly to the encoder
block, with the max pooling layer replaced by spatial upsam-
pling layer. Each decoder block will expand the spatial dimen-
sion of its input by 2 and reduce the channel dimension by
2. The output block is a 3*3 convolution layer with output
channel size of 2. The final output of the network is a predicted
blood flow velocity map with the same spatial dimension as
the input data.

We used mean squared error (MSE) as the loss function for
training the NN, defined as:

S Rt
MSEG.y)=~2 G-y’ (1
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Fig. 3. CAM-based MB flow simulation procedure. (a) Grayscale image
of the green channel pixel intensity of a 512-by-512 pixels region in a
CAM optical image. (b) Binary segmentation result of (a) by applying
adaptive thresholding. (c) Skeleton of (b) obtained by applying medial
axis skeletonization on (b). (d) Undirected graph constructed from the
skeleton (b), displayed on top of the original CAM image. Lines represent
edges and dots represent vertices. (e) Final directed vessel graph with
arrows indicating flow direction on each vessel segment. (f) Example
frame of Field-1I ultrasound simulation from MB flow simulation.

B. CAM Optical and Mouse Brain ULM Image-Based
Training Data Simulation

The training dataset of our NN model was simulated using
CAM optical images, as well as conventional mouse brain
ULM results to serve as a vessel structure template.

1) CAM Optical Image Acquisition: Optical imaging was
performed using a Nikon SMZ800N stereomicroscope (Nikon,
Tokyo, Japan) with a Plan Apo 1x objective at 1x zoom,
captured with a DS-Fi3 microscope camera, and saved as.nd2
format. These were later exported as RGB tiff files for external
analysis (Fig. 3). The optical imaging field of view was
11.01 mm x 15.48 mm yielding 2048-by-2880 pixel images.

2) CAM Vessel Flow Dynamics Model: A binary vessel map
of each CAM vasculature (Fig. 3a) was segmented by applying
the threshold_adaptive function available in the scikit-image
python package [27] to the green channel of each acquired
optical image (Fig. 3a) as it provides the best contrast for
blood vessels. Non-overlapping regions of 256-by-256 pixels
were sampled from 35 2048-by-2880 pixel binarized CAM
optical images, resulting in 3080 binarized ROIs, from which
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1356 regions with acceptable segmentation performance were
manually selected for further processing.

Each binary vessel map was skeletonized using the medial
axis skeletonize function, also available in the scikit-image
package. The medial axis skeletonize function returns the
skeletonized image (Fig. 3c), as well as the distance transform
map which can be used as an estimation of local width of the
vasculature. The skeleton image is converted to an undirected
graph G = {V, E}, where E is the set of edges that represents
vessel segments, and V is the set of vertices that represents
junctions of the vessel segments (Fig. 3d). The graph is
stored as a NetworkX [28] undirected graph. Conversion from
skeleton image to NetworkX graph is achieved using the
sknw function available in the ImagePy image processing
framework [29].

The undirected vessel graph was then separated into a set
of subgraphs, where each subgraph is a connected component
of G. A spanning tree (a connected acyclic subgraph that
covers all vertices in the original graph) was computed for
each subgraph using the breadth-first search (BFS) algorithm
starting from a source point defined as the degree-1 vertex with
the largest local width in the corresponding distance map from
the skeletonization step. Directions of the edges in the tree
were assigned to start from the vertex that appeared earlier in
the BFS traversal and point to the vertex that appeared later in
the BFS traversal. The final directional vessel graph (Fig. 3e)
is a forest that contains all the directional spanning trees
obtained from each connected component of the undirected
vessel graph.

3) Calculating Reference Velocity: We used the CAM ULM
result as a reference to calculate a distribution of blood flow
velocity on the central line of vessels for a given radius.
We apply adaptive thresholding on the ULM velocity map
to generate a binary vessel map, then perform medial axis
skeletonization to obtain a local vessel radius estimation for
each pixel on the medial axis of the vessel structure. All
local radius-velocity pairs of pixels on the medial axis were
sorted in ascending order of the local distances. The estimated
reference velocity on the center line of a vessel with radius
d was drawn from a normal distribution N(u, 02), where ©
is the average velocity of all radius-velocity pairs with radius
within d=+0.5 pixels range in the list of radius-velocity pairs,
and o2is the variance of the selected pairs.

4) Mouse Brain ULM-Based Flow Dynamics Model: To study
the effect of tissue-specific vascular structures in the train-
ing dataset, in addition to CAM-based vessel flow model,
we also generated a simulation training set of mouse brain
vasculature. Since optical images of the brain were not avail-
able, we directly used the ULM reconstruction to construct
the vessel models. 40 mouse brain ULM images (imaging
field of view 7.17mm axial by 5.96mm lateral; A/10 inter-
polation) were sampled as 256*256 pixels regions with a
step-size of 128 pixels. The ULM images were generated
from accumulated tracks of individual MBs, therefore will
contain gaps and fragments even after long accumulation.
For each sub-region, we apply remove_small_holes function
from the skimage.morphology python package to fill the gaps
and holes in ULM microvessel density map, followed by

remove_small_object to clean up the remaining fragmented
tracks. We then apply the same binarization-skeletonization
procedure as described in the CAM-based simulation case and
convert the cleaned-up vessel images into undirected graphs.

