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ABSTRACT: The internal wave (IW) continuum of a regional ocean model is studied in terms of the vertical spectral
kinetic energy (KE) fluxes and transfers at high vertical wavenumbers. Previous work has shown that this model permits a
partial representation of the IW cascade. In this work, vertical spectral KE flux is decomposed into catalyst, source, and
destination vertical modes and frequency bands of nonlinear scattering, a framework that allows for the discernment of dif-
ferent types of nonlinear interactions involving both waves and eddies. Energy transfer within the supertidal IW continuum
is found to be strongly dependent on resolution. Specifically, at a horizontal grid spacing of 1/488, most KE in the supertidal
continuum arrives there from lower-frequency modes through a single nonlinear interaction, whereas at 1/3848 and with
sufficient vertical resolution KE transfers within the supertidal IW continuum are comparable in size to KE transfer from
lower-frequency modes. Additionally, comparisons are made with existing theoretical and observational work on energy
pathways in the IW continuum. Induced diffusion (ID) is found to be associated with a weak forward frequency transfer
within the supertidal IW continuum. ID is also limited to the highest vertical wavenumbers and is more sensitive to resolu-
tion relative to spectrally local interactions. At the same time, ID-like processes involving high-vertical-wavenumber near-
inertial and tidal waves as well as low-vertical-wavenumber eddy fields are substantial, suggesting that the processes giving
rise to a Garrett–Munk-like spectra in the present numerical simulation and perhaps the real ocean may be more varied
than in idealized or wave-only frameworks.
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1. Introduction

a. Motivation

Breaking internal gravity waves (IWs) are one of the most
important processes underlying diapycnal mixing, which is
thought to be a primary mechanism for closing and regulating
the meridional overturning circulation (Wunsch and Ferrari
2004); in turn, the overturning circulation is a key regulator of
the Earth system’s climate (IPCC 2013). IW energy spectra
are readily observable along one dimension in the ocean via
dropped, floated, or dragged CTD probes and moored pro-
filers (Alford et al. 2017). Phenomenological models of energy
spectra associated with these observations were developed
in the 1970s by Garrett and Munk (GM) (Garrett and Munk
1972, 1975, 1979), and theoretical models of the detailed
dynamics that give rise to such spectra have been the subject
of research in the ensuing decades (McComas 1977; Müller
et al. 1986; Dematteis et al. 2022; Olbers 1976). The theoreti-
cal basis of IW dynamical processes inform state-of-the-art
diapycnal mixing models [such as Internal Wave Dissipation,

Energy and Mixing (IDEMIX); Olbers and Eden 2013; Eden
and Olbers 2014] in global ocean simulations. However, verifica-
tion of such theory via observations is difficult due to the intrac-
tability of rapidly measuring detailed two- or three-dimensional
flow fields.

More recently, global (e.g., Arbic et al. 2010, 2018; Müller
et al. 2015; Rocha et al. 2016b; Arbic 2022) and regional (e.g.,
Nelson et al. 2020; Pan et al. 2020; Thakur et al. 2022) ocean
models have begun to permit detailed representations of the
largest scales of the IW continuum due to a combination of tidal
forcing, coupling to atmospheric wind and buoyancy forcing
fields, and higher horizontal and vertical resolution (Arbic 2022).
The highest-resolution regional models are able to permit de-
tailed four-dimensional sampling of realistic supertidal internal
wave fields (Thakur et al. 2022; Pan et al. 2020; Eden et al. 2020)
that is not possible from observations, potentially a watershed
breakthrough for IWmodeling and theoretical innovation.

This paper will work to bring theoretical understanding of IW
interactions into alignment with the internal wave dynamics as re-
vealed in a high-resolution regional model using a novel asym-
metric spectral flux decomposition [described in section 2b(2)]. It
will also use both the spectral flux methods and numerical model
output to interpret observations of spectral transfers that are
made in fewer than three spatial dimensions, specifically in Sun
and Pinkel (2012). A distinguishing feature of this work is that it
will focus on the supertidal band of internal gravity waves and on
interactions of internal waves with the mesoscale eddy field.
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b. Resonant nonlinear interactions in theoretical
IW models

The GM spectrum (Garrett and Munk 1975) does not attempt
to describe the means of forcing, dissipation, spectral inhomoge-
neities due to tidal harmonics, or spatial inhomogeneities. It also
is completely uninvolved with details of the nonlinear interactions
that give rise to such a spectrum. McComas and Bretherton
(1977) identified different types of nonlinear-interaction mecha-
nisms likely to be important to the development of the IW
continuum spectrum, including elastic scattering (ES), para-
metric subharmonic instability (PSI), and induced diffusion (ID).
Dematteis and Lvov (2021) and Dematteis et al. (2022) provide
a more restrictive definition of ID and introduce spectrally
local interactions (LI) as an additional mechanism of conse-
quence. This paper will focus on ID and, to a lesser extent, LI in
part because they are most easily diagnosed from numerical
model output with asymmetric spectral fluxes.

ID involves high-wavenumber, high-frequency waves scatter-
ing off of near-inertial, low-wavenumber waves and inducing
diffusion of wave action, A 5 KE/vw, forward in vertical wave-
number space. Here, vw denotes the modal frequency of waves
in the flow, while v will be reserved for the modal frequency of
the entire flow including both waves and eddies. McComas and
Bretherton (1977) found using two different theoretical methods
that wave action should be conserved in the supertidal band un-
der ID. The associated energy diffusion depends, then, on the di-
rection of the frequency cascade. The direction of the frequency
cascade, in turn, depends (through the dispersion relation) on the
aspect ratio of the change in horizontal-to-vertical-wavenumber
following the energy flow within the supertidal IW continuum
through the interaction [see Fig. 5 in McComas and Müller
(1981) and the pertinent discussion]. McComas (1977) argues
that the horizontal wavenumber is approximately constant and
therefore the associated frequency diffusion is backward and that
some energy necessarily has to be moved into the near-inertial
waves (NIWs) from the high-frequency IWs to conserve A. On
the other hand, Dematteis et al. (2022) argue that the horizontal
wavenumber “keeps pace” with the vertical wavenumber, and
therefore the associated frequency cascade is neutral-to-forward
depending on the specific IW spectral slope. Therefore, the com-
pensating energy will either be absent or will be exchanged from
the near-inertial frequencies into the high frequencies.1 The anal-
ysis of bothMcComas (1977) and Dematteis et al. (2022) assumes

hydrostatic interactions, potentially complicating these pictures,
although Dematteis et al. (2022) argue their findings are insensi-
tive to the approximation.

This paper differentiates between such conflicting accounts of
ID by decomposing the vertical2 spectral kinetic energy flux into
components based on the frequency band of the energy source.
Vertical spectral fluxes are used because the various theoretical
models of IW cascades are consistent in their predictions that
within the IW “inertial range,” energy flow is to smaller vertical
wavenumbers (Müller et al. 1986; Dematteis et al. 2022). Our use
of frequency-decomposed spectral fluxes also allows for the tradi-
tional definition of ID (which conserves and diffuses wave action
in the supertidal band) to be decomposed into two components:
1) downscale kinetic energy diffusion within the supertidal band
(IDdiff) and 2) the compensating energy exchanged with near-
inertial and tidal frequencies (IDcomp). A separate but conceptu-
ally related mechanism, downscale kinetic energy diffusion that is
induced by eddy fields instead of wave fields, is referred to as
IDeddy. Such labels are included here for reference, but they are
not rigorously defined until section 2b(2).

c. Observations of resonant nonlinear interactions

Sun and Pinkel (2012) used sonar and CTD observations
near Hawaii to directly quantify nonlinear energy transfers
among supertidal internal waves. They found coherent energy
transfers that were inconsistent with ID. We will label these
energy transfers as a separate mechanism, “SP,” throughout
the paper but will hold off on discussing the physical meaning
of this signal. They were also unable to find a signal where
they expected to see ID on vertical-wavenumber bispectra.
This paper produces a similar bispectrum in section 3b in an
attempt to reproduce the most prominent feature from their
observations while also explaining why Sun and Pinkel (2012)
do not observe ID. In computing bispectra from model output,
the assumption of Sun and Pinkel (2012) that the vertical-
gradient component of the spectral KE transfer represents
the entire transfer is tested.

d. Resonant nonlinear interactions in IW-permitting
simulations

Regional models that permit a partially resolved IW continuum
must account for significant spatial energy flux of IWs across
the regional boundaries (Mazloff et al. 2020). Numerous regional
models have a vigorous mesoscale eddy field but lack robust in-
ternal wave and internal tide forcing at the boundary conditions,
(e.g., Nugroho et al. 2018; Renault et al. 2021; Wang et al. 2021).
A straightforward means of accounting for this is to use IW-
permitting global-model output to set the regional boundary
conditions. Global models require simultaneous atmospheric

1 Dematteis et al. (2022) use a specific set of parameters to de-
fine the IW spectrum that is consistent with the stationary solution
of the wave-turbulence theory collision integral. For a frequency
spectrum of E(v) ; v22, their parameter choices imply a vertical
wavenumber m energy spectrum that is E(m) ; m22, which is not
necessarily consistent with all parts of the ocean or the simulations
in this paper (cf. with Fig. 4b). However, Dematteis et al. (2022)
argue that it is necessary for this set of parameters to reflect domi-
nant processes in the ocean so as to resolve the “oceanic ultraviolet
catastrophe,” i.e., for the spectral frequency fluxes associated with in-
duced diffusion to be forward and not inverse given the lack of high-
frequency energy sources to feed the IW continuum (Polzin and
Lvov 2017). For this reason, we compare the present numerical simu-
lations with predictions made for E(m) ; m22 in Dematteis et al.
(2022).

2 A positive vertical spectral energy flux will denote energy
transfer from low to high vertical wavenumber. The “vertical”
strictly refers to the direction of the wavenumber of spectral
modes; vertical spectral fluxes referenced in this paper therefore
have no relation to hypothetical spectra computed from vertical
spatial energy fluxes. This paper will sometimes drop the “energy”
designation; e.g., “vertical spectral flux” implies a spectral flux of
kinetic energy.
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and tidal forcing as well as sufficient horizontal and vertical res-
olution in order to energize a robust IW field, conditions that
have only begun to be implemented recently (Arbic et al. 2010;
Müller et al. 2015; Rocha et al. 2016b,a; Arbic et al. 2018; Arbic
2022). Nelson et al. (2020), Pan et al. (2020), and Thakur et al.
(2022) used a regional model with tidal and wind forcing, and,
importantly, imposed IW forcing at the boundaries from an IW-
permitting global model. These are the first and, along with two
recent papers (Siyanbola et al. 2023; Delpech et al. 2023), are
the only published regional models that attempt to resolve the
IW boundary flux issue noted by Mazloff et al. (2020) at the time
of submission. The present paper will continue using this
approach.

Idealized simulations of flow realizations of the GM IW
spectrum present an alternative approach for studying IW
theory through numerical simulations. Eden et al. (2020) use
this technique with a very fine 50-m horizontal grid spacing
and are able to sidestep the problem of boundary conditions
by diagnosing IW interactions on a periodic domain. They
find PSI to be the dominant mechanism for moving energy
from tidal frequencies in the range of 2f0–2.5f0 (based on their
Fig. 4c) and ID to play a relatively small role. This represents
a promising approach of future study to which the asymmetric
spectral fluxes of this paper could be applied.

As IW-permitting models adopt higher resolutions, they
begin to resolve more of the IW continuum, both in global
models (Müller et al. 2015; Savage et al. 2017) and regional
models (Nelson et al. 2020). Pan et al. (2020) finds that IW
dispersion curves in a high-resolution regional model are
clearly defined over two orders of magnitude of frequency
and horizontal wavenumbers, much greater than in available
global models. They further find evidence for a dynamically
significant ID in the IW continuum, which motivates the work
of the present paper to study such dynamical processes.

High-resolution IW-permitting regional models now have the
potential to validate recent advances in theoretical understand-
ing and to study challenges faced in observations of internal
wave scattering. Some open questions that we will address are:

• At what model resolutions do ID and LI become significant?
• Is ID associated with forward or inverse frequency cascade?
• How does IDdiff compare to IDcomp?
• Why do Sun and Pinkel (2012) not see ID in their observa-
tions? What do they see?

• How important are IDeddy and other mechanisms that do not
fit into existing categories of nonlinear wave–wave interactions?

2. Methods

a. The model

The numerical model simulates a region north of the Ha-
waiian archipelago (Fig. 1). It includes wind and astronomical
forcing as well as rigidly imposed nested Dirichlet boundary
conditions for all prognostic fields, which are provided from a
similarly forced global ocean simulation of the Massachusetts
Institute of Technology general circulation model (MITgcm),
often denoted LLC4320 (Rocha et al. 2016b; Arbic et al.

2018).3 As a result, it partially resolves the spectrum of near-
inertial oscillations, internal tides and supertidal internal waves.
The study area features a northward-propagating internal-tidal
beam generated in the French Frigate Shoals as well as inter-
actions with the Musician Seamounts. The region also features
areas north and south of the critical latitude for PSI at 28.88N
(Alford et al. 2007). We use a hydrostatic formulation of
MITgcm (Adcroft et al. 2015).

