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SUMMARY
RNA splicing factors are recurrently mutated in clonal blood disorders, but the impact of dysregulated splicing
in hematopoiesis remains unclear. To overcome technical limitations, we integrated genotyping of transcrip-
tomes (GoT) with long-read single-cell transcriptomics and proteogenomics for single-cell profiling of tran-
scriptomes, surface proteins, somaticmutations, andRNAsplicing (GoT-Splice).We appliedGoT-Splice to he-
matopoietic progenitors from myelodysplastic syndrome (MDS) patients with mutations in the core splicing
factor SF3B1. SF3B1mut cells were enriched in the megakaryocytic-erythroid lineage, with expansion of
SF3B1mut erythroid progenitor cells. We uncovered distinct cryptic 30 splice site usage in different progenitor
populations and stage-specific aberrant splicing during erythroid differentiation. Profiling SF3B1-mutated
clonal hematopoiesis samples revealed that erythroid bias and cell-type-specific cryptic 30 splice site usage
in SF3B1mut cells precede overt MDS. Collectively, GoT-Splice defines the cell-type-specific impact of somatic
mutations on RNA splicing, from early clonal outgrowths to overt neoplasia, directly in human samples.
INTRODUCTION

Genetic diversity in the form of clonal outgrowths has been ubiq-

uitously observed across normal and malignant human tis-
1262 Cell Stem Cell 30, 1262–1281, September 7, 2023 ª 2023 Elsev
sues.1–13 Likewise, single-cell RNA sequencing (scRNA-seq)

has revealed phenotypic diversity as a hallmark of both normal

and malignant human tissues.14–20 These two axes of cellular di-

versity likely exhibit complex interplay, as cell state may affect
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the phenotypic impact of somatic mutations.21 Recent advances

in single-cell multi-omics sequencing have allowed us to link ge-

netic variation and transcriptional cell state diversity in somatic

evolution of human tissues.15,22,23 For example, using genotyp-

ing of transcriptomes (GoT)15 technology, which enables geno-

typing of somatic mutations together with high-throughput

droplet-based scRNA-seq, we demonstrated that the effects

of somatic mutations on cellular fitness in myeloproliferative dis-

orders vary as a function of progenitor cell identity.15

Mutations in genes encoding RNA splicing factors demon-

strate the challenge of linking genotype to phenotype in complex

human tissues. Somatic change-of-function mutations in RNA

splicing factors are recurrent in hematologic malignancies,24–26

highlighting the importance of dysregulated RNA splicing in

human hematopoietic disorders. SF3B1 (splicing factor 3b sub-

unit 1), a core component of the spliceosome complex, is a

commonly mutated splicing factor across hematologic malig-

nancies and solid tumors, and is implicated in the pathogenesis

of myelodysplastic syndromes (MDSs).27,28 SF3B1 mutations

also increase the risk of myeloid neoplasms in individuals with

clonal hematopoiesis (CH), comparedwith other CHdriver muta-

tions.1,2 SF3B1mutations result in incorrect branch point recog-

nition during RNA splicing, often leading to an increased usage of

aberrant (or cryptic) intron-proximal 30 splice sites in hundreds of

genes.29 Such aberrant 30 splice site recognition typically results

in the inclusion of short intronic fragments in spliced mRNA,

commonly causing frameshifts that render the transcript a sub-

strate for nonsense mediated mRNA decay (NMD).30 Through

mis-splicing, SF3B1 mutations have been shown to affect cell

metabolism31 and ribosomal biogenesis,32 leading to the aber-

rant hematopoietic differentiation typical of MDS. However, the

mechanisms through which mis-splicing disrupts hematopoietic

differentiation in humans remain elusive.

To date, cellular and murine models have been critical for

elucidating the role of splicing factor mutations in disordered he-

matopoiesis. Nonetheless, these methods may not fully recapit-

ulate MDS development in humans. For example, alternatively

spliced genes from murine models of SF3B1mut MDS, which

phenotypically resemble human MDS, show limited overlap

with those identified in humans.33 Analysis of splice-altering mu-

tations in humans has been further hampered by three main lim-

itations. First, normal wild-type (WT) and aberrant mutated (MUT)

cells are often admixed, limiting identification of signals specif-

ically linked to the SF3B1mut genotype. This challenge is ampli-

fied in the context of CH, whereMUT cells are typically a minority

of the hematopoietic progenitor population. Second, the he-

matopoietic differentiation process yields significant complexity

of cell progenitor types that further hinders the ability to link

mutated genotypes with distinct cellular phenotypes. SF3B1mut

MDS is indeed associated with a specific clinico-morphological

phenotype of refractory anemia and accumulation of ringed side-

roblasts,28,34 strongly suggesting that the interplay between cell

identity and SF3B1mutations is fundamental in driving disrupted

hematopoietic differentiation. Finally, scRNA-seq by 30 or 50

biased short-read sequencing provides an incomplete picture

of the consequences of splicing factor mutations on the tran-

scriptome and their downstream effects.

To overcome these limitations and identify cell-identity-

dependent mis-splicing mediated by SF3B1 mutations, we
developed GoT-Splice by integrating GoT15 with long-read sin-

gle-cell transcriptome profiling (with Oxford Nanopore Technol-

ogies [ONT]) as well as proteogenomics (with Cellular Indexing of

Transcriptomes and Epitopes by Sequencing [CITE-seq]).35 This

enabled the simultaneous profiling of gene expression, cell sur-

face protein markers, somatic mutation genotyping, and RNA

splicing within the same single cell. The application of GoT-

Splice to bone marrow samples from individuals with SF3B1mut

MDS and CH revealed that, while SF3B1 mutations arise in un-

committed hematopoietic stem progenitor cells (HSPCs), their

enrichment increases along the differentiation trajectory into

committed erythroid progenitors (EPs), in line with the

SF3B1mut-driven dyserythropoiesis phenotype. Importantly, the

integration of GoT with full-length isoform mapping via long-

read sequencing demonstrated that SF3B1 mutations exert

cell-type-specific mis-splicing, already apparent in CH.

RESULTS

GoT integrated with proteogenomics reveals
enrichment of SF3B1mut cells in the erythroid lineage
linked to overexpression of cell-cycle and mRNA
translation genes
As the impact of somatic mutations on the transcriptome varies

as a function of underlying cell identity in myeloproliferative neo-

plasms,15 we hypothesized that an interplay between cell iden-

tity and SF3B1mutations may drive disrupted hematopoietic dif-

ferentiation in MDS. To test this, we applied GoT15 (Figure 1A)

to CD34+ bone marrow progenitor cells from three untreated

MDS patients with SF3B1 K700E mutations (discovery cohort,

MDS01–03) and a separate cohort of MDS patients undergoing

treatment (validation cohort, MDS04–06) with erythropoietin

(EPO) and/or granulocyte colony-stimulating factor (G-CSF;

Figure 1B; Table S1). As normal hematopoietic development

has been extensively studied using flow cytometry cell surface

markers, we further integrated GoT with single-cell proteoge-

nomics (CITE-seq35,36; Figure 1A). After sequencing and quality

control filtering, we obtained 24,315 cells across the six MDS

samples (Figures S1A and S1B; MDS02 was sequenced in two

technical replicates). To chart the differentiation map of the

CD34+ progenitor cells, we integrated the data across the six

MDS samples and clustered based on transcriptomic data

alone, agnostic to the genotyping and protein information

(Figures 1C, S1C, and S1D). Using previously annotated RNA

identity markers for human CD34+ progenitor cells,37 validated

via antibody-derived tag (ADT) markers in the CITE-seq panel

(Tables S1 and S2), we identified the expected progenitor sub-

types in the primary MDS cohort, along with a population of

mature monocytic cells characterized by CD14 expression and

lack of CD34 expression, which is often observed in CD34+ sort-

ing of human bone marrow,38,39 and was not completely

removed with monocyte-specific blocking reagents39 (Figures

1C and S1E–S1G). Cell clustering was further validated using

RNA and ADTmultimodal integration (Figure S1H). The expected

progenitor subtypes were similarly identified in the MDS valida-

tion cohort (MDS04–06; Figures S1I–S1K).

Genotyping data were available for 15,650 MDS cells (64.4%

across MDS01–06) through GoT (Figures 1B and S2A–S2D).

The per-patient mutant cell fractions obtained through GoT
Cell Stem Cell 30, 1262–1281, September 7, 2023 1263
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Figure 1. Enrichment of SF3B1mut cells in the megakaryocytic-erythroid lineage

(A) GoT-Splice workflow combines GoT with CITE-seq and long-read full-length cDNA using ONT for the simultaneous single-cell profiling of protein and gene

expression, somatic mutations, and alternative splicing.

(legend continued on next page)
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were highly correlated with the variant allele frequencies (VAFs)

obtained through bulk sequencing of matched unsorted periph-

eral bloodmononuclear cells (Pearson’s r = 0.81, p value = 0.008;

Figure S2A). Projection of the genotyping information onto the

differentiation map showed co-mingling of MUT and WT cells

throughout the differentiation topology, highlighting the need

for single-cell multi-omics to link genotypes with cellular pheno-

types in SF3B1mut MDS. Although MUT cells were found across

CD34+ progenitor cells, we observed an accumulation of MUT

cells along the erythroid trajectory (Figure 1D), suggesting that

SF3B1 mutant cell frequency (MCF) varies as a function of the

progenitor subtype. To confirm this, we evaluated the MCF

across the different prevalent progenitor cell types (limited to

progenitor subsets with > 300 cells). Across samples, we

observed a significant increase in MCF in the megakaryocyte-

erythroid lineage, with the highest MCF in EPs compared with

HSPCs (p value < 10�16; Figures 1E and S2D), consistent with

the erythroid lineage-specific impact of mutated SF3B1.40,41

The ability to layer protein measurements on top of GoT data

further allowed us to identify differentially expressed proteins be-

tween MUT and WT cells within each progenitor subset. After

quality control filtering for ADT markers with adequate expres-

sion in at least two major progenitor subtypes (see STAR

Methods), protein expression was highest in the expected cell

types and correlated with mRNA expression at the cell and

cell-type level, comparable to previous data35 (Figures S2E

and S2F). We directly compared protein expression between

MUT and WT cells, accounting for sample-to-sample variability

in MUT cells through downsampling (see STAR Methods) and

observed differential expression of CD38, CD99, CD36, and

CD71 in at least one progenitor cell type (Figure 1F; Table S2).

CD38 is a known marker for the transition of primitive CD34+

stem and progenitor cells into more committed precursor

cells.37,42–44 Its overexpression in SF3B1mut is consistent with

the observed higher MCF in committed progenitor subsets.

CD99, overexpressed in MUT immature myeloid progenitor

(IMP) cells, was previously noted to be overexpressed in both

AML and MDS stem cells, serving as a potential therapeutic

target of malignant stem cells.45,46 Finally, CD36 and CD71,

erythroid lineage markers, were found to be overexpressed in

MUT EPs when compared with WT EPs, consistent with the
(B) Patient metadata and quality controlled GoT data for SF3B1-mutant MDS an

(C) Uniform manifold approximation and projection (UMAP) of CD34+ cells (n = 15

overlaid with cluster cell-type assignments. HSPCs, hematopoietic stem proge

genitors; MEPs, megakaryocytic-erythroid progenitors; EPs, erythroid progenito

cells; T/B cell progenitors; Mono, monocyte; DCs, dendritic cells; Pre-B, precurs

(D) Density plot of SF3B1mut vs. SF3B1wt cells, with genotypes (MDS01–03) for 1

(E) Normalized frequency of SF3B1mut cells in progenitor subsets with at least 30

downsampling iterations to 1 genotyping UMI per cell. Cell types with >300 cells

without mutation status.