The undirected graphs were converted into directed vessel
flow dynamics model with the same fashion as discussed in the
CAM-based simulation case, except for velocity assignment.
Here, we can directly use the corresponding mouse brain
ULM velocity map. For each vessel segment, we calculate
the average velocity of all the non-zero pixels in the ULM
velocity map within the area of the segment and use it as the
velocity along the center line of the vessel segment in the
directed vessel flow graph.

5) Simulating MB Motion: Once the vessel flow dynamics
model was constructed, we can use it to generate a sequence
of MB locations that travel in the vessel network. Each MB
was stored as a tuple (eorig, €curr» dax, diar, amp), where eyyig
is the vessel segment (edge) that it originated from, e, is
the edge that it is currently traveling along, d,, is the axial
distance with respect to the current edge, dj,; is the lateral
distance with respect to the current edge, and amp is the
amplitude of the MB. The spatial location of the MB with
respect to the entire field-of-view (FOV) can be easily inferred
from e, d,, and dj,;. The MB location was updated using the
following rules:

Initialization: place n = % N MBs on each edge, where A
is the total volume of all vessel segments, a, is the volume of
the current vessel segment, estimated using the local radius at
points on the edge e,a, = Ziemimmne nriz, and N is the total
number of MBs to be placed in the vasculature. Set both e,
and e, to be e. d;y and dj, were both randomly chosen so
that the MB stays within the current vessel segment. Amp was
randomly selected from a uniform distribution on (0, 1]. eyrig
and amp will remain unchanged until the MB is removed from
the vessel network.

For each timestep, perform the following for each MBs:

o Calculate the axial velocity along the direction of the
current vessel segment of each MB according to the
Poiseuille flow condition:

dyar ), )
r
where v,.5 is the reference flow velocity on the centerline
calculated using the method described in the previous section,
and r is the local radius of the vessel segment.
o Calculate the displacement v,, x At where Af is the
temporal resolution.
o If the displacement is smaller than the remaining length
of the current edge:

Uax = Uref X (-

o Update d,, with the displacement.

o Update dj,; with a number randomly generated small
distance so that the MB still stays within the vessel
segment.

o ecyrr remains unchanged.

« If the displacement is larger than the remaining length of
the current edge:

o If the current edge ends at a leaf vertex (i.e., no out-
going edge from the vertex), add a new MB to vessel
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TABLE |
FIELD-1I SIMULATION PARAMETERS

VARIABLE NAME Value

Transducer type Linear array

Number of transmit elements 128
Number of receive elements 128
Element height 80 pm
Element width 62 pm
Pitch 70 pm
Transmit apodization Kaiser
Receive apodization Rectangle
Center frequency 20 MHz
Sampling frequency 125 MHz
Speed of sound 1540 m/s
Number of compounding angles 9
Transducer type Linear array

segment e, of the current MB, remove the old MB
from the vessel network.

o If the current edge has outgoing adjacent edges, the
MB will be moved to one of the adjacent edges e;
with probability:

nr2,

— a
(ea) = 5 . (3)
icoutgoingedges r;

where 1 is the local radius of the starting vertex of each edge.
Subtract the remaining length on the current edge from the
total displacement. Update e, to e,;. Repeat the steps above
until the remaining displacement is less than the remaining
length of the current edge. Then, update d,, and dj,; with the
same method in the previous step using the final remaining
displacement.

Calculate the spatial coordinates of each updated MB using
e, dg and djgs. Store the list of locations and amplitudes
of each MB. After repeating the update steps for a desired
duration of time, save the list of MB locations and amplitudes
of each timestep as input to Field-II simulation.

6) Field-1l Simulation: Ultrasound simulation of MB motion
was performed in Field-II [30], [31] using the sequence
of MB locations and amplitudes obtained in the previous
simulated MB motion step. For each timestep, we generate
one frame of ultrasound simulation of point scatterers specified
by the corresponding list of locations and amplitudes in the
sequence. The imaging sequence was configured according to
the CAM ultrasound imaging experiment setting, with a high
frequency linear array transducer, 20MHz center frequency,
and 9-angle plane wave compounding. Detailed simulation
parameters were summarized in Table ??.

7) Experimental PSF Simulation: In addition to numerical
simulation using ultrasound simulation software, we also
explored the idea of incorporating experimental PSF in the
simulation pipeline. Ultrasound images of isolated, slow flow-
ing MBs were acquired by injecting heavily diluted (6 x
10°-fold dilution) MB solution into DI water and gently
stirring to create movement. MB image patches were extracted
using normalized cross correlation with an estimated Gaussian
PSF template to create a bank of PSF samples. Simulation
MB images were produced by convolution between the MB

locations and amplitudes generated in Section II-B.5) and
random selection of patches from the PSF bank. A same PSF
patch was used for an individual MB throughout its existence
in the vasculature, with slight rotation and distortion to emulate
the appearance of realistic flowing MBs. Electronic noise was
modeled as the magnitude to two complex normal random
variables.