Previous work based on wavenumber and frequency spec-
tra has demonstrated that this regional Hawaii simulation per-
mits a partial representation of the internal wave cascade
(Nelson et al. 2020; Pan et al. 2020; Thakur et al. 2022). Addi-
tionally, there is evidence that the model accurately repre-
sents the dispersion relation of the IWs, as indicated by the
energy spectra in Fig. 8 of Pan et al. (2020). The mechanisms
of wave damping in this model are the subject of ongoing re-
search; most recently Thakur et al. (2022) found that the high-
vertical-wavenumber end of the IW continuum is made more
accurate by permitting greater energization at those scales.
Despite having an incomplete picture of the exact details of
IW damping, the general argument to be made here is that down-
scale spectral flux of IW KE will be in balance with damping at
the highest vertical wavenumbers and will permit an approxi-
mately physically accurate picture of the nonlinear interactions at
intermediate vertical wavenumbers. We do not explore spectral
balance in horizontal wavenumber in this paper.

Another notable limitation of the model at representing IW
dynamics is that it is hydrostatic. This will introduce error in the
limit that v " N, where N is the buoyancy frequency, and with

FIG. 1. Bathymetry of the region of study.

3 Details of the boundary forcing are described in Nelson et al.
(2020).
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v/N � 1/2 expected to be significant. As previous work with this
model has done (Pan et al. 2020), we are not attempting to mea-
sure the interactions in this limit and we assume that the spectral
energy transfer contributed at these frequencies is small. This
can be justified as follows: supertidal nonlinear IW interactions
in this numerical model are expected to predominantly occur
in the pycnocline, where IW energy is largest (not shown) and
N. 20f0 [see Fig. 2 in Nelson et al. (2020)]. Here, f0 denotes the
Coriolis frequency at the central latitude of the regional domain.
Nonlinear supertidal interactions diagnosed in this paper are
dominated by v , 10f0, so this assumption should be roughly
reasonable for an initial study, even if the highest-frequency
part of the continuum are restricted by resolution and damping.
The use of nonhydrostatic models nonetheless can provide im-
portant details of the dynamics in the downscale limit that can-
not be accessed in a model such as the one used in this paper
(e.g., Eden et al. 2020).

The simulation employs a finite-volume solver. The horizon-
tal eddy-viscosity scheme is a modified form of the Leith scheme
(Fox-Kemper and Menemenlis 2008), while interior and mixed
layer dissipation and diffusivity is handled by the k-profile pa-
rameterization (KPP; Large et al. 1994). The Leith scheme and
KPP are the dominant mechanisms acting in the ocean interior
to dissipate KE in the modeled IW continuum. Wind forcing is
updated every 6 h, while boundary conditions in the regional
model are updated hourly. A staggered, second-order (explicit)
Adams–Bashforth time-stepping method is used for all terms
except the vertical viscosity (from the KPP scheme), which is
treated implicitly using a backward time-stepping scheme. The
model grid is stretched substantially in the vertical direction
(vertical grid spacing is 0.333 m at the surface and 133 m at the
domain bottom in the highest-resolution run). The regional
model was run for 106 days, from 1 March 2012 until 15 June
2012, and output was collected every 20 min for the last 7 days
of this period and used for the analysis presented in this work.
The regional model was run with four different resolutions [the
same ones as in Nelson et al. (2020)]:

1) 88 vertical levels and 2-km horizontal grid spacing,
2) 88 vertical levels and;250-m horizontal grid spacing,
3) 264 vertical levels and 2-km horizontal grid spacing, and
4) 264 vertical levels and;250-m horizontal grid spacing.

b. Spectral KE budgets

The present work is focused on attaining a picture of non-
linear IW triadic scattering mechanisms as far from spectrally
inhomogeneous forcing as possible, that is, deep within the
“inertial range” of the IW continuum. In particular, nonlinear
interactions that are most active and easily discernible in this
spectral range, ID and LI, will be diagnosed, while PSI and
ES will not be. The strategy for attaining such a picture is to
construct a partial spectral KE budget of terms that are ex-
pected to be dominant at mid-to-high vertical wavenumbers
in the IW continuum: nonlinear fluxes, decomposed into con-
tributions from different mechanisms based on frequency,
and dissipation. This study will focus exclusively on KE. In fu-
ture work, the asymmetric spectral flux methods used in this

paper [see section 2b(2)] could be extended to apply to non-
linear scattering of buoyancy perturbations as well, thereby
handling potential energy budgets.

The flow field is decomposed into spectral bands: the low-
pass band (LP) with v , 0.8f0, a bandpass of near-inertial and
tidal frequencies (BP) with 0.8f0 , v , 2.5f0, and a supertidal
high-pass band (HP) with 2.5f0 , v. The HP band at high ver-
tical wavenumber is of primary interest for the IW-continuum
energetics. To the extent that an inertial range exists in the IW
continuum, forcing and dissipation will exhibit scale separation
and energy will move through the intermediate scales via non-
linear interactions among waves. The dissipation mechanisms
and the vertical spectral flux should be in approximate balance
at small scales. To compute these vertical spectral kinetic energy
budgets, the velocity evolution due to each term in the govern-
ing equations must first be interpolated to a uniform vertical
grid that has the same number of grid points. This sampling rate
is based on numerical experiments with synthetic spectra.

The LP band includes both mesoscale eddies and the back-
ground time-mean flow. Because a mean flow is included in the
flow solution and is not removed for analysis, IW frequencies
are subject to Doppler shifting. The Doppler shift, if large, could
affect the frequency analysis. However, in our regional model,
this appears not to be the case–consider the following: In Pan
et al. (2020) and Nelson et al. (2020), the dispersion relation and
consistency relation of the IW field were studied, which agree
with the relations caused only by waves and do not show obvi-
ous Doppler shift effects. When the Doppler shift is small, it can
be considered as a small and random correction of the dispersion
relation, under which a diffusion equation of wave action can be
derived as in Savva and Vanneste (2018) and Dong et al. (2020).
This diffusion effect is exactly what we studied in the paper (i.e.,
we have considered weak Doppler shift in our analysis.)

1) TERMS AND BOUNDARY CONDITIONS

Consider the horizontal velocity evolution equation

­tu 5 2(v ? =)u︸���︷︷���︸
A

2 =h

p
r0︸��︷︷��︸

P

2 (f 3 u)h︸����︷︷����︸
C

1 F 1 D 1 BCs (1)

with

D 5 DLeith 1 DKPP_ML 1 DKPP_Shear 1 DKPP_Conv

1 DKPP_BG 1 DQBD, (2)

where u is the 2D horizontal velocity vector, v is the 3D veloc-
ity vector, f5 2V sin(u)ẑ is the Coriolis frequency vector, V is
the frequency of Earth’s rotation, u is latitude, p is the com-
bined hydrostatic and surface pressure, r0 is the constant ref-
erence density, =h is the 2D horizontal gradient operator, ()h
is the horizontal 2D component of the term within the paren-
theses, A is the advective term, P is the pressure term, F is
forcing, D is dissipation, C is the Coriolis force, and BCs are
spatial boundary forcing terms. Dissipation is decomposed
into individual terms in Eq. (2). We are interested in terms
and boundary conditions that may be active at small vertical
scales. Under the assumption that the IW continuum acts as a
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wave-turbulence cascade with scale separation between forc-
ing and dissipation, the forcing terms will be ignored. Notes
on the implementation of spectral diagnosis of the terms and
boundary conditions of interest, which are computed for a
partial vertical integrated spectral KE budget in section 2b(2),
are listed in appendix E.

2) SPECTRAL FLUX AND TRANSFERS

Spectral-energy-flux methods can be used to study the di-
rection of energy cascades across scales in ocean models and
observations (e.g., Scott and Wang 2005; Schlösser and Eden
2007; Capet et al. 2008; Sun and Pinkel 2012; Arbic et al.
2013). This paper will utilize a decomposed version of the
spectral energy fluxes and transfers that has some distinct
benefits over previously used versions: the isolation of differ-
ent spectral bands, a decomposition into interaction diagrams,
and spatial resolution of the spectral exchanges in the direc-
tion orthogonal to the spectra computed [see section 2b(4)].
Also, while many other spectral methods, including imple-
mentations of wave-turbulence theory (WTT), spectral fluxes,
and coarse-graining, often4 consider energy exchange among
sets of three modes (see appendix A), the spectral-flux de-
composition presented in this paper will use an asymmetric
version of scattering diagrams that isolates the exchange of
energy between two modes mediated by a third mode, allow-
ing for the direction and magnitude of energy exchange be-
tween any two scales to be exactly discerned.

To compute partial vertical spectral budgets, it is useful to
write the horizontal velocity evolution [Eq. (1)] in terms of a
generic sum of terms and boundary conditions:

­tui 5 ∑
terms

­t(ui)terms and (3)

­t(ui)A 52y j­jui, (4)

where ui are the 2D horizontal velocity field components, y j
are the 3D velocity field components, subscripts sum over all
applicable dimensions, and the summation runs over all terms
and spatial boundary conditions (e.g., DKPP_Shear). The ui and
y i are defined over coordinates {x, y, z, t}. The advective term
A is explicitly written out as an important contribution to the
horizontal velocity evolution in Eq. (4).

Local spectral budgets T term are the change in KE of a specific
spectral mode resulting from one of the terms in Eq. (3). The ter-
minology is adopted from Scott and Arbic (2007), but others re-
fer to this as a “spectral transfer function” (Arbic et al. 2014;

Müller et al. 2015), a label that will be reserved strictly for the ad-
vective local spectral budget term, as discussed below. The strat-
egy employed here is to represent the local spectral budget as a
spatial integral so that integrated spectral budgets can be con-
structed out of them; this requires representing individual spec-
tral modes in the position-space basis. The spatial-integral
representations are preferred to purely spectral representations
as they can be more efficiently computed from numerical model
output. This can be written [see appendix C, including the exten-
sion to the hydrostatic approximation in Eq. (C12)]

T term,ma ,vb
5h�� ∑

g56a
l56b

ûi,mg ,vl
(x, y)e2pi(mgz2vl t)­t(ui)term dzdti,

(5)

where

ûi,mg ,vl
(x, y) 5 1

HT

��
ui(x, y, z, t)e22pi(mgz2vlt) dz dt; (6)

mg 5
g

H
; vl 5

l

T
; and a, b, g, l 2 Z: (7)

Here, ma are the discrete nonnegative vertical wavenumbers;
when taken as an argument of T term these vertical wavenumbers
are restricted to be positive but can otherwise be negative. Also,
vb now explicitly denotes a discrete frequency, H is the ocean
depth, T is the duration of the time window being sampled,
i5

����
21

√
, Z is the set of all integers, and the angle brackets de-

note an average over horizontal space. In order for the position-
space representation to be real-valued, positive and negative
modes are paired together.5 Note that T has dimensions of
power/mass and would require an extra factor of (TH) to be
scaled as a frequency–wavenumber density. One can integrate
Eq. (5) to obtain contributions to the kinetic energy evolution at
all vertical wavenumbers above a threshold. These “integrated
spectral budget terms” (Scott and Arbic 2007) can be written as

P.
term,|ma |,vb

5 h�� ∑
|g|. |a|
|l|. |b|

ûi,mg ,vl
(x, y)e2pi(mgz2vlt)­t(ui)term dz dti:

(8)

As in Eq. (5), Eq. (8) includes both positive and negative val-
ued wavenumbers and frequencies on the right-hand side so
that the quantity being averaged over time and space is real-
valued and P.

term depends on the magnitude of vertical wave-
numbers only. The integrated spectral budgets [Eq. (8)] will
be used for evaluating the spectral flux integrated over bands
of frequencies rather than individual frequencies.

The advective term conserves energy away from boundary
effects on a divergence-less flow. Because of this, the local
spectral budget contribution of advection is to simply transfer
energy from one wavenumber to another. The contribution of

4 One exception to this is a recent paper, Dematteis and Lvov
(2023), that determines a realization of energy and wave-action ex-
changes between pairs of modes mediated by a third in the context
of catalyst-source-symmetric WTT; see appendix A. The problem
addressed in Dematteis and Lvov (2023) is similar to the one ad-
dressed with asymmetric spectral diagrams in this paper. Here we
use symmetries evident in the governing equations to identify a re-
alization of such energy exchanges. A comparison with and impli-
cations of using a catalyst-source symmetric system of equations to
arrive at a realization of energy exchanges will not be explored in
the present paper but offers a rich avenue of future enquiry.

5 This follows from the requirement that ûi,ma ,vb
(x, y)5

û*
i,2ma ,2vb

(x, y).
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advection to the integrated spectral budget is a flux of KE be-
tween low wavenumbers and high wavenumbers. The local
and integrated contributions from the advective term in par-
ticular are therefore referred to as spectral transfers and
fluxes, respectively. These can be written out explicitly using
Eqs. (5) and (8):

T A,|ma |,vb
52h�� ∑

g56a
l56b

ûi,mg ,vl
(x, y)e2pi(mgz2vlt)(y j­jui) dz dti

and (9)

P.
A,|ma |,vb

52h�� ∑
|g|. |a|
|l|. |b|

ûi,mg ,vl
(x, y)e2pi(mgz2vlt)(y j­jui) dz dti:

(10)

Note that if the frequency dependence is ignored by summing
over all v, then for an incompressible flow, for which ­iy i 5 0,
Eq. (8) is equivalent to the form given by Frisch and
Kolmogorov (1995) and Scott and Wang (2005),

P.
A,|ma | 52h�� ∑

|g|. |a|
all l

ûi,mg ,vl
(x, y)e2pi(mgz2vl t)

[ ]

3
y j­j ∑

|g|, |a|
all l

ûi,mg ,vl
(x, y)e2pi(mgz2vlt)

[ ]{ }
dz dti:

(11)

For incompressible flows, the three velocity fields written in
Eq. (10) can be organized into distinct roles that together
constitute what we will label an “asymmetric diagram.”
In Eqs. (9) and (10), the advecting 3D field y j acts as a
“catalyst” and contributes no energy to the spectral flux. All
KE transfer comes from the rightmost “source” ui field,
while the energy goes into the leftmost “destination” mode
of ûi,mg ,vl

, as shown in appendix A. These terms of catalyst,
source, and destination modes will be used throughout the
paper. Note that unlike the concept of a “triad” of modes,
which represents a physical process involving all three
modes that conserves energy, a diagram has a numerical

value representing the change in energy in just one of the
three modes catalyzed by just one of the remaining modes.
By separating out these roles, we allow for the separation
of KE flux between different frequency and/or wavenum-
ber bands. For example, from Eq. (10):

P.