(F) Differential ADT marker expression between SF3B1mut and SF3B1wt cells. Red

Dot size corresponds to the average ADT expression across cells in each cell ty

(G) Mutant cell fraction and ADT expression levels of CD36 and CD71 as a function

SF3B1mut and SF3B1wt cells in MDS01–03. Shading denotes 95% confidence i

dotime. p values were calculated by Wilcoxon rank-sum test by comparing muta

(H) Differential gene expression betweenSF3B1mut andSF3B1wt EP cells inMDS s

defined as differentially expressed (DE). Cell cycle (red) and translation (blue) pa

(I) Expression (mean ± SEM) of TP53 pathway related genes (Reactome) between

module score in SF3B1mut cells; blue, module score in SF3B1wt cells. p values fro

(J) Same as (I) for expression of cell cycle related genes (Reactome) between SF
SF3B1mut-driven dyserythropoiesis phenotype. We further lever-

aged these erythroid maturation cell surface protein markers to

validate pseudotemporal (pseudotime) ordering of the contin-

uous process of erythroid maturation47 (Figure S2G). This anal-

ysis revealed an increase inMCF along erythroid lineagematura-

tion (Figure 1G), confirming enrichment of SF3B1mut cells along

the differentiation trajectory into committed EPs.

To further explore SF3B1 driven transcriptional dysregulation

in committed EPs, we performed differential gene expression

analysis between SF3B1mut and SF3B1wt cells. Mutated EPs

upregulated genes encoding important translation and ribosome

biogenesis factors (Figure 1H; Table S3), including several eu-

karyotic initiation factors (e.g., EIF3A [false discovery rate

(FDR)-adjusted p value = 0.007], EIF5A [FDR-adjusted p value =

0.011]), DEAD-box helicases (e.g., DDX5 [FDR-adjusted

p value = 0.016]), and ribosome subunits (e.g., RPS29 [FDR-

adjusted p value = 0.1]). While we did not directly assess trans-

lational defects, this dysregulation of translation factor expres-

sion is evocative of studies showing that translational regulation

is critical during hematopoiesis,48–51 and may lead to cell- and

tissue-type-restricted activation of TP53 signaling pathway in

myeloid disease.52–57 Specifically, cells that require high levels

of protein synthesis, such as EPs, may be more sensitive to

even subtle changes in translational regulation.58 In line with

this notion, TP53 gene target upregulation in SF3B1mut cells

was more prominent in the megakaryocyte-erythroid lineage,

with no increased expression of TP53-related genes in earlier

progenitors (HSPCs) or in neutrophil progenitors (NPs)

compared with WT cells (Figure 1I). Our results therefore estab-

lish a molecular phenotype for the SF3B1 mutation in human

bone marrow progenitors, implicating changes in translation

pathway genes.

Mutated EPs also upregulated genes related to the cell cycle

(FDR-adjusted p value = 0.08; Figures 1H and 1J; Table S3).

For example, we observed an increase in the expression of

CCNE1, a positive regulator of the G1/S transition of the cell cy-

cle,59 and MDM4, which works together with TP53 during the

G1/S checkpoint to determine the fate of cells by regulating

pathways involved in DNA repair, apoptosis, and senes-

cence.60,61 Increased expression of MDM4 can attenuate TP53

activation induced by ribosomal stress,62,63 thereby reducing
d CH samples.

,436 cells) from MDS patients with SF3B1 K700E mutations (n = 3 individuals),

nitor cells; IMPs, immature myeloid progenitors; MkPs, megakaryocytic pro-

rs; NPs, neutrophil progenitors; E/B/M, eosinophil/basophil/mast progenitor

ors B cells; Mono DC, monocyte/dendritic cell progenitors.

2,494 cells (80.9% of all cells).

0 genotyped cells. Bars show analysis of MDS01–03 with mean ± SEM of 100

were analyzed. p value from likelihood ratio test of linear mixed model with or

, higher expression in SF3B1mut cells; blue, higher expression in SF3B1wt cells.

pe. p values determined through permutation testing.

of pseudotime along themegakaryocyte-erythroid differentiation trajectory for

nterval. Histogram shows cell density of analyzed clusters, ordered by pseu-

nt cell fraction between pseudotime trajectory quartiles.

amples. Genes with an absolute log2(fold change) > 0.1 and p value < 0.05were

thways (Reactome) are highlighted.

SF3B1mut and SF3B1wt cells in progenitor cells from MDS01–03 samples. Red,

m likelihood ratio test of linear mixed model with or without mutation status.

3B1mut and SF3B1wt cells in progenitor cells from MDS01–03 samples.
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Figure 2. Simultaneous profiling of gene expression, cell surface protein markers, somatic mutation status, and alternative splicing at sin-

gle-cell resolution

(A) Comparison of the percentage of ONT reads with either incorrect structure (double TSO, no adaptors, single R1 or single TSO) or correct structure (full-length

reads) both before and after the inclusion of a biotin enrichment protocol step during preparation for sequencing. Bars show the aggregate analysis of n = 5

samples with mean ± SD of the percentage for each category.

(B) Scatterplot of the correlation between the number of UMIs/cell detected in long-read ONT vs. short-read Illumina data for cells sequenced across both

platforms for sample MDS05.

(C) Density plot of the correlation between the number of UMIs/gene detected in long-read ONT vs. short-read Illumina data for sample MDS05.

(D) Number of splice junctions captured in the full-length long-read ONT data compared with short-read sequencing data (gene coverage R 10 in both

sequencing protocols, junction cluster coverageR 600 and junction read supportR 1 read [see STARMethods]), demonstrating increased junction capture with

GoT-Splice across cells.

(E) Greater sequencing coverage uniformity of GoT-Splice compared with short-read sequencing over splice junctions, illustrated with the ERGIC3 gene.

(legend continued on next page)
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the functional impact of p53, thus promoting cell survival and

accumulation. Taken together, these factors contribute to the

enrichment of SF3B1 mutations in the erythroid lineage.

GoT-Splice links somatic mutations, alternative
splicing, and cellular phenotype at single-cell resolution
Given the pivotal role of SF3B1 in mRNA splicing, we next

explored how mis-splicing may link genotypes and cellular phe-

notypes. Indeed, SF3B1mutations promote recognition of alter-

native branch points, most often leading to increased usage of

aberrant 30 splice sites.29 However, previous studies in primary

human samples have been performed on bulk samples admixing

MUT and WT cells as well as progenitor subtypes.30,32,64,65

Conversely, short-read scRNA-seq does not adequately cover

splice junctions. Recent advances suggest that long-read inte-

gration into scRNA-seq may overcome these limitations.66–70

We therefore integrated GoT with full-length ONT long-read

sequencing, allowing for high-throughput, single-cell integration

of genotype, cell surface proteome, gene expression, andmRNA

splicing information (GoT-Splice; Figure 1A). Single-cell cDNA

sequencing with ONT presents unique challenges, as cDNA

amplification artifacts are still productively sequenced when us-

ing standard ONT ligation chemistry, leading to a high fraction

of uninformative reads in the highly amplified single-cell libraries.

To enhance ONT efficiency, we incorporated a biotin enrichment

step using on-bead PCR to selectively amplify full-length reads

containing intact cell barcodes and uniquemolecular identifiers67

(UMIs; Figure 2A), increasing the yield of full-length reads from

50.4%±2.7%to77.6%±2.0% (mean±SD) of sequenced reads.

Thus, GoT-Splice delivers high-resolution single-cell full-length

transcriptional profiles comparable to short-read sequencing

(Figures 2B and 2C). However, full-length ONT sequencing alone

is insufficient to support efficient genotyping of the SF3B1mut lo-

cus, as analysis of ONT-alone data revealed that only 3% of cells

have at least 1 UMI covering the SF3B1mut locus vs. 56% of cells

with GoT (average across MDS samples; Figure S2B), demon-

strating the power of our integrated approach.

To accurately identify splice junctions using single-cell long-

read sequencing, we developed an analytical pipeline that

leverages the SiCeLoRe (Single Cell Long Read) pipeline67 (Fig-

ure S3A). To reduce alignment noise, we generated a splice junc-

tion reference identified in single-cell Smart-Seq2 data from hu-

man CD34+ cells without SF3B1 mutation (STAR Methods).

Next, we performed intron-centric junction calling for the inde-

pendent measurement of splicing at both the 50 and 30 ends of

each intron. This allows for unbiased assessment of junctions

and greater accuracy in measuring the degree of transcript

mis-splicing compared with exon-centric quantification ap-

proaches,71 which are typically used for cassette exon usage

profiling and rely on potentially inaccurate or incomplete72,73

predefined transcript models or splicing events. As anticipated,

when comparing short-read and long-read sequencing, we
(F) Pie chart summarizing the distribution of different alternative splicing events de

50 splice site events between SF3B1mut and SF3B1wt cells measured with a dPSI

with SF3B1wt: �ve dPSI.

(G) Comparison of dPSI values for shared cryptic 30 splicing events identified i

samples and in the SF3B1mut vs. SF3B1wt bulk comparison from bulk RNA sequen

r calculated using Spearman’s correlation and p value derived from two-tailed S
found a 12.3-fold increase in the number of junctions detected

using long-read sequencing, with the majority of junctions

(�90%) unique to long-read data (Figures 2D and S3B). Notably,

at the single-cell level, despite lower absolute number of UMI/

cell, we observed a 5.5-fold increase in detected junctions with

long-read sequencing (Figure S3C). Additionally, GoT-Splice af-

forded greater coverage uniformity across the entire transcript,

compared with 30-biased coverage in short-read sequencing,

enabling the detection of splicing events further from the 30 tran-
script end (Figure 2E). To further highlight the discovery power of

long-read sequencing, we compared short- and long-read cap-

ture of cryptic 30 splicing events in relation to distance from the 30

transcript end (STAR Methods), showing that long-read

sequencing identifies substantially greater numbers of cryptic

events both along the length of the transcript and overall

compared with short-read (Figure S3D), with the majority of

cryptic 30 splicing events detected in short-reads also captured

in long reads (Figure S3D, pie chart inset).

The most common mis-splicing events (57%) observed in

MDS SF3B1mut cells involved alternative 30 splice sites (Fig-

ure 2F), consistent with prior reports.29,74 Notably, such alterna-

tive 30 splice site usage was not observed in a SF3B1wt CD34+

sample (Figure S3E). Among the differentially mis-spliced cryptic

30 splice sites (0–100 bp from canonical splice site) between

SF3B1mut and SF3B1wt cells, 87% were used more highly in

SF3B1mut cells (Figure 2F, inset), aligning with known character-

istics of SF3B1 mutations. ONT long-read sequencing also al-

lowed quantification of different splicing events within the

same mRNA transcript. While only one aberrant 30 splice site

event was observed for most mRNA transcripts, we identified

428 genes (21.4%of total geneswith at least one cryptic 30 splice
site) with more than one aberrant 30 splice site event. These

cryptic 30 splicing events frequently appeared in different copies

of the transcript (Figure S3F). Consistent with previous MDS bulk

sequencing data,29,75 we observed a relative enrichment of pu-

rines upstream of the aberrant 30 splice site when compared

with the canonical 30 splice site (Figure S3G).

To assess how our method compares with available isoform

detection tools, we compared the recovery and quantification

of novel splicing junctions with full-length isoform quantification

methods FLAMES68 and IsoQuant.76 While isoform junction

annotation was largely comparable across all three methods

(Figure S4A), detection of cryptic 30 events was increased using

our approach, compared with FLAMES and IsoQuant, which are

designed to annotate and quantify full-length isoforms. For these

cryptic 30 events, we observed more variation on local splicing

event assignment, with little agreement between the three

methods (Figure S4A, right). Additionally, many 30 cryptic events

detected by our method were not identified by FLAMES and

IsoQuant (Figure S4A, right). We also observed a high correlation

between GoT-Splice delta percent spliced in (dPSI; percent

spliced in) measurements obtained by comparing SF3B1mut
tected after junction annotation. Inset: differences in the usage of cryptic 30 and
(SF3B1mut PSI-SF3B1wt PSI). Associated with SF3B1mut: +ve dPSI; associated

n the MUT vs. WT cell comparison from GoT-Splice of SF3B1mut MDS01–03

cing of CD34+ cells of MDS samples in Pellagatti et al.32 Correlation coefficient

tudent’s t-test.
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Figure 3. Progenitor cell-type-specific mis-splicing in SF3B1mut MDS

(A) Differential splicing analysis between SF3B1mut and SF3B1wt cells across MDS samples. Junctions with absolute dPSI > 2 and FDR-adjusted p value < 0.2

were defined as differentially spliced. Top: bars showing percentage of genes differentially spliced in SF3B1mut and SF3B1wt cells in MDS and MDS validation

cohorts. Inset: expected peak in the number of identified cryptic 30 splice sites at 15–20 base pairs upstream of the canonical 30 splice site in SF3B1mut cells.

