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Single-cell multi-omics defines the cell-type-
specific impact of splicing aberrations in human
hematopoietic clonal outgrowths
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In brief

Cortés-Lopez and colleagues develop
GoT-Splice for the concurrent profiling of
gene expression, surface proteins,
somatic mutations, and RNA splicing in
individual cells. By utilizing this method,
they investigate the effects of SF3B1
mutations in patients with
myelodysplastic syndrome and clonal
hematopoiesis, unveiling splicing
abnormalities that lead to lineage-
specific clonal expansions.
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cell-type-specific impact of splicing aberrations
in human hematopoietic clonal outgrowths

Mariela Cortés-Lépez,’-2'° Paulina Chamely,’-21° Allegra G. Hawkins,*'° Robert F. Stanley,*'° Ariel D. Swett,"-2
Saravanan Ganesan,'-? Tarek H. Mouhieddine,®> Xiaoguang Dai,® Lloyd Kluegel,'-?> Celine Chen,'-%7 Kiran Batta,®
Nili Furer,® Rahul S. Vedula,> John Beaulaurier,’® Alexander W. Drong,® Scott Hickey,'° Neville Dusaj,"-%"
Gavriel Mullokandov,'-2 Adam M. Stasiw, -2 Jiayu Su,'-'" Ronan Chaligné,'? Sissel Juul,® Eoghan Harrington,®
David A. Knowles,'-'1:13 Catherine J. Potenski,’2 Daniel H. Wiseman,® Amos Tanay,'“ Liran Shlush,® Robert C. Lindsley,°
Irene M. Ghobrial,® Justin Taylor,’> Omar Abdel-Wahab,* Federico Gaiti,'%-17-20-* and Dan A. Landau'2,18,20,21,*
New York Genome Center, New York, NY, USA

2Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York,
NY, USA

3Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, PA, USA

4Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA

5Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

80xford Nanopore Technologies Inc., New York, NY, USA

“Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York,
NY, USA

8Division of Cancer Sciences, The University of Manchester, Manchester, UK

SWeizmann Institute of Science, Department of Molecular Cell Biology, Rehovot, Israel

100xford Nanopore Technologies Inc., San Francisco, CA, USA

11Department of Systems Biology, Columbia University, New York, NY, USA

12Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA

13Department of Computer Science, Columbia University, New York, NY, USA

14Weizmann Institute of Science, Department of Computer Science and Applied Mathematics, Rehovot, Israel

15Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA

16University Health Network, Princess Margaret Cancer Centre, Toronto, ON, Canada

17University of Toronto, Medical Biophysics, Toronto, ON, Canada

18|nstitute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA

19These authors contributed equally

20Senior author

21| ead contact

*Correspondence: federico.gaiti@uhn.ca (F.G.), dlandau@nygenome.org (D.A.L.)

https://doi.org/10.1016/j.stem.2023.07.012

SUMMARY

RNA splicing factors are recurrently mutated in clonal blood disorders, but the impact of dysregulated splicing
in hematopoiesis remains unclear. To overcome technical limitations, we integrated genotyping of transcrip-
tomes (GoT) with long-read single-cell transcriptomics and proteogenomics for single-cell profiling of tran-
scriptomes, surface proteins, somatic mutations, and RNA splicing (GoT-Splice). We applied GoT-Splice to he-
matopoietic progenitors from myelodysplastic syndrome (MDS) patients with mutations in the core splicing
factor SF3B1. SF3B1™" cells were enriched in the megakaryocytic-erythroid lineage, with expansion of
SF3B1™ erythroid progenitor cells. We uncovered distinct cryptic 3’ splice site usage in different progenitor
populations and stage-specific aberrant splicing during erythroid differentiation. Profiling SF3B71-mutated
clonal hematopoiesis samples revealed that erythroid bias and cell-type-specific cryptic 3’ splice site usage
in SF3B1™ cells precede overt MDS. Collectively, GoT-Splice defines the cell-type-specific impact of somatic
mutations on RNA splicing, from early clonal outgrowths to overt neoplasia, directly in human samples.

INTRODUCTION sues.”™"® Likewise, single-cell RNA sequencing (scRNA-seq)

has revealed phenotypic diversity as a hallmark of both normal
Genetic diversity in the form of clonal outgrowths has been ubig-  and malignant human tissues.'*2° These two axes of cellular di-
uitously observed across normal and malignant human tis- versity likely exhibit complex interplay, as cell state may affect
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the phenotypic impact of somatic mutations.”?’ Recent advances
in single-cell multi-omics sequencing have allowed us to link ge-
netic variation and transcriptional cell state diversity in somatic
evolution of human tissues.'®?>*® For example, using genotyp-
ing of transcriptomes (GoT)'® technology, which enables geno-
typing of somatic mutations together with high-throughput
droplet-based scRNA-seq, we demonstrated that the effects
of somatic mutations on cellular fitness in myeloproliferative dis-
orders vary as a function of progenitor cell identity.'®

Mutations in genes encoding RNA splicing factors demon-
strate the challenge of linking genotype to phenotype in complex
human tissues. Somatic change-of-function mutations in RNA
splicing factors are recurrent in hematologic malignancies,>*>°
highlighting the importance of dysregulated RNA splicing in
human hematopoietic disorders. SF3B1 (splicing factor 3b sub-
unit 1), a core component of the spliceosome complex, is a
commonly mutated splicing factor across hematologic malig-
nancies and solid tumors, and is implicated in the pathogenesis
of myelodysplastic syndromes (MDSs).?”*® SF3B1 mutations
also increase the risk of myeloid neoplasms in individuals with
clonal hematopoiesis (CH), compared with other CH driver muta-
tions."** SF3B1 mutations result in incorrect branch point recog-
nition during RNA splicing, often leading to an increased usage of
aberrant (or cryptic) intron-proximal 3’ splice sites in hundreds of
genes.”® Such aberrant 3 splice site recognition typically results
in the inclusion of short intronic fragments in spliced mRNA,
commonly causing frameshifts that render the transcript a sub-
strate for nonsense mediated mRNA decay (NMD).*° Through
mis-splicing, SF3B1 mutations have been shown to affect cell
metabolism®' and ribosomal biogenesis,** leading to the aber-
rant hematopoietic differentiation typical of MDS. However, the
mechanisms through which mis-splicing disrupts hematopoietic
differentiation in humans remain elusive.

To date, cellular and murine models have been critical for
elucidating the role of splicing factor mutations in disordered he-
matopoiesis. Nonetheless, these methods may not fully recapit-
ulate MDS development in humans. For example, alternatively
spliced genes from murine models of SF3B1™ MDS, which
phenotypically resemble human MDS, show limited overlap
with those identified in humans.** Analysis of splice-altering mu-
tations in humans has been further hampered by three main lim-
itations. First, normal wild-type (WT) and aberrant mutated (MUT)
cells are often admixed, limiting identification of signals specif-
ically linked to the SF3B71™ genotype. This challenge is ampli-
fied in the context of CH, where MUT cells are typically a minority
of the hematopoietic progenitor population. Second, the he-
matopoietic differentiation process yields significant complexity
of cell progenitor types that further hinders the ability to link
mutated genotypes with distinct cellular phenotypes. SF3B71™"
MDS is indeed associated with a specific clinico-morphological
phenotype of refractory anemia and accumulation of ringed side-
roblasts,”®** strongly suggesting that the interplay between cell
identity and SF3B1 mutations is fundamental in driving disrupted
hematopoietic differentiation. Finally, scRNA-seq by 3’ or 5
biased short-read sequencing provides an incomplete picture
of the consequences of splicing factor mutations on the tran-
scriptome and their downstream effects.

To overcome these limitations and identify cell-identity-
dependent mis-splicing mediated by SF3B71 mutations, we
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developed GoT-Splice by integrating GoT'® with long-read sin-
gle-cell transcriptome profiling (with Oxford Nanopore Technol-
ogies [ONT]) as well as proteogenomics (with Cellular Indexing of
Transcriptomes and Epitopes by Sequencing [CITE-seq]).>® This
enabled the simultaneous profiling of gene expression, cell sur-
face protein markers, somatic mutation genotyping, and RNA
splicing within the same single cell. The application of GoT-
Splice to bone marrow samples from individuals with SF387™
MDS and CH revealed that, while SF3B1 mutations arise in un-
committed hematopoietic stem progenitor cells (HSPCs), their
enrichment increases along the differentiation trajectory into
committed erythroid progenitors (EPs), in line with the
SF3B1™-driven dyserythropoiesis phenotype. Importantly, the
integration of GoT with full-length isoform mapping via long-
read sequencing demonstrated that SF3B7 mutations exert
cell-type-specific mis-splicing, already apparent in CH.