LP→BP
HP,A,|ma |

52h�� ∑
|g|. |a|
all l

[ûHP
i,mg ,vl

(x, y)e2pi(mgz2vlt)](yBPj ­ju
LP
i )dz dti

(12)

is the vertical spectral energy flux from the LP (eddy) fre-
quencies scattering off the catalyst BP (tidal and near-
inertial) frequencies into the HP (internal wave continuum)
frequencies above a cutoff vertical wavenumber ma. Here,
ûHP
i,mg ,vl

(x, y) refers to the spectral representation of a high-pass
frequency filter acting on ui, as defined at the beginning of this
section 2b. Note that although ûHP

i is written with an explicit
dependence on v, its amplitude will fall off rapidly outside
of the applied frequency filter (in the case of HP, that would
be v , 2.5f0.) The average must be computed over the
same time period used to define the frequency filter. Error
is introduced from overlap of the bands, but it is deter-
mined to be small through numerical experiments. A 22%-
tapered Tukey window is applied to the time series. The
Tukey window also introduces error in the band isolation
and reduces the magnitude of the transfers being com-
puted. Through experiments with different window
lengths, we determine that the findings of this paper are in-
sensitive to errors arising from the Tukey window. Herein-
after, the A indicating the advective (or flux) terms will be
dropped but implied for all P and T that indicate direc-
tional KE exchange (e.g., BP→all

HP).
Induced diffusion interactions are generally defined as

being sufficiently scale-separated between one IW mode
and the other two in both frequency and wavenumber
(McComas 1977), while local interactions have been used to
describe interactions that are not scale separated in fre-
quency and/or wavenumber (Dematteis et al. 2022). To as-
sociate spectral fluxes with such mechanisms, it is necessary
to expand the source velocity field in Eq. (10):

P.

HP→BP
HP,|ma |

52h�� ∑
|g|. |a|
all l

∑
all h
all f

[ûHP
i,mdest

g ,vl
(x, y)e2pi(mgz2vl t)]yBPj ­j[ûHP

i,msrc
h ,vf

(x, y)e2pi(mhz2vf t)] dz dti (13)

then, using the restriction thatmsrc 1 mcat 5 mdest, this can be ap-
proximately decomposed into interactions that are scale separated

such that the vertical wavenumbers of the source and destination
fields are at least a factor of j larger than the catalyst field:
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P.

HP→BP
HP,|ma |

� 2h�� ∑
|g|. |a|
all l

∑
min(|h|, |g|)
|h|2 |g| $j

all f

[ûHP
i,mdest

g ,vl
(x, y)e2pi(mgz2vlt)]yBPj ­j[ûHP

i,msrc
h ,vf

(x, y)e2pi(mhz2vft)] dz dti
2h�� ∑

|g|. |a|
all l

∑
min(|h|, |g|)
|h|2 |g| ,j

all f

[ûHP
i,mdest

g ,vl
(x, y)e2pi(mgz2vl t)]yBPj ­j[ûHP

i,msrc
h ,vf

(x, y)e2pi(mhz2vf t)] dz dti: (14)

Here, the first angle-bracketed term on the right-hand side indi-
cates the scale-separated interactions that are associated with
ID, whereas the interactions of the second angle-bracketed
term are local in vertical wavenumber and are associated with
LI. Note that the scale separation here is an approximation of
that between the vertical wavenumber of the catalyst mode and
the nearest source/destination mode, which we will refer to sim-
ply as “catalyst m-scale separated.” The approximation uses
only the magnitudes of the wavenumbers to compute their dif-
ferences (e.g., |h| 2 |g| instead of |h 2 g|). Along with the cor-
rect difference interactions such that |mcat| 5 |mdest| 2 |msrc|, an
erroneous class of additive interactions |mcat|5 |mdest|1 |msrc| is

included in the approximate scale-separated form. These addi-
tive interactions are very weak and introduce only a small
amount of error (computed and discussed in appendix F). This
approximation allows for a much cheaper computation of the
scale-separated spectral flux.

In the framework of Eq. (14), energy transfer into the
supertidal (HP) band can then be decomposed:

P.

all→all
HP,|ma |

5 P.
IDdiff

1 P.
IDcomp

1 P.
SP 1 P.

LI 1 P.
IDeddy

1 PBPother
1 PLP, (15)

where

P.
IDdiff

5 “catalyst m-scale separated” P.

HP→BP
HP,|ma |

52h�� ∑
|g|.|a|
all l

∑
min(|h|,|g|)
|h|2|g| $j

all f

[ûHP
i,mdest

g ,vl
(x, y)e2pi(mgz2vlt)]yBPj ­j[ûHP

i,msrc
h ,vf

(x, y)e2pi(mhz2vft)] dz dti, (16)

P.
IDcomp

5 “source m-scale separated” P.

BP→HP
HP,|ma |

52h�� ∑
|g|.|a|
all l

∑
min(|h|2|g|,|g|)

|h| $j

all f

[ûBP
i,mdest

g ,vl
(x, y)e2pi(mgz2vl t)] yHP

j ­j[ûHP
i,msrc

h ,vf
(x, y)e2pi(mhz2vft)] dz dti, (17)

P.
SP 5 “source m-scale local” P.

BP→HP
HP,|ma |

52h�� ∑
|g|.|a|
all l

∑
min(|h|2|g|,|g|)

|h| ,j

all f

[ûBP
i,mdest

g ,vl
(x, y)e2pi(mgz2vlt)]yHP

j ­j[ûHP
i,msrc

h ,vf
(x, y)e2pi(mhz2vf t)] dz dti, (18)

P.
LI 5 “catalyst m-scale local” P.

HP→BP
HP,|ma |

1 P.

HP→HP
HP,|ma |

52h�� ∑
|g|.|a|
all l

∑
min(|h|,|g|)
|h|2|g| ,j

all f

[ûHP
i,mdest

g ,vl
(x, y)e2pi(mgz2vlt)] yBPj ­j[ûHP

i,msrc
h ,vf

(x, y)e2pi(mhz2vf t)] dz dti
2h�� ∑

|g|.|a|
all l

ûHP
i,mg ,vl

(x, y)e2pi(mgz2vlt)(yHP
j ­ju

HP
i ) dz dti (19)

S K I T KA E T A L . 405FEBRUARY 2024

Brought to you by UNIVERSITY OF MICHIGAN | Unauthenticated | Downloaded 03/01/24 05:34 PM UTC



P.
IDeddy

5 P.

HP→LP
HP,|ma |

52h�� ∑
|g|.|a|
all l

ûHP
i,mg ,vl

(x, y)e2pi(mgz2vlt)(yLPj ­ju
HP
i ) dz dti,

(20)

PBPother
5 P.

BP→BP1LP
HP,|ma |

52h�� ∑
|g|.|a|
all l

ûHP
i,mg ,vl

(x, y)e2pi(mgz2vlt)(yBP1LP
j ­ju

LP
i ) dz dti,
and (21)

PLP 5 P.

BP→all
HP,|ma |

52h�� ∑
|g|.|a|
all l

ûHP
i,mg ,vl

(x, y)e2pi(mgz2vlt)(yHP1BP1LP
j ­ju

LP
i ) dz dti:

(22)

The various spectral flux components, written Pi, where i re-
fers to different scattering mechanisms, and the different dia-
grams that constitute them are summarized in Fig. 2.

Induced diffusion, as it is described in McComas and
Bretherton (1977), can be broken up into two subprocesses,
IDdiff and IDcomp. Each has a corresponding spectral flux:
PID 5PIDdiff

1PIDcomp
. The PIDdiff

is the kinetic energy transfer

within the supertidal band (HP) caused by scattering off the cat-

alyst field of near-inertial and tidal waves (BP). The PIDcomp
is

the compensating energy transfer that must be exchanged
between the near-inertial and tidal waves (BP) and the superti-
dal continuum (HP) in order to conserve supertidal wave action,
as discussed in section 1b. The compensating energy diagrams
for (IDcomp) are related to the kinetic energy diffusion diagrams
(IDdiff) by an exchange of the catalyst and source modes, as de-
picted in Fig. 2. Both of these diagrams are treated together in
wave turbulence theory because that theory (as it has been pre-
viously implemented) imposes symmetry between the source
and catalyst modes, as discussed in appendix A and depicted in
Fig. A3. Taken together, the two components of ID diffuse
wave action in the supertidal band (but neither do this individu-
ally). Note that PID is expected to diffuse wave action in the
model evolution of the supertidal band only to the extent that
scale separation exists between the catalyst modes and the
source and destination modes, a rough approximation given our
definition of ID.

Separately, one can consider KE diffusion that is induced
by catalyst modes in the eddy field (LP) rather than the wave
field (BP), which we label PIDeddy

5P.

HP→LP
HP,|ma |

. On the

other hand, PLI is the energy transfer into the supertidal
band that is not scale-separated in either wavenumber or fre-
quency. We approximate the latter possibility by supertidal
modes that scatter off of other supertidal modes into the
supertidal band, P.

HP→HP
HP,|ma |

. Together, PLI, PIDdiff
, and

PIDeddy
constitute all of the energy transfer within (meaning

coming from and remaining in) the supertidal band and
represent a fully nonlinear inertial range. Other energy trans-
fer into HP (coming from different frequency bands) is
represented by PIDcomp

, PSP, PBPother
5P.

BP→LP1BP
HP,|ma |

and

PLP 5P.

LP→all
HP,|ma |

. The PSP refers to a mechanisms

observed in Sun and Pinkel (2012) that will be motivated in
section 3d. ES primarily involves an exchange of energy be-
tween different upward and downward propagating waves
rather than from scale to scale, so we do not expect to see
PES manifesting as downscale energy flux in this analysis.
PSI would be contained in the spectral flux components that
move energy from high frequency to half the frequency, cata-
lyzed by half the frequency. Because BP contains tidal fre-
quencies around 2f0 and near-inertial frequencies just above
f0, a positive (down-vertical-scale) signal should be included
in P.

BP→BP
BP,|ma |

while the decay of supertidal modes would

show up in P.

HP→HP
HP,|ma |

if the destination mode is still in the

supertidal band, as well as positive values in P.

HP→BP
BP,|ma |

and

associated negative values under exchange of source and destina-
tion modes (see Fig. A2 in appendix A) in P.

BP→BP
HP,|ma |

if the

destination mode falls within the BP band. We do not attempt to
separate out these terms as PSI is not a focus of this paper.

3) BISPECTRA

As with advective spectral fluxes in Eq. (13), advective spectral
transfers [Eq. (9)] can also be written as a function of the vertical
wavenumbers of two of the interacting fields instead of one. Such
bispectra allow for the discernment of the spectral transfer as a
function of specific catalyst and source modes, as well as the desti-
nation modes accessible from the single-wavenumber version in
Eq. (9). As mentioned in section 1b, Sun and Pinkel (2012) com-
puted observational bispectra and did not find an ID signal where
they expected it. The bispectrum that they use can be written as

B̃
BP→HP

HP,mcat
a ,mdest

b

5 2h ∑
all h,f,s,g

Re(msrc
g ûHP

i,mdest
b

,vh
ŷHP
3,mcat

a ,vf
û*BP
i,msrc

g ,vs
)i: (23)

Here, ŷ 3 is the vertical component of the spectral represen-
tation of the three-dimensional velocity field, which is defined
as in Eq. (6) with ui " y i and ûi " ŷ i. Additionally, the bold
frequency-band labels indicate the two fields, in this case the cat-
alyst and destination fields, that the independent wavenumbers
reference. This form of the bispectrum neglects the horizontal
gradients in the advective term as an approximation based on
horizontal homogeneity in the flow, an assumption that is nei-
ther applicable nor theoretically correct (see section 3b). Com-
puting such a bispectrum from three-dimensional data would
be prohibitively computationally expensive. Therefore, we
use a related form that is computed as an integral over posi-
tion space:
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FIG. 2. Scattering diagrams, introduced in appendix A, for various mechanisms discussed in
this paper. The left column shows the diagrams, and the right column gives the expression for
the spectral flux P. to which the diagrams contribute. Note that the prime notation in the right
column, |m′

c|5 |md |2 |ms| and |m′
s|5 |md|2 |mc |, indicates the approximation introduced in

Eq. (14) and discussed in appendix F. SP refers to a mechanism that was observed by Sun and
Pinkel (2012) and will be explained in the context of the results in section 3d. As described in
appendix A, the bottom-left mode of each scattering diagram, ms, is the source of KE in the dia-
gram, the bottom-right mode, mc, is the catalyst mode in the diagram and contributes no KE,
and the top mode, md, is the destination of KE in the diagram. Therefore, each diagram repre-
sents the evolution of mode md and not the others. The line colors in the ID scattering diagrams
each correspond to a specific mode}e.g., m1, v1}to emphasize the exchange of catalyst and
source modes.
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B
BP→HP

HP,|mcat
a |,|mdest

b
|
52h�� ∑

l56b
all f

∑
g56a
all h

e2pi[(mg1ml)z2(vh1vf)t]ûHP
i,mdest

l ,vf
(x, y)ŷHP

j,mcat
g ,vl

(x, y)­juBPi (x, y, z, t) dz dti (24)

One difference between Eq. (23) used by Sun and Pinkel (2012)
and Eq. (24), used for this paper, is that, because the latter is
computed in position space, the positive and negative signs of the
wavenumbers cannot be separated. Thus, the bispectra computed
with Eq. (24) are equivalent to those in which the positive- and
negative-mcat parts of Eq. (23) are averaged together. An implica-
tion of this averaging is that our bispectra will not pick up a signal
from mechanisms that change sign with the sign of the wavenum-
ber. For example, ES requires complex-valued modes to discern
upward and downward propagating waves exchanging energy.
The other key difference is that Sun and Pinkel (2012) are only
able to use the vertical-gradient component in Eq. (23), whereas
we have written our bispectra in Eq. (24) as containing both gra-
dient directions unless stated otherwise.