(B) Sashimi plot of METTL17 intron junction with an SF3B1mut associated cryptic 30 splice site showing RNA-seq coverage in SF3B1mut vs. SF3B1wt cells within

MDS samples. Inset: expected increase in PSI value for the usage of this cryptic 30 splice site in SF3B1mut cells.

(legend continued on next page)
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and SF3B1wt cells and dPSI derived from bulk RNA-seq of

CD34+ cells from SF3B1mut vs. SF3B1wt MDS samples32 for

shared cryptic 30 splice sites (Figure 2G). This correlation with

dPSI derived from bulk data of SF3B1mut MDS samples32 was

not statistically significant in IsoQuant; in contrast, FLAMES pre-

served the positive correlation observed when using GoT-Splice

(Figure 2G) although with a smaller Spearman’s correlation coef-

ficient value compared with GoT-Splice (Figure S4B). Further-

more, in line with previous work in MDS, the majority of the

cryptic 30 splice sites identified by GoT-Splice were �15–20 bp

upstream of the canonical 30 site29 (Figures 3A, 3B, and S4C–

S4F). The dPSI for the differentially spliced cryptic 30 splice

site events obtained by comparing SF3B1mut and SF3B1wt

cells were highly correlated across MDS samples (average

Pearson’s r of 0.55; p value < 0.001), highlighting the ability of

our differential splicing analysis pipeline to identify statistically

robust recurrent mis-splicing events (Figures 3A, 3B, and S4C–

S4F; Table S4). Unlike GoT-Splice, which identified a far larger

number of mis-splicing events validated with manual review,

full-length isoform quantification methods did not demonstrate

the expected increased usage of cryptic 30 splice sites in MUT

vs.WT cells (Figures 3A, 3B, and S4G), with equal number of sta-

tistically significant mis-splicing events, further suggesting lower

performance in identifying 30 cryptic mis-splicing. This is poten-

tially due to the applied correction of splice sites in these full-

length isoform algorithms, which may hinder cryptic mis-splicing

detection, particularly for cryptic splice sites found within 10 bp

of the canonical site (Figure S4H).

To assess how the SF3B1mut MDS alternative splicing profiles

compare to another hematologic malignancy, we compared

cryptic 30 events detected from SF3B1mut MDS cells (positive

dPSI, FDR-adjusted p value < 0.2) to those detected using pre-

viously published bulk RNA-seq data from SF3B1mut chronic

lymphocytic leukemia (CLL) samples.77 We detected more

cryptic 30 events in our MDS dataset, with 10 events overlapping

betweenMDS and CLL (Figure S4I; Table S4). This low overlap is

likely driven by expression differences between MDS and CLL

cells, as genes with shared events had higher expression levels

in MDS cells compared with CLL-only events (Figure S4J).

To demonstrate GoT-Splice’s generalizability for profiling

somatic mutations, we analyzed a DNMT3Amut CH sample

(R882C; VAF of 0.09). Recent work has implicated DNMT3A in

splicing regulation in hematopoiesis, independent of DNA

methylation.78 We quantified the distribution of alternative

splicing patterns and found that exon skipping was the most

common event (Figure S5A), as previously reported.79 Compar-

ison between DNMT3Amut and DNMT3Awt cells revealed geno-

type-specific events including the SRSF3 exon 4 skipping

event,80 exclusive to DNMT3Amut cells (Figures S5B and S5C).

SRSF3 exon 4 harbors a premature termination codon (PTC)

that causes NMD. Thus, the lack of exon 4 usage in DNMT3Amut

cells can lead to the overexpression of SRSF3, a known

oncogenic splicing factor.81 We further applied GoT-Splice to
(C) dPSI values betweenSF3B1mut andSF3B1wt cells for cryptic 30 splicing events

junctions differentially spliced in at least one cell type, with p value % 0.05 an

metabolism (green), oxygen homeostasis (black), RNA processing (red), and e

differentially spliced cryptic 30 splice sites per cell. Top bar plots quantify the total

specific events on the right.
CD34+ cells from an acute myeloid leukemia (AML) patient

with a mutation in the splicing factor U2AF1 (S34F; VAF of

0.16). Despite challenges associated with low expression of

U2AF1 in this sample, genotyping data were available for 1,662

AML cells (12.8% of all cells) through GoT-Splice (Figure S5D).

Alternative splicing events betweenU2AF1mut and U2AF1wt cells

were enriched for exon skipping events82 (Figure S5E). Through

our differential splicing analysis pipeline, we further identified

103 significant differentially spliced events between U2AF1mut

and U2AF1wt cells (Figure S5F), two of which were exon skipping

events in KIN and DAP3 that were more prevalent in U2AF1mut

cells (Figure S5G), as previously reported.82 These findings

demonstrate the generalizability of our method beyond SF3B1

mutation detection and reveal how DNMT3A and U2AF1

mutations result in different splicing changes compared with

SF3B1 mutations (exon skipping vs. alternative 30 splice sites,

respectively).

Altogether, GoT-Splice enables to link somatic mutations to

transcriptional and cell surface protein marker phenotypes,

and single-cell splicing changes.

GoT-Splice shows progenitor-specific patterns in
SF3B1mut- mis-splicing
An important advantage of GoT-Splice is the ability to detect

splicing changes at single-cell resolution, allowing the compari-

sonof alternative splicing aberrations betweenMUTandWTcells

in specific cell subsets (Figure 3C; Table S4). We identified both

shared and unique SF3B1mut cryptic 30 splice site events across

progenitor subtypes in MDS, with the highest usage of cryptic 30

splice sites occurring in the megakaryocyte-erythroid lineage.

SF3B1mut MEPs and EPs accounted for most of the cell-type-

specific cryptic 30 splice site events, highlighting the specific

impact of SF3B1 mutations on the erythroid lineage. These pro-

genitor-specific patterns in SF3B1mut mis-splicing were

confirmed in the validation cohort (MDS04–06; Figures S5H–

S5J). In both MDS cohorts, progenitor-specific cryptic 30 splice
sites involved genes related to cell cycle (e.g., CENPT),83 RNA

processing (e.g.,CHTOP,SF3B1,84SRSF11, andPRPF38A), ox-

ygen homeostasis (e.g., HIF1A), erythroid differentiation (e.g.,

CD36, FOXRED1, and GATA134,85,86), and heme metabolism

(e.g., UROD, PPOX, and CIAO1) (Figures 3C, S5H, and S5I;

Table S4). Notably, long-read sequencing was advantageous in

detecting cryptic splicing events in functionally important genes

(PPOX and UROD) with poor short-read coverage due to sub-

stantial drop-off in the 103 short-reads across the transcript (Fig-

ure S5J). Although some genes and pathways identified in the

analysis of cryptic 30 splice sites across cohorts have previously

been reported to be disrupted by alternative splicing in bulk

studies of SF3B1mut MDS samples,32 their cell-type specificity

was unknown. For instance, while the alternative splicing event

in SF3B1 itself has been suggested before as being neoplasm-

specific, here,we resolved its erythroid-specific pattern. This iso-

form—SF3B1ins—is predicted to affect splicing by impairing U2
identified inmain progenitor subsets acrossMDS samples. Columns- cryptic 30

d dPSI R 2. Rows: cell type. Genes highlighted for cell cycle (purple), heme

rythroid differentiation (yellow) pathways. Left bar plots show the fraction of

number of cell types where an event is differentially spliced, with the cell-type-
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Figure 4. SF3B1mut-associated mis-splicing changes along the continuum of erythropoiesis

(A) Percent spliced in (PSI) of junctions in SF3B1mut cells along the hematopoietic differentiation trajectory (HSPCs, IMPs, MEPs, and EPs). Rows, (Z score

normalized), cryptic 30 splice sites; columns, PSI for usage of a given cryptic 30 splice site in each window (size of 3,000 SF3B1mut cells, sliding by 300 SF3B1mut

(legend continued on next page)
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small nuclear ribonucleoprotein particle (snRNP) assembly,84

likely contributing to enhanced mis-splicing dysregulation in the

megakaryocyte-erythroid lineage. In addition, cell cycle plays a

critical role in terminal differentiation of hematopoietic stem

cells87 and RNA processing, erythroid differentiation, and heme

metabolism pathways are directly linked to the regulation of

erythropoiesis.88–90 Furthermore, we observed significant over-

lap of megakaryocyte-erythroid lineage-specific aberrantly

spliced genes between discovery and validation MDS cohorts

(p value = 0.00029, Fisher’s exact test, with 46.8% of the crypti-

cally spliced genes in MDS also aberrantly spliced in the MDS

validation cohort; Figure S5I), indicating cell-type and differentia-

tion-stage dependency of SF3B1mut-induced alternative

splicing.27,91–93

Notably, erythropoiesis occupies a continuum of cell states

and is dependent on transcriptional changes that occur along

the differentiation trajectory.47 Analyzing SF3B1mut mis-splicing

along this continuum (Figure 4A) revealed that some erythroid

differentiation, oxygen homeostasis and heme metabolism

genes can be mis-spliced more frequently at the earliest stages

of EP maturation (e.g., UROD, HIF1A, and FOXRED194), while

others display increased mis-splicing in more differentiated

EPs (e.g., GYPA and PPOX). UROD is part of the heme biosyn-

thesis pathway; heme is an important structural component of

erythroid cells and plays a regulatory role in the differentiation

of erythroid precursors.95 PPOX encodes an enzyme involved

inmitochondrial heme biosynthesis and, as such, its degradation

leads to ineffective erythropoiesis and mitochondrial iron

accumulation typical of MDS with ring sideroblast clinical

phenotype.96 These results provide evidence that pathogenic

SF3B1mut-driven mis-splicing impacts key mediators of hemo-

globin synthesis and erythroid differentiation at all stages of

erythroid maturation.97,98

In some cases, the degree of mis-splicing of a particular tran-

script (measured by PSI) positively correlated with its expression

across the erythroid differentiation trajectory. In others, mis-

splicing was negatively correlated with gene expression, often

in cryptic 30 splice site events predicted to lead to transcript

degradation by NMD (Figure 4B for examples). Cryptic 30 splice
sites result in the inclusion of short intronic fragments in mRNA

and often introduce a PTC.90,99,100 mRNAs harboring an NMD-

inducing PTC located R 50 bp upstream of the last exon-exon

junction are predicted to undergo NMD, which prevents produc-
cells). Only junctions differentially spliced in at least one cell-type with a dPSI > 2w

ordered according to PSI peak. Genes highlighted for cell cycle (purple), heme me

differentiation (yellow), and apoptosis (blue) pathways.

(B) Examples of mis-spliced genes at different erythroid maturation stages. Bars r

SF3B1mut cells.

(C) Fold change (log2) of gene expression between SF3B1mut and SF3B1wt EP

sum test.

(D) BAX gene model and relevant isoforms. Characteristic domains are highligh

defines the BAX-u isoform, characterized by frameshift disruption of the transm

(E) Western blot of TF-1 BAX/BAK double knockout (DKO) cells with doxycycline-

after 24 h.

(F) Fold change in annexin V positive TF-1 DKO cells expressing different BAX is

72 h normalized to apoptotic cells—doxycycline treatment (black line). n = 2 indep

bars represent ± SD; **p value < 0.01, ***p value < 0.001. p values from two-taile

(G) Representative annexin V/DAPI flow cytometry plots of different BAX isoform

quencies noted in relevant quadrants.
tion of potentially aberrant proteins. In contrast, mRNAs

harboring an NMD-neutral PTC, generally located % 50 bp up-

stream of the last exon-exon junction or in the last exon, fail to

trigger NMD and produce dysfunctional proteins.101,102 We clas-

sified cryptic 30 splice sites detected in the MDS samples into

twomajor groups: (1) NMD-inducing events (due to the introduc-

tion of a PTC) and (2) NMD-neutral events (Table S4). In accor-

dance with previous reports,74 of the 421 cryptic 30 splice sites

significantly associated with SF3B1mut cells, 228 (54%) were

classified as NMD-inducing events while the remaining 193

(46%) harbored NMD-neutral events. Despite the somewhat

equal identification of NMD-inducing and NMD-neutral events,

we observed an overall decrease in the expression of genes

with NMD-inducing event in the MUT cells that harbored these

mis-spliced transcripts when compared with NMD-neutral

events (p value = 0.017; Figure 4C).