8) Deep-SMV Training: A total of 1300 training samples of
16 frames in the temporal dimension, and 256 * 256 pixels in
the spatial dimension were fed to the model in mini-batches
of 4 samples per batch. The model was trained with an Adam
optimizer to minimize the MSE loss between the model output
and the ground truth using back-propagation with a learning
rate of 0.001. The ground truth contains two channels of the
magnitudes in pixels/ms and angles of the flow velocity map.
To avoid complications of training with negative values in
the ground truth, the angle map which originally contains
values in the range [—m, m] was scaled and shifted to the
scale [0, 1]. The model was trained for a total of 100 epochs.
Note that the downsample-upsample style structure of the
model enables it to handle arbitrarily sized inputs. The network
was applied to 16-frame sequences of full-sized images. The
internal state of the LSTM layer was reset after processing
each 16-frame block. The network trained using the CAM
vessel model achieved a root mean squared error (RMSE) of
velocity estimation of 0.94 mm/s (0.19 pixels per frame) for
the simulation validation set. For the network trained using the
mouse brain vessel model, the final RMSE on the validation
set is 1.03 mm/s (0.21 pixels per frame).

C. Ethics Approval

All procedures performed on mice at the University of Illi-
nois Urbana-Champaign in this manuscript were approved by
the Institutional Animal Care and Use Committee (IACUC).
No TACUC approval was necessary to conduct the chicken
embryo imaging, as per avian NIH PHS policy on avian
embryos.

D. Ultrasound Imaging

All flow phantom, chicken embryo, and mouse brain ultra-
sound data were acquired with a Vantage 256 system (Vera-
sonics Inc., Kirkland, WA) with a L35-16vX high-frequency
linear array transducer. Imaging was performed with a center
frequency of 20 MHz, using 9-angle plane wave compounding
(1-degree increments) with a post-compounding frame rate of
1,000 Hz. Ultrasound data was saved as in-phase quadrature
(IQ) datasets of 1,600 frames each for external processing.

E. Microbubble Flow Phantom

A pair of holes were drilled on the opposite walls of a
clear rectangular plastic container. A stainless-steel rod with a
diameter of 500m was inserted horizontally into the container
through the openings. A 20% gelatin mixture was poured
into the container until the surface was approximately Smm
above the metal tube. The phantom was placed in a 4°C
refrigerator until the gelatin completely solidified. The metal
tube was removed prior to the experiment to create a flow
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Fig. 4. Flow channel phantom validation. (a) A contrast power Doppler
image of the experimental flow phantom. (b) Conventional ULM local-
ization and tracking was able to sparsely populate the flow channel
with velocity estimates. (c) Deep-SMV was also able to provide velocity
estimates for this flow channel and was much more efficient in using
the MB signal, resulting in a higher proportion of reconstructed luminal
space. (d) The performance of velocity estimates for different flow volume
rates between ULM and Deep-SMV, in comparison to the theoretical
gold-standard. The analysis ROls were placed to avoid the upper edge
enhancement artifact from buoyant MBs at low flow volume rates (arrow).

channel, the diameter of which constricted to approximately
450um during the gelatin solidification process. The inlet to
the flow channel was connected to a programmable syringe
pump (NE-300, New Era Pump Systems Inc., Farmingdale,
NY) with a soft plastic tube to provide constant flow volume
rate through the channel. A clinically available ultrasound
contrast agent (DEFINITY®, Lantheus Medical Imaging, Inc.)
was diluted 1000-fold with 0.9% saline (0.9 sodium chloride,
BD, Franklin Lakes, NJ) and was perfused through the flow
channel. Volume rates of 40-180xL/min with 20 L increment
was used in this experiment. The L35-16vX transducer was
placed at the top surface of the phantom and positioned to
provide a longitudinal view of the flow channel (Fig. 4a). For
each volume rate, we waited until a stable flow was formed
before starting the acquisition of 1.6s duration (1,600 frames).

F. Ex Ovo CAM Imaging

The fertilized chicken egg incubation, preparation, and
contrast injection were performed following the procedure
described in [32] and [33]. The surface vasculature of the
CAM was injected with 70 uL of DEFINITY®at clinical bolus
concentration immediately prior to ultrasound imaging. The
L35-16vX transducer was placed on the side of the plastic
weigh boat to image the surface vasculature of the CAM
(Fig. 5g, Fig. 6).