Now that these bispectra have been defined, they can be in-
terpreted along the same lines as the spectral flux decomposi-
tion in section 2b(2). Induced diffusion, as defined in McComas
and Bretherton (1977), would be contained in B

HP→BP
HP

and

B
BP→HP

HP
, which contain the diffusion of wave energy in the

supertidal band and the compensating energy delivered from
BP, respectively. So, Sun and Pinkel’s (2012) bispectrum
[Eq. (23)] only captures IDcomp and not the energy diffusion
within the supertidal band. As previously mentioned, Dematteis
et al. (2022) reason that in ID, the horizontal wavenumber
should keep pace with the vertical in order to resolve the
“oceanic ultraviolet catastrophe,” implying a constant or for-
ward frequency cascade, as opposed to an inverse cascade. Im-
portantly, this means that compensating energy, and therefore

induced diffusion, may not even be visible in the bispectra com-
puted by Sun and Pinkel (2012) if the associated frequency cas-
cade is neutral. In sections 2b(5) and 3c spectra transfers as a
function of both frequency and vertical wavenumber are intro-
duced and presented, respectively, that aim to identify the direc-
tion of the frequency cascade associated with ID and other
processes. This will aid in interpreting B

BP→HP
HP

.

A likely reason that the bispectra of Sun and Pinkel (2012)
was not identified by the authors as measuring IDcomp is that in
some versions of WTT the scattering coefficients are symmetric
between the source and catalyst wavenumbers, as discussed in
appendix A. The observations of Sun and Pinkel (2012) do not
symmetrize between the catalyst and source modes, meaning
these two bispectra may have actually been substantially different
from one another and would not necessarily correspond to WTT
predictions. Rather, they attempted to measure bispectra corre-
sponding to B

BP→HP
HP

, which would imply a conceptual picture
of energy compensation from the tidal, near-inertial, and subiner-
tial frequencies into the IW continuum.

To address the question of whether the bispectra of Sun
and Pinkel (2012) were consistent with the model output used
in this paper, the catalyst bispectra, Eq. (24), is computed and
presented in section 3d. However, in order to observe IDdiff,
bispectra using the energy source rather than the catalyst
mode are also computed. The latter formulation allows for
the discernment of energy transfer between modes of similar
wavenumber.6 Such a source-destination bispectrum (contain-
ing IDdiff) can be written as

B
BP→HP

HP,|msrc
a |,|mdest

b
|
52h�� ∑

l56 b
all f

∑
g56a
all h

[ûHP
i,mdest

l ,vf
(x, y)e2pi(mlz2vft)] yHP

j ­j[ûBP
i,msrc

g ,vh
(x, y)e2pi(mgz2vh t)] dz dti (25)

4) SPATIAL DISTRIBUTIONS OF INTEGRATED

SPECTRAL BUDGETS

The horizontal distributions of the vertical spectral flux [in
Eq. (12)] can also be computed by omitting a horizontal aver-
age. The analogous component with horizontal spatial depen-
dence looks like

P.
IDdiff ,|ma |,vb

(x, y) 52

��
∑

|g|. |a|
|l|. |b|

ûHP
i,mg ,vl

(x, y)e2pi(mgz2vlt)

3 (yBPj ­ju
HP
i ) dz dt, (26)

where now the parentheses indicate a vertical and time average.
This will be used in Fig. 3 to select subregions of interest. Detailed
comparison of spatial distributions of spectral flux as well as vari-
ous dissipation mechanisms will be reserved for a future paper.

5) SPECTRAL TRANSFERS VERSUS WAVENUMBER

AND FREQUENCY

As has been mentioned, compensating energy flux associated
with induced diffusion (PIDcomp

) may be forward, backward, or
approximately zero depending on how the aspect ratio of the IW
wavenumbers changes between the source and destination
modes, which in turn corresponds to the direction of energy flow
in frequency space through the IW dispersion relation. A

6 If B
HP→BP

HP
were instead plotted as a function of the catalyst

mode [in the manner of Eq. (24)], the positive and negative catalyst
modes would be expected to have oppositely signed bispectra. When
the positive and negative catalyst-mode bispectra are averaged to
generate a real-valued field to be integrated in position space [again,
refer to Eq. (24)], the oppositely signed contributions would cancel.
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forward frequency cascade associated with induced diffusion
within the supertidal band (i.e., specifically within PIDdiff

) would
require energy exchange from BP to HP (PIDcomp

. 0) while an
inverse frequency cascade would require energy exchange from
HP to BP (PIDcomp

, 0:). The direction of frequency exchange
would be computationally prohibitive to determine directly.
Therefore, we instead compute the spectral transfer as a function
of destination vertical wavenumber and frequency:

T
HP→BP

all,|ma |,vb

5h�� ∑
g56a
l56b

e2pi(mgz2vl t)ûi,mg ,vl
(x, y)yBPj ­j(ui)HP dz dti:

(27)

The transfer in Eq. (27) conserves energy in the supertidal band.
Thus, it should be possible to infer the direction of the cascade by
looking at where the sources and sinks of KE are in the HP band.
Spectral transfers are also computed for the other terms in order to
see, for example, if there is evidence of PSI, how energy is ex-
changed between potential and kinetic energy, and at what fre-
quencies energy is entering and leaving the subdomains of interest.

3. Results and discussion

All results in this paper are computed from an average of five
subregions of interest, shown in Fig. 3. Subregions, rather than
the entire model domain, are used to compute results because of
the prohibitive computational cost and data management re-
quirements associated with the high-resolution case, which has
2.3 billion points of 3D data over the entire model domain.
These subregions were chosen to capture a sample of rough and
flat topography (visible in the contours) and a range of supertidal-
frequency (HP) kinetic energies (Fig. 3a), supertidal (HP)
vertical spectral kinetic energy fluxes (Fig. 3c), and ratios of
near-inertial and tidal to eddy (BP/LP) kinetic energy (Fig. 3b).
The five subregions in question were the only ones results were
computed for. All results in this paper are computed with units of
inverse volume as opposed to mass. We use a background density
of r0 5 1027.5 kg m23. When applicable, the domain-averaged
Coriolis frequency, f0 5 6.85 3 1025 rad s21 is also used. Also,
on the basis of testing different values of j to define scale separa-
tion in ID, LI, and SP (appendix F), we choose to use j 5 2.

The frequency spectrum of the high-resolution case (;250 m3

264 vertical levels) is shown in Fig. 4a with shading and separate
curves indicating the three frequency bands discussed in section 2b.
The band lines are shown at all frequencies to convey the over-
lap left after a 12th-order bandpass filter is applied. Nelson et al.
(2020) have previously compared frequency spectra of these
runs with observations and the GM spectrum (Garrett and
Munk 1975). The supertidal frequency spectrum in the high-
resolution simulation is slightly steeper than the asymptotic v22

prediction of GM while the spectrum from the low-resolution
model (not shown) falls off much more steeply. In vertical wave-
number space (Fig. 4b), the eddy (LP) frequencies are energetically
dominant at low and high wavenumbers while the BP frequen-
cies are energetically dominant at intermediate wavenumbers.
HP contains the least kinetic energy}an order of magnitude

FIG. 3. Maps of various diagnostics in the regions of study:
(a) supertidal (HP) kinetic energy above vertical wavenumber
3.45 3 1023 m21, (b) the ratio of BP (sum of near-inertial and
tidal) kinetic energy to LP (eddy) kinetic energy, and (c) down-
scale vertical induced-diffusion-type spectral kinetic energy
flux through wavenumber 3.45 3 1023 m21, computed as in
Eq. (26). Contours indicate 1000-m levels of the bathymetry.
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less than BP. There is some energy buildup at the vertical grid-
scale in both simulations in Fig. 4b. This buildup is likely a re-
flection of the sharp gradients that exist at the top and bottom
of the domain and of the (intentional) choice to analyze the en-
tire water column rather than tapering it, as is done in Thakur
et al. (2022), Nelson et al. (2020), Pan et al. (2020). Finally,
note that KE of the HP band is much greater at higher resolu-
tion, while the energy levels of BP and LP do not change very
much between the different resolution cases.

a. Integrated vertical spectral KE budgets

As described in section 2b, the downscale vertical spectral
KE flux and integrated vertical spectral dissipation transfers

should be in balance at high vertical wavenumbers, at least to
the extent that scale separation exists in the internal wave
continuum. Assessing details of the budget at these wavenum-
bers is of primary importance. (In contrast, forcing terms are ac-
tive at the lowest vertical wavenumbers such that the spectral
flux and dissipation should not be in balance at those wavenum-
bers). To emphasize details at high wavenumbers, budgets are
presented on linear axes as opposed to logarithmic axes, the lat-
ter of which would emphasize the lowest wavenumbers.

The partial integrated vertical spectral kinetic energy bud-
get of the high-resolution case is shown in Fig. 5, with the left
and right panels corresponding to all frequencies and HP fre-
quencies. The overall amount of dissipation can be assessed
by the value of the dissipation curve at m 5 0, while the
amount of energy that is dissipated at a given vertical wave-
number is proportional to the slope of the dissipation curve.
The dissipation, spectral flux, and advection into the domain
are in balance at the highest wavenumbers for both all fre-
quencies (Fig. 5a) and the supertidal (Fig. 5b) frequencies.
The latter indicates that the internal waves are energized at
small and intermediate but not high vertical wavenumbers;
energy in the IW field at high vertical wavenumbers gets there
through nonlinear interactions among waves and eddies in the
flow. This does not indicate that scale separation exists be-
tween forcing and dissipation; there is no classic inertial range
at the resolutions used in this paper. However, the absence of
forcing at the highest wavenumbers indicates that the IW con-
tinuum has some cascade-like properties and that an LES-
type IW closure may be appropriate.

The frequency-decomposed vertical spectral KE-flux re-
flects specific types of nonlinear interactions that underlie
the ocean’s IW continuum. Within the HP band, IDdiff and
LI are expected to play a dominant role (Dematteis and
Lvov 2021; Dematteis et al. 2022), at least among wave interac-
tions. As described in section 2b(2), spectral flux into the HP
band is decomposed into seven components [see Eq. (15) and
Fig. 2]. These seven components are presented in Fig. 5b along
with dissipation and boundary advection. The HP-to-HP-flux
components are exchanges between large and small vertical
scales on either side of vertical wavenumber m. On the other
hand, the BP-to-HP and LP-to-HP flux components can come
from any vertical wavenumber; these directional exchanges are
depicted in wavenumber–frequency space in Fig. 6. Taken to-
gether, the components of the spectral flux shown in Figs. 5b
and 6 constitute a complete decomposition of all advective en-
ergy exchange with supertidal (HP) modes above a given verti-
cal wavenumber,m.

The individual components of spectral KE flux can be more
easily compared across simulations and regions by looking at
just a single vertical wavenumber. Integrated spectral budgets
through a specific wavenumbers of m 5 3.8 and m 5 12.5 cycles
per kilometer are compared across resolutions and subregions,
respectively, in Fig. 7. The wavenumber of m 5 3.8 cycles per
kilometer was chosen to capture a strong signal from the non-
linear KE scattering mechanisms in both the high-resolution
run (in which the peak PLI is at a slightly higher vertical wave-
number) and the low-resolution run (in which the peak PLI

is at a slightly lower vertical wavenumber). In all cases,

time-mean 
(� = 0) KE

J
K

E

�

�
J

K
E

(a)

(b)

FIG. 4. (a) Frequency spectrum of the high-resolution case aver-
aged across the subregions of interest, as displayed in Fig. 3. The
band of 0.8f0 , v , 2.5f0 is blocked out in gray. The low-pass/
bandpass/high-pass decomposition (see text) of the overall fre-
quency spectrum (black) is shown using the red, magenta, and
green curves, respectively. The decomposition was performed us-
ing a 12th-order bandpass. The blue line indicates the asymptotic
GM slope value of v22. (b) Vertical-wavenumber spectrum of the
different frequency bands in the high- and low-resolution cases
averaged across the subregions of interest, as shown in Fig. 3.
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BP-to-HP flux, which is decomposed into PIDcomp
, PSP, and

PBPother
, is the dominant advective energy transfer to the HP

band relative to energy flux from the eddy (LP) and supertidal
(HP) bands. Note that at higher vertical wavenumbers in the
high-resolution case, the HP-to-HP flux becomes comparable
to the BP-to-HP flux (seen in Fig. 5b), but this cannot be
meaningfully compared with the lower resolutions that do not
resolve such wavenumbers. The wavenumber of m 5 12.5 cycles
per kilometer was chosen for the regional comparison to
maximize PIDdiff

.