NMD-inducing events affected key genes in erythroid devel-

opment, such as UROD, GYPA, FOXRED1, and PPOX. Tran-

script loss via NMD103,104 may thus contribute to disrupted ter-

minal differentiation of EPs. Notable among NMD-neutral

affected genes, we identified BAX, a member of the Bcl-2 gene

family and transcriptional target of TP53. BAX plays a vital role

in the apoptotic cascade, balancing survival, differentiation,

and proliferation of EPs during later stages of erythropoiesis105

(Figure 4A). The identified BAX cryptic 30 splice site, though

NMD-neutral, causes a frameshift in the last exon, disrupting

the C terminus of the protein. This BAX isoform, known as

BAX-u (Figure 4D), has been shown to protect cells from

apoptotic cell death.106,107

To functionally evaluate the significance of SF3B1mut-specific

alternatively splicedBAX isoforms, we generatedBAX andBAK1

double knockout (DKO) human TF-1 erythroid leukemia cells and

re-expressed FLAG-tagged BAX-a, BAX-b, and BAX-u isoforms

under a doxycycline-inducible promoter (Figure 4E). BAX and

BAK1 have functionally redundant pro-apoptotic roles108 and

DKO cell lines have previously been utilized in similar functional

validation experiments of BAX variants.109,110 TF-1 cells are an

established immature cell line of erythroid origin and are depen-

dent on growth factors for proliferation and survival.111 We

tested the ability of different BAX isoforms to induce apoptosis

under cytokine-depleted conditions. As expected, TF-1 DKO

inducible GFP control cells had no increase in apoptosis while

induction of BAX-a and BAX-b expression led to a significant
ere analyzed. ADT expression of CD71 and cell-type fractions are shown. Rows

tabolism (green), oxygen homeostasis (black), RNA processing (red), erythroid

epresent PSI in SF3B1mut cells. Red lines represent junction ONT expression in

cells in NMD-inducing vs. NMD-neutral genes. p value from Wilcoxon rank-

ted in main isoform BAX-a. The cryptic 30 splicing event on the terminal exon

embrane domain (TMD).

inducible expression of control GFP or FLAG-tagged BAX isoforms a, b, and u

oforms under cytokine-depleted conditions + doxycycline (1 mg/mL) at 48 and

endent experiments performed in triplicate. Bars represent mean values. Error

d Student’s t-test.

s after 72 h under cytokine-depleted conditions + doxycycline. Percent fre-
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increase in apoptotic cells at 48 and 72 h, consistent with their

established roles as inducers of apoptosis.112 Importantly,

expression of BAX-u showed no change in apoptosis under

cytokine-depleted conditions, supporting an anti-apoptotic

role for BAX-u expression in immature erythroid cells

(Figures 4F and 4G). Collectively, our data highlight SF3B1mut-

specific mis-splicing in the induction of NMD in erythroid differ-

entiation genes and alternative splicing of apoptosis mediators

as important events in the pathogenesis of SF3B1mut MDS cells.

Accumulation of SF3B1mut cells in the erythroid
progenitor population and extensive mis-splicing in
clonal hematopoiesis
WhileSF3B1mutations are themost common genetic alterations

in MDS patients, they are also associated with a high-risk of ma-

lignant transformation in CH.4–8,113,114 However, the study of

SF3B1 mutations directly in primary human samples has been

largely limited to MDS, where confounding co-occurrence of

other genetic alterations is common. Additionally, it remains un-

clear exactly how splicing mutations impact cellular phenotypes

in CH. For example, while SF3B1mutations have been proposed

to be drivers of CH,115 enhancing likelihood of progression to

myeloid neoplasia, these mutations often occur as early genetic

events in CH cases, with gradually increasing VAF over time. In

contrast, mutations in U2AF1 and SRSF2 appear later in life,

with rapidly increasing VAF.116 Thus, CH presents a unique

setting to interrogate themolecular consequences of SF3B1mu-

tations in non-malignant human hematopoiesis.

We therefore isolated viable CD34+ cells from two CH sam-

ples with SF3B1 mutations (VAFs: 0.15 and 0.22, from CD34+

autologous grafts collected from patients with multiple myeloma

in remission) and performed GoT-Splice. A total of 9,007 cells

across both samples passed quality filters (Figure S6A) and

were integrated and clustered based on transcriptome data

alone, agnostic to genotyping information (Figures 5A and

S6B). Consistent with clinical data indicating normal hematopoi-

etic production, we identified the expected progenitor sub-

types using previously annotated progenitor identity markers

(Figures 5A, S6C, and S6D). Genotyping data were available

for 3,642 cells (40.4%) throughGoT (Figure S6E), and copy-num-

ber analysis with scRNA-seq data confirmed the expected

absence of chromosomal gains or losses (Figure S6F).

Projection of the genotyping information onto the differentia-

tion map (Figure 5B), showed no novel cell identities formed by

the SF3B1 mutations, consistent with the fact that patients

with CH exhibit no overt peripheral blood count or morphological

abnormalities. However, a differentiation pseudotime ordering

analysis revealed enrichment of SF3B1mut cells at later pseudo-

time points compared with SF3B1wt cells (Figures 5C and S6G).

As in MDS, MUT cells were enriched in more differentiated EPs

compared with the earlier HSPCs (p value < 0.001, linear mixed

model, Figures 5D and S6H), showing that SF3B1mut CH cells

already demonstrate an erythroid lineage bias.

To further identify transcriptional dysregulation in SF3B1mut

CH cells, we performed differential gene expression analysis be-

tweenMUT andWT cells. We observed an upregulation of genes

involved in mRNA translation in the SF3B1mut HSPCs (where

spliceosome mutations originate from the most primitive multi-

potent compartment115,117) in CH (FDR-adjusted p value =
1272 Cell Stem Cell 30, 1262–1281, September 7, 2023
0.005; Figures 5E and 5F; Table S5), a pathway also observed

to be upregulated in the MDS analysis (Figure 1H). In CH, upre-

gulation of mRNA translation pathway genes was observed

across multiple cell subtypes along erythroid differentiation,

while absent in NPs (Figure 5G). Thus, although no overt blood

count abnormalities are observed with SF3B1mutation in CH in-

dividuals, both the erythroid differentiation bias and aberrant

transcriptional profiles are already apparent at this early pre-dis-

ease stage.

The analysis of differentially used alternative 30 splice sites

between SF3B1mut and SF3B1wt CH cells revealed a marked

increase in cryptic 30 splice site usage in SF3B1mut cells, as

observed in MDS (Figure 6A). These mutant-specific cryptic 30

splice sites affected genes including UROD, OXA1L, SERBP1,

MED6, and ERGIC3, which were also detected to be cryptically

spliced in the SF3B1mut MDS cells. Importantly, the lower VAF

associated with pre-malignant CH samples highlights the neces-

sity for GoT-Splice to increase the detection of mis-splicing

events occurring at low frequencies, and that may otherwise

be missed in bulk sequencing studies (Figures 6B and S6I). To

validate these results, we analyzed CD34+ cells from a CH sam-

ple collected from an individual without myeloma history (CH03,

STAR Methods) and observed high correlation of shared splice

junctions with our previous samples (Spearman’s rho = 0.96,

p value = 2.03 310�12; Figure S6J). We also recapitulated 30

cryptic splice site and exon inclusion events in key genes (e.g.,

SERBP1 and HNRNPA1; Figure S6K).

To comparemis-spliced transcripts betweenCH andMDS,we

compared cryptic 30 splice sites with a p value < 0.05 and dPSI of

R 2 in at least one cell type along the erythroid differentiation tra-

jectory (HSPC, IMP, MEP, or EP) in both CH and MDS cohorts

(Table S6).While the overall number of significant cryptic 30 splice
sites in CH was lower than in MDS, we observed a significant

overlap in shared cryptic events (p value < 10�16, Fisher’s exact

test; Figure 6C). Similarly, to MDS, we identified stage-specific

mis-splicing events in erythroid maturation, the majority of which

overlapped with MDS cryptic 30 splice sites (Figure 6D). Notably,

CH and MDS showed similar mis-splicing dynamics (i.e.,

increased PSI of BAX-u in SF3B1mut cells) in the BAX transcript

along the erythroid differentiation trajectory (Figure 6E;

Table S6). Collectively, these data demonstrate that the aberrant

splicing phenotype is already apparent in CH, impacting genes

that are also observed in MDS SF3B1mut induced mis-splicing.

DISCUSSION

Here, we present GoT-Splice, a single-cell multi-omics integra-

tion that enables joint profiling of genotype, gene expression,

protein, and aberrant splicing all within the same cell. GoT15 al-

lows for the comparison between somatically MUT and WT cells

within the same sample for genotype-to-phenotype inferences.

By further optimization of long-read sequencing of scRNA-seq

libraries,67 we could simultaneously capture both short and

long-read data within the same cell, making it possible to analyze

the impact of somatic mutations on transcriptional and splicing

phenotypes. This stands in contrast to other methods that

provide single-cell genotyping capture but either lack mRNA

capture118 or have lower throughput without full-length isoform

data.22,119,120
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Figure 5. SF3B1 mutations are enriched along the erythroid lineage in clonal hematopoiesis

(A) UMAP of CD34+ (n = 9,007) cells from clonal hematopoiesis (CH) sampleswithSF3B1K700E orSF3B1K666Nmutation (n = 2 individuals), overlaid with cluster

cell-type assignments. See Figure 1A for cell-type descriptions.

(B) Density plot of SF3B1mut vs. SF3B1wt cells.

(C) UMAP of CD34+ cells fromCH samples overlaid with pseudotemporal ordering. Inset: pseudotime inSF3B1mut vs.SF3B1wt cells in the aggregate of CH01–02.

p value for comparison of means from Wilcoxon rank-sum test.

(D) Normalized ratio of mutated cells along pseudotime quartiles. Bars show aggregate analysis of samples CH01–02 with mean ±SE of 100 downsampling

iterations to 1 genotyping UMI per cell. Only cell types with >300 cells were analyzed. p value from likelihood ratio test of linear mixed model with or without

mutation status. Bottom: fraction of cell types within each pseudotime quartile.

(E) Differential gene expression between SF3B1mut and SF3B1wt HSPC cells in CH samples. Genes with an absolute log2(fold change) > 0.1 and p value < 0.05

were defined as differentially expressed (DE). DE genes in the translation pathway (red, Reactome) are highlighted (see Table S5).

(F) Gene set enrichment analysis of DE genes inSF3B1mutHSPCcells across CH samples. Gene sets that overlapwithSF3B1mutEP cells inMDS highlighted (red).

(G) Expression (mean ± SEM) of translation-related genes (Reactome) between SF3B1mut and SF3B1wt cells in progenitor cells from CH01–02 samples. p values

from likelihood ratio test of linear mixed model with or without mutation status.
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To date, few tools are available to process and analyze single-

cell long-read data, especially for the purpose of alternative

splicing. To address existing analytic gaps, we developed a

long-read splicing analysis pipeline that detects and quantifies

alternative splicing eventswithin single cells and highlights differ-

ential junction usage across cell subpopulations. For processing

the long-read data, we opted for an intron-centric approach fol-
lowed by split 50 and 30 PSI measurements. Calculating the rate

of splicing at the 50 and 30 ends of the intron improves the detec-

tion of the true splicing rate of each individual intron, compared

with exon-centric approaches.71 In addition, our pipeline de-

tected differential splicing patterns between MUT and WT cells,

both across entire samples and within individual cell types, with

sample-aware permutation testing to integrate across samples.
Cell Stem Cell 30, 1262–1281, September 7, 2023 1273
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Figure 6. SF3B1mut clonal hematopoiesis progenitor cells display cell-type-specific cryptic 30 splice site usage

(A) Differential splicing analysis between SF3B1mut andSF3B1wt cells across CH samples. Junctions with an absolute delta percent spliced in (dPSI) > 2 and FDR-

adjusted p value < 0.2 were defined as differentially spliced.

(B) Sashimi plot of ERGIC intron junction with an SF3B1mut associated cryptic 30 splice site showing RNA-seq coverage in SF3B1mut vs. SF3B1wt cells within CH

samples, as well as compared with the CH samples when treated as bulk (pseudobulk of all cells regardless of genotype). PSI values showing the expected

increase in usage of this cryptic 30 splice site in SF3B1mut cells alone when compared with both SF3B1wt cells as well as all cells (pseudobulk of sample).