G. Mouse Brain Imaging

Anesthesia, craniotomy preparation, and animal handling
were performed using the protocol described in [34]. The
L35-16vX transducer was positioned to acquire a coronel
imaging plane of the brain through the cranial window (Fig. 7,
Fig. 8). Fresh DEFINITY®was activated and mixed with
sterile saline to achieve a concentration half of the diluted
clinical bolus guideline (0.65 mL DEFINITY®with 8.7mL
saline). A 50 uL bolus injection of contrast was perfused

via the tail vein catheter to confirm vessel patency, and two
1,600 frame data sets were acquired at this relatively high
MB concentration. A continuous infusion of contrast was then
performed at a rate of 10 puL/min using a programmable
syringe pump, as per [35]. The MB solution was mixed every
5 minutes using a magnetic stirrer to maintain a constant
MB concentration during the experiment. Once a steady-
state MB perfusion was confirmed, a total of 40 acquisitions
(64,000 frames, or 64 seconds of data) were acquired for this
imaging plane. Electrocardiogram (ECG) signal was acquired
using an iWorx (Dover, NH, USA) IA-100B single channel
biopotential amplifier with C-MXLR-PN3 platinum needle
electrodes inserted into the legs of the animal.

H. Conventional ULM Image Processing and Analysis
MBs were extracted for each ultrasound IQ dataset
by applying a spatiotemporal singular value decomposition
(SVD)-based clutter filter [5], [21], [32], [36], where the
low-order singular value threshold representing tissue signal
was determined adaptively [37]. A noise-equalization profile
was applied to account for depth-dependent effects [38].
An isolated MB signal was manually identified and fit to a
multivariate Gaussian function to represent the point-spread
function (PSF) of the system. A MB separation filter [21] was
applied to each SVD-filtered dataset, and then the imaging data
was spatially interpolated to an isotropic 4.9 um axial/lateral
resolution using spline interpolation [39]. MBs were then
localized by applying a 2D normalized cross-correlation
between the empirical PSF and each frame of interpolated
IQ data. MB centroid pairing and frame-to-frame trajectory
estimation was performed using the uTrack algorithm [40],
or a Kalman filtering algorithm [41], where velocity was
calculated from centroid displacement. Each processed data
acquisition was accumulated into a final reconstruction.

[1l. RESULTS

A. Deep-SMV Architecture Efficiently Uses
Spatiotemporal MB Data

An example of in vivo informed data simulation for
Deep-SMV training is demonstrated in Fig. 3. CAM optical
images (Fig. 3a) provide a physiologically relevant in vivo
vascular structure that can be readily segmented (Fig. 3b)
to generate binarized representations of the vessel space. The
process of medial axis skeletonization can then yield structural
connectivity maps (Fig. 3c¢) as well as distance transform
maps of this vessel bed, which is informative of the local
vascular diameter. This serves as the basis for an undirected
vessel graph for MB flow simulation (Fig. 3d), which is
assigned direction using a breadth-first search (BFS) traversal
algorithm (Fig. 3e). The resulting MB locations were fed into a
Field-II [30], [31] simulation (see Fig. 3f, detailed inMethods)
to generate training samples of 16 frames in the temporal
dimension, and 256 * 256 pixels in the spatial dimension.

B. Flow Channel Phantom Validates
Deep-SMV Reconstructions

We then tested the performance of Deep-SMV on an
in vitro flow channel phantom (Fig. 4) where the ground-truth
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Fig. 5. Deep-SMV workflow on CAM surface vessel data. (a) An example short data segment of MB data (64 ms) was processed using
(b) conventional ULM localization and tracking, resulting in (c) a very sparse flow velocity map where it is difficult to visualize the microvessel
anatomy. (d) Direct accumulation of MB signal data reveals diffraction-limited vessel structure. (e) Processing the same data segment with Deep-SMV
allowed for super-resolution velocity estimation with more structural connectivity than conventional ULM. (f)-(h) Deep-SMV and ULM performance
comparison on long data segments with large FOV. (i) Deep-SMV shows distinct pulsatility features in local regions sampled from feeding (Art) and
draining (Vein) vasculature, which matched conventional Doppler velocity measurements. (j) Diameters of three different-sized vessels measured
by the FWHM of power Doppler, Deep-SMV and ULM reconstructions.
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demonstrate cycling pulsatility and different flow dynamics for feeding and draining vessels. (b) Accumulated Deep-SMV velocity map with two
selected regions. Region 1 demonstrates a gradual decrease in (c) peak velocity and pulsatility in velocity profiles along the vessel length (i to iv).
Region 2 demonstrates a phase delay in the peak velocity estimate for vessels labeled Art and Vein.

velocity is known from the flow volume rate of the con- lumen. Deep-SMV was also used to process the same dataset

nected syringe pump. A contrast power image of the flow
channel (Fig. 4a) demonstrates that the flow channel was
well perfused with MB contrast agent, yielding a high MB
concentration scenario where conventional ULM does not
perform efficiently. This is apparent in the conventional ULM
velocity reconstructions (Fig. 4b) where MB localization and
tracking results in relatively sparse tracing of the flow channel

(Fig. 4¢). Deep-SMV demonstrated a better realization of the
parabolic flow profile within the flow channel phantom with a
much higher perfusion efficiency. In comparison to the mass-
conservation calculated ground-truth (Fig. 4d), conventional
ULM showed an underestimation bias for velocity estimates,
particularly for high flow volume rates, whereas Deep-SMV
was more consistent across all tested flow velocities. The
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to the inefficient use of MB signals, a much longer acquisition time
(64,000ms) was required to reconstruct the majority of brain vasculature.
(c) Deep-SMV trained with CAM simulation data had acceptable perfor-
mance for larger subcortical vessels but was unable to separate parallel
cortical vessels. (d) The mouse-brain prior trained Deep-SMV network
had improved performance in the cortical regions, while maintaining the
ability to reconstruct subcortical features.