In all resolutions in Fig. 7, PIDdiff
is an insignificant portion

of the vertical spectral KE flux through 3.8 cycles per meter,
and intraband energy diffusion associated with PLI is only

significant in the highest resolution case. For vertical spectral
KE flux through 12.5 cycles per meter, which is only possible
in the two cases with higher vertical resolution, PLI increases
by a factor of ;50 and PIDdiff

increases by a factor of ;200
when the horizontal resolution is increased by a factor of 8.
This highly nonlinear sensitivity suggests that ID and LI may
change rapidly with further increases in horizontal resolution.
This high sensitivity to horizontal resolution may be due to
the requirement for high horizontal resolution to activate
higher vertical modes in the continuum (Thakur et al. 2022).

For vertical spectral KE flux through 12.5 cycles per meter
in the high-resolution case, PIDcomp

is roughly one-half of the
magnitude of PIDdiff

in all locations, suggesting that this com-
ponent may be physically tied to supplying compensating en-
ergy to ensure conservation of wave action in the supertidal
band, as hypothesized. This breaks down at smaller vertical
wavenumbers and resolutions, at which PIDdiff

is negligible.
The decomposition in Fig. 7a indicates that the spectral flux

due to eddy-induced diffusion (PIDeddy
5P.

HP→LP
HP

) is larger

than both wave-induced energy diffusion (PIDdiff
) and local in-

teractions (PLI) in all cases except for the highest resolution
case in which PIDeddy

is comparable to PIDdiff
1PLI. Perhaps a

mechanistic understanding of the interactions that give rise to
the GM spectrum cannot be gained without accounting for
these eddy interactions, even though they are frequently omit-
ted in wave-only frameworks of WTT.

Combined, the HP-to-HP spectral flux (PIDdiff
, PIDeddy

and
PLI) contribute substantially (39% and 54% of the total
downscale contributions to the integrated budget through
3.8 and 12.5 cycles per meter, respectively) for the cases with
the highest resolution, and only modestly to the low horizon-
tal and/or vertical resolution cases (#25%). This trend is par-
ticularly pronounced in PLI, where it increases by a factor of
;5 with each successive resolution increase.

FIG. 5. Partial integrated spectral budgets of KE for the high-resolution run averaged across the subregions of interest, as shown in Fig. 3, for
(a) all frequencies and (b) HP band (v . 2.5f0). Note that the local spectral budget (the change in energy of a given wavenumber) is propor-
tional to the slope of the curve at that wavenumber. The budget is “partial” because forcing terms and KPP mixed layer dissipation have been
omitted from the analysis, such that the residual is only expected to be small at mid-to-high vertical wavenumbers. The purple lines indicate
the vertical wavenumbers at which the terms are sampled for the resolution and subregional comparison in Fig. 7, described below.
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FIG. 6. The KE m–v spectra and guide for different mechanisms
averaged across the subregions of interest, as shown in Fig. 3. The
white horizontal dotted line corresponds to the inertial frequency,
f0, averaged over the domain.
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An important implication of the resolution dependence
of HP-to-HP spectral flux is that at the lower resolutions
(2 km3 88 levels, a resolution that is computationally feasible
in an IW-permitting global model such as MITgcm LLC4320),
the IW continuum will be approximately (generalized) quasi-
linear7 (Marston et al. 2016) around the lower-frequency
tides, near-inertial waves, and eddy fields in which inter-
actions of the type P.

HP→all
HP

are not moving a substantial

portion of the energy in the supertidal band. The quasilinear
nature of the continuum in global models does not necessarily
mean that their mixing and transport properties are inaccurate.
In various turbulent flows, generalized quasilinear solutions

can be useful approximations of the full nonlinear solutions,
e.g., Marston et al. (2016). Nonetheless, the relative weakness
of nonlinearity in the IW continuum in the new generation of
global IW-permitting models should be accounted for when
developing and applying closures and mixing schemes appro-
priate for such models. The use of higher resolutions in re-
gional models permit a different, fully nonlinear regime of the
IW continuum that 1) will be useful as a model of “truth” for
understanding and improving IW handling in coarser resolu-
tion global models and 2) may also be optimally handled with
a different dissipation mechanism that accounts for the differ-
ent nature of the IW flows in regional versus global models.

The vertical spectral KE flux decomposition in the high-
resolution case is compared across the different subregions in
Fig. 7b. Boxes B and D, which are over rugged topography,
clearly contribute the most to vertical spectral KE flux and
dissipation of the five regions. In particular, both PIDdiff

and
PIDcomp

are each larger in magnitude in boxes B and D than in

the other boxes, whilePIDeddy
is largest in D. One possible rea-

son for the markedly different breakdown of energy transfers
in box D is its proximity to the domain boundary. This prox-
imity would limit the amount of energy advecting into that re-
gion at the highest vertical wavenumbers and frequencies.
Another possible reason is that the rough topography in box
D is rather shallow, coming to within 150 m of the surface,
whereas it is at great depth in box B (see Fig. 1). The latter
reason would indicate enhanced flux (and wave-induced dissi-
pation and mixing) occurring at depth through bottom inter-
actions. Vertical distributions of horizontal spectral KE flux
and dissipation mechanisms will be examined in a subsequent
paper and will shed light on fluxes at depth.

The boxes (B and D) overlying rough topography also have
negative contributions of HP KE to their budgets from the
boundary advection (BC) term. Supertidal (HP) IW energy is
generated in these regions and moves outward into the rest of
the domain (such as boxes A and C).

b. Bispectra of nonlinear scattering mechanisms

Bispectra, introduced in Eq. (25) in section 2b(2), are dis-
played in Fig. 8. The B

HP→BP
HP

(Fig. 8a) exhibits very clear

downscale flux, with energy always leaving modes at smaller
source vertical wavenumber than their destination wavenumber
(indicated by the negative top-left half of the figure and positive
in the bottom-right). Additionally, the strongest interactions
occur near the diagonal, at which the source and destination
wavenumbers are comparable. This is consistent with the two
being separated by a small-wavenumber catalyst mode, as in
the conceptual definition of ID (McComas and Bretherton
1977).

The BIDeddy
5 B

HP→LP
HP

(Fig. 8a) also exhibits very clear

downscale flux, but in this case the catalyst modes are even
smaller than in B

HP→BP
HP

, which contains IDdiff, as indicated

by the tighter proximity to the positive and negative bands to
the diagonal in Fig. 8b. This means that PIDeddy

is strongly scale
separated in wavenumber between the eddy mode and the wave
modes, and interactions that are local in vertical wavenumber
are not filtered out of PIDeddy

for simplicity. Also apparent is a

FIG. 7. A partial integrated vertical spectral KE budget [Eq. (12)]
at supertidal (HP) frequencies (a) through 3.8 and 12.5 cycles
per meter (indicated by a purple line in Fig. 5) vs resolution and
(b) through 12.5 cycles per meter vs location in the high-resolution
case. Spectral flux decomposition terms are included along with
dissipation and boundary flux. Source terms and KPP’s mixed layer
dissipation are omitted. The PE-to-KE conversion is excluded but
is confirmed to be small in these decompositions.

7
“Quasilinear” is a technical term that does not mean approxi-

mately linear.
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thin line of upscale energy transfer hugging the diagonal in
B
HP→BP

HP
in Fig. 8a. When B

HP→BP
HP

(Fig. 8a) and

B
HP→LP

HP
(Fig. 8b) are combined, they form continuous bands

of downscale flux, meaning that the upscale flux occurring with
small catalyst modes in B

HP→BP
HP

is working against a larger

downscale flux in B
HP→LP

HP
, effectively erasing it.

The bispectrum of B
HP→HP

HP
(Fig. 8c) is generally much

weaker than B
HP→BP

HP
. As with B

HP→BP
HP

, B
HP→HP

HP

is strongest near the diagonal axis. Besides this, it exhibits po-
larity reversal as the wavenumbers increase along the diago-
nal axis, with several alternating antisymmetric bands of
forward and backward spectral transfer. The strong signal
along the diagonal reflects high-frequency, high-wavenumber
IWs scattered by high-frequency and low-wavenumber IWs.
Thus, the strongest interaction is only local in frequency and
not vertical wavenumber. However, weaker signals off of the

diagonal are present and reflect locality in both frequency
and wavenumber.

The bispectra containing compensating energy, B
BP→HP

HP
,

is shown in Fig. 8d. For a forward frequency cascade,8 a positive
signal is expected at small source wavenumbers and larger desti-
nation wavenumbers, as seen at the bottom of the plot. How-
ever, a positive signal is also seen along the diagonal. The
positive signal corresponds to energy coming from high vertical
wavenumbers in near-inertial and tidal frequencies (BP) scat-
tering off of low-vertical-wavenumber modes in the supertidal
band (HP), a mechanism that does not fit cleanly into existing
wave interaction categories described in wave-turbulence ap-
proaches such as McComas and Bretherton (1977). However,

HP HP
BP
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FIG. 8. Bispectra into the supertidal (HP) frequencies for the high-resolution case (case 4 in section 2a) averaged over the five regions
of interest in Fig. 3. The bispectra displayed are (a) B

HP→BP
HP

, (b) B
HP→LP

HP
, (c) B

HP→HP
HP

, and (d) B
BP→HP

HP
. Bispectra are

defined as the kinetic energy transfer from one vertical wavenumber to another, as defined in Eq. (25). The four contributions shown
above constitute a complete decomposition; (d) is related to the bispectrum of Fig. 17 in Sun and Pinkel (2012) except that we use the KE
source vertical wavenumber instead of the catalyst mode and we use both vertical and horizontal components of the gradient. The dotted
lines indicate the partition of the spectral transfer into scale-separated and local components for different values of j. The partition of
B
BP→HP

HP
in (d) is plotted more accurately in Fig. 11b, below, as a function of the catalyst mode instead of the source mode.

8 The direction of the frequency cascade will be determined in
section 3c.
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Wagner and Young (2016) found a process through which near-
inertial modes of high vertical wavenumber are energized
through PSI, and perhaps these modes are acting in P.

IDcomp
dia-

grams in the present model. This mechanism, which we will la-
bel SP, will be discussed in greater detail in the context of the
results of Sun and Pinkel (2012) in section 3d.

c. m–v spectra

Two-dimensional wavenumber–frequency local spectral
budgets, introduced in section 2b(5) are shown in Fig. 9. The
primary motivation for computing these is to discern the direc-
tion of the frequency cascade associated with different nonlin-
ear wave interactions. The advective spectra are decomposed in
Figs. 9a–g. The energy transfer decomposition of the supertidal
(HP) frequencies exists in the top portion of each figure, with
v . 2.5f0. Note that these spectra constitute a local (or transfer),
as opposed to an integrated (or flux), budget. Also note that the
plots for T

HP→BP
all
, T

HP→LP
all

and T
HP→HP

all
in Figs. 9a,

9b, and 9e, respectively, must conserve energy within the super-
tidal band, such that the positive and negative (blue and red)
transfers above the v 5 2.5f0 line must be balanced.

For T
HP→BP

all
, transfers in the HP band increase along m

and are approximately homogeneous in v with a small sink at
the lowest frequencies; this can be interpreted as moving en-
ergy predominantly from low to high vertical wavenumber,
and slightly forward in frequency. This forward frequency cas-
cade could be attributed to either ID or LI. To check if one is
contributing more to the frequency cascade, we note that a
forward frequency transfer is most apparent in boxes B and
D, those with the roughest topography, while none is appar-
ent in the other boxes (see Fig. 10). These are exactly the re-
gions in which PIDdiff

is substantial, indicating the forward

frequency cascade is likely due to ID, which is consistent with
the argument of Dematteis et al. (2022) that the horizontal
wavenumber “keeps pace” with the vertical wavenumber under
induced diffusion. The computed spectral transfers are inconsis-
tent with the theory of McComas and Müller (1981) in which
ID is associated with an inverse-frequency cascade for superti-
dal IWs. It also means that compensating energy, PIDcomp

, is ex-

pected to be weakly positive9 in the present model results so as
to conserve wave action among supertidal IWs.

The T
HP→HP

all
(Fig. 9e), on the other hand, exhibits a clear

forward frequency cascade at mid-to-high vertical wavenumber
(indicated by KE leaving the lower frequencies in the HP band

and entering the higher frequencies.) Although only a subset of
LI, the forward direction of the frequency cascade of this com-
ponent is consistent with the predictions of Dematteis et al.
(2022) in which LI is expected to transfer energy more in the
horizontal spectral direction relative to ID. LI should therefore
have a more pronounced forward frequency transfer (see Fig. 6
in that paper), although Fig. 10 suggests this is only observed
here in the component that is local in frequency as opposed to
vertical wavenumber.

Energy transfer from BP (near-inertial and tidal frequen-
cies) into HP (the supertidal band), depicted in Fig. 9c is posi-
tive throughout the HP band. Energy transfer from LP (eddy
frequencies) into HP, depicted in Fig. 9d, shows some KE
transfer from HP to LP at the lower vertical wavenumbers
and only forward-frequency (LP-to-HP) transfer at the high-
est vertical wavenumbers. Note that in these two plots, the
transfer need not sum to zero in the supertidal (HP) band.