(C) Venn diagramof overlapping geneswith cryptic junctions significantly differentially spliced in at least one erythroid lineage cell type (HSPCs, IMPs,MEPs, EPs)

with a dPSI > 2 between MDS01–03 and CH samples. p value for the overlap from Fisher’s exact test.

(D) Percent spliced in (PSI) of junctions in SF3B1mut cells along the hematopoietic differentiation trajectory of erythroid lineage cells. Rows (Z score normalized),

cryptic 30 splice sites; columns, PSI for usage of a given cryptic 30 splice site in each window (size of 600 SF3B1mut cells, sliding by 60 SF3B1mut cells). Only

junctions differentially spliced in at least one cell type with a dPSI > 2 were analyzed. Pseudotime across each window shown. Rows are ordered according to the

peak in PSI. Cryptic events also differentially spiced in MDS highlighted (red).

(E) Bar plots of PSI values for usage of the BAX-u isoform across each window of SF3B1mut cells in the MDS, MDS validation and CH cohorts along the he-

matopoietic differentiation trajectory of erythroid lineage cells. Fraction of cell types in each window shown per cohort (MDS: SF3B1mut cells [n = 6,376] ordered

by CD71 expression, MDS validation: SF3B1mut cells [n = 987] ordered by pseudotime, CH: MUT cells [n = 1,021] ordered by pseudotime).
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Finally, we provided information regarding the translational con-

sequences of the alternatively spliced junctions. Altogether, our

pipeline offers a comprehensive toolkit to process and analyze

differential splicing events in scRNA-seq long-read data.

By applying GoT-Splice to the most common splice-altering

mutation (SF3B1), we interrogated differentiation biases, differ-

ential gene expression, protein expression, and splicing pat-

terns, comparing SF3B1mut vs. SF3B1wt cells co-existing within

the same bone marrow. Importantly, while GoT revealed that

SF3B1mut cells arise early on in uncommitted HSPCs, we

observed a differentiation bias of SF3B1mut cells toward the EP

fate. This finding is of particular interest given the clinical associ-

ation between SF3B1 mutations and dysplastic erythropoiesis.

Notably, an increase in cell cycle and checkpoint gene expres-

sion (MDM4 and CCNE1) as well as the overexpression of

erythroid lineage markers, CD36 and CD71, specifically in

SF3B1mut EPs, support the enrichment of SF3B1 mutations

along the erythroid lineage.

CH samples likewise showed erythroid biased differentiation

with higher MUT cell frequency in committed EPs compared

with HSPCs. SF3B1mut CH cells showed upregulation of genes

in pathways involved in translation and mRNA processing,

similar to SF3B1mut cells in MDS. This finding suggests that the

pervasive mis-splicing observed with SF3B1 mutations may

disrupt translation, which may also contribute to dyserythropoi-

esis.121,122 Thus, in addition to the shared erythroid differentia-

tion bias in MDS and CH, aberrant transcriptional profiles linked

to the dyserythropoiesis phenotype are also already apparent at

the pre-disease CH stage.

Leveraging the single-cell resolution of GoT-Splice and differ-

ential splicing analysis between SF3B1mut and SF3B1wt cells re-

vealed cell-type-specific effects of SF3B1 mutations on mis-

splicing. Key genes involved in pathways important for terminal

differentiation of hematopoietic stem cells as well as the regula-

tion of erythropoiesis (namely RNA processing, erythroid differ-

entiation, cell cycle and heme metabolism) were cryptically

spliced across distinct SF3B1mut progenitor cell types, many of

which were previously reported to be affected in bulk studies of

SF3B1mut MDS.29,56,75 While some cryptic events were neutral,

many key genes important for erythroid differentiation were

NMD-inducing (e.g., UROD, GYPA, and PPOX) or caused a

frameshift event that may affect protein structure and function

in both the primary and validation MDS cohorts, such as key

apoptosismediators (e.g.,BAX). Indeed, our functional data sup-

port an anti-apoptotic role for BAX-u in SF3B1mut cells. These

data are consistent with the recent discovery of C-terminal BAX

mutations in myeloid clones that arise in CLL patients upon pro-

longed exposure to venetoclax, demonstrating a role for BAX

C-terminal alterations in conferring a survival advantage to

myeloid cells with this pro-apoptotic treatment.109 Of note, early

clinical observations reported lower response to venetoclax in

SF3B1mut AML,123,124 consistent with a potential anti-apoptotic

effect of BAX-u. Together, these findings suggest a potential

mechanism underlying the observed erythroid-dysplasia pheno-

type inSF3B1mutMDS.Despite the injury to translational machin-

ery (Figures 1H and 1I), SF3B1mut EPs may gain some degree of

protection against cell death due to thedisruption of protein func-

tion of pro-apoptotic genes in the TP53 pathway125,126 resulting

from aberrant splicing, as exemplified by the BAX-u isoform.
Overall, mis-splicing of genes involved in erythroid differentiation

and apoptosis regulation may therefore lead to the accumulation

of SF3B1mut EP cells that fail to reach terminal differentiation,105

leading to the dyserythropoiesis clinical phenotype.

Collectively, this work advances our ability to connect somatic

genotypes with complex phenotypes in human samples.

Splicing changes have a critical role in cancer biology,127,128

also evidenced by the prevalence of splice factor mutations

across blood and solid tumor malignancies.129,130 The ability to

layer genotyping together with rich splicing annotation can

thus enable the investigation of aberrant splicing in cancer evo-

lution. Notably, somatic evolution not only affects cancer, but

has been recently shown to ubiquitously impact non-malignant

human tissues in the form of somatic mosaicism.131,132 How-

ever, in somatic mosaicism, the challenge of connecting geno-

types to cellular phenotypes is magnified given the admixture

of MUT and WT cells, and thus studies to date in humans have

been largely limited to genotyping. Overcoming this challenge

requires advances in single-cell multi-omics for genotype-

phenotype mapping in human somatic mosaicism.21,133 This

context highlights the importance of this work as one of the first

phenotypic studies of clonal mosaicism in human samples, lead-

ing to the observation that the somatic mutation-related pheno-

type aligns with themore advancedMDS cellular phenotype. We

speculate that this observation and other recent data133 suggest

that clonal mosaicisms and neoplastic disorders may, at times,

lie across a continuum, whereby clinical phenotypes appear as

a result of increasing frequency of MUT cells rather than a qual-

itative phenotypic change.

Limitations of the study
Although GoT-Splice offers a powerful approach to simulta-

neously assess multiple single-cell modalities, including geno-

type and splicing isoforms, we note some limitations. The per-

centage of cells successfully genotyped can vary due to

factors like gene expression levels or the efficiency of the 10x

Genomics capture. For instance, in the SF3B1 analysis conduct-

ed in this study, the percentage of genotyped cells ranged from

approximately 20% to nearly 90% across individuals. Addition-

ally, due to potential incomplete capture of the heterozygously

mutated allele, MUT cells may be mis-classified as WT when

the WT allele is captured but the mutant allele is missed. We

note that this confounding factor is expected to diminish true sig-

nals in MUT vs. WT comparisons, rather than leading to erro-

neous signals. To address this, we have implemented mitigating

strategies such as genotyping WT cells with two or more geno-

typing amplicon UMIs and downsampling to determine MCF

(see STAR Methods for more details). Finally, larger cohort sizes

and further functional characterizations are needed to validate

our biological findings and examine the impact of isoform

BAX-u on SF3B1mut cells in MDS and CH.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CITE-seq ADTs (see Table S2) BioLegend TotalSeq-A N/A

CD34-PE-Vio770 Miltenyi Biotec clone AC136; RRID: AB_2660374

BAX Santa Cruz Biotechnology sc-7480; RRID: AB_626729

BAK Thermo Fisher MA5-36225; RRID: AB_2884059

GFP Cell Signaling Technology 2555S; RRID: AB_10692764

GAPDH Cell Signaling Technology 5174S; RRID: AB_10622025

FLAG Sigma Aldrich F1804; RRID: AB_262044

Bacterial and virus strains

Lentiviral expression vector Addgene RRID: Addgene_128055

Neomycin lentiviral expression vector Addgene RRID: Addgene_139449

Tetracycline inducible lentiviral expression vector Addgene RRID: Addgene_162823

Chemicals, peptides, and recombinant proteins

FSC TaKaRa #631106

Human GM-CSF R&D Systems 215-GM

DAPI Sigma-Aldrich D9542

Annexin V BioLegend 640920

RIPA buffer Cell Signaling Technology N/A

Intercept Blocking Buffer LI-COR N/A

Critical commercial assays

Ligation Sequencing Kit Oxford Nanopore

Technologies

SQK-LSK110

SQK-LSK114

LongAmp Taq 2X Master Mix New England

BioLaboratories

M0287S

Chromium 3’ (v.3.1 chemistry) 10x Genomics N/A

SPRI beads Beckman Coulter Life

Science

B23317

MycoAlert Mycoplasma Detection Kit Lonza LT07-701

MycoAlert Assay Control Set Lonza LT07-518

True-Stain Monocyte Blocker BioLegend Cat#422302; RRID: AB_2818986

Deposited data

scRNAseq CH01-02, CH04, MDS01-06 and

AML01A-B (See Table S1), raw (FASTQ) and

processed (gene matrix counts, barcodes,

features, and isoform junction counts) samples.

This paper GEO: GSE204845

EGA: EGAS00001007402

Human reference GRCh38 (GENCODE v32/

Ensembl 98)

10x Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/release-notes/

build#GRCh38_2020A

MSigDB C2 curated gene sets GSEA RRID: SCR_016863; https://www.gsea-msigdb.org/

gsea/msigdb/human/collection_details.jsp#C2

Human transcript reference GRCh38.p12 (v31) GENCODE RRID: SCR_014966; https://www.gencodegenes.

org/human/release_31.html

Experimental models: Cell lines

TF-1 ATCC CRL-2003; RRID: CVCL_0559

TF1-Cas9 BAX and BAK DKO cells This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Used in GoT and cDNA ONT sequencing; KO

experiments (see Table S1)

This paper N/A

Software and algorithms

Cell Ranger (v.3.1.0) 10x Genomics RRID: SCR_017344; https://support.10xgenomics.

com/single-cell-gene-expression/software/

release-notes/3-1

Seurat (v.3.1) Stuart et al.134 RRID: SCR_016341; https://github.com/satijalab/

seurat/releases/tag/v3.1.0

Monocle3 (v.1.0) Cao et al.135 RRID: SCR_018685; https://github.com/cole-

trapnell-lab/monocle3

IronThrone (v.2.1) Nam et al.133 https://github.com/landau-lab/GoT-IronThrone

lme4 (v.1.2-1) Bates et al. RRID: SCR_015654; https://github.com/lme4/lme4

dsb (v.0.1.0) Mulè et al.136 https://github.com/niaid/dsb

Guppy (v.3.0.6 - 4.0.11) NanoporeTech RRID: SCR_023196; https://github.com/nanoporetech/

pyguppyclient

SiCeLoRe (v.1.0) Lebrigand et al.67 RRID: SCR_018550; https://github.com/ucagenomix/

sicelore

minimap2 (v.2.17) Heng Li137 RRID: SCR_018550; https://github.com/lh3/minimap2/

releases/tag/v2.17

SAMtools (v.1.9) Danecek et al.138 RRID: SCR_002105; https://github.com/samtools/

samtools/releases/tag/1.9

umi-tools (v.1.1.2) Smith et al.139 RRID: SCR_017048; https://github.com/CGATOxford/

UMI-tools/releases/tag/1.1.2

InferCNV (v.1.4.0) Tickle et al.140 RRID: SCR_021140; https://github.com/broadinstitute/

infercnv

CONICSmat (v.0.0.0.1) M€uller et al.141 https://github.com/diazlab/CONICS

FLAMES (v.1.3.4) Tian et al.68 https://github.com/OliverVoogd/FLAMES

IsoQuant (v.3.1.1) Prjibelski et al.76 https://github.com/ablab/IsoQuant/releases/tag/v3.1.1

SQANTI3 (v.5.1.1) Tardaguila et al.142 https://github.com/ConesaLab/SQANTI3

SUPPA2 (v.2.3) Trincado et al.143 https://github.com/comprna/SUPPA

DRIMSeq (v.1.22.0) Nowicka and Robinson144 https://bioconductor.org/packages/release/bioc/html/

DRIMSeq.html

ONT-Splice (v.1.0.0) This paper https://doi.org/10.5281/zenodo.8084364;https://github.

com/landau-lab/ONT-sc-splice
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dan A.