(a) Deep-SMV velocity map (1600 ms)

10mm/s

(c) Deep-SMV pulsatility tracing with ECG
cl

5 2.4

Upward flow

c2 24

3]

Velocity (mm/s)

Downward flow

-10 mm/s

(b) Deep-SMV velocity profiles
bl b3

10 16
o
S~
S AN
% 0 500 500 Delay in peak
S 161 Deep-SMV velocity
<L following peak
r-wave on ECG
0 500 500
Distance along line (um)
Fig. 8. Mouse brain vessel velocimetry validated with ECG.

(a) Deep-SMV velocimetry map of mouse brain. (b) Velocity profiles gen-
erated from cortical (b1 and b2) and subcortical (b3 and b4) vasculature.
(c) Velocity traces of cortical vessel (c1) and subcortical vessel (c2 and
c3) segmentations in comparison to ECG measurements.

analysis regions of interest (ROIs) were placed to avoid the
upper edge enhancement artifact from buoyant MBs at low
flow volume rates (arrow).

C. Deep-SMV QOutperforms Conventional ULM on Short
Data Segments

The use of Deep-SMV for the generation of super-resolved
velocity maps takes advantage of the fast forward-processing

speed of NNs and GPU-based parallelized computing to
achieve real-time super-resolution imaging capability. The
example 300 x 300-pixel image patch with 64 temporal frames
in Fig. Sa took approximately 2,500 ms to undergo the
conventional ULM localization and tracking steps (Fig. 5b) to
produce the sparsely populated super-resolution flow velocity
map shown in Fig. Sc¢. The direct temporal accumulation
of MB signals, a conventional diffraction-limited ultrasound
technique shown in Fig. 5d, demonstrates that most of the
vascular luminal space is missed in conventional ULM for a
short data segment due to the inefficient MB localization pro-
cess. Applying Deep-SMV to the same data segment yielded
a super-resolution flow velocity map (Fig. 5e) which only
took 28 ms to process on 2 NVIDIA®GeForce®RTX 2080
Ti GPUs, a near 100X acceleration compared to conven-
tional ULM. The magnitude of flow estimated via Deep-SMV
is comparable to the point estimates derived from ULM;
however, it is notable that the proportion of vascular lumen
space that was reconstructed is much higher than conventional
processing. The convention used in all results presented is that
the orange color indicates flow toward the transducer, and blue
indicates flow away from the transducer.

D. Chicken Embryo CAM Velocimetry Reveals
Super-Resolved Vascular Pulsatility

After demonstrating good performance in the flow phantom
experiment (Fig. 4) and for small in vivo imaging patches
(Fig. 5a-e), we then sought to test Deep-SMV on longer
duration in vivo contrast ultrasound data from a large imaging
field of view (FOV). We have previously shown that the CAM
is an excellent model for testing ultrasound super-resolution
processing methods [21], [41], [42], providing low attenuation
and minimal tissue motion, while also being accessible to
optical imaging to serve as a reference standard (Fig. 5f).
Deep-SMV processing of a 1600-frame (1,600 ms) IQ data
acquisition (Fig. 5g) reveals an interdigitated vessel structure
that is characteristic of the CAM vascular topology, and
which shows good correspondence to the optical reference.
The small branching arterioles on the order of 20-30 um in
diameter, which are adjacent to the main site of gas exchange,
are visible in the Deep-SMV reconstruction of this planar
vascular membrane. The conventional ULM reconstruction of
this same dataset (Fig. Sh) shows comparable performance
for larger vessels but was less able to distinguish the smaller
interdigitated vasculature on the CAM than Deep-SMV due
to the relatively short data acquisition time. To provide vali-
dation of this spatial resolution gain achieved by Deep-SMYV,
we selected three different sized vessels (marked in Fig. 5g) to
plot the vessel cross-sections of conventional power Doppler,
Deep-SMV, and ULM reconstruction using 1.6s of ultrasound
data (Fig. 5j). The resolution was quantified by the full
width at half maximum (FWHM) values of the vessels.
In the larger sized vessel shown in Fig. 5j-I, Deep-SMV
reconstruction achieved a 2.8x resolution gain as measured
by FWHM in comparison to power Doppler (64.8 pum vs.
174.2 pum, respectively). The resolution gain was increased to
3.6x for the smallest sized vessel in Fig. S5j-III (34.5 pum vs.
123.3 pum, for Deep-SMV vs power Doppler). Conventional
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ULM produced the thinnest vessel reconstruction. However,
it was also the noisiest within vascularized regions due to the
short accumulation time.

In addition, Deep-SMV had the added advantage of provid-
ing a higher temporal resolution by enabling satisfactory super-
resolution reconstruction within a short period of time (e.g.
160 ms), by exploiting the relatively high MB concentration in
this dataset. As demonstrated in Fig. 5i, Deep-SMV revealed a
cyclic pulsatility in the blood flow velocity within two selected
vessel regions (labelled Art and Vein) that were not apparent
in conventional ULM processing. The frequency of the change
in blood velocity was around 2-3 Hz, which matches with
the Doppler fluctuation, and is close to the reported values
for the cardiac cycle of chicken embryos at this stage of
development [43].

To further investigate the utility of Deep-SMV for super-
resolved pulsatility mapping, we performed a detailed CAM
vessel flow dynamics analysis in Fig. 6. Fig. 6a demonstrates
selected imaging frames (160 ms between each frame) from a
Deep-SMV pulsatility video.! At the beginning of the cardiac
cycle in the chicken embryo, the main feeding vessels to this
vascular bed accelerate to a peak velocity and demonstrate a
rapid cyclic shift in the Deep-SMV velocity estimates over
time. In contrast, the draining vessels show a much slower
peak velocity, with less dramatic cycling and a slight phase
delay in peak velocity time. Fig. 6b demonstrates a local
analysis performed on two regions within the accumulated
Deep-SMV velocity map. In Region 1, we note that there is
a gradual decrease in the peak velocity and pulsatility in the
velocity profiles (Fig. 6¢) that were generated along the vessel
length Fig. 6c i-iv). Region 2 demonstrates the difference in
peak velocity for the vessel cross-sections labeled Art and
Vein, with a phase delay in the peak velocity estimate time
apparent in the heat maps demonstrated, implying that MB
flow needed time to cross the capillary space between these
two vessels. These observations are consistent with literature
investigating pulsatile variation in the CAM model with optical
imaging [44].

E. Tissue-Specific Training Data Improves the
Performance of Deep-SMV

Next, we applied Deep-SMV to the extremely complex vas-
cular structure that is present in the mouse brain. The densely
packed and hierarchical vascular organization of the mouse
brain presents a substantial challenge for super-resolution
vascular imaging, typically requiring very low concentration
MB injections and prohibitively long data accumulation times
to accurately reconstruct cerebral features. A case point for
this difficulty is evident in the example shown in Fig. 7a,
a short duration (1,600 ms) ULM reconstruction of the
brain vasculature. This example exemplifies the graduality of
ULM accumulation, with the sparsity of the reconstruction
evident in both the columnar cortical vessels and the sub-
cortical supply vasculature. Only after a substantially longer
accumulation time does mouse brain hierarchical vasculature

1Supplementary video available in the supporting documents /multimedia
tab.

TABLE Il
FOURIER RING CORRELATION RESOLUTION ESTIMATES
CAM CAM Mouse Mouse
V4 bit 2-0 brain brain
Y5 bit 2-0
ULM 27.4 pm 22.8 pm 24.4 pm 19.4 pm
Deep-SMV ~ 41.0 um 27.2 um 54.7 um 33.8 um

structure become apparent in conventional ULM reconstruc-
tion (Fig. 7b — requiring 64,000 ms of data). Sporadic MB
localization errors are also evident, particularly in the largest
vessels, leading to spurious velocity estimates which bias the
final velocity map. In comparison, the Deep-SMV network
used in the previous section was used to reconstruct a velocity
map using only 1,600 ms of data (Fig. 7¢), which demonstrates
multiple scales of vasculature, with obvious branching connec-
tivity ranging from the interior feeding arterioles to the cortical
capillary layers — highlighting Deep-SMV’s more efficient use
of high concentration MB signal.

In order to study the effect of a structural prior in the
training data, we re-trained the model from scratch using a
mouse brain ULM based simulation training set and applied
it to mouse brain data. While the CAM-trained network has
acceptable performance on larger vessels (Fig. 7c¢), it was
unable to separate parallel cortical vessels because such struc-
ture is rarely seen in the CAM template, where vessels are
more evenly spaced and smaller-sized vessels rarely exhibit
densely packed three-dimensional patterns. Using mouse brain
ULM trained Deep-SMV model, most of the cortical vessels
can be resolved with improved clarity (Fig. 7d). We thus con-
cluded that the performance of Deep-SMYV is indeed affected
by the structural bias in the training data. Similar performance
gain may be possible using training simulation from mouse
brain optical imaging, such as in [19], ex vivo micro-CT as in
[45], or from publicly available histological atlases. However,
we note that in cases where a vascular model of the organ of
interest cannot be easily obtained, using training data from a
different organ is still a feasible option as long as the scales
of the vasculature are comparable.

A final comparison of super-resolution imaging performance
in demonstrated in Table II. Fourier ring correlation (FRC)
was performed on ULM reconstructions to estimate the spatial
resolution of reconstruction, as per the randomized track
splitting strategy proposed by Hingot et al. [46]. FRC analysis
was also performed on Deep-SMV vessel reconstructions by
temporally accumulating alternating non-overlapped frames to
produce two independent reconstructions. However, this may
result in uneven estimates of velocity due to uneven sampling
of the cardiac cycle, so a normalized approach was used
to accumulate detected flow events — an analogue to MB
localization events in conventional ULM reconstruction. Both
ULM and Deep-SMV were found to have an estimated spatial
resolution below a half wavelength for our 20MHz imaging
frequency (38 pum).

F. Mouse Brain Deep-SMV Pulsatility Follow
Cardiac Cycle

Motivated by Deep-SMV’s ability to visualize super-
resolved vascular pulsatility in the CAM (Fig. 6), we applied
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a similar flow dynamics analysis to a Deep-SMV recon-
struction of mouse brain vasculature (Fig. 8). Velocity line
profiles taken from cortical arterioles (Fig. 8a) demonstrated
a well-developed laminar profile with cyclic pulsatility. Like-
wise, velocity line profiles could also be generated for deep
sub-cortical vessels, such as in and around the thalamus.
Segmentation ROIs were placed around cortical and sub-
cortical vessels (Fig. 8b) to generate velocity traces over the
course of the 1,600 ms imaging acquisition. The pulsatility
of the Deep-SMV velocity estimates (Fig. 8¢) matched elec-
trocardiogram (ECG) measurements taken from this mouse,
with a slight shift in phase demonstrated between the peak
velocity and ECG peak. In the entorhinal cortex, the ECG
r-wave peak preceded the peak velocity measurement by an
average (£ standard deviation) of 85.8 £ 24.7 ms. For the
subcortical regions, the dorsal vessel reached peak velocity
99.0 = 17.9 ms after the ECG r-wave peaks, and the lateral
flowing vessel had the shortest delay in peak velocity at 68.1 &
28.4 ms.

IV. DISCUSSION

In this study, we introduced a DL-based super-resolution
microvessel velocimetry approach for contrast-enhanced ultra-
sound imaging, named Deep-SMV, by employing LSTM
blocks in the bottleneck layers of a UNet architecture to take
advantage of the rich spatiotemporal information that is present
in ultrafast ultrasound MB data. Using this architecture, we can
bypass the extremely expensive MB localization and tracking
processing in conventional ULM to provide super-resolved
blood velocity measurements that are more robust to high MB
concentrations and at a high imaging speed. The training data
for the Deep-SMV network was generated using ultrasound
MB flow simulation on in vivo optical images taken from
the CAM of chicken embryos and mouse brain ULM images.
The technique was validated using a flow channel phantom,
where less velocity underestimation bias, in comparison to
ULM, was noted for fast flow rates. This is possibly due to
Deep-SMV avoiding the explicit MB frame-to-frame linking
data association step, which may lead to spurious trajectory
reconstructions. We also demonstrated that Deep-SMV can
produce super-resolved velocity maps for several challenging
in vivo imaging scenarios, including chicken embryo CAM
imaging and mouse brain imaging.

Previous research groups have applied CNNs to the problem
of extracting useable ULM localization data from overlapping
MB signals [16], [17], [18], [19]; however, none of these
approaches yield velocity information. While it is possible to
perform inference on spatiotemporal data with a conventional
CNN by treating the temporal dimension as multiple channels
or as an additional spatial dimension, the LSTM-based spa-
tiotemporal model has several advantages over conventional
CNN approaches. The scale of temporal perception of a
multi-channel CNN or 3D CNN is limited by the number of
frames in a single input sequence, which is often subject to
memory constraints. Longer sequences need to be partitioned
into shorter segments to accommodate the CNN input size.
The CNN will not form any connection between different input
segments, which means that it can only detect local temporal

features. LSTM, on the other hand, can handle arbitrary length
inputs. With the help of internal hidden states, LSTM can
recall information obtained from previous inputs for a long
time, making it more suited for the task of velocity estimation.

We also demonstrated that the Deep-SMV approach sub-
stantially improves super-resolution reconstruction speed,
particularly for regions with high vessel densities, allow-
ing for real-time visualization of the microvascular flow
dynamics. This is a particularly enticing accomplishment
for super-resolution ultrasound imaging, potentially enabling
the translation of the technology into functional ultrasound
applications where high temporal resolution is critical for
monitoring vascular response(s). Although other DL-based
approaches have demonstrated rapid localization times, these
solutions still rely on conventional ULM pairing and tracking
algorithms to estimate velocity. The processing time burden of
these algorithms scale with the MB count, making these solu-
tions ineligible for dynamic real-time velocimetry applications.
The Deep-SMV network processing time does not depend on
the MB concentration, performing consistently across multiple
imaging scenarios. However, applying Deep-SMV to MB data
with too-low concentration will lead to sparse and noisy
reconstruction, due to insufficient information available for
reconstruction. Slight underestimation may also be present
due to temporal averaging of a sparser estimation. Moreover,
since Deep-SMYV is trained to produce velocity estimation in
pixel per frame, it can be easily adapted for different imaging
framerates by adjusting the conversion from pixel-space unit
to physical units. The training set would also need to be
adjusted to represent the appropriate physical velocity range
for accurate results.

Although the Deep-SMV approach shows substantial
promise over conventional ULM and competing DL solutions,
the results presented in this manuscript must be understood
within the context of the limitations of the study. The most crit-
ical is that there is no established gold-standard technique for
measuring microvascular flow velocity to validate the output
of the Deep-SMV network. As a compromise, we have used
the velocity results of the much more computationally expen-
sive ULM reconstructions as a reference standard; however,
this approach comes with some caveats. As discussed, ULM
processing is susceptible to spurious MB localizations which
may bias the velocity point estimates. We have attempted to
account for this by averaging the ULM velocity references
across a long acquisition time, which should reduce the impact
of this source of error. The network was trained using Field II
simulations of MB flow, where the velocity distribution was
taken from experimental ULM reconstructions of vasculature.
This implicitly tunes some aspects of the Deep-SMV network
to the parameters used in the initial ULM reconstruction and
is also dependent on the assumptions applied during vascular
modeling (e.g., laminar flow). This is demonstrated directly
by the gain in Deep-SMV performance for organ-specific
simulation data in comparison to more generic vascular flow
training (Fig. 7). However, it is important to note that the
use of organ-specific training data will result in the network
having an inherent structural bias. In regions where solving the
underlying blood vasculature and flow dynamics is ill-posed,
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such as where vessels are intertwined, very closely distributed,
or where MB signal is very sparse (i.e., only one event within a
vessel segment in hundreds of frames), the model will attempt
to generate estimations based on insufficient information,
which can appear as artifact vessel structures that did not exist
in the original data. The distributions of these hallucinated
vessels will most likely reflect the typical distribution of
vessels present in the training set. The misleading fake vessels
could become a potential risk for practical applications of
Deep-SMV. A potential approach to minimize this risk is to
employ a constraining factor that is equivalent to persistence
control in many of the conventional ULM tracking methods,
where signals are deemed unreliable and their associated
estimation results are discarded. Field II also cannot simulate
nonlinear MB responses. Furthermore, although Deep-SMV
demonstrates better handling of high MB concentrations, it is
still susceptible to signal interference of densely packed MBs
leading to a retrograde flow aliasing artifact in some larger
vessels. The incorrect flow direction is also apparent in ULM
reconstructions, but the long acquisition duration can reduce
this effect.

At present, the flow dynamics modeling we assumed for
simulation is relatively simplistic. Employing more advanced
features, such as dynamic velocity profile in the vessel cross-
section, diameter-dependent viscosity, and pulsatility within a
simulated data segment, can potentially improve the robust-
ness of Deep-SMV for complex blood flow patterns. Physi-
ologically relevant constraints in assigning flow velocity and
connectivity can also be implemented.

In the current training setup, we used MSE loss, which is
a loss function based on the Euclidean distance between the
target and the estimation. Although MSE has been successfully
applied to various image processing tasks, it is not necessarily
the most efficient in capturing errors in our desired output
data. We believe that a loss function specifically tailored
for velocimetry can potentially improve the performance of
Deep-SMV.

Another loss term that we considered was the structural
similarity (SSIM) loss, a loss designed to provide a similarity
measurement between two images that reflects how humans
perceive them. Since structural similarity is normally applied
to images scaled to a uniform range (0-1 or 0-255), using it on
its own is not well-suited for our task, where the velocity range
can be arbitrary. Instead, we experimented with a combined
loss function with MSE as the dominant loss term and SSIM as
an additional constraint on vascular structure. We discovered
that the addition of SSIM term did not improve the quality of
reconstructed vessel structure. This might be due to the fact
that perception of structure in natural images is different from
that in microvessel images. Small distortions that normally do
not heavily affect the image quality of a natural image, and
thus penalized less when using SSIM loss, can have greater
impact in preserving vascular structure.

Deep-SMV provides efficient, effective, and fast super-
resolution microvascular structural and velocity reconstruction
without requiring MB localization, pairing, and tracking.
By eliminating this inefficient ULM processing pipeline,
Deep-SMV can capitalize on the rich spatiotemporal

information present in the input IQ data, enabling real-time
super-resolution imaging that is robust to a wide range of
imaging conditions. This technique demonstrated a high tem-
poral resolution, permitting the application of super-resolution
velocimetry to functional imaging scenarios and enabling
super-resolved pulsatility mapping. By relaxing the strict
imaging paradigm that ULM typically requires, Deep-SMV
can facilitate the translation of super-resolution ultrasound to
a wider range of experimental and clinical applications.
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