KE advected into the regions of study is also decomposed
into two-dimensional wavenumber–frequency spectra in Fig. 9f.
This implies that, at least for the five subregions of interest,
there is advection of supertidal KE into these regions at low-to-
mid vertical wavenumber and advection out of these regions at
high vertical wavenumbers.

Some theories of the IW continuum (e.g., McComas 1977)
suggest that wind forcing injects energy at high v, low m, at
which point KE is moved through nonlinear interactions among
waves to smaller v. Signatures of this are not visible as an in-
verse frequency cascade at low vertical wavenumber in the ad-
vective spectra of transfer within the HP band (Figs. 9a,b,e),
where KE might be leaving the highest frequencies. They are
also not visible in the top left of the PE-to-KE conversion spec-
tral, Fig. 9g, where some energy might be injected from SSH
perturbations. These characteristics of the m–v spectral trans-
fers may be because wind forcing is limited to being updated
only every 6 h. Higher-frequency forcing, or perhaps coupling
to an atmospheric model, are likely necessary to force the flow
in a manner consistent with the picture developed by McComas
(1977) and will be explored in a future study. Such high-
frequency forcing could also impact the overall direction of the
ID or LI cascades that are observed. On the other hand, there is
a PSI signal at tidal frequencies. The plot of KE transfer from BP
(Fig. 9c) conserves energy within the BP band and the strong
negative signal at low vertical wavenumber and the semidiurnal
frequency is consistent with PSI. This likely PSI signal is about an
order of magnitude lower in box E, which is north of the critical
latitude for PSI, than in boxes B, C, and D, which are south of
the critical latitude (not shown). The signal in box A, which strad-
dles the critical latitude, is also much larger than in box E.

d. Interpretation of and comparison with observations of
Sun and Pinkel (2012)

Sun and Pinkel (2012) use observational data to compute
bispectra in an attempt to identify ID. Specifically, they com-
pute bispectra using the catalyst mode and using only the ver-
tical component of the gradient in the advective scattering
[see Eq. (23)]. Related bispectra [Eq. (24)] are reproduced
from the present model data (averaged over the 5 regions of

9 To reprise some relevant points previously made in sections 1b
and 2b(5), wave action is expected to be conserved in the superti-
dal band under ID. The definition of wave action, A 5 E/v, im-
plies the direction of compensating energy that must be supplied
from the catalyst band to conserve wave action is the same as that
of the frequency cascade associated with ID, a point that is made
clear in the discussion of Fig. 5 in McComas and Müller (1981).
Dematteis et al. (2022) study spectra that they expect share prop-
erties with the real ocean that have both a weak forward frequency
cascade (top row in Fig. 5 of that paper) and neutral frequency cas-
cades (middle row in Fig. 5 of that paper) under ID, indicating
compensating energy from the catalyst band to the supertidal
band that is absent or weak.
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FIG. 9. Themdest 2 vdest spectra of various local spectral budget terms [Eq. (27)] averaged across the subregions of interest, as shown in

Fig. 3. The spectral transfers displayed are (a) T : HP→BP
all, (b) T : HP→LP

all, (c) T : BP→all
all, (d) T : LP→all

all, (e) T : HP→HP
all,

(f) T BCs, and (g) T PE"KE. The spectra are also averaged between positive and negative frequencies. The first five panels (a)–(e) constitute
a complete decomposition of nonlinear advective scattering within any given frequency band. Note that the advective term is a spectral
transfer as opposed to a spectral flux. Computing the flux would involve integrating the transfer in the wavenumber domain. The direction
of frequency flux associated with a given transfer mechanism can be approximately discerned within a subspace that conserves energy un-

der the evolution of that mechanism [e.g., in the HP band for T : HP→BP all in (a)]; if a sink (blue) is identified in the energy-conserving
spectral band, energy must be transferred from those modes to the source (red) modes in that band. In this way, for example, the com-

bined contributions of IDdiff and LI to T : HP→BP HP in (a) can be seen to move KE from low to high v.
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interest in the domain, depicted here in Fig. 3) in Fig. 11. To
reiterate important points made in section 2b(3), an advan-
tage of the method used in this paper is that unlike in Sun and
Pinkel (2012), the bispectra can include the vertical and hori-
zontal gradients (as in Fig. 11c). At the same time, the method
used in this paper requires averaging over positive and negative
values of the source and destination modes, implying that it can-
not identify vertical anisotropies in scattering mechanisms such
as through ES. Additionally, Sun and Pinkel (2012) separate
their supertidal (HP) band from their low-pass background field
(LP) by removing intermediate frequencies whereas the bispec-
tra in Fig. 11 do not.

It is worth discussing whether it is appropriate to use only
the vertical-gradient component of a bispectrum such as in
Eq. (23). Sun and Pinkel (2012) point out that such an

approximation is only valid in horizontally homogeneous
flows and noted that would not be applicable in their region
of study. We further point out that the horizontal-gradient
part of these bispectra and advective tendencies in general
should only be zero in horizontally homogeneous flows if the
source and destination fields are the same [as it is in Gargett
and Holloway (1984), which Sun and Pinkel (2012) cite to
support their assumption]. To put this another way, if f, g, and
h are distinct general incompressible three-dimensional veloc-
ity fields, then under horizontally homogeneous statistics,
f ? [(g ?=h)f] 5 0 whereas f ? [(g ?=h)h] Þ 0, where the overbar
indicates a time average and =h is the horizontal gradient opera-
tor. In the compensating-energy bispectra used by Sun and Pinkel
(2012), the source field is of near-inertial frequencies while the des-
tination field is of supertidal frequencies. Thus, even in horizon-
tally homogeneous flows, there will still be a nonzero value of
these terms that represent the transfer of energy from low to high
frequencies.

Sun and Pinkel’s (2012) assumption that the horizontal-gradient
contribution to the bispectra vanishes is also verified explicitly by
comparing the bispectra with and without the horizontal-gradient
contribution in Figs. 11a and 11b, respectively. We also compute
the vertical- and horizontal-gradient spectral fluxes of PIDdiff

in
Fig. 11c. It is apparent that the assumption of small horizontal-
gradient contribution is not valid in the present model output
and care should be taken to devise alternative means to mea-
sure bispectra from observational data. A more realistic option
may be to compare observational data of the vertical compo-
nent with that of regional model output, such as this one, in an
attempt to infer general features of the entire bispectra from the
vertical component. This also suggests that we should be wary
of attempts to interpret the bispectra features of Sun and Pinkel
(2012) in the first place. Nonetheless, the general features of
Fig. 11b are reflected in Fig. 11a. The inclusion of the horizontal
gradients mostly shifts the signal in the positive direction. There-
fore, with the aid of the computational results in Fig. 10, the fea-
tures evident in the bispectra of Sun and Pinkel (2012) can still
be interpreted.

Sun and Pinkel (2012) found a positive signal atmcat ,, mdest;
this behavior is not expected from ID. Rather, a signal atmcat ’

mdest, which would be consistent with ID, was absent or very
weak and not bicoherent. These features of Sun and Pinkel’s
(2012) results are generally consistent with the bispectra com-
puted from the present model output in Fig. 11a, which also
shows a strong positive signal at mcat ,, mdest, similar to Sun
and Pinkel (2012). This signal indicates a transfer of energy from
high-vertical-wavenumber near-inertial and tidal waves to high-
vertical-wavenumber supertidal IWs via scattering off a low-
vertical-wavenumber supertidal IWs. As this signal has been
reproduced in the present numerical simulation, it is referred
to as a distinct mechanism, SP, following the name of Sun and
Pinkel. SP, occurring at mcat ,, mdest, reflects a transfer of en-
ergy from large vertical wavenumbers at near-inertial and tidal
frequencies (BP) into supertidal modes at similar vertical wave-
numbers (HP) via scattering off of catalyst modes of low vertical
wavenumber in the supertidal band (HP). It is noteworthy that
in Fig. 7b, in which PIDcomp

shows a strong correspondence in

FIG. 10. Regional comparison of m–v spectra for T
HP→BP

all
(as in Fig. 9a). Boxes B and D were selected for separate analysis
because that is where most of the forward frequency cascade ob-
servable in the five boxes occurs, which is visible in the high-
frequency part of the figures. In Fig. 7b, the ratio of PIDdiff

to PLI is

at least an order-of-magnitude greater in boxes B and D than in
boxes A, C, and E. This suggests that PIDdiff

is responsible for the

forward frequency cascade seen in the HP band in Fig. 9a.
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magnitude PIDdiff
over the subregions, PSP also shows a strong

correspondence in magnitude to PIDdiff
. Perhaps SP is associated

with ID through a mechanism that is of higher order (and involv-
ing more than one triadic scattering process). Alternatively, per-
haps SP and ID are both correlated with rough topography.

The plots in Fig. 11a show a larger range of catalyst modes
and a smaller range of destination modes than those in
Sun and Pinkel (2012), thereby making the aspect ratio of
mcat ’ mdest easily identifiable as the diagonal. The bispectra
of Sun and Pinkel (2012) are presented on a linear scale which
makes it only easy to discern about one order of magnitude in
their signal, possibly reflecting a observational noise floor.
The present numerical results appear to have a lower noise
floor (although we did not compute a bicoherence analysis.)
The bispectra are presented on a log-scale color bar to reveal
the weaker signal. The far left of the left panel of Fig. 16 in
Sun and Pinkel (2012) shows alternating-signed bands near
the origin. In Fig. 11a of this paper, a similar signal can be
seen to extend weakly along the diagonal, mcat ’ mdest. This
pattern should include IDcomp and indicates that compensating
energy is primarily coming from modes that are catalysts in
the associated IDdiff diagrams that are inducing KE diffusion
downscale from this mode (positive above the diagonal) as op-
posed to from upscale into this mode (negative below the diag-
onal), which actually act weakly in the opposite direction.

4. Conclusions

With the increasing availability of high-resolution IW-permitting
numerical models, wave-turbulence phenomenologists and the-
orists have acquired a validation tool capable of filling in gaps
that are not easily accessible from observational data. At the
same time, IW-permitting numerical models can enable more
meaningful interpretation of observations, which are con-
strained by budgetary and other limitations from fully sampling
complex four-dimensional IW fields. Another useful tool for
these purposes is the asymmetric scattering diagram, which
readily serves as a point of comparison with observations of tri-
ads [such as in Sun and Pinkel (2012)] and also allows for the
study of resonant nonlinear mechanisms, such as induced diffu-
sion and local interactions, that govern the IW cascade.

As a starting point, integrated vertical KE spectral budgets were
computed for decomposition of both nonlinear advective scattering
and dissipation. Advection and dissipation are found to be nearly
in balance at high vertical wavenumbers, although an inertial range
in which forcing and dissipation are absent was not present. Fur-
ther results indicate that the extent of nonlinearity in such an IW
continuum is highly dependent on the resolution of the model.
In coarse 2 km resolutions (common in the highest-resolution
global models), the IW continuum is approximately (generalized)
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SP

FIG. 11. The bispectra of the catalyst mode and destination wave-
number, as presented in Fig. 17 of Sun and Pinkel (2012) [see
Eq. (24) in this paper]. (a) The bispectrum from Eq. (24) similar to
that computed in Sun and Pinkel (2012, their Fig. 17). One key differ-
ence from Sun and Pinkel (2012) is that the contributions at the posi-
tive and negative vertical catalyst wavenumber are added together,
making the bispectrum much easier to compute using 3D model out-
put. This is computed as an average over the subregions of interest,
as displayed in Fig. 3. (b) As in (a), but with the horizontal gradient

$−
included. The dotted lines help to visualize the partition of the
spectral transfer into scale-separated and local components for
different values of j. (c) The integrated spectral KE flux from the
vertical-gradient and horizontal-gradient contributions, thus highlight-
ing their differences.
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quasilinear around lower-frequency (v , 2.5f0) background
waves and eddies, meaning very little energy is transferred
within the supertidal IW continuum. At such resolutions,
most energy in the IW continuum has been transferred to a
high-frequency mode from a low-frequency mode through a
single nonlinear interaction rather than a series of cascade-
like processes (such as through ID or LI). Thus, fully non-
linear aspects of the IW continuum are largely small in
global models and at best can be parameterized based on
available quasilinear flow information.

A central motivation of this work is to better understand non-
linear IW scattering mechanisms in a realistic ocean model. On
one hand, theoretical questions in WTT pertaining to ID and LI
in McComas and Bretherton (1977) and Dematteis et al. (2022)
can be tested as well as decomposed using asymmetric spectral
transfer diagrams. On the other hand, mechanisms that involve
the eddy field or that do not fit neatly into existing frameworks
can be measured, with the efficient computation of bispectra in
position space being particularly instrumental for the latter ac-
tivity. We find that ID is associated with a small forward fre-
quency cascade and is strongest over rough topography. This
stands in contrast to the theoretical framework of McComas
and Müller (1981) who predicted an inverse frequency cascade
associated with ID. Nonlinear spectral KE fluxes within the
supertidal band involving only the wave part of the flow are also
approximately decomposed into spectrally scale-separated (ID)
and local (LI) components. The vast majority of these fluxes are
local (LI) at low resolution. In addition, spectral fluxes are
highly spatially inhomogeneous, and are largest within the sub-
region studied that had rough topography at depth.

The method of decomposing asymmetric spectral fluxes into
catalyst, source, and destination modes enabled the separation
of two distinct exchanges within ID: 1) IDdiff, the supertidal en-
ergy diffusion, and 2) IDcomp, energy compensation from the
near-inertial and tidal frequencies. Partial spectral flux budgets
reveal that P.

IDcomp
is similar in magnitude and varies subregion-

ally with P.
IDdiff

at high vertical wavenumber. Using bispectra of
asymmetric spectral KE transfers, a mechanism (termed SP)
with a strong nonlinear energy exchange (P.

SP) is identified both
here and in the observational results of Sun and Pinkel (2012).
This exchange moves KE from near-inertial and tidal frequen-
cies of high vertical wavenumber into supertidal IWs of similar
vertical wavenumber via scattering off of supertidal IWs that
have lower vertical wavenumbers. Being an energy exchange
from tidal and near-inertial frequencies to supertidal frequen-
cies, SP is a key component of the generalized quasilinear dy-
namics that govern the IW continuum at low resolutions that
would commonly be found in global models. SP does not fit into
existing frameworks of nonlinear energy exchange among IWs,
but perhaps this mechanism is real and important in the ocean
given its presence in both Sun and Pinkel (2012) and this paper.

In addition, the vertical spectral KE flux of a mechanism
analogous to IDdiff in which eddy fields catalyze supertidal en-
ergy diffusion (termed P.

IDeddy
) is measured. P.

IDeddy
is found to

be much larger than P.
IDdiff

and P.
LI at lower resolutions and

comparable to P.
IDdiff

and P.
LI only in the highest vertical and

horizontal resolution simulation.

In summary, the present findings identify eddy-induced IW
KE diffusion (P.

IDeddy
) as an important mechanism in shaping

the IW spectrum in this simulation. SP [observed in Sun and
Pinkel (2012)] is also found to be important in energizing the
IW continuum in the present numerical simulation. Taken as a
whole, the present results suggest internal wave interactions
give rise to the GM spectrum in a way that differs from the
idealized picture in many previous studies. This may be a re-
flection of the limited resolution or representation of IW dy-
namics. However, these findings can serve as a starting point
for studying a more complete spectral budget of IW interac-
tions that can be improved upon over time.

A natural next step will be to direct attention to dissipation
mechanisms [building on Thakur et al. (2022)] and parameter-
izations of the IW continuum along with the spectral transfer
decompositions presented in this paper. In particular, we will
examine vertical and horizontal spatial distributions. This
strategy will hopefully reveal different modeling strategies for
quasilinear and fully nonlinear mechanisms that, in the real
ocean, would move energy beyond the grid scale of a numeri-
cal model. Looking forward, we anticipate high-resolution re-
gional models, such as this one, to become increasingly
important in probing details of the IW cascade and potentially
developing model parameterizations for such details.
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APPENDIX A

Asymmetric KE Transfer within Advective Triads

The exchange of energy among spectral modes of waves and
eddies of different wavenumber in incompressible flow due to
the advective nonlinearity can be understood in terms of triads of
waves corresponding to source, catalyst, and destination modes
of the kinetic energy. Start by expressing the advective term in
the velocity field evolution in its incompressible flux form:

­ty i 52y j­jy i, (A1)

52­j(y jy i) 1 y i­jy j, (A2)

52­j(y jy i): (A3)
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Here, y i(x, y, z, t) is the ith component of the 3D velocity field
and is a function of space and time, ­ty i denotes the velocity
field evolution strictly due to the advective term, and subscripts
are taken to imply a sum over dimensions. Equation (A3) fol-
lows from the divergence-less condition, ­jy j 5 0. This form will
be substituted in the derivation below. Next, consider the
domain-averaged change in KE in the horizontal velocity field
from a single spectral component of the velocity field, ỹ i(k0):

1
2
­t[ỹ i(k0)ỹ *

i (k0)] 5 Re{ỹ i(k0)­t[ỹ *
i (k0)]}: (A4)

Here, k is the continuous 3D wavenumber (although solely
horizontal or vertical may be used, the latter of which is done
in the main part of this paper) and ỹ i(k0) is the Fourier com-
ponent of the velocity field, as defined on a continuous and
infinite domain:

ỹ i(k) 5
�
y i(x)e22pi(x?k) d3x: (A5)

Here, integrals are assumed to be from 2‘ to ‘ and each
integral symbol represents a triple integral in 3D space.
Also, note y *i (k)5 y i(2k). Then, making use of a form of
the inverse Fourier transform corresponding to Eq. (A5),

y i(x) 5
�
ỹ *
i (k)e22pi(x?k) d3k, (A6)

we can show

1
2
­t[ỹ i(k0)ỹ *

i (k0)] 5 Re{ỹ i(k0)­t[ỹ *
i (k0)]}, (A7)

5 Re{ỹ i(k0)
�
2­j[y j(x)y i(x)]e2pix?k0 d3x},

(A8)

52Re ỹ i(k0)
�
­j

�
ỹ *
j (k1)e2pix?(2k1) d3k1

[ ] �
ỹ *
i (k2)e2pix ? (2k2) d3k2

[ ]{ }
(e2pix?k0 ) d3x

( )
, (A9)

52Re ỹ i(k0)
���

ỹ *
j (k1)ỹ *

i (k2)[22pi(k1 1 k2) ? ĵ][e22pix ? (k11k2)] d3k1 d3k2(e2pix?k0 ) d3x

{ }
, (A10)

5 2p Re i

��
[(k1 1 k2) ? ĵ]ỹ i(k0)ỹ *

j (k1)ỹ *
i (k2)d3(k0 2 k1 2 k2) d3k1 d3k2

{ }
, (A11)

5 2p Re i

� (
k0 ? ĵ

)
ỹ i(k0)︸�����︷︷�����︸

Destination
(Green)Arm

ỹ *
j (k0 2 k2)︸����︷︷����︸
Catalyst

(Blue)Arm

ỹ *
i (k2)︸�︷︷�︸
Source

(Red)Arm

︷������������������︸︸������������������︷Diagram in Fig: A1:

d3k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A12)

where we have introduced ĵ as the unit vector in the spatial
dimension corresponding to index j. The integrand of this
equation can be symbolically represented as a diagram as in
Figs. A1–A3. In Eq. (A12), the labeled parts correspond to
the different arms of the scattering diagram in Fig. A1. Each
of the diagrams in Eq. (A12) represents the change in energy
in just one mode, k0. To represent an exchange of energy
from one mode to another, we must consider pairs of triads.
Because the advective nonlinearity conserves energy in an in-
compressible flow, the simplest scenario is for the value of
the diagram (representing the integral quantity of kinetic en-
ergy change of the mode k0) to be opposite under the ex-
change of k0 ↔ k2 and that this holds for all d3k2 and d3k0
in their respective integrands. To verify this, write the flux
with these modes exchanged:

1
2
­t[ỹ i(k2)ỹ *

i (k2)]

5 2p Re i

�
(k2 ? ĵ)ỹ i(k2)ỹ *

j (k2 2 k0)ỹ *
i (k0) d3k0

[ ]
, (A13)

5 2p Re i

�
(k2 ? ĵ)ỹ i(k2)ỹ j(k0 2 k2)ỹ *

i (k0) d3k0
[ ]

: (A14)

Invoking the divergence-free condition for a general mode k:

0 5­jy j(x), (A15)

5

�
­jỹ j(k)e22pix?k d3x0, (A16)

k0

k2
k1

k0=k2+k1

FIG. A1. An advective scattering diagram from the integrand of
Eq. (A12). The arrows indicate the direction of kinetic energy flow.
Here, k0 refers to the destination mode of KE, k2 is the source
mode of KE, and k1 is the catalyst mode that neither contributes
nor receives KE. This diagram represents the change in KE in the
destination mode, k2, only, such that pairs of diagrams are required
to represent an exchange of energy between modes, as displayed in
Fig. A2, below.
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52

�
2pi(k ? ĵ)ỹ j(k) d3x0, (A17)

5 (k ? ĵ)ỹ j(k), (A18)

and then identifying k " (k0 2 k2), one can rearrange as

(k0 ? ĵ)ỹ j(k0 2 k2) 5 (k2 ? ĵ)ỹ j(k0 2 k2); (A19)

this can be substituted this back into Eq. (A14):

1
2
­t[ỹ i(k2)ỹ *

i (k2)]

5 2p Re i

�
(k0 ? ĵ)ỹ i(k2)ỹ j(k0 2 k2)ỹ *

i (k0) d3k0
[ ]

: (A20)

Swapping the ỹ i and noting that the real part of a complex
number is invariant under conjugation

1
2
­t[ỹ i(k2)ỹ *

i (k2)]

522p Re i

�
(k0 ? ĵ)ỹ i(k0)ỹ *

j (k0 2 k2)ỹ *
i (k2) d3k0

[ ]
(A21)

and comparing this with (A12), we can see that energy is in-
deed conserved, leaving one mode at the same rate it enters
another through nonlinear scattering. This is represented graph-
ically in Fig. A2. We stress that for the basic advection term
­ty i 5 2y j­jy i, the energy comes entirely from the y i field on
the right-hand side rather than from the y j field, as one would
expect using physical intuition.

Various spectral methods, including spectral fluxes, coarse grain-
ing (Aluie et al. 2018), and WTT (e.g., Lvov et al. 2010; Dematteis
et al. 2022; Dematteis and Lvov 2021), are sometimes implemented
such that scattering is symmetric between the source and catalyst
modes. This symmetry between catalyst and source modes is most
clearly indicated in the diagrams in Fig. A3. The ideas discussed in
this appendix are extended and interpreted in appendix B.

APPENDIX B

Extension to Spectral Frequency Transfers

The spatial spectra transfers discussed in appendix A are of-
ten extended to include frequency space without a formal justi-
fication or physical interpretation (Arbic et al. 2014; Müller et al.
2015). A more formal derivation and physical interpretation of
this decomposition draws on Morten (2015). Following Morten
(2015), imagine the kinetic energy (KE) averaged over a win-
dow in time of duration T centered at time t:

hKEi 5 1
2TV

� t2(T/2)

t2(T/2)

�
V
y i(x, t)y i(x, t) d3x dt, (B1)

where the angle brackets indicate an average over the spatial
domain and the time window and V is the domain volume.
This can be expressed as an integral over the spectral decompo-
sition of the velocity field in both wavenumber and frequency:

hKEi 5 1
2

��
Re[ ˆ̃y i(k0, v0, t) ˆ̃y *

i (k0, v0, t)] d3k dv, (B2)

where the hat (caret) indicates the spectral component in
frequency space defined over a window of width T centered
at t 5 t, the latter of which is considered a free variable,

ˆ̃y i(k, v, t) 5
� t2(T/2)

t2(T/2)
ỹ i(k, t)e2pivt dt: (B3)

The KE can be written in terms of components as

hKEi(k0, v0, t) 5
1
2
Re[ ˆ̃y i(k0, v0, t) ˆ̃y *

i (k0, v0, t)]: (B4)

The change in the KE in the time window centered on t

contributed from ˆ̃y i(k0, v0) is then
­thKEi(k0, v0, t) 5 Re[ ˆ̃y i(k0, v0, t)­t ˆ̃y i(k0, v, t)]: (B5)

A key result of Morten (2015) is that (subject to certain con-
straints on how the velocity field is detrended and tapered),
the above is equivalent to

­thKEi(k0, v0, t) 5 Re[ ˆ̃y i(k0, v0, t)­̂tỹ *
i (k0, v0, t)]: (B6)

FIG. A3. In some spectral analyses, scattering coefficients are
symmetric between the catalyst and source terms. The resulting di-
agrams can be depicted graphically as in this plot. Diagrams that
are symmetric between the source and catalyst modes cannot pos-
sess antisymmetry under the exchange of the destination mode
with one of the symmetrized modes unless the flow is zero every-
where, meaning information about exchanges of energy between
pairs of modes is not directly accessible from such diagrams.

k0

k2
k1

k2

k0
-k1

= -
FIG. A2. Energy conservation is expressed through a pair of op-

positely signed diagrams corresponding to the removal of energy
from one mode and the injection of energy from another. Note
that a diagram is distinct from the concept of a triad in that a single
triad represents all exchanges of energy among three modes and
does not correspond to a single physical quantity, whereas a dia-
gram does correspond to a single quantity.
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This can then be reworked as

­thKEi(k0, v0, t) 5 Re ỹ i(k0, v0)
�
­t[ỹ *

i (k0, t)]e22pivt dt
{ }

(B7)

5 Re{ỹ i(k0, v0)
��

2­j[y j(x, t)y i(x, t)]e2pi(k0 ?x2v0t) d3x dt}
1 O:T:, (B8)

where the flux form of the advective term is written out, O.T.
refers to the other terms in the momentum equations, and time
is integrated from t 5 t 2 (T/2) to t 5 t 1 (T/2). Dropping
the other terms, one can follow the derivation of KE energy
flow from the source to the destination field presented in
appendix A with frequencies included and arrive at

­tKE(k0, v0, t) 5 2p Re i

��
(k0 ? ĵ)ỹ i(k0, v0)ỹ *

j

[
3 (k0 2 k2, v0 2 v2)ỹ *

i (k2, v2) d3k2 dv2

]
:

(B9)

Similar to Eq. (A12), Eq. (B9) changes sign under the ex-
change of {k0, v0} ↔ {k2, v2}.

Therefore, the extension of spectral fluxes and transfers to
frequency space as used by Arbic et al. (2014) and Müller et al.
(2015), as well as in Eqs. (5), (12), (24), and so on, can be inter-
preted thanks to Morten (2015) as the exchange of energy from
a wave of one frequency to another as the sample window over
which the frequencies are computed is moved forward in time.

APPENDIX C

Local Spectral Budget

The local spectral KE budget T (ka) is the evolution of
the kinetic energy coming from the spectral components of
the velocity fields ỹ i(ka):

T ka
(t) 5­tKE(t) (C1)

5 V Re[ỹ i,ka
(t)( ­̃ty *i )ka (t)], (C2)

where ka are now discrete wavenumber vectors with mode in-
dex vectors a 5 {ax, ay, az} [defined analogous to the vertical
wavenumbers in Eq. (7)], and the tilde notation now refers to a
continuous 3D spatial Fourier transform defined on a finite do-
main of volume V:

ỹ i,ka
5

1
V

�
y i(x)e22pi(x?ka) d3x; ka 5

a

V
; ai 2 Z (C3)

y i(x) 5 ∑
all a

ỹ ka
e2pi(ka ?x): (C4)

Equation (C2) can then be decomposed into the contributions
to the time derivative of the velocity fields coming from the
various terms in the spectral momentum equations [which are
arrived at by taking the Fourier transform of Eq. (1)]:

T term,ka
(t) 5 V Re[ỹ i,ka

(t)( ­̃ty *i )term,ka
(t)]: (C5)

Note that Eqs. (A4)–(A12) refer to the local spectral budget
for the advective term, which is referred to as the spectral
transfer. Equation (C5) can be computed in position space by
writing ỹ i,ka

(t) as a sinusoidal function:C1

T term,ka
(t) 5 1

2

�
∑

g56a
ỹ i,kg

(t)e2pi(kg ?x)­ty i,term(x, t) d3x, (C6)

where V is the volume over which the spectral components
are defined, the time derivative of the velocity field is not
decomposed into spectral components. If we note that
T term,ka

(t) is invariant under ka ↔ 2ka, then in one dimen-
sion it can be useful to remove the factor of 1/2 and restrict
the wavenumber argument of Tterm to be positive, as is
done in the body of this paper for vertical wavenumbers m
defined along the vertical spatial coordinate z.

T term,|ma |(t) 5
�

∑
g56a

ỹ i,mg
(t)e2pimgz­ty i,term(z, t) dz: (C7)

The extension of Eq. (C6) to include frequency as well as wave-
number given in Eq. (5) can be derived by starting with
Eq. (B6). To do this, we must now define the local spectral bud-
get as the change in KE from a given mode, {ka, va}, defined
over a window in time of duration T centered at time t 5 t

that moves forward with time, as described in appendix B:

T term;ka ,vb
(t) 5­tKEka ,vb

(t) (C8)

5 VT Re[ ˆ̃y i,ka ,vb
(t)( ̂̃­ty *i )term,ka ,vb

(t)]: (C9)

Here, the tilde–hat indicates Fourier amplitudes in both frequency
and wavenumber [Eq. (B3)] and Eq. (C9) follows from Eq. (C8)
by Eq. (B6). Then, the velocity evolution can be decomposed
into the budget contributions from individual terms and expressed
as an integral of a sinusoid over position and time:

C1 For a derivation of this point, consider generic discrete spec-
tral functions g̃ka and h̃kb

and their continuous spatial counterparts
g(x) and h(x):

1
2

�
∑

g�6a
g̃kge

2pi(kg?x)h(x) d3x � 1
2

�
∑

g�6a
g̃kge

2pi(kg ?x)[∑
all l

h̃kl
e2pi(kl?x)] d3x

� 1
2

�
∑

g �6a
all l

e2pi[(kg+kl) ?x]g̃kg
h̃kl

d3x

� 1
2

�
∑

g�6a
all l

e2pi[(kg+kl) ? x]g̃kg h̃kl
d3x

� 1
2

∑
g �6a
all l

Vd3kg ,2kl
g̃kg h̃kl

� V
2
∑
all l

(d3ka ,2kl
g̃kah̃kl

+ d3ka ,kl g̃2ka
h̃kl

)

� V
2
g̃ka h̃2ka

+ V
2
g̃2ka

h̃ka
� VRe(g̃ka h̃2ka

),

where integration is over a domain of volume V and d3 is the
three-dimensional Kronecker delta.
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T term,ka ,vb
(t) 5 1

2

��
∑

g56a
l56b

ˆ̃y i,kg ,vl
(t)e2pi(kg ?x2vl t)

3 ­ty i,term(x, t) dt d3x, (C10)

Similar to Eq. (C7), Eq. (C10) can be written as a function
of positive ma:

T term,|ma |,vb
(t) 5

��
∑

g56a
l56b

ˆ̃y i,mg ,vl
(t)e2pi(mgz2vlt)

3 ­ty i,term(x, t)dt dz: (C11)

Under the hydrostatic approximation and as is done in
this paper, it is useful to define KEhyd 5 uiui 5 u21 1 u22,
which is conserved under the action of the hydrostatic
advective operator in the bulk of fluid. In this case, indi-
ces on u only sum over the two horizontal dimensions
and the vertical spectral transfer is

T hyd,term,|ma |,vb
(t) 5

��
∑

g56a
l56b

ˆ̃ui,mg ,vl
(t)e2pi(mgz2vlt)

3 ­tui,term(x, t) dt dz: (C12)

The hydrostatic label will be dropped in the body of this paper.

APPENDIX D

Divergence Correction

This appendix is mentioned in appendix E. To handle the hori-
zontal boundaries in computing spectral transfers and fluxes from
the advective term, the flow field is assumed to be periodic and
the resulting divergence is explicitly removed:

P.

LP→BP
HP,ma

52h�� ∑
|g|.|a|
all l

ûHP
i,mg ,vl

(x, y)e2pi(mgz2vlt)(y j­jui) dz dti
1

1
2h�� ∑

|g|.|a|
all l

ûHP
i,mg ,vl

(x, y)ui(­jy j) dz dti: (D1)

This procedure forces the spectral flux to conserve energy
within the domain (up to discretization and interpolation error)
and has the added benefit of correctly handling the advective
flux associated with the free surface of the flow. The procedure
does introduce error from the sharp gradients imposed at the
periodic boundaries, but this error is deemed to be a worth-
while sacrifice to conserve energy under the advective operator.
This procedure was not used for the calculation of wavenum-
ber–frequency transfers because energy conservation was not
so important in this context as to merit the expense of imple-
menting and computing this correction.

APPENDIX E

Budget Term Diagnosis Implementation

Below are details of the numerical methods used to diag-
nose various terms in the spectral budgets used in this pa-
per. Also, see Adcroft et al. (2015) and Nelson et al. (2020)
for further information on the solver details and simulation
settings.

• Advection (A) is a flux form centered second-order operator.
In our analysis, we compute this term exactly as in the model,
except that it is computed on a vertically uniform grid. Ex-
periments suggest that this procedure yields better energy
conservation than interpolation after the velocity tendencies
are computed. All other terms are computed on the non-
uniform grid and then interpolated. Horizontal boundary
conditions are handled by assuming periodicity and explic-
itly removing the energy sources/sinks associated with the
resulting unphysical (three dimensional) flow divergence,
as described in appendix D.

• Advection of kinetic energy into the simulation domain from
the boundaries (BCs) is computed explicitly at the surfaces of
the region being analyzed. This is done with the same flux-
form discretization as for the previously mentioned volume
advection operator.

• KPP background and shear (DKPP_BG and DKPP_Shear) are
computed using the same discretizations as in the model be-
low 20 m depth, using a 30-m one-sided Tukey taper from
20 to 50 m. The taper excludes the vast majority of the di-
agnosed mixed layer, which always lies within the upper
50 m during the weeklong model output period across the
domain. The mixed layer dissipation (DKPP_ML) is entirely
omitted in the hope that it will prove to be unimportant
in the general balance of the IW field and any other con-
clusions drawn from this work. The findings of this work
generally support this assumption. All other terms are
computed throughout the entirety of the water column.

• The Leith scheme (DLeith) is computed using the same dis-
cretizations as in the model.

• Quadratic bottom boundary layer drag (DQBD) is computed
exactly as it is in the model. This term implicitly handles
the no-slip bottom boundary condition.

• A no-slip side boundary condition is computed exactly as it
is computed in the model (BCs). This contribution was
found to be negligible and is therefore omitted from the
results.

• Bottom scattering and the pressure boundary condition
(i.e., the no-normal flow condition, BCs) are handled im-
plicitly in the other terms, such as advection.

• The pressure term (P) mediates the linear transfer of poten-
tial energy into kinetic energy via the hydrostatic pressure but
will not transfer kinetic energy among scales away from the
boundary conditions. This potential-energy-to-kinetic-energy
conversion was computed through the pressure in a manner
that is a good approximation of how it is represented in the
model. The conversion turns out to not have a significant

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 54422

Brought to you by UNIVERSITY OF MICHIGAN | Unauthenticated | Downloaded 03/01/24 05:34 PM UTC



impact for higher vertical wavenumbers and is not included in
any budget plots.

• The Coriolis force (C) rotates the modes containing KE but,
as a linear term, does not transfer it among scales. Thus the
Coriolis term is not computed for spectral budgets in this
paper. The contribution to the drag from the scattering of
the Coriolis tendency off of the bottom topography is not
computed but has been determined to be very small in a dif-
ferent test case.

• In some figures, the total energy dissipation is given. This
total dissipation is the sum of dissipations associated with
the KPP background and shear terms, the Leith scheme,
and quadratic bottom drag, but omits the KPP mixed layer
term.

• Last, a residual is computed as the sum of the aforemen-
tioned terms. The residual includes the combined interpo-
lation and discretization errors of each term, any omitted
forcing, the KPP mixed layer dissipation, the small contri-
butions of intentionally neglected terms that were previ-
ously mentioned, as well as energy buildup over time.

The KE budget terms are computed across the entirety
of the water column (with the exception of KPP) in part
because the flow is vertically inhomogeneous. In terms of
spectral analysis, the flow resembles a transient signal in po-
sition space, and it is appropriate to use a rectangular taper
function (i.e., no taper function) to capture parts of the sig-
nal at the top and bottom of the domain. Put another way,
no taper is needed for this analysis because the analysis
does not compute the spectrum from a sample of an infinite
dimension. Rather, the spectrum is computed on the entire
domain on which the signal is defined. The exception to
this, as previously mentioned, is KPP’s interior dissipation,
which tapered from 20 to 50 m while KPP’s mixed layer dis-
sipation is simply omitted. Also note that a Tukey taper is
applied in time.

APPENDIX F

Definitions of Scale-Separated Interactions

The scale-separation factor j is introduced in Eq. (14) to
identify triads with two modes that are much larger in verti-
cal wavenumber that the third. The breakdown of energy in
P.

HP→BP
HP

between P.
IDdiff

and P.
LI as a function of vertical

wavenumber m and scale-separation factor j is depicted in
Figure F1. The breakdown is strongly dependent on wave-
number, with a greater portion of the spectral flux being at-
tributed to IDdiff at higher vertical wavenumber, as well as
the scale separation factor. Given the small amount of diag-
nosed P.

IDdiff
(see section 3), its tendency to increase with

vertical wavenumber and resolution (see section 3) as well as
the need to see how P.

IDdiff
varies regionally and with resolu-

tion in the model output, we choose a less restrictive defini-
tion of scale separation of j 5 2 as compared with those
commonly used in idealized models where greater resolution
is available (Dematteis et al. 2022).

Figure F1 also shows an estimateF1 of the error intro-
duced by our approximate definition of scale separation
for P.

BP→HP
HP

, which is found to be less than 10% for

destination wavenumbers greater than 3.4 cycles per kilo-
meter. Error in the decomposition of P.

BP→HP
HP

is found

using a similar method to be less than 20% for destination
wavenumbers greater than 4.0 cycles per kilometer (not shown).
The partition of spectral fluxes into scale-separated and local
components is visualized with the dotted lines in the bispectra
presented in section 3b. The P.

HP→BP
HP

is shown in Fig. 8a

while the breakdown of P.

BP→HP
HP

is visualized in Fig. 11b

and to a poorer approximation in Fig. 8d.

FIG. F1. The fraction of P.

HP→BP
HP

that is scale separated as

based on different definitions of scale separation. These scale sepa-
rations can be most clearly visualized in the bispectra introduced in
section 3; see Figs. 8a, 11d, and 11b.

F1 The error introduced by defining scale separation in
P.

BP→HP
HP

as modes with min(|msrc|, |mdest|)/(|msrc| 2 |mdest|) , j

instead of exactly as modes with min(|msrc|, |mdest|)/(|msrc 2
mdest|) , j is estimated by decomposing the spectral flux into
source–destination bispectral components [B

HP→BP
HP,|msrc |,|mdest |

;

Eq. (25)] and then mapping each component to the two associated
realizations of the catalyst–destination bispectral components
[B

HP→BP
HP,|mcat

a |,|mdest
a |

; Eq. (24)]. One realization, |mcat| 5 |mdest| 2

|msrc|, is associated with the actual scale-separated signal. The other
realization, |mcat| 5 |mdest| 1 |msrc|, is associated with an erroneous
signal with a very large catalyst mode. The ratio of these two realiza-
tions is used to compute the error. This is not a perfect measure of
the error as the catalyst-destination bispectra also have two different
realizations in the source–destination bispectra; however, given
the rapid fall off of such spectral transfers with catalyst wave-
number (the desired realization typically has an order-of-magnitude
greater signal than the erroneous realization), it is a good estimate.
This type of bispectral analysis shows promise for making higher-
order corrections to estimates of scale-separated interactions in
future work.
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