Landau (dlandau@nygenome.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The processed single cell RNA-Seq data are available through the NCBI Gene Expression Omnibus (GEO) and are publicly

available as of the date of publication. Accession numbers are listed in the key resources table. De-identified patient FASTQ

files have been deposited at the European Genome–phenome Archive (EGA) and accession numbers are listed in the key re-

sources table. They are available upon request if access is granted.

d All original code has been deposited at GitHub and Zenodo and is publicly available as of the date of publication. DOIs are listed

in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
The study was approved by the local ethics committee and by the Institutional Review Board (IRB) of Weill Cornell Medicine, Univer-

sity of Manchester, and Dana-Farber Cancer Institute, conducted in accordance with the Declaration of Helsinki protocol. Cryopre-

served mononuclear cells isolated from bone marrow biopsies frommyelodysplastic syndrome patients with SF3B1mutations were

retrieved fromMemorial Sloan Kettering and University of Manchester. Additionally, cryopreserved G-CSFmobilized stem cell grafts

(without additional mobilizing agents such as plerixafor or cyclophosphamide) fromCHpatients withSF3B1mutations were retrieved

from the Dana-Farber Cancer Institute and theWeizmann Institute of Science (Table S1). To confirm the absence of additional genetic

mutations, CH samples were sequenced using a previously described panel145 that includes myeloma driver mutations as well as

CH-specific mutations. All samples underwent ultra-low pass whole genome sequencing, rejecting the presence of tumor contam-

ination. Cryopreserved mononuclear cells and grafts were thawed and stained using standard procedures. Cells were first incubated

with Human FcX blocking solution (BioLegend, #422302) and then incubated with the surface antibody CD34-PE-Vio770 (clone

AC136, lot #5180718070, dilution 1:50, Miltenyi Biotec) and DAPI (Sigma-Aldrich) for 10 minutes at 4�C. Cells were then sorted

for DAPI-negative, CD34+ cells using BD Influx at the Weill Cornell Medicine flow cytometry core.

Cell lines and tissue culture
TF-1 human erythroleukemia cell line was purchased fromATCC. All TF-1 generated cell lines weremaintained in RPMI + 10%FCS or

RPMI + tetracycline-free FCS (TaKaRa #631106) with 2ng/mL recombinant human GM-CSF (R&D Systems; 215-GM) unless other-

wise noted. All cell lines were cultured at 37�C and 5%CO2 in the presence of penicillin (100 U/mL) and streptomycin (100 mg/mL). All

cell lines wereMycoplasma-free and routinely tested by Antibody and Bioresource Core at MSKCC (MycoAlert Mycoplasma Detec-

tion Kit, Lonza, LT07-701; MycoAlert Assay Control Set, Lonza, LT07-518).

Generation of cell lines, virus packaging, and transduction
TF-1 Cas9 stably expressing cells were generated utilizing a lentiviral expression vector from Addgene (#108100) after puromycin

mammalian antibiotic selection marker was exchanged for blasticidin. 3 sgRNAs targeting human BAX and 3 sgRNAs targeting hu-

man BAK1 were cloned into a dsRED lentiviral expression vector (Addgene #128055) or neomycin lentiviral expression vector

(#139449), respectively. Each sgRNA was tested individually and in combination to identify TF-1 Cas9 cells with the best knockout

of human BAX and BAK1. TF-1 Cas9 BAX and BAK DKO cells were generated by transducing TF-1 Cas9 cells with dsRED lentiviral

expression vector with sgRNA CGAGTGTCTCAAGCGCATCG targeting human BAX and neomycin lentiviral expression vector with

sgRNA CATGAAGTCGACCACGAAGC targeting human BAK1. Cells were selected by flow sorting for dsRED or by mammalian anti-

biotic selection with neomycin (2mg/mL). 3xFLAG tagged BAX isoforms a (NM_138761.4) b (NM_004324.4) and u (also known as

transcript 1, NM_001291428.2), were cloned into a tetracycline inducible lentiviral expression vector (Addgene #162823) and

selected with puromycin (10mg/mL). For cloning, vectors were PCR amplified and inserts were generated by gBlock (IDT) followed

by Gibson Assembly. Lentiviral supernatants were produced by transfecting HEK293T cells with lentiviral constructs and packaging

plasmids pVSVG and psPAX2 using PEI. Virus supernatants were collected and used for transduction in the presence of polybrene

(4mg/mL).

Cytokine depletion assay
TF-1 Cas9 DKO BAX isoform cells were washed twice with RPMI 10% FCS without GM-CSF. Cells were then plated in triplicate in a

24 well plate in the presence or absence of doxycycline (1ug/ml). Cells were stained with annexin V (BioLegend 640920)/DAPI (Sigma

Aldrich D9542) and assessed for apoptosis by flow cytometry.

Western blots
For western blot analysis, cells were lysed with RIPA buffer (Cell Signaling Technology) containing protease/phosphatase inhibitor

cocktail (Sigma Aldrich). Protein concentration was measured using the BCA Protein Assay Kit (Pierce). Equivalent amounts of

each sample were loaded on 4-12% Bis-Tris gels (Invitrogen), transferred to 0.2mm PVDF membrane, and blotted with Intercept

Blocking Buffer (Li-Cor). The following antibodies were used for western blot analysis: BAX (Santa Cruz Biotechnology sc-7480),

BAK1 (ThermoFisher, MA5-36225), GFP (Cell Signaling Technology, 2555S), GAPDH 1:5000 (Cell Signaling Technology 5174S),

FLAG 1:100 (Sigma Aldrich, F1804). All primary antibodies were diluted to final concentration of 1:1,000 in Intercept Blocking Buffer

(LI-COR) unless otherwise noted.

METHOD DETAILS

GoT-Splice with CITE-seq
GoT-Splice with CITE-seq integrates Genotyping of Transcriptomes (GoT) with both long-read single-cell transcriptome profiling

(with Oxford Nanopore Technologies [ONT]) and proteogenomics (with CITE-seq). GoT was performed as previously described.15

For samples without CITE-seq, CD34+ cells were sorted, and RNA was prepared for sequencing following the standard 10x Geno-

mics Chromium 3’ (v.3.1 chemistry) protocol and according to manufacturer’s recommendations for the generation of scRNA-seq
e3 Cell Stem Cell 30, 1262–1281.e1–e8, September 7, 2023
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libraries (Figure 1A). For GoT-Splice samples that were processed with CITE-seq, prior to sorting, cells were blocked with FcX block

for 15 minutes prior to being stained with Total-SeqA antibodies for 30 minutes on ice (see Table S2 for list of antibodies used). The

standard 10x Genomics Chromium 3’ (v.3.1 chemistry) and CITE-seq protocols35,36 were carried out according to manufacturer’s

recommendations for the generation of scRNA-seq and ADT libraries (Figure 1A). At the cDNA amplification step in the 10xGenomics

protocol, 1 mL of 1 mMspike-in primer (5’-GATCCTCGTCCTCATTGAACCGC-3’) was added to increase the yield of SF3B1 cDNA and

1 mL of 0.2 mMADTPCR additive primer (5’ – CCTTGGCACCCGAGAATTCC – 3’) was added to amplify ADT. After cDNA amplification

and a double-sided cleanup with SPRI beads to separate cDNA and ADT fractions, the ADT fraction was amplified for 10 cycles with

SI-PCR oligo (10x Genomics) and TruSeq Small RNA RPI-x (Illumina) primers to index the samples. SPRI was used to clean up the

ADT final products. In both samples in which CITE-seq was conducted and not conducted, cDNA was allocated for gene expression

library creation (standard 10x protocol; 25% of cDNA), targeted genotyping (10% of cDNA), and ONT sequencing with biotin enrich-

ment (10 ng of cDNA). Any remaining cDNA was stored. For locus-specific amplification (GoT), two serial PCRs were performed with

nested reverse primers, based on the SF3B1 mutation of interest. For mutations upstream of K700E, (5’-GATCCTCGTGGTCATT

GAACCGC-3’ and 5’-CACCCGAGAATTCCAGGCTACTATGATCTCTACCATGAGACCTG-3’) and, for K700E mutations, (5’-GTGC

AAAAGCAAGAAGTCCT-3’ and 5’-CACCCGAGAATTCCATGAACATGGTCTTGTGGATGAG-3’) were used as reverse primers. These

reverse primers and the generic forward SI-PCR amplify the site of interest from the cDNA template (10 PCR cycles each). The sec-

ond locus-specific reverse primers contain a partial Illumina TruSeq Small RNA read 2 handle and a locus-specific region to allow

SF3B1 specific priming. The SI-PCR oligo (10x Genomics) anneals to the partial Illumina TruSeq read 1 sequence, preserving the

cell barcode (CB) and unique molecule identifier (UMI). After these rounds of amplification and SPRI purification to remove unincor-

porated primers, a third PCR was performed with a generic forward PCR primer (P5_generic, 5’ – AATGATACGGCGACCACCGA

GATCTACAC – 3’) to retain the CB and UMI together with an RPI-x primer (Illumina) to complete the P7 end of the library and add

a sample index (6 PCR cycles). Gene expression, ADT, and SF3B1 amplicon libraries were pooled to receive 25,000, 5,000, and

5,000 reads per cell, respectively, during Illumina sequencing. The cycle settings were as follows: 28 cycles for read 1, 90 cycles

for read 2, 10 cycles for i7, and 10 cycles for i5 sample index. To examine splicing patterns broadly in the whole transcriptome,

full-length cDNA was sequenced using the Oxford Nanopore Technologies sequencing on PromethION and GridION flow cells.

To enrich for transcripts that contain CBs and UMIs and decrease the presence of PCR artifacts, on-bead PCR with a biotinylated

primer selecting for an adapter upstream of the CBwas completed67 (Figure 2A). In brief, 10 ng of full-length cDNAwas amplified with

LongAmp master mix (NEB) and TSO (5’-NNNAAGCAGTGGTATCAACGCAGAG-3’) and biotinylated read 1 (5’-/5Biosg/AAAAACTA

CACGACGCTCTTCCGATCT-3’) primers for 5 cycles. M270 streptavidin beads (ThermoFisher) were washed with 1X SSPE buffer,

resuspended in 5X SSPE buffer and incubatedwith PCR amplicon after clean-upwith 0.8X SPRI beads. After a 15-minute incubation,

the beads were washed with 1X SSPE and 10 mM Tris-HCl (pH 8) resuspended in PCR master mix, and further amplified with

LongAmp master mix, TSO and read 1 (5’ – NNNCTACACGACGCTCTTCCGATCT – 3’) primers for 5 cycles. After cleanup with

SPRI, 100-300 ng of each full-length cDNA library was sequenced on one PromethION or GridION flow cell with SQK-LSK110.

GoT in U2AF1 was performed with a similar protocol to the described above, targeting the U2AF1 S34F mutation using a cDNA

spiked primer to enrich for the transcript (5’ - GCCTCCATCTTCGGCACCGAGA - 3’) and 2 PRC rounds (PCR0 - Forward:

5’-GCCTCCATCTTCGGCACCGAGA-3’ PCR0 – Reverse: 5’- CTACACGACGCTCTTCCGATCT -3’ and PCR1 - Forward: 5’- CACCC

GAGAATTCCAGCATGTCGTCATGGAGACAGGTGC-3’ PCR1 - Reverse: 5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCC

CTACACGACGCTC -3’) with the same specifications as SF3B1. The full-length GoT library was sequenced on aMinION flow cell with

SQK-LSK114.