RESULTS

GoT integrated with proteogenomics reveals
enrichment of SF3B1™! cells in the erythroid lineage
linked to overexpression of cell-cycle and mRNA
translation genes
As the impact of somatic mutations on the transcriptome varies
as a function of underlying cell identity in myeloproliferative neo-
plasms,'® we hypothesized that an interplay between cell iden-
tity and SF3B1 mutations may drive disrupted hematopoietic dif-
ferentiation in MDS. To test this, we applied GoT'® (Figure 1A)
to CD34+ bone marrow progenitor cells from three untreated
MDS patients with SF3B71 K700E mutations (discovery cohort,
MDSO01-03) and a separate cohort of MDS patients undergoing
treatment (validation cohort, MDS04-06) with erythropoietin
(EPO) and/or granulocyte colony-stimulating factor (G-CSF;
Figure 1B; Table S1). As normal hematopoietic development
has been extensively studied using flow cytometry cell surface
markers, we further integrated GoT with single-cell proteoge-
nomics (CITE-seq®>°; Figure 1A). After sequencing and quality
control filtering, we obtained 24,315 cells across the six MDS
samples (Figures S1A and S1B; MDS02 was sequenced in two
technical replicates). To chart the differentiation map of the
CD34+ progenitor cells, we integrated the data across the six
MDS samples and clustered based on transcriptomic data
alone, agnostic to the genotyping and protein information
(Figures 1C, S1C, and S1D). Using previously annotated RNA
identity markers for human CD34+ progenitor cells,*’ validated
via antibody-derived tag (ADT) markers in the CITE-seq panel
(Tables S1 and S2), we identified the expected progenitor sub-
types in the primary MDS cohort, along with a population of
mature monocytic cells characterized by CD14 expression and
lack of CD34 expression, which is often observed in CD34+ sort-
ing of human bone marrow,***° and was not completely
removed with monocyte-specific blocking reagents®® (Figures
1C and S1E-S1G). Cell clustering was further validated using
RNA and ADT multimodal integration (Figure S1H). The expected
progenitor subtypes were similarly identified in the MDS valida-
tion cohort (MDS04-06; Figures S11-S1K).

Genotyping data were available for 15,650 MDS cells (64.4%
across MDS01-06) through GoT (Figures 1B and S2A-S2D).
The per-patient mutant cell fractions obtained through GoT
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Figure 1. Enrichment of SF3B1™" cells in the megakaryocytic-erythroid lineage
(A) GoT-Splice workflow combines GoT with CITE-seq and long-read full-length cDNA using ONT for the simultaneous single-cell profiling of protein and gene
expression, somatic mutations, and alternative splicing.
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were highly correlated with the variant allele frequencies (VAFs)
obtained through bulk sequencing of matched unsorted periph-
eral blood mononuclear cells (Pearson’sr=0.81, p value = 0.008;
Figure S2A). Projection of the genotyping information onto the
differentiation map showed co-mingling of MUT and WT cells
throughout the differentiation topology, highlighting the need
for single-cell multi-omics to link genotypes with cellular pheno-
types in SF3B1™* MDS. Although MUT cells were found across
CD34+ progenitor cells, we observed an accumulation of MUT
cells along the erythroid trajectory (Figure 1D), suggesting that
SF3B1 mutant cell frequency (MCF) varies as a function of the
progenitor subtype. To confirm this, we evaluated the MCF
across the different prevalent progenitor cell types (limited to
progenitor subsets with > 300 cells). Across samples, we
observed a significant increase in MCF in the megakaryocyte-
erythroid lineage, with the highest MCF in EPs compared with
HSPCs (p value < 107 '8; Figures 1E and S2D), consistent with
the erythroid lineage-specific impact of mutated SF3B7.%%*
The ability to layer protein measurements on top of GoT data
further allowed us to identify differentially expressed proteins be-
tween MUT and WT cells within each progenitor subset. After
quality control filtering for ADT markers with adequate expres-
sion in at least two major progenitor subtypes (see STAR
Methods), protein expression was highest in the expected cell
types and correlated with mRNA expression at the cell and
cell-type level, comparable to previous data® (Figures S2E
and S2F). We directly compared protein expression between
MUT and WT cells, accounting for sample-to-sample variability
in MUT cells through downsampling (see STAR Methods) and
observed differential expression of CD38, CD99, CD36, and
CD71 in at least one progenitor cell type (Figure 1F; Table S2).
CD838 is a known marker for the transition of primitive CD34+
stem and progenitor cells into more committed precursor
cells.®”*>** |ts overexpression in SF3B1™! is consistent with
the observed higher MCF in committed progenitor subsets.
CD99, overexpressed in MUT immature myeloid progenitor
(IMP) cells, was previously noted to be overexpressed in both
AML and MDS stem cells, serving as a potential therapeutic
target of malignant stem cells.”>“® Finally, CD36 and CD71,
erythroid lineage markers, were found to be overexpressed in
MUT EPs when compared with WT EPs, consistent with the

¢ CellP’ress

SF3B1™-driven dyserythropoiesis phenotype. We further lever-
aged these erythroid maturation cell surface protein markers to
validate pseudotemporal (pseudotime) ordering of the contin-
uous process of erythroid maturation”” (Figure S2G). This anal-
ysis revealed an increase in MCF along erythroid lineage matura-
tion (Figure 1G), confirming enrichment of SF3B1™! cells along
the differentiation trajectory into committed EPs.

To further explore SF3B1 driven transcriptional dysregulation
in committed EPs, we performed differential gene expression
analysis between SF3B1™ and SF3B1*! cells. Mutated EPs
upregulated genes encoding important translation and ribosome
biogenesis factors (Figure 1H; Table S3), including several eu-
karyotic initiation factors (e.g., EIF3A [false discovery rate
(FDR)-adjusted p value = 0.007], EIF5A [FDR-adjusted p value =
0.011]), DEAD-box helicases (e.g., DDX5 [FDR-adjusted
p value = 0.016]), and ribosome subunits (e.g., RPS29 [FDR-
adjusted p value = 0.1]). While we did not directly assess trans-
lational defects, this dysregulation of translation factor expres-
sion is evocative of studies showing that translational regulation
is critical during hematopoiesis,”®°" and may lead to cell- and
tissue-type-restricted activation of TP53 signaling pathway in
myeloid disease.®*°’ Specifically, cells that require high levels
of protein synthesis, such as EPs, may be more sensitive to
even subtle changes in translational regulation.”® In line with
this notion, TP53 gene target upregulation in SF3B1™" cells
was more prominent in the megakaryocyte-erythroid lineage,
with no increased expression of TP53-related genes in earlier
progenitors (HSPCs) or in neutrophil progenitors (NPs)
compared with WT cells (Figure 1l). Our results therefore estab-
lish a molecular phenotype for the SF3B1 mutation in human
bone marrow progenitors, implicating changes in translation
pathway genes.

Mutated EPs also upregulated genes related to the cell cycle
(FDR-adjusted p value = 0.08; Figures 1H and 1J; Table S3).
For example, we observed an increase in the expression of
CCNET1, a positive regulator of the G1/S transition of the cell cy-
cle,®® and MDMA4, which works together with TP53 during the
G1/S checkpoint to determine the fate of cells by regulating
pathways involved in DNA repair, apoptosis, and senes-
cence.®®®" Increased expression of MDM4 can attenuate TP53
activation induced by ribosomal stress,®>°® thereby reducing

(B) Patient metadata and quality controlled GoT data for SF3B7-mutant MDS and CH samples.

(C) Uniform manifold approximation and projection (UMAP) of CD34+ cells (n = 15,436 cells) from MDS patients with SF3B7 K700E mutations (n = 3 individuals),
overlaid with cluster cell-type assignments. HSPCs, hematopoietic stem progenitor cells; IMPs, immature myeloid progenitors; MkPs, megakaryocytic pro-
genitors; MEPs, megakaryocytic-erythroid progenitors; EPs, erythroid progenitors; NPs, neutrophil progenitors; E/B/M, eosinophil/basophil/mast progenitor
cells; T/B cell progenitors; Mono, monocyte; DCs, dendritic cells; Pre-B, precursors B cells; Mono DC, monocyte/dendritic cell progenitors.

(D) Density plot of SF3B1™! vs. SF3B1""! cells, with genotypes (MDS01-03) for 12,494 cells (80.9% of all cells).

(E) Normalized frequency of SF3B1™ cells in progenitor subsets with at least 300 genotyped cells. Bars show analysis of MDS01-03 with mean + SEM of 100
downsampling iterations to 1 genotyping UMI per cell. Cell types with >300 cells were analyzed. p value from likelihood ratio test of linear mixed model with or
without mutation status.

(F) Differential ADT marker expression between SF3B1™ and SF3B1"! cells. Red, higher expression in SF381™! cells; blue, higher expression in SF3871* cells.
Dot size corresponds to the average ADT expression across cells in each cell type. p values determined through permutation testing.

(G) Mutant cell fraction and ADT expression levels of CD36 and CD71 as a function of pseudotime along the megakaryocyte-erythroid differentiation trajectory for
SF3B1™! and SF3B1** cells in MDS01-03. Shading denotes 95% confidence interval. Histogram shows cell density of analyzed clusters, ordered by pseu-
dotime. p values were calculated by Wilcoxon rank-sum test by comparing mutant cell fraction between pseudotime trajectory quartiles.

(H) Differential gene expression between SF3B1™ and SF3B1*! EP cells in MDS samples. Genes with an absolute log,(fold change) > 0.1 and p value < 0.05 were
defined as differentially expressed (DE). Cell cycle (red) and translation (blue) pathways (Reactome) are highlighted.

(I) Expression (mean + SEM) of TP53 pathway related genes (Reactome) between SF3B81™! and SF3B1"! cells in progenitor cells from MDS01-03 samples. Red,
module score in SF3B1™ cells; blue, module score in SF3B1** cells. p values from likelihood ratio test of linear mixed model with or without mutation status.

(J) Same as (l) for expression of cell cycle related genes (Reactome) between SF387™! and SF3B1"! cells in progenitor cells from MDS01-03 samples.
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Figure 2. Simultaneous profiling of gene expression, cell surface protein markers, somatic mutation status, and alternative splicing at sin-
gle-cell resolution

(A) Comparison of the percentage of ONT reads with either incorrect structure (double TSO, no adaptors, single R1 or single TSO) or correct structure (full-length
reads) both before and after the inclusion of a biotin enrichment protocol step during preparation for sequencing. Bars show the aggregate analysis of n =5
samples with mean + SD of the percentage for each category.

(B) Scatterplot of the correlation between the number of UMIs/cell detected in long-read ONT vs. short-read lllumina data for cells sequenced across both
platforms for sample MDS05.

(C) Density plot of the correlation between the number of UMIs/gene detected in long-read ONT vs. short-read lllumina data for sample MDS05.

(D) Number of splice junctions captured in the full-length long-read ONT data compared with short-read sequencing data (gene coverage > 10 in both
sequencing protocols, junction cluster coverage > 600 and junction read support > 1 read [see STAR Methods]), demonstrating increased junction capture with
GoT-Splice across cells.

(E) Greater sequencing coverage uniformity of GoT-Splice compared with short-read sequencing over splice junctions, illustrated with the ERGIC3 gene.

(legend continued on next page)
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the functional impact of p53, thus promoting cell survival and
accumulation. Taken together, these factors contribute to the
enrichment of SF3B1 mutations in the erythroid lineage.

GoT-Splice links somatic mutations, alternative

splicing, and cellular phenotype at single-cell resolution
Given the pivotal role of SF3B7 in mRNA splicing, we next
explored how mis-splicing may link genotypes and cellular phe-
notypes. Indeed, SF3B1 mutations promote recognition of alter-
native branch points, most often leading to increased usage of
aberrant 3’ splice sites.?® However, previous studies in primary
human samples have been performed on bulk samples admixing
MUT and WT cells as well as progenitor subtypes,3:32:6465
Conversely, short-read scRNA-seq does not adequately cover
splice junctions. Recent advances suggest that long-read inte-
gration into scRNA-seq may overcome these limitations.®®"°
We therefore integrated GoT with full-length ONT long-read
sequencing, allowing for high-throughput, single-cell integration
of genotype, cell surface proteome, gene expression, and mRNA
splicing information (GoT-Splice; Figure 1A). Single-cell cDNA
sequencing with ONT presents unique challenges, as cDNA
amplification artifacts are still productively sequenced when us-
ing standard ONT ligation chemistry, leading to a high fraction
of uninformative reads in the highly amplified single-cell libraries.
To enhance ONT efficiency, we incorporated a biotin enrichment
step using on-bead PCR to selectively amplify full-length reads
containing intact cell barcodes and unique molecular identifiers®”
(UMls; Figure 2A), increasing the yield of full-length reads from
50.4% +£2.7%t0 77.6% +2.0% (mean + SD) of sequenced reads.
Thus, GoT-Splice delivers high-resolution single-cell full-length
transcriptional profiles comparable to short-read sequencing
(Figures 2B and 2C). However, full-length ONT sequencing alone
is insufficient to support efficient genotyping of the SF381™! lo-
cus, as analysis of ONT-alone data revealed that only 3% of cells
have at least 1 UMI covering the SF3871™ locus vs. 56% of cells
with GoT (average across MDS samples; Figure S2B), demon-
strating the power of our integrated approach.

To accurately identify splice junctions using single-cell long-
read sequencing, we developed an analytical pipeline that
leverages the SiCeloRe (Single Cell Long Read) pipeline®” (Fig-
ure S3A). To reduce alignment noise, we generated a splice junc-
tion reference identified in single-cell Smart-Seq2 data from hu-
man CD34+ cells without SF3B7 mutation (STAR Methods).
Next, we performed intron-centric junction calling for the inde-
pendent measurement of splicing at both the 5’ and 3’ ends of
each intron. This allows for unbiased assessment of junctions
and greater accuracy in measuring the degree of transcript
mis-splicing compared with exon-centric quantification ap-
proaches,”" which are typically used for cassette exon usage
profiling and rely on potentially inaccurate or incomplete’*"®
predefined transcript models or splicing events. As anticipated,
when comparing short-read and long-read sequencing, we
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found a 12.3-fold increase in the number of junctions detected
using long-read sequencing, with the majority of junctions
(~90%) unique to long-read data (Figures 2D and S3B). Notably,
at the single-cell level, despite lower absolute number of UMI/
cell, we observed a 5.5-fold increase in detected junctions with
long-read sequencing (Figure S3C). Additionally, GoT-Splice af-
forded greater coverage uniformity across the entire transcript,
compared with 3'-biased coverage in short-read sequencing,
enabling the detection of splicing events further from the 3’ tran-
script end (Figure 2E). To further highlight the discovery power of
long-read sequencing, we compared short- and long-read cap-
ture of cryptic 3’ splicing events in relation to distance from the 3’
transcript end (STAR Methods), showing that long-read
sequencing identifies substantially greater numbers of cryptic
events both along the length of the transcript and overall
compared with short-read (Figure S3D), with the majority of
cryptic 3’ splicing events detected in short-reads also captured
in long reads (Figure S3D, pie chart inset).

The most common mis-splicing events (57%) observed in
MDS SF3B1™! cells involved alternative 3’ splice sites (Fig-
ure 2F), consistent with prior reports.”®”* Notably, such alterna-
tive 3’ splice site usage was not observed in a SF3871*! CD34+
sample (Figure S3E). Among the differentially mis-spliced cryptic
3’ splice sites (0-100 bp from canonical splice site) between
SF3B1™" and SF3B1"* cells, 87% were used more highly in
SF3B1™ cells (Figure 2F, inset), aligning with known character-
istics of SF3B71 mutations. ONT long-read sequencing also al-
lowed quantification of different splicing events within the
same MRNA transcript. While only one aberrant 3’ splice site
event was observed for most mRNA transcripts, we identified
428 genes (21.4% of total genes with at least one cryptic 3’ splice
site) with more than one aberrant 3’ splice site event. These
cryptic 3’ splicing events frequently appeared in different copies
of the transcript (Figure S3F). Consistent with previous MDS bulk
sequencing data,’®’® we observed a relative enrichment of pu-
rines upstream of the aberrant 3’ splice site when compared
with the canonical 3’ splice site (Figure S3G).

To assess how our method compares with available isoform
detection tools, we compared the recovery and quantification
of novel splicing junctions with full-length isoform quantification
methods FLAMES®® and IsoQuant.”® While isoform junction
annotation was largely comparable across all three methods
(Figure S4A), detection of cryptic 3’ events was increased using
our approach, compared with FLAMES and IsoQuant, which are
designed to annotate and quantify full-length isoforms. For these
cryptic 3’ events, we observed more variation on local splicing
event assignment, with little agreement between the three
methods (Figure S4A, right). Additionally, many 3’ cryptic events
detected by our method were not identified by FLAMES and
IsoQuant (Figure S4A, right). We also observed a high correlation
between GoT-Splice delta percent spliced in (dPSI; percent
spliced in) measurements obtained by comparing SF3B71™"

(F) Pie chart summarizing the distribution of different alternative splicing events detected after junction annotation. Inset: differences in the usage of cryptic 3’ and
5’ splice site events between SF3871™ and SF3B1"! cells measured with a dPSI (SF381™ PSI-SF3B1"! PSI). Associated with SF3B1™": +ve dPSI; associated

with SF3B1"": —ve dPSI.

(G) Comparison of dPSI values for shared cryptic 3’ splicing events identified in the MUT vs. WT cell comparison from GoT-Splice of SF3B1™* MDS01-03

samples and in the SF3871™! vs. SF3B71"! bulk comparison from bulk RNA sequencing of CD34+ cells of MDS samples in Pellagatti et a

1.%2 Correlation coefficient

p calculated using Spearman’s correlation and p value derived from two-tailed Student’s t-test.
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Figure 3. Progenitor cell-type-specific mis-splicing in SF3B1™ MDS

(A) Differential splicing analysis between SF381™ and SF3B1*! cells across MDS samples. Junctions with absolute dPSI > 2 and FDR-adjusted p value < 0.2
were defined as differentially spliced. Top: bars showing percentage of genes differentially spliced in SF3B1™! and SF3B1"* cells in MDS and MDS validation
cohorts. Inset: expected peak in the number of identified cryptic 3 splice sites at 15-20 base pairs upstream of the canonical 3’ splice site in SF3B1™ cells.
(B) Sashimi plot of METTL17 intron junction with an SF3B1™ associated cryptic 3’ splice site showing RNA-seq coverage in SF3B1™" vs. SF3B1"! cells within
MDS samples. Inset: expected increase in PSI value for the usage of this cryptic 3’ splice site in SF3B1™ cells.

(legend continued on next page)
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and SF3B1" cells and dPSI derived from bulk RNA-seq of
CD34* cells from SF3B1™! vys. SF3B1"* MDS samples®® for
shared cryptic 3’ splice sites (Figure 2G). This correlation with
dPSI derived from bulk data of SF381™! MDS samples®* was
not statistically significant in IsoQuant; in contrast, FLAMES pre-
served the positive correlation observed when using GoT-Splice
(Figure 2G) although with a smaller Spearman’s correlation coef-
ficient value compared with GoT-Splice (Figure S4B). Further-
more, in line with previous work in MDS, the majority of the
cryptic 3’ splice sites identified by GoT-Splice were ~15-20 bp
upstream of the canonical 3’ site®® (Figures 3A, 3B, and S4C-
S4F). The dPSI for the differentially spliced cryptic 3’ splice
site events obtained by comparing SF3871™ and SF3B1“!
cells were highly correlated across MDS samples (average
Pearson’s r of 0.55; p value < 0.001), highlighting the ability of
our differential splicing analysis pipeline to identify statistically
robust recurrent mis-splicing events (Figures 3A, 3B, and S4C-
S4F; Table S4). Unlike GoT-Splice, which identified a far larger
number of mis-splicing events validated with manual review,
full-length isoform quantification methods did not demonstrate
the expected increased usage of cryptic 3’ splice sites in MUT
vs. WT cells (Figures 3A, 3B, and S4G), with equal number of sta-
tistically significant mis-splicing events, further suggesting lower
performance in identifying 3’ cryptic mis-splicing. This is poten-
tially due to the applied correction of splice sites in these full-
length isoform algorithms, which may hinder cryptic mis-splicing
detection, particularly for cryptic splice sites found within 10 bp
of the canonical site (Figure S4H).

To assess how the SF3B1™ MDS alternative splicing profiles
compare to another hematologic malignancy, we compared
cryptic 3 events detected from SF3B1™ MDS cells (positive
dPSI, FDR-adjusted p value < 0.2) to those detected using pre-
viously published bulk RNA-seq data from SF3B1™" chronic
lymphocytic leukemia (CLL) samples.”” We detected more
cryptic 3’ events in our MDS dataset, with 10 events overlapping
between MDS and CLL (Figure S4l; Table S4). This low overlap is
likely driven by expression differences between MDS and CLL
cells, as genes with shared events had higher expression levels
in MDS cells compared with CLL-only events (Figure S4J).

To demonstrate GoT-Splice’s generalizability for profiling
somatic mutations, we analyzed a DNMT3A™' CH sample
(R882C; VAF of 0.09). Recent work has implicated DNMT3A in
splicing regulation in hematopoiesis, independent of DNA
methylation.”® We quantified the distribution of alternative
splicing patterns and found that exon skipping was the most
common event (Figure S5A), as previously reported.”® Compar-
ison between DNMT3A™ ! and DNMT3A"! cells revealed geno-
type-specific events including the SRSF3 exon 4 skipping
event,®° exclusive to DNMT3A™ cells (Figures S5B and S5C).
SRSF3 exon 4 harbors a premature termination codon (PTC)
that causes NMD. Thus, the lack of exon 4 usage in DNMT3A™t
cells can lead to the overexpression of SRSF3, a known
oncogenic splicing factor.®” We further applied GoT-Splice to
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CD34+ cells from an acute myeloid leukemia (AML) patient
with a mutation in the splicing factor U2AF71 (S34F; VAF of
0.16). Despite challenges associated with low expression of
U2AFT1 in this sample, genotyping data were available for 1,662
AML cells (12.8% of all cells) through GoT-Splice (Figure S5D).
Alternative splicing events between U2AF1™ and U2AF 1" cells
were enriched for exon skipping events® (Figure S5E). Through
our differential splicing analysis pipeline, we further identified
103 significant differentially spliced events between U2AF1™!
and U2AF1"! cells (Figure S5F), two of which were exon skipping
events in KIN and DAP3 that were more prevalent in U2AF71™!
cells (Figure S5G), as previously reported.®” These findings
demonstrate the generalizability of our method beyond SF3B1
mutation detection and reveal how DNMT3A and UZ2AF1
mutations result in different splicing changes compared with
SF3B1 mutations (exon skipping vs. alternative 3’ splice sites,
respectively).

Altogether, GoT-Splice enables to link somatic mutations to
transcriptional and cell surface protein marker phenotypes,
and single-cell splicing changes.

GoT-Splice shows progenitor-specific patterns in
SF3B1™"!- mis-splicing

An important advantage of GoT-Splice is the ability to detect
splicing changes at single-cell resolution, allowing the compari-
son of alternative splicing aberrations between MUT and WT cells
in specific cell subsets (Figure 3C; Table S4). We identified both
shared and unique SF3B71™ cryptic 3’ splice site events across
progenitor subtypes in MDS, with the highest usage of cryptic 3’
splice sites occurring in the megakaryocyte-erythroid lineage.
SF3B1™" MEPs and EPs accounted for most of the cell-type-
specific cryptic 3’ splice site events, highlighting the specific
impact of SF3B1 mutations on the erythroid lineage. These pro-
genitor-specific patterns in SF3B71™! mis-splicing were
confirmed in the validation cohort (MDS04-06; Figures S5H-
S5J). In both MDS cohorts, progenitor-specific cryptic 3’ splice
sites involved genes related to cell cycle (e.g., CENPT),*®> RNA
processing (e.g., CHTOP, SF3B1,%* SRSF11, and PRPF38A), ox-
ygen homeostasis (e.g., HIF1A), erythroid differentiation (e.g.,
CD36, FOXRED1, and GATA1%%5%  and heme metabolism
(e.g., UROD, PPOX, and CIAOT1) (Figures 3C, S5H, and S5I;
Table S4). Notably, long-read sequencing was advantageous in
detecting cryptic splicing events in functionally important genes
(PPOX and UROD) with poor short-read coverage due to sub-
stantial drop-offinthe 10 x short-reads across the transcript (Fig-
ure S5J). Although some genes and pathways identified in the
analysis of cryptic 3’ splice sites across cohorts have previously
been reported to be disrupted by alternative splicing in bulk
studies of SF3B1™! MDS samples,* their cell-type specificity
was unknown. For instance, while the alternative splicing event
in SF3B1 itself has been suggested before as being neoplasm-
specific, here, we resolved its erythroid-specific pattern. This iso-
form—SF3B1ins—is predicted to affect splicing by impairing U2

(C) dPSI values between SF3B1™! and SF3B1"! cells for cryptic 3’ splicing events identified in main progenitor subsets across MDS samples. Columns- cryptic 3’
junctions differentially spliced in at least one cell type, with p value < 0.05 and dPSI > 2. Rows: cell type. Genes highlighted for cell cycle (purple), heme
metabolism (green), oxygen homeostasis (black), RNA processing (red), and erythroid differentiation (yellow) pathways. Left bar plots show the fraction of
differentially spliced cryptic 3’ splice sites per cell. Top bar plots quantify the total number of cell types where an event is differentially spliced, with the cell-type-

specific events on the right.
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Figure 4. SF3B1™*-associated mis-splicing changes along the continuum of erythropoiesis
(A) Percent spliced in (PSI) of junctions in SF3B1™ cells along the hematopoietic differentiation trajectory (HSPCs, IMPs, MEPs, and EPs). Rows, (Z score
normalized), cryptic 3 splice sites; columns, PSI for usage of a given cryptic 3’ splice site in each window (size of 3,000 SF3B71™ cells, sliding by 300 SF3871™

(legend continued on next page)
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small nuclear ribonucleoprotein particle (snRNP) assembly,®*
likely contributing to enhanced mis-splicing dysregulation in the
megakaryocyte-erythroid lineage. In addition, cell cycle plays a
critical role in terminal differentiation of hematopoietic stem
cells®” and RNA processing, erythroid differentiation, and heme
metabolism pathways are directly linked to the regulation of
erythropoiesis.®®°° Furthermore, we observed significant over-
lap of megakaryocyte-erythroid lineage-specific aberrantly
spliced genes between discovery and validation MDS cohorts
(p value = 0.00029, Fisher’s exact test, with 46.8% of the crypti-
cally spliced genes in MDS also aberrantly spliced in the MDS
validation cohort; Figure S5I), indicating cell-type and differentia-
tion-stage dependency of SF3B71™-induced alternative
splicing.?”-917%%

Notably, erythropoiesis occupies a continuum of cell states
and is dependent on transcriptional changes that occur along
the differentiation trajectory.*” Analyzing SF381™ mis-splicing
along this continuum (Figure 4A) revealed that some erythroid
differentiation, oxygen homeostasis and heme metabolism
genes can be mis-spliced more frequently at the earliest stages
of EP maturation (e.g., UROD, HIF1A, and FOXRED1°%), while
others display increased mis-splicing in more differentiated
EPs (e.g., GYPA and PPOX). UROD is part of the heme biosyn-
thesis pathway; heme is an important structural component of
erythroid cells and plays a regulatory role in the differentiation
of erythroid precursors.’® PPOX encodes an enzyme involved
in mitochondrial heme biosynthesis and, as such, its degradation
leads to ineffective erythropoiesis and mitochondrial iron
accumulation typical of MDS with ring sideroblast clinical
phenotype.?® These results provide evidence that pathogenic
SF3B1™-driven mis-splicing impacts key mediators of hemo-
globin synthesis and erythroid differentiation at all stages of
erythroid maturation.”-9

In some cases, the degree of mis-splicing of a particular tran-
script (measured by PSI) positively correlated with its expression
across the erythroid differentiation trajectory. In others, mis-
splicing was negatively correlated with gene expression, often
in cryptic 3’ splice site events predicted to lead to transcript
degradation by NMD (Figure 4B for examples). Cryptic 3’ splice
sites result in the inclusion of short intronic fragments in mRNA
and often introduce a PTC.?%%*"°° mRNAs harboring an NMD-
inducing PTC located > 50 bp upstream of the last exon-exon
junction are predicted to undergo NMD, which prevents produc-

¢ CellP’ress

tion of potentially aberrant proteins. In contrast, mRNAs
harboring an NMD-neutral PTC, generally located < 50 bp up-
stream of the last exon-exon junction or in the last exon, fail to
trigger NMD and produce dysfunctional proteins.'?"'%? We clas-
sified cryptic 3’ splice sites detected in the MDS samples into
two major groups: (1) NMD-inducing events (due to the introduc-
tion of a PTC) and (2) NMD-neutral events (Table S4). In accor-
dance with previous reports,”* of the 421 cryptic 3’ splice sites
significantly associated with SF3B1™ cells, 228 (54%) were
classified as NMD-inducing events while the remaining 193
(46%) harbored NMD-neutral events. Despite the somewhat
equal identification of NMD-inducing and NMD-neutral events,
we observed an overall decrease in the expression of genes
with NMD-inducing event in the MUT cells that harbored these
mis-spliced transcripts when compared with NMD-neutral
events (p value = 0.017; Figure 4C).

NMD-inducing events affected key genes in erythroid devel-
opment, such as UROD, GYPA, FOXRED1, and PPOX. Tran-
script loss via NMD'%%'%* may thus contribute to disrupted ter-
minal differentiation of EPs. Notable among NMD-neutral
affected genes, we identified BAX, a member of the Bcl-2 gene
family and transcriptional target of TP53. BAX plays a vital role
in the apoptotic cascade, balancing survival, differentiation,
and proliferation of EPs during later stages of erythropoiesis'®®
(Figure 4A). The identified BAX cryptic 3’ splice site, though
NMD-neutral, causes a frameshift in the last exon, disrupting
the C terminus of the protein. This BAX isoform, known as
BAX-w (Figure 4D), has been shown to protect cells from
apoptotic cell death.'%51%7

To functionally evaluate the significance of SF3B1™!-specific
alternatively spliced BAX isoforms, we generated BAX and BAK1
double knockout (DKO) human TF-1 erythroid leukemia cells and
re-expressed FLAG-tagged BAX-«, BAX-3, and BAX-w isoforms
under a doxycycline-inducible promoter (Figure 4E). BAX and
BAK1 have functionally redundant pro-apoptotic roles'®® and
DKO cell lines have previously been utilized in similar functional
validation experiments of BAX variants.'%%""° TF-1 cells are an
established immature cell line of erythroid origin and are depen-
dent on growth factors for proliferation and survival.''’ We
tested the ability of different BAX isoforms to induce apoptosis
under cytokine-depleted conditions. As expected, TF-1 DKO
inducible GFP control cells had no increase in apoptosis while
induction of BAX-a and BAX-3 expression led to a significant

cells). Only junctions differentially spliced in at least one cell-type with a dPSI > 2 were analyzed. ADT expression of CD71 and cell-type fractions are shown. Rows
ordered according to PSI peak. Genes highlighted for cell cycle (purple), heme metabolism (green), oxygen homeostasis (black), RNA processing (red), erythroid
differentiation (yellow), and apoptosis (blue) pathways.

(B) Examples of mis-spliced genes at different erythroid maturation stages. Bars represent PSI in SF387™ cells. Red lines represent junction ONT expression in
SF3B1™! cells.

(C) Fold change (logy) of gene expression between SF3B1™* and SF3B1"! EP cells in NMD-inducing vs. NMD-neutral genes. p value from Wilcoxon rank-
sum test.

(D) BAX gene model and relevant isoforms. Characteristic domains are highlighted in main isoform BAX-a. The cryptic 3’ splicing event on the terminal exon
defines the BAX-w isoform, characterized by frameshift disruption of the transmembrane domain (TMD).

(E) Western blot of TF-1 BAX/BAK double knockout (DKO) cells with doxycycline-inducible expression of control GFP or FLAG-tagged BAX isoforms a., 8, and w
after 24 h.

(F) Fold change in annexin V positive TF-1 DKO cells expressing different BAX isoforms under cytokine-depleted conditions + doxycycline (1 ng/mL) at 48 and
72 h normalized to apoptotic cells—doxycycline treatment (black line). n = 2 independent experiments performed in triplicate. Bars represent mean values. Error
bars represent + SD; **p value < 0.01, **p value < 0.001. p values from two-tailed Student’s t-test.

(G) Representative annexin V/DAPI flow cytometry plots of different BAX isoforms after 72 h under cytokine-depleted conditions + doxycycline. Percent fre-
quencies noted in relevant quadrants.
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increase in apoptotic cells at 48 and 72 h, consistent with their
established roles as inducers of apoptosis.''® Importantly,
expression of BAX-w showed no change in apoptosis under
cytokine-depleted conditions, supporting an anti-apoptotic
role for BAX-w expression in immature erythroid cells
(Figures 4F and 4G). Collectively, our data highlight SF3B1™-
specific mis-splicing in the induction of NMD in erythroid differ-
entiation genes and alternative splicing of apoptosis mediators
as important events in the pathogenesis of SF387™ MDS cells.

Accumulation of SF3B1™! cells in the erythroid
progenitor population and extensive mis-splicing in
clonal hematopoiesis

While SF3B1 mutations are the most common genetic alterations
in MDS patients, they are also associated with a high-risk of ma-
lignant transformation in CH."®""%""* However, the study of
SF3B1 mutations directly in primary human samples has been
largely limited to MDS, where confounding co-occurrence of
other genetic alterations is common. Additionally, it remains un-
clear exactly how splicing mutations impact cellular phenotypes
in CH. For example, while SF3B1 mutations have been proposed
to be drivers of CH,""® enhancing likelihood of progression to
myeloid neoplasia, these mutations often occur as early genetic
events in CH cases, with gradually increasing VAF over time. In
contrast, mutations in U2AF71 and SRSF2 appear later in life,
with rapidly increasing VAF.''® Thus, CH presents a unique
setting to interrogate the molecular consequences of SF3871 mu-
tations in non-malignant human hematopoiesis.

We therefore isolated viable CD34+ cells from two CH sam-
ples with SF3B1 mutations (VAFs: 0.15 and 0.22, from CD34+
autologous grafts collected from patients with multiple myeloma
in remission) and performed GoT-Splice. A total of 9,007 cells
across both samples passed quality filters (Figure S6A) and
were integrated and clustered based on transcriptome data
alone, agnostic to genotyping information (Figures 5A and
S6B). Consistent with clinical data indicating normal hematopoi-
etic production, we identified the expected progenitor sub-
types using previously annotated progenitor identity markers
(Figures 5A, S6C, and S6D). Genotyping data were available
for 3,642 cells (40.4%) through GoT (Figure S6E), and copy-num-
ber analysis with scRNA-seq data confirmed the expected
absence of chromosomal gains or losses (Figure S6F).

Projection of the genotyping information onto the differentia-
tion map (Figure 5B), showed no novel cell identities formed by
the SF3B1 mutations, consistent with the fact that patients
with CH exhibit no overt peripheral blood count or morphological
abnormalities. However, a differentiation pseudotime ordering
analysis revealed enrichment of SF381™ cells at later pseudo-
time points compared with SF3B71* cells (Figures 5C and S6G).
As in MDS, MUT cells were enriched in more differentiated EPs
compared with the earlier HSPCs (p value < 0.001, linear mixed
model, Figures 5D and S6H), showing that SF3B1™"* CH cells
already demonstrate an erythroid lineage bias.

To further identify transcriptional dysregulation in SF381™!
CH cells, we performed differential gene expression analysis be-
tween MUT and WT cells. We observed an upregulation of genes
involved in mMRNA translation in the SF3B1™! HSPCs (where
spliceosome mutations originate from the most primitive multi-
potent compartment''>""") in CH (FDR-adjusted p value =
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0.005; Figures 5E and 5F; Table S5), a pathway also observed
to be upregulated in the MDS analysis (Figure 1H). In CH, upre-
gulation of mRNA translation pathway genes was observed
across multiple cell subtypes along erythroid differentiation,
while absent in NPs (Figure 5G). Thus, although no overt blood
count abnormalities are observed with SF3B1 mutation in CH in-
dividuals, both the erythroid differentiation bias and aberrant
transcriptional profiles are already apparent at this early pre-dis-
ease stage.

The analysis of differentially used alternative 3’ splice sites
between SF3B1™" and SF3B1"' CH cells revealed a marked
increase in cryptic 3’ splice site usage in SF3B1™" cells, as
observed in MDS (Figure 6A). These mutant-specific cryptic 3’
splice sites affected genes including UROD, OXA1L, SERBPT,
MEDS6, and ERGIC3, which were also detected to be cryptically
spliced in the SF3B71™ MDS cells. Importantly, the lower VAF
associated with pre-malignant CH samples highlights the neces-
sity for GoT-Splice to increase the detection of mis-splicing
events occurring at low frequencies, and that may otherwise
be missed in bulk sequencing studies (Figures 6B and S6l). To
validate these results, we analyzed CD34+ cells from a CH sam-
ple collected from an individual without myeloma history (CHO3,
STAR Methods) and observed high correlation of shared splice
junctions with our previous samples (Spearman’s rho = 0.96,
p value = 2.03 x10~'%; Figure S6J). We also recapitulated 3’
cryptic splice site and exon inclusion events in key genes (e.g.,
SERBP1 and HNRNPAT; Figure S6K).

To compare mis-spliced transcripts between CH and MDS, we
compared cryptic 3’ splice sites with a p value < 0.05 and dPSI of
> 2in at least one cell type along the erythroid differentiation tra-
jectory (HSPC, IMP, MEP, or EP) in both CH and MDS cohorts
(Table S6). While the overall number of significant cryptic 3’ splice
sites in CH was lower than in MDS, we observed a significant
overlap in shared cryptic events (p value < 1076, Fisher’s exact
test; Figure 6C). Similarly, to MDS, we identified stage-specific
mis-splicing events in erythroid maturation, the majority of which
overlapped with MDS cryptic 3’ splice sites (Figure 6D). Notably,
CH and MDS showed similar mis-splicing dynamics (i.e.,
increased PSI of BAX-w in SF3B1™ cells) in the BAX transcript
along the erythroid differentiation trajectory (Figure 6E;
Table S6). Collectively, these data demonstrate that the aberrant
splicing phenotype is already apparent in CH, impacting genes
that are also observed in MDS SF3B1™ induced mis-splicing.

DISCUSSION

Here, we present GoT-Splice, a single-cell multi-omics integra-
tion that enables joint profiling of genotype, gene expression,
protein, and aberrant splicing all within the same cell. GoT'® al-
lows for the comparison between somatically MUT and WT cells
within the same sample for genotype-to-phenotype inferences.
By further optimization of long-read sequencing of scRNA-seq
libraries,®” we could simultaneously capture both short and
long-read data within the same cell, making it possible to analyze
the impact of somatic mutations on transcriptional and splicing
phenotypes. This stands in contrast to other methods that
provide single-cell genotyping capture but either lack mRNA
capture''® or have lower throughput without full-length isoform
data.22’1 19,120
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Figure 5. SF3B1 mutations are enriched along the erythroid lineage in clonal hematopoiesis

(A) UMAP of CD34+ (n = 9,007) cells from clonal hematopoiesis (CH) samples with SF3B81 K700E or SF3B1 K666N mutation (n = 2 individuals), overlaid with cluster
cell-type assignments. See Figure 1A for cell-type descriptions.

(B) Density plot of SF3B1™ vs. SF3B1*! cells.

(C) UMAP of CD34+ cells from CH samples overlaid with pseudotemporal ordering. Inset: pseudotime in SF381™! vs. SF3B1" cells in the aggregate of CH0O1-02.
p value for comparison of means from Wilcoxon rank-sum test.

(D) Normalized ratio of mutated cells along pseudotime quartiles. Bars show aggregate analysis of samples CHO1-02 with mean +SE of 100 downsampling
iterations to 1 genotyping UMI per cell. Only cell types with >300 cells were analyzed. p value from likelihood ratio test of linear mixed model with or without
mutation status. Bottom: fraction of cell types within each pseudotime quartile.

(E) Differential gene expression between SF3B1™ and SF381** HSPC cells in CH samples. Genes with an absolute log,(fold change) > 0.1 and p value < 0.05
were defined as differentially expressed (DE). DE genes in the translation pathway (red, Reactome) are highlighted (see Table S5).

(F) Gene set enrichment analysis of DE genes in SF3B1™* HSPC cells across CH samples. Gene sets that overlap with SF387™! EP cells in MDS highlighted (red).
(G) Expression (mean + SEM) of translation-related genes (Reactome) between SF381™ and SF3B7*! cells in progenitor cells from CHO1-02 samples. p values
from likelihood ratio test of linear mixed model with or without mutation status.

To date, few tools are available to process and analyze single-
cell long-read data, especially for the purpose of alternative
splicing. To address existing analytic gaps, we developed a
long-read splicing analysis pipeline that detects and quantifies
alternative splicing events within single cells and highlights differ-
ential junction usage across cell subpopulations. For processing
the long-read data, we opted for an intron-centric approach fol-

lowed by split 5’ and 3’ PSI measurements. Calculating the rate
of splicing at the 5’ and 3’ ends of the intron improves the detec-
tion of the true splicing rate of each individual intron, compared
with exon-centric approaches.”" In addition, our pipeline de-
tected differential splicing patterns between MUT and WT cells,
both across entire samples and within individual cell types, with
sample-aware permutation testing to integrate across samples.
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Figure 6. SF3B1™" clonal hematopoiesis progenitor cells display cell-type-specific cryptic 3’ splice site usage

(A) Differential splicing analysis between SF3871™ and SF3B1"! cells across CH samples. Junctions with an absolute delta percent spliced in (dPSI) > 2 and FDR-
adjusted p value < 0.2 were defined as differentially spliced.

(B) Sashimi plot of ERGIC intron junction with an SF3B1™ associated cryptic 3’ splice site showing RNA-seq coverage in SF3B1™ vs. SF3B1** cells within CH
samples, as well as compared with the CH samples when treated as bulk (pseudobulk of all cells regardless of genotype). PSI values showing the expected
increase in usage of this cryptic 3’ splice site in SF3B1™ cells alone when compared with both SF3B7** cells as well as all cells (pseudobulk of sample).

(C) Venn diagram of overlapping genes with cryptic junctions significantly differentially spliced in at least one erythroid lineage cell type (HSPCs, IMPs, MEPs, EPs)
with a dPSI > 2 between MDS01-03 and CH samples. p value for the overlap from Fisher’s exact test.

(D) Percent spliced in (PSI) of junctions in SF3B1™ cells along the hematopoietic differentiation trajectory of erythroid lineage cells. Rows (Z score normalized),
cryptic 3’ splice sites; columns, PSI for usage of a given cryptic 3 splice site in each window (size of 600 SF3B1™! cells, sliding by 60 SF3B1™ cells). Only
junctions differentially spliced in at least one cell type with a dPSI > 2 were analyzed. Pseudotime across each window shown. Rows are ordered according to the
peak in PSI. Cryptic events also differentially spiced in MDS highlighted (red).

(E) Bar plots of PSI values for usage of the BAX-w isoform across each window of SF3B71™" cells in the MDS, MDS validation and CH cohorts along the he-
matopoietic differentiation trajectory of erythroid lineage cells. Fraction of cell types in each window shown per cohort (MDS: SF3B1™ cells [n = 6,376] ordered
by CD71 expression, MDS validation: SF3B1™ cells [n = 987] ordered by pseudotime, CH: MUT cells [n = 1,021] ordered by pseudotime).
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Finally, we provided information regarding the translational con-
sequences of the alternatively spliced junctions. Altogether, our
pipeline offers a comprehensive toolkit to process and analyze
differential splicing events in scRNA-seq long-read data.

By applying GoT-Splice to the most common splice-altering
mutation (SF3B1), we interrogated differentiation biases, differ-
ential gene expression, protein expression, and splicing pat-
terns, comparing SF3B1™" vs. SF3B1** cells co-existing within
the same bone marrow. Importantly, while GoT revealed that
SF3B1™! cells arise early on in uncommitted HSPCs, we
observed a differentiation bias of SF381™ cells toward the EP
fate. This finding is of particular interest given the clinical associ-
ation between SF3B1 mutations and dysplastic erythropoiesis.
Notably, an increase in cell cycle and checkpoint gene expres-
sion (MDM4 and CCNET1) as well as the overexpression of
erythroid lineage markers, CD36 and CD71, specifically in
SF3B1™! EPs, support the enrichment of SF3B7 mutations
along the erythroid lineage.

CH samples likewise showed erythroid biased differentiation
with higher MUT cell frequency in committed EPs compared
with HSPCs. SF3B1™ CH cells showed upregulation of genes
in pathways involved in translation and mRNA processing,
similar to SF3B1™ cells in MDS. This finding suggests that the
pervasive mis-splicing observed with SF3B1 mutations may
disrupt translation, which may also contribute to dyserythropoi-
esis.'?""'?2 Thus, in addition to the shared erythroid differentia-
tion bias in MDS and CH, aberrant transcriptional profiles linked
to the dyserythropoiesis phenotype are also already apparent at
the pre-disease CH stage.

Leveraging the single-cell resolution of GoT-Splice and differ-
ential splicing analysis between SF381™ and SF3B1"* cells re-
vealed cell-type-specific effects of SF3B1 mutations on mis-
splicing. Key genes involved in pathways important for terminal
differentiation of hematopoietic stem cells as well as the regula-
tion of erythropoiesis (namely RNA processing, erythroid differ-
entiation, cell cycle and heme metabolism) were cryptically
spliced across distinct SF3B1™! progenitor cell types, many of
which were previously reported to be affected in bulk studies of
SF3B1™* MDS.?%°%"% While some cryptic events were neutral,
many key genes important for erythroid differentiation were
NMD-inducing (e.g., UROD, GYPA, and PPOX) or caused a
frameshift event that may affect protein structure and function
in both the primary and validation MDS cohorts, such as key
apoptosis mediators (e.g., BAX). Indeed, our functional data sup-
port an anti-apoptotic role for BAX-w in SF3B1™ cells. These
data are consistent with the recent discovery of C-terminal BAX
mutations in myeloid clones that arise in CLL patients upon pro-
longed exposure to venetoclax, demonstrating a role for BAX
C-terminal alterations in conferring a survival advantage to
myeloid cells with this pro-apoptotic treatment.'®® Of note, early
clinical observations reported lower response to venetoclax in
SF3B1™! AML,'?*"?* consistent with a potential anti-apoptotic
effect of BAX-w. Together, these findings suggest a potential
mechanism underlying the observed erythroid-dysplasia pheno-
typein SF3B1™* MDS. Despite the injury to translational machin-
ery (Figures 1H and 1), SF3B1™ EPs may gain some degree of
protection against cell death due to the disruption of protein func-
tion of pro-apoptotic genes in the TP53 pathway'?>'?° resulting
from aberrant splicing, as exemplified by the BAX-w isoform.

¢ CellP’ress

Overall, mis-splicing of genes involved in erythroid differentiation
and apoptosis regulation may therefore lead to the accumulation
of SF3B1™ EP cells that fail to reach terminal differentiation, '°°
leading to the dyserythropoiesis clinical phenotype.

Collectively, this work advances our ability to connect somatic
genotypes with complex phenotypes in human samples.
Splicing changes have a critical role in cancer biology,'*"'?®
also evidenced by the prevalence of splice factor mutations
across blood and solid tumor malignancies.'?®'*° The ability to
layer genotyping together with rich splicing annotation can
thus enable the investigation of aberrant splicing in cancer evo-
lution. Notably, somatic evolution not only affects cancer, but
has been recently shown to ubiquitously impact non-malignant
human tissues in the form of somatic mosaicism."®"'*> How-
ever, in somatic mosaicism, the challenge of connecting geno-
types to cellular phenotypes is magnified given the admixture
of MUT and WT cells, and thus studies to date in humans have
been largely limited to genotyping. Overcoming this challenge
requires advances in single-cell multi-omics for genotype-
phenotype mapping in human somatic mosaicism.?"'%® This
context highlights the importance of this work as one of the first
phenotypic studies of clonal mosaicism in human samples, lead-
ing to the observation that the somatic mutation-related pheno-
type aligns with the more advanced MDS cellular phenotype. We
speculate that this observation and other recent data'*® suggest
that clonal mosaicisms and neoplastic disorders may, at times,
lie across a continuum, whereby clinical phenotypes appear as
a result of increasing frequency of MUT cells rather than a qual-
itative phenotypic change.

Limitations of the study

Although GoT-Splice offers a powerful approach to simulta-
neously assess multiple single-cell modalities, including geno-
type and splicing isoforms, we note some limitations. The per-
centage of cells successfully genotyped can vary due to
factors like gene expression levels or the efficiency of the 10x
Genomics capture. For instance, in the SF3B1 analysis conduct-
ed in this study, the percentage of genotyped cells ranged from
approximately 20% to nearly 90% across individuals. Addition-
ally, due to potential incomplete capture of the heterozygously
mutated allele, MUT cells may be mis-classified as WT when
the WT allele is captured but the mutant allele is missed. We
note that this confounding factor is expected to diminish true sig-
nals in MUT vs. WT comparisons, rather than leading to erro-
neous signals. To address this, we have implemented mitigating
strategies such as genotyping WT cells with two or more geno-
typing amplicon UMIs and downsampling to determine MCF
(see STAR Methods for more details). Finally, larger cohort sizes
and further functional characterizations are needed to validate
our biological findings and examine the impact of isoform
BAX-w on SF3B1™" cells in MDS and CH.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

o KEY RESOURCES TABLE
e RESOURCE AVAILABILITY
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O Lead contact
O Materials availability
O Data and code availability
o EXPERIMENTAL MODEL AND SUBJECT DETAILS
O Human subjects
O Cell lines and tissue culture
O Generation of cell lines, virus packaging, and trans-
duction
O Cytokine depletion assay
O Western blots
e METHOD DETAILS
O GoT-Splice with CITE-seq
O ScRNA-seq lllumina data processing, alignment, clus-
tering, and cell-type classification
IronThrone GoT for processing targeted amplicon se-
quences and performing mutation calling
Mutant cell frequency
Differential gene expression and gene set enrichment
ADT processing
Denoised scaled by background normalization (DSB)
filtering and differential protein expression
ScRNA-seq ONT long-read sequencing data process-
ing, alignment, junction calling and annotation
O Jdunction calling and annotation of short-read
sequencing data and comparison to long-read
sequencing
O Copy number variation analysis
Differential transcript usage
O Exon skipping and nonsense-mediated decay (NMD)
annotations
O Motif enrichment analysis
O Isoform tool comparison
® QUANTIFICATION AND STATISTICAL ANALYSIS

O O OO @)

@)

@)

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
stem.2023.07.012.
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Human GM-CSF R&D Systems 215-GM
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Intercept Blocking Buffer LI-COR N/A
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Ligation Sequencing Kit Oxford Nanopore SQK-LSK110

Technologies SQK-LSK114
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BioLaboratories
Chromium 3’ (v.3.1 chemistry) 10x Genomics N/A
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Science
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MycoAlert Assay Control Set Lonza LT07-518
True-Stain Monocyte Blocker BioLegend Cat#422302; RRID: AB_2818986
Deposited data
scRNAseq CHO01-02, CH04, MDS01-06 and This paper GEO: GSE204845

AMLO1A-B (See Table S1), raw (FASTQ) and
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Human reference GRCh38 (GENCODE v32/
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Experimental models: Cell lines
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TF1-Cas9 BAX and BAK DKO cells This paper N/A
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Used in GoT and cDNA ONT sequencing; KO This paper N/A
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Software and algorithms
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10x Genomics
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Cao et al.’™®
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Bates et al.
Mulé et al.'®®
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Lebrigand et al.®”
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Tickle et al.’®
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Nowicka and Robinson'**

This paper
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com/single-cell-gene-expression/software/
release-notes/3-1

RRID: SCR_016341; https://github.com/satijalab/
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RRID: SCR_018685; https://github.com/cole-
trapnell-lab/monocle3
https://github.com/landau-lab/GoT-IronThrone

RRID: SCR_015654; https://github.com/Ime4/Ime4
https://github.com/niaid/dsb

RRID: SCR_023196; https://github.com/nanoporetech/
pyguppyclient

RRID: SCR_018550; https://github.com/ucagenomix/
sicelore
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releases/tag/v2.17

RRID: SCR_002105; https://github.com/samtools/
samtools/releases/tag/1.9
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UMI-tools/releases/tag/1.1.2
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infercnv

https://github.com/diazlab/CONICS
https://github.com/OliverVoogd/FLAMES
https://github.com/ablab/IsoQuant/releases/tag/v3.1.1
https://github.com/Conesal.ab/SQANTI3
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DRIMSeq.html
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dan A.

Landau (dlandau@nygenome.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

® The processed single cell RNA-Seq data are available through the NCBI Gene Expression Omnibus (GEO) and are publicly
available as of the date of publication. Accession numbers are listed in the key resources table. De-identified patient FASTQ
files have been deposited at the European Genome-phenome Archive (EGA) and accession numbers are listed in the key re-

sources table. They are available upon request if access is granted.

o All original code has been deposited at GitHub and Zenodo and is publicly available as of the date of publication. DOlIs are listed

in the key resources table.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects

The study was approved by the local ethics committee and by the Institutional Review Board (IRB) of Weill Cornell Medicine, Univer-
sity of Manchester, and Dana-Farber Cancer Institute, conducted in accordance with the Declaration of Helsinki protocol. Cryopre-
served mononuclear cells isolated from bone marrow biopsies from myelodysplastic syndrome patients with SF3B1 mutations were
retrieved from Memorial Sloan Kettering and University of Manchester. Additionally, cryopreserved G-CSF mobilized stem cell grafts
(without additional mobilizing agents such as plerixafor or cyclophosphamide) from CH patients with SF3B1 mutations were retrieved
from the Dana-Farber Cancer Institute and the Weizmann Institute of Science (Table S1). To confirm the absence of additional genetic
mutations, CH samples were sequenced using a previously described panel'*® that includes myeloma driver mutations as well as
CH-specific mutations. All samples underwent ultra-low pass whole genome sequencing, rejecting the presence of tumor contam-
ination. Cryopreserved mononuclear cells and grafts were thawed and stained using standard procedures. Cells were first incubated
with Human FcX blocking solution (BioLegend, #422302) and then incubated with the surface antibody CD34-PE-Vio770 (clone
AC136, lot #5180718070, dilution 1:50, Miltenyi Biotec) and DAPI (Sigma-Aldrich) for 10 minutes at 4°C. Cells were then sorted
for DAPI-negative, CD34+ cells using BD Influx at the Weill Cornell Medicine flow cytometry core.

Cell lines and tissue culture

TF-1 human erythroleukemia cell line was purchased from ATCC. All TF-1 generated cell lines were maintained in RPMI + 10% FCS or
RPMI + tetracycline-free FCS (TaKaRa #631106) with 2ng/mL recombinant human GM-CSF (R&D Systems; 215-GM) unless other-
wise noted. All cell lines were cultured at 37°C and 5% CO. in the presence of penicillin (100 U/mL) and streptomycin (100 pg/mL). All
cell lines were Mycoplasma-free and routinely tested by Antibody and Bioresource Core at MSKCC (MycoAlert Mycoplasma Detec-
tion Kit, Lonza, LTO7-701; MycoAlert Assay Control Set, Lonza, LT07-518).

Generation of cell lines, virus packaging, and transduction

TF-1 Cas9 stably expressing cells were generated utilizing a lentiviral expression vector from Addgene (#108100) after puromycin
mammalian antibiotic selection marker was exchanged for blasticidin. 3 sgRNAs targeting human BAX and 3 sgRNAs targeting hu-
man BAK1 were cloned into a dsRED lentiviral expression vector (Addgene #128055) or neomycin lentiviral expression vector
(#139449), respectively. Each sgRNA was tested individually and in combination to identify TF-1 Cas9 cells with the best knockout
of human BAX and BAK1. TF-1 Cas9 BAX and BAK DKO cells were generated by transducing TF-1 Cas9 cells with dsRED lentiviral
expression vector with sgRNA CGAGTGTCTCAAGCGCATCG targeting human BAX and neomycin lentiviral expression vector with
sgRNA CATGAAGTCGACCACGAAGC targeting human BAK1. Cells were selected by flow sorting for dsRED or by mammalian anti-
biotic selection with neomycin (2mg/mL). 3xFLAG tagged BAX isoforms o (NM_138761.4) 3 (NM_004324.4) and w (also known as
transcript 1, NM_001291428.2), were cloned into a tetracycline inducible lentiviral expression vector (Addgene #162823) and
selected with puromycin (10ug/mL). For cloning, vectors were PCR amplified and inserts were generated by gBlock (IDT) followed
by Gibson Assembly. Lentiviral supernatants were produced by transfecting HEK293T cells with lentiviral constructs and packaging
plasmids pVSVG and psPAX2 using PEI. Virus supernatants were collected and used for transduction in the presence of polybrene
(4pg/mL).

Cytokine depletion assay

TF-1 Cas9 DKO BAX isoform cells were washed twice with RPMI 10% FCS without GM-CSF. Cells were then plated in triplicate in a
24 well plate in the presence or absence of doxycycline (1ug/ml). Cells were stained with annexin V (BioLegend 640920)/DAPI (Sigma
Aldrich D9542) and assessed for apoptosis by flow cytometry.

Western blots

For western blot analysis, cells were lysed with RIPA buffer (Cell Signaling Technology) containing protease/phosphatase inhibitor
cocktail (Sigma Aldrich). Protein concentration was measured using the BCA Protein Assay Kit (Pierce). Equivalent amounts of
each sample were loaded on 4-12% Bis-Tris gels (Invitrogen), transferred to 0.2um PVDF membrane, and blotted with Intercept
Blocking Buffer (Li-Cor). The following antibodies were used for western blot analysis: BAX (Santa Cruz Biotechnology sc-7480),
BAK1 (ThermoFisher, MA5-36225), GFP (Cell Signaling Technology, 2555S), GAPDH 1:5000 (Cell Signaling Technology 5174S),
FLAG 1:100 (Sigma Aldrich, F1804). All primary antibodies were diluted to final concentration of 1:1,000 in Intercept Blocking Buffer
(LI-COR) unless otherwise noted.

METHOD DETAILS

GoT-Splice with CITE-seq

GoT-Splice with CITE-seq integrates Genotyping of Transcriptomes (GoT) with both long-read single-cell transcriptome profiling
(with Oxford Nanopore Technologies [ONT]) and proteogenomics (with CITE-seq). GoT was performed as previously described.'®
For samples without CITE-seq, CD34+ cells were sorted, and RNA was prepared for sequencing following the standard 10x Geno-
mics Chromium 3’ (v.3.1 chemistry) protocol and according to manufacturer’s recommendations for the generation of scRNA-seq
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libraries (Figure 1A). For GoT-Splice samples that were processed with CITE-seq, prior to sorting, cells were blocked with FcX block
for 15 minutes prior to being stained with Total-SegA antibodies for 30 minutes on ice (see Table S2 for list of antibodies used). The
standard 10x Genomics Chromium 3’ (v.3.1 chemistry) and CITE-seq protocols®>**® were carried out according to manufacturer’s
recommendations for the generation of scRNA-seq and ADