

Biophysics at the dawn of exascale computers

We are happy to present the special issue titled *Biophysics at the Dawn of Exascale Computers* to commemorate the *Biophysics and Computation in Biomedicine (BioComp)* Thematic Meeting held in Hamburg, Germany, in May 2022. Through the talks and extensive discussions, co-workers present a new and notable computational effort to enhance sampling tools to reconcile a folding mechanism for pertactin that is compatible with known experiments, and computer scientists worked to find common mental data (Protein unfolding is investigated by using ground about sharing innovations and debate on future accelerated molecular dynamics simulations with adaptive needs—and to move forward as a community to take advantage (4). By bridging molecular cues with phenotypic traits of leading-edge resources, interdisciplinarity in outcomes, parameters from molecular dynamics simulation the discourse was reinforced by the choice of the venue used to set Brownian and population dynamics of namely the site of the European X-Ray Free-Electron Laser on the origins of antibiotic resistance (5) and the Facility, where the physics of light-matter interactions is the role of missense polymorphisms (6). Solvation (7) and harnessed to learn biology from molecules up to cells and acids were also represented in this conference, tissues. The special issue epitomizes this multidisciplinary studies ranging from the importance of atomistic force field spirit of the conference and a holistic multiscale view to represent their structure and dynamics (8) to the more biophysical computation arranged in 16 contributions, coarse-grained level to understand how molecular condensates bringing together experimentalists and theoreticians study how chromatin fibers behave (10). about the exciting possibilities that exascale computing computations also help untangle the mechanisms that enable in the field of biophysics.

The issue covers a breadth of biological systems ranging from small substrate across membranes (11) to the from simple proteins and nucleic acids to their oligomeric catalytic rotary step in ATP synthase (12). complexes used for molecular recognition and locomotion. Although exascale computing offers the promise of pushing Concomitantly, methodological developments of realistic solvation and membrane models have been reported to ultimately tackle organelle-to-cell-scale systems over real probe a multitude of spatiotemporal scales (mesoscopic timescales, investigation of very large biological assemblies atomistic), while concomitantly melding biophysical, by this time imposes compromises in terms of computational and quantitative experimental insights. We resolution or timescale. Much effort has been devoted to in brought together experimentalists and theoreticians working in the broad areas of protein folding and assembly, the granularity of molecular simulations allowing in the broad areas of protein folding and assembly, phenomena spanning longer timescales to be explored (13). the formation of allosteric pathways, macromolecular interactions, and bottom-up structure of cells, where in large-scale computing is expected to bring forth major discoveries. Although the thematic meeting was conceived and Some exemplary findings are now highlighted. brought together the broader community to contribute com-

Computational biophysics helps to identify possible mechanisms of action that would otherwise be difficult to identify by experiments alone. Such synergies can be seen in the work of Khandelia and co-workers (14) in which they rationalize the effect of protein association on membranes, particularly by examining its different components like the membrane curvature and use this knowledge to engineer spike protein (15) or the nonstructural protein 1 (16), turn sequence that increase association. Access to exascale

puter time to finding solutions, resulting in the first distributedexascale supercomputer (Folding@home) (14). It also spearheaded exciting research aimed at better apprehending how the SARS-CoV-2 virus responds to its environment, in particular by examining its different components like the spike protein (15) or the nonstructural protein 1 (16), turning to advanced sampling schemes. At the time of release of this issue, three exascale supercomputers have been deployed for academic use (Fugaku in Japan and Aurora and Frontier in the USA), with others in development. We are excited by the impact and possibilities that these supercomputers will bring to the biophysical community.

Submitted June 21, 2023, and accepted for publication June 22, 2023.

*Correspondence: Abhishek.Singharoy@asu.edu

Editor: Vasanthi Jayaraman.

<https://doi.org/10.1016/j.bpj.2023.06.017>

© 2023

Altogether, molecular biophysics over the next decade will be dominated by a marriage of structural biology and imaging with molecular dynamics and machine learning. Taking us a step closer toward capturing bimolecular assemblies in action, these methods are delivering not only static structures but movies of cellular function. Thus, a clear theme emerged on how to incorporate these experimental

data with molecular modeling. However, work is needed to simultaneously model the complexity at different spatial and temporal scales. This need will propel the creation, implementation and scaling of new hybrid multiresolution methodologies, for example in transition-state sampling, studying molecular recognition in crowded and confined environments, and reaching timescales required to monitor cellular interactions—themes that we hope to revisit in future theme meetings.

ACKNOWLEDGMENTS

The organizing team thanks the Biophysical Society, its amazing organizing staff, the Center for Free-Electron Laser Science site managers in Hamburg (in particular Professor Arwen Pearson), our sponsors for offering a platform for the timely topic of biophysics at the dawn of exascale computers. We would like to thank Arizona State University, University of Chicago, University of Florida, and Deutscheschule for the generous funding.

Abhishek Singharoy^{1*}, Alberto Pérez²,
and Chris Chipot^{3,4,5}

¹School of Molecular Sciences, Arizona State University, Tempe, Arizona;

²Department of Chemistry, University of Florida, Gainesville, Florida;

³UMR 7019, Université Lorraine, Laboratoire International Ass. CNRS, Vandœuvre-lès-Nancy, France;

⁴Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois and

⁵Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois

REFERENCES

- Zanjani, A. A. H., A. Mularski, H. Khandelia. 2023. Engineering ensemble of the NSP1 CTD in SARS-CoV-2 to trimerize and induce high membrane energy landscape. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2023.04.002>.
- Melo, M. C., and R. C. Bernardi. 2023. Fostering discoveries in the era of exascale computing: how the next-generation supercomputers empowers computational and experimental biophysics alike. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2023.01.042>.
- Pang, Y. T., A. J. Hazel, and J. C. Gumbart. 2023. Uncovering the folding mechanism of *taftactin*: A comparative study of isolated and vectorial folding. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2023.03.021>.
- Thota, N., S. Quirk, R. Hernández. 2022. Correlation between chemical denaturation and the unfolding energetics of *Acanthamoeba* actophorin. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2022.11.2941>.
- Acharya, A., K. Jana, U. Kleinekathöfer. 2023. Fast prediction of antibiotic permeability through membrane channels using Brownian dynamics. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2023.03.035>.
- Ose, N. J., P. Campitelli, S. B. Ozkan. 2023. Protein dynamics provide mechanistic insights about *leptotaxis* among common missense polymorphisms. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2023.01.037>.
- Klyshko, E., J. S. -H. Kim, and S. Rauscher. 2022. LAWS: Local alignment for water sites—tracking ordered water in simulations. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2022.09.012>.
- Liebl, K., and M. Zachari. 2022. The development of nucleic acids in the fields: From an unchallenged past to a competitive future. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2022.12.022>.
- Sanchez-Burgos, I., L. Herriott, J. R. Espinosa. 2023. Surfactants or scaffolds? RNAs of different lengths exhibit heterogeneous distribution and play diverse roles in RNA-protein complexes. *Biophys. J.* <https://doi.org/10.1101/2022.11.09.515827>.
- Li, Z., S. Portillo-Ledesma, and T. Schlick. 2022. Brownian dynamics simulations of mesoscale chromatin fibers. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2022.09.013>.
- Vervust, W., D. T. Zhang, A. Ghysels. 2023. Path sampling with memory reduction and replica exchange to reach long permeation timescales. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2023.02.021>.
- Kubo, S., T. Niina, and S. Takada. 2022. Coupling and symmetry mismatch in ATP synthase resolved in a step. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2022.09.034>.
- MacCallum, J. L., S. Hu, D. P. Tieleman. 2023. An implementation of the Martinicoarse-grained force field in OpenMM. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2023.04.007>.
- Voelz, V. A., V. S. Pande, and G. R. Bowman. 2023. Folding@home: achievements from over twenty years of citizen science herald the exascale era. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2023.03.028>.
- Dokainish, H. M., and Y. Sugita. 2022. Structural effects of spike protein D614G mutation in SARS-CoV-2. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2022.11.025>.
- Dutta, P., A. Kshirsagar, N. Sengupta. 2023. Conformational ensemble of the NSP1 CTD in SARS-CoV-2: Perspectives from the energy landscape. *Biophys. J.* <https://doi.org/10.1016/j.bpj.2023.02.010>.