ScRNA-seq Illumina data processing, alignment, clustering, and cell-type classification
10x Illumina data were processed using Cell Ranger (v.3.1.0) with default parameters and reads were aligned to the human reference

sequence GRCh38. For all samples, the Seurat package (v.3.1) was used to perform QC filtering, and unbiased clustering of CD34+

sorted cells.146 As an overview, for each sample dataset, cells with number of UMIs (nCount_RNA) < 1,500 or nCount_RNA > 3 me-

dian absolute deviation above the median nCount_RNA value, number of unique genes (nFeature_RNA) > 3 median absolute devi-

ation above themedian nFeature_RNA value andmitochondrial gene percentage (perc.mito) > 20%were filtered. Using the SCTrans-

form function, each dataset was log normalized using the default scale factor of 10,000, scaled and potential confounders (such as

nCount_RNA, perc.mito and S phase and G2M phase gene expression scores) were regressed out of the data. SCTransform also

identified the top 3,000 variable genes found in each dataset that are used for integration. Before clustering, the individual datasets

were integrated based on disease status (i.e. primary MDS samples, MDS01-03, were integrated together, MDS validation samples,

MDS04-06, from patient treated with growth factors at the time of biopsy were integrated together and then the CH samples, CH01-

02, were integrated together) and underwent batch correction within Seurat which implements canonical correlation analysis (CCA)

and the principles of mutual nearest neighbors (MMN).134 For integration, 30 canonical vectors were used for the CCA in the

FindIntegrationAnchors function, and 30 principal components were used for the anchor weightings step in the IntegrateData func-

tion (as recommended in Seurat). Next, a principal component analysis (PCA) was performed using the variable genes of the inte-

grated dataset and the JackStraw method was used to determine statistically significant principal components (PCs) to be used

as inputs into the UMAP algorithm for cluster visualization. Clustering was performed with the FindNeighbors (using only significant

PCs) and the FindClusters (resolution = 2) functions which rely on the k-nearest neighbors (KNN) algorithm to identify cell clusters.

Unique clusters were manually assigned based on differentially expressed genes identified with the FindAllMarkers function which

looked only at genes found in at least 25% of cells in either of the two input comparison groups and only returned results for genes
Cell Stem Cell 30, 1262–1281.e1–e8, September 7, 2023 e4
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with at least a 0.25 log transformed fold change between groups. More specifically, cluster annotations were made according to the

differential expression of canonical lineage marker genes identified in previous single-cell RNA-seq data of normal hematopoietic

progenitor cells37 (Table S1). Clusters with similar increased expression of these canonical markers were merged to form the

main progenitor subsets: HSPCs, IMPs, NPs, MkPs, MEP, EPs, Pre-Bs and E/B/Ms in the primary MDS, MDS validation and CH

cohort as well as Mono, MonoDCs, DCs, B cells and T cells in MDS andMDS validation. Finally, pseudotime analysis was performed

using the Monocle3 R package with recommended parameters (v.0.2.1).135

IronThrone GoT for processing targeted amplicon sequences and performing mutation calling
Genotyping of single cells was carried out with the IronThrone (v.2.1) pipeline as previously described.15,133 In brief, individual am-

plicon reads were assessed for the appropriate structure (i.e., presence of the primer sequence and the expected sequence between

the primer and given mutation site) and all reads were assessed for a matching cell barcode to the list generated from the 10x paired

GEX dataset. A Levenshtein distance of 0.1 was allowed for all sequence matching and collapsing steps and only UMIs with a min-

imum of 2 supporting reads were retained for final genotyping. Following UMI collapse, genotype assignment of individual UMIs was

conducted as described previously with majority rule of supporting reads for wildtype or mutant status (using a 0.7 PCR read ratio,

above which the majority of PCR reads must be for a UMI to be called definitively). Rare UMIs that did not pass this threshold were

removed as ambiguous. Additionally, to remove reads that result from PCR recombination, UMIs in the amplicon library that match

UMIs of non-SF3B1 genes in the gene expression library were discarded (as described in the IronThrone GoT pipeline).15,133 Finally,

given the heterozygous nature of these SF3B1 mutations, each single cell was assigned as either mutant (MUT) or wildtype (WT) as

follows: cells with at least 1 mutant UMI were assigned as MUT cells and cells with 0 mutant UMIs and at least 1 wildtype UMI were

assigned as WT. As benchmarking, the SF3B1 genomic regions of interest that were used for GoT were examined in each matching

GEX library to determine howmany UMIs were able to successfully capture the targeted sequence in conventional 10x data and, in all

cases, less UMIs were captured in the GEX library (Figures S2B and S6E). While the genotyping information is derived from tran-

scribed molecules alone and may be affected by whether transcripts from wildtype versus mutant alleles were expressed and/or

captured, the fraction of MUT cells as determined by GoT using all cells with at least 1 UMI yielded similar values to those determined

by bulk DNA exon sequencing (Figure S2A). Despite this, we systematically applied specific approaches to exclude the effect of this

confounder (that is, the expression level of the target gene) on the conclusions of other downstream analyses. First, to rule out the

possibility that higher SF3B1 expression results in a greater ability to detect mutant alleles, and thereby in a higher mutant-cell fre-

quency, we downsampled all cells to a single amplicon UMI before mutation calling when conducting the mutant-cell frequency an-

alyses. Then, for the remaining of our downstream analyses between SF3B1 mutant and wildtype cells (except for the differential

gene expression and gene set enrichment analyses in CH due to low fraction of mutated cells, which decreases the likelihood of mis-

classifying mutant as wildtype), we took the more conservative approach considering only genotyped cells with two or more geno-

typing amplicon UMIs.

Mutant cell frequency
The frequency of mutant cells, as determined by GoT, was assessed as previously performed in Nam et al.133 Firstly, we used only

cells with at least 1 UMI and only considered cell types with at least 300 genotyped cells. To account for the potential confounding

effect of a heterozygous mutation as well as variable SF3B1 expression, we performed amplicon UMI downsampling to 1 UMI per

genotyped cell prior to mutation calling for calculating MUT cell frequencies. An equal number of cells from each sample within

the MDS cohort, were subsampled randomly for the integrated data to ensure equal representation from each patient. Genotyping

amplicon UMIs were downsampled (x100 iterations) to 1 UMI per cell and MUT cell frequency was determined for each progenitor

cluster for either the integrated dataset or individual samples. This frequency was then divided by the total mutant cell frequency

across all progenitor subsets for each of the iterations. Linear mixed effects analysis was performed using the lme4 package

(v.1.2-1). Progenitor identity was defined as the fixed effect, and for random effects, we used intercepts for individual patients (sub-

jects) and iterative downsampling. p values were obtained by likelihood ratio tests of the full model with the fixed effect against the

model without the fixed effect.147

Differential gene expression and gene set enrichment
The differential gene expression analysis (DGEA) comparing WT and MUT cells and gene set enrichment analysis (GSEA) were per-

formed as done in Nam et al.133 In brief, for each cohort we used a within-sample permutation test for the analysis of each progenitor

cell subtype. To ensure equal representation from each patient, we downsampled the total number of mutated and wildtype cells to

the same number across all patients. The observed log2 fold change values were calculated comparing the MUT versus WT cells for

the tested genes. The tested genes included the top 2,000 most variable genes (excluding mitochondrial genes) which were filtered

for those expressed in at least 10%of either group (MUT versusWT), for each progenitor subtype. Next, theWT andMUT labels were

shuffled over 100,000 iterations, within each patient, and fold change values were re-calculated to create a background distribution.

P-values were calculated per gene as a percent of permutations whose absolute fold change values were more extreme than the

absolute value of the observed fold change (Tables S3 and S5). Hypergeometric test for GSEA of the integrated differentially ex-

pressed genes (p value < 0.05, log2(fold change) > 0.1) was performed using the Cluster Profile package (v.0.1.9). FDR multiple hy-

pothesis testing correction was performed. MSigDB C2 curated gene sets were included in the analyses (Tables S3 and S5).
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ADT processing
CITE-seq was performed on the primary MDS cohort (for samples MDS02-03) and as mentioned above, the 10x Illumina ADT data

was processed using Cell Ranger (v.3.1.0) with default parameters and counts were generated for eachmarker in the CITE-seq panel

(Table S2). After using the Seurat package (v.3.1) for QC filtering, and unbiased clustering of the CD34+ sorted cells based on RNA

data, ADT data was also normalized using centered log-ratio (CLR) normalization, scaled and the expression of various ADTmarkers

was used in confirming the cell-type assignment of different progenitor subsets. For benchmarking purposes, Seurat’s Weighted

Nearest Neighbor (WNN) Analysis was also performed, which is a multi-modal analysis that integrates both RNA and ADT data

when performing cell clustering. This was used to compare to the clustering output when using the KNN algorithm that relies on

RNA data alone (Figure S1H). For the WNN analysis, cells were filtered and integrated using SCTransform (as described above).

The RNA data was logNormalized and the ADT data was run through CLR normalization and the RunPCA function for dimensionality

reduction was also run independently on each modality. Next, the FindMultiModalNeighbors function was used which for each cell,

calculates its closest neighbors in the dataset based on a weighted combination of RNA and ADT similarities. This constructs aWNN

graph that was visualized with the RunUMAP function. The cell-type assignments generated from the initial clustering (with RNA data

alone) were then projected onto this new UMAP for comparison (Figure S1H).

Denoised scaled by background normalization (DSB) filtering and differential protein expression
We used the dsb package136 (v.0.1.0) as an alternative form of normalization for the ADT protein expression values. Normalized

values were applied for selection filtering of ADT markers for which the true signal was above the background noise levels, within

the captured cell-contained droplets. dsb discriminates between background noise by differentiating between empty droplets (con-

taining ambient mRNA and antibody but no cell) and true cell-containing droplets. The backgroundmatrix was defined from the com-

parison of the raw feature barcode matrices from the 10x sequencing output versus the processed filtered feature barcode matrix

results generated from running Cell Ranger (see STAR Methods above). The final output filters out empty droplets and retains

only true cell-containing droplets based on the 10x cell calling algorithm. As such, the matrix of background noise is generated

by subtracting out the positive cell containing droplets found in the filtered matrices from the negative empty droplets in the raw

matrices. Furthermore, with an additional filter requiring the removal of drops with protein library size > 1.5 and number of genes < 80

was applied to refine the background noise signal. Normalization was performed using the DSBNormalizeProtein function omitting

isotype controls and denoised counts. The dsb normalized values were defined as the number of standard deviations above the

background noise and antibodies were then filtered, keeping only those with a dsb normalized expression value of > 2 in at least

1 cell type (Table S2). When performing the differential protein expression analysis across our patient samples, we used an iterative

downsampling (x1,000) approach that, at each iteration, randomly samples an equal number of SF3B1mut and SF3B1wt cells from

each patient sample before calculating the median log10FC of protein expression between SF3B1mut / SF3B1wt cells. This was

done to ensure equal representation of genotyped cells from each patient. To calculate the median log10FC of SF3B1mut / SF3B1wt

cells, we first modified the Seurat’s FindMarker function to calculate the median instead of the mean expression, a measure that is

more robust to outlier values. Then, for each downsampled object we obtained a table containing the log10FC of each antibody per

cell type. log10FC matrices are combined by taking the median across the downsampled iterations, resulting in the median log10FC

values. Statistical significancewas assessed by performing permutation tests (x10,000) within each patient samplematrix. (Figure 1F)

shows normalized ADT expression across cell types, using the maximum expression.

ScRNA-seq ONT long-read sequencing data processing, alignment, junction calling and annotation
Guppy (v.3.0.6 - 4.0.11) was used for base calling FAST5 files output fromONT sequencing. We then filtered for only reads containing

a polyA tail within 100 base pairs of either 5’ or 3’ end using the ‘NanoporeReadScanner-0.5.jar‘ within the SiCeLoRe-1.0 workflow.

Due to the low number of genotyped cells (139) with two or more genotyping amplicon UMIs, MDS01 was excluded from all down-

stream splicing analyses. Filtered reads are aligned to the primary human genome, assembly GRCh38.p12 using minimap2 (v.2.17).

Minimap2 was used with the ‘-ax splice‘ flag to prioritize annotated splice junctions. Additionally, we made use of the ‘–junc-bed‘

option, to increase alignment scores for those splice junctions found in the reference junction bed file. For our reference junctions,

we used splice junctions from single-cell Smart-Seq2 data from human CD34+ cells obtained from a CH sample with no SF3B1mu-

tation. Additionally, we used ‘–secondary=no‘ to suppressmulti-mappings. In preparation to identify the cell barcodes and UMIs pre-

sent in the long-read sequencing, we used the ‘IlluminaParser-1.0.jar‘ in SiCeLoRe to parse the cell barcodes andUMIs present in the

complementary short-read sequencing library. We continued to use SiCeLoRe to tag the aligned BAM files with cell barcodes and

UMIs identified in the short-read library and generate consensus sequences for each unique cell barcode and UMI combination.

Consensus sequences were used to create a gene by cell count matrix. For all other steps, we used the default parameters set

by SiCeLoRe-1.0, following the workflow found at https://github.com/ucagenomix/sicelore. Intron-junction calling is then performed

on consensus sequence BAM files, adapted from the method used in the LeafCutter pipeline for short-read RNA-seq data.72,148 In

brief, the intron-junction calling pipeline utilizes the pysam.fetch() function and iterates through each transcript in the BAM file, noting

its cell barcode (CB) tag as well as the coordinates of each intron-junction for that transcript. On iterating through the BAM file, counts

for the usage of each unique intron-junction and the corresponding CB are recorded. This ultimately generates an Intron-Junction x

Cell Barcode count matrix for the given BAM file. Each intron-junction is then identified using annotations available in the GENCODE

GRCh38.p12 v31 basic annotation reference file as canonical 3’, canonical 5’, alternative 3’, alternative 5’. This outputs a metadata

file with annotations for each junction corresponding to the junctions of the Intron-Junction x Cell Barcode count matrix. The
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metadata included the 3’ and 5’ sites defining each junction, the distance from the canonical 3’ or 5’ site end for each start and end

site, and the classification of each site. Additionally, junctions that share the same 3’ or 5’ splice site are classified into ‘‘junction clus-

ters’’, providing a cluster coverage which is used in subsequent analyses, such as for calculating the percent spliced in values of

different splicing events. Alternative 3’ and 5’ junctions were further broken down into alternative and cryptic based on the distance

the junctionwas from the canonical splice site. If the alternative splice site waswithin 100 base pairs of the canonical splice site, it was

classified as a cryptic splice site. Given the intron-centric approach of the pipeline, each event could be classified as either anno-

tated, alternative 3’, alternative 5’, a cryptic 3’ splice site, a cryptic 5’ splice site or an exon-skipping event (see STARMethods below

for exon-skipping annotation; Tables S4 and S6).

Junction calling and annotation of short-read sequencing data and comparison to long-read sequencing
Using SAMtools (v.1.9), the post-aligned short-read sequencing BAM file (see STAR Methods above) was filtered to include only

reads from the filtered cell barcodes (CB) selected through Cell Ranger, to remove all non-primary alignments and reads mapping

to multiple genes. Next, using umi-tools (v.1.1.2) we ran umi-tools group with the ‘–per-cell flag‘, cell barcode and UMI pairs with

only one supporting read were filtered out and umi-tools dedup was used to remove all duplicate reads. Intron junction calling

and annotation was performed as described above. To compare the junction recovery across the transcript region, we used the En-

sembl annotation database (v.104) to generate a transcript reference and filtered the database to include only protein coding tran-

scripts as well as those with a transcript support level = 1 (i.e., those representing the most well supported transcript for that gene).

From here, we calculated the distance of a junction from the end of its transcript by calculating the distance between the 3’ end of that

junction to the furthermost 3’ junction end (which is at the 3’ end of the transcript). This was done to avoid any measurement biases

due to long UTR annotations.

Copy number variation analysis
The InferCNV package (v.1.4.0)140 was used to analyze the single cell dataset for any duplications or deletions of entire chromosomes

or large chromosome fragments. Briefly, by comparing expression levels of genes annotated by chromosomal position (using the

CONICSmat package v.0.0.0.1141) to a set of reference cells (in this case, a one-versus-rest comparison of cells by patient of origin),

a heatmap of relative expression can be generated and used to identify regions with significantly increased or decreased expression.

We removed the few genes for which alternative positions have been reported (<2% of genes). We ran the InferCNV workflow with

recommended parameters, using the i6 6-state Hidden Markov model (Figure S6F).

Differential transcript usage
All alternative 3’ junctions were filtered to only include those that contained at least 5 total reads. To identify differentially used tran-

scripts between SF3B1mut and SF3B1wt cells, junction reads were then pseudobulked based on mutation status across all MDS pa-

tients or all CH patients. We then computed the log10(odds ratio) of the likelihood of each junction being observed in the MUT cells

over the WT cells. The genotype labels of each of the cells was permuted 100,000 times and we then repeated pseudobulking and

computation of the log10(odds ratio) of each junction. Permutations of the genotype label were patient aware, so the mutant cell fre-

quency across patients was unchanged for each permutation. The p value was determined based on the likelihood of seeing the

observed odds ratio in comparison to the null distribution of the permuted odds ratios for each junction. The same testing was

done within each cell type to identify the differentially used junctions between SF3B1mut and SF3B1wt cells within a specific cell

type. We classified junctions as differentially spliced events if they had P-value < 0.05 and delta percent spliced in (dPSI) of >= 2

(a positive dPSI here represents a splicing event more highly used in the SF3B1mut population of cells). To observe the usage of these

differentially spliced cryptic 3’ events (p value < 0.05 and dPSI >= 2) across the continuum of erythroid maturation as opposed to

within discrete cellular states, erythroid lineage MUT cells (HSPCs, IMPs, MEPs, and EPs) were ordered from least to most differen-

tiated, grouped into bins and the MUT cell PSI for each cryptic event was calculated per bin (Figures 4A and 6D). Specifically, in the

primary MDS cohort (Figure 4A), 6301 SF3B1mut cells were ordered by the expression of the erythroid marker CD71 (obtained from

CITE-seq) and a bin size of 3000 SF3B1mut cells, sliding by 300 SF3B1mut cells at each step, was used to capture the continuous

change in the usage of the different cryptic 3’ junctions via the MUT cell PSI measurements per bin. The variance in the usage of

each cryptic 3’ event was measured by calculating the range of PSIs across all the bins along the continuum and only cryptic junc-

tions that had a PSI range of at least 2 and average coverage across all bins of 10 reads were considered. This approach was taken to

focus on cryptic events that had a variable signal and that were also well supported. In CH (Figure 6D), 1,020MUT cells were ordered

by pseudotime and a bin size of 600 SF3B1mut cells, sliding by 60 SF3B1mut cells at each step, was used to capture the MUT cell PSI

per bin. Similarly, only cryptic junctions that had a PSI range of at least 2 and average coverage of 10 reads were considered.

For theBAX cryptic event (Figure 6E), to directly compare the per bin PSI values across all 3 cohorts (MDS,MDS validation and CH)

we adjusted the bin and window sizes across the cohorts to ensure the same number of final bins for each cohort. To achieve this, we

took the following approach: MDS - MUT cells ordered by CD71 expression, window size of 3750 SF3B1mut cells, sliding by 375

SF3B1mut cells, MDS validation: cells ordered by pseudotime, window size of 580 SF3B1mut cells, sliding by 58 SF3B1mut cells,

CH: cells ordered by pseudotime, window size of 600 SF3B1mut cells, sliding by 60 SF3B1mut cells. To note, for each of the sliding

window analyses, only MUT cells with at least 2 genotyping amplicon UMIs were considered.
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Exon skipping and nonsense-mediated decay (NMD) annotations
To identify exon skipping events, for each gene in the GENCODE GRCh38.p12 v31 basic annotation reference file we determined its

main functional isoform (as those that belong to the APPRIS database and carry the ‘‘appris_princial’’ tags) to compare to the tran-

script isoforms generated in our data. With this, for a given gene, each identified intron junction within our data was compared to the

reference and labeled as an ‘‘exon_skip’’ if it excluded any of the exons present in the reference. The number of exons skipped was

also recorded. To identify NMD inducing alternative splicing events, we also developed a pipeline that inspects each intron junction in

the Intron-Junction x Cell Barcode count matrix and detects the presence of premature termination codons (PTCs) and frameshift

events induced because of alternative splicing. In brief, this is done by grabbing the entire nucleotide sequence of a particular isoform

noting the position of the last exon-exon junction, finding the position of the first start codon and from there, phasing along the triplets

of nucleotides of that given sequence string. By following the known rules of NMD, each intron junction was further annotated as

being (i) NMD-inducing (which would lead to NMD of its associated transcript) or (ii) NMD-neutral. Specifically, the 50-nucleotide

rule was followed such that an event is labeled NMD-inducing if a PTC is introduced greater than 50 nucleotides away from the

last exon-exon junction or NMD-neutral if a PTC is introducedwithin 50 nucleotides of the transcript’s last exon-exon junction. Finally,

Intron-junctions were labeled to cause frameshifts if the total number of nucleotides involved in an alternative 3’ or 5’ splicing event

was not divisible by 3.

Motif enrichment analysis
High quality cryptic 3’ junctions (MUT read coverage > 3, PSI >= 2, junction cluster read coverage > 20 across at least 2 junction

clusters) were obtained from the junction quantification matrix from samples MDS05-06. Each of these cryptic 3’ splice sites

were then paired to a corresponding canonical junction, requiring both, canonical and cryptic junctions, to be part of the same

splicing cluster (as described above). Flanking sequences, 50 nucleotides upstream and 10 nucleotides downstream of the 3’ splice

site were obtained from the two junction sets and used to calculate position weight matrices (PWM). For each position, a log odds

ratio enrichment for each nucleotide was calculated using Fisher’s exact test, comparing the cryptic 3’ splice site nucleotide compo-

sition against the canonical. Reported positions were filtered according to their enrichment significance (p value < 0.05).

Isoform tool comparison
Given that full-length isoform tools provide transcript-level descriptions rather than local events like GoT-Splice (e.g., exon skipping

or cryptic splice sites), the comparison to FLAMES68 and IsoQuant76 was performed at the local level, overlapping junctions respon-

sible to define the local splicing changes. For this analysis, samples of the discovery cohort (MDS02-03) were used. First, FASTQ files

were processed in the FLAMES (v.1.3.4) multi-sample scRNA-seq pipeline with standard parameters and using the same genome

references than in GoT-Splice (described above). In parallel, collapsed BAM files resulting from the SiCeLoRe pipeline (see descrip-

tion above), were used as input for IsoQuant (v.3.1.1) in two steps: first all samples were run together, using the ‘nanopore‘ data type

input, generating an unified isoform annotation (in GTF format) and subsequently, each sample was processed individually to

generate isoform per cell barcode matrices, using the previously created GTF as reference, which includes new isoforms detected

across all the samples. To extract the junction annotations and assess quality of the recovered transcript annotations, SQANTI3142

(v.5.1.1) QC script was applied, with default parameters, to the GTF isoform annotations produced by FLAMES and IsoQuant. Local

splicing events (cryptic splice sites and exon skipping) in the filtered SQANTI3 GTF annotations were then produced with the

SUPPA2143 (v.2.3) ‘generateEvents‘ option. PSI values were estimated following a similar approach to the one described in

SUPPA2, briefly, PSI values reflect a ratio between the read counts corresponding to isoforms that include a particular event divided

by the total isoforms over a particular region (isoforms that do not include the event + isoforms including the events). To identify MUT

versus WT isoform proportion changes we merged the sample transcript per cell count matrices obtained in FLAMES or IsoQuant

and using DRIMSeq144 (v.1.22.0) we filtered for a minimal gene expression of 5, minimal transcript expression of 2 and gene ex-

pressed in a minimum of 2 cells and performed a likelihood ratio test (via the dmTest function). Isoforms with FDR adjusted p

value < 0.05 and change in proportion > 0.25 were considered as significantly changed. Estimation of a splicing aberration bias in

the significantly changed isoforms was determined by overlapping the isoforms with cryptic and alternative 3’ ss annotated with

GoT-Splice.

QUANTIFICATION AND STATISTICAL ANALYSIS

Categorical variables were compared using the hypergeometric test or Fisher’s Exact test. Continuous variables were compared

using the Wilcoxon rank-sum test, Student’s t-test, non-parametric permutation test or Kolmogorov–Smirnov test, as appropriate.

p values were adjusted for multiple comparisons by Benjamini-Hochberg FDR adjustment procedure. All P-values are two-sided

and considered significant at the 0.05 level unless otherwise noted. To add further stringency and confidence to the results, we

have independently analyzed a distinct cohort of samples (validation cohort) and specifically focused on reporting results that passed

a statistical cutoff of 0.2 for FDR adjusted p values in both cohorts. We report genes with FDR adjusted p value < 0.05 in either cohort

in Tables S4 and S6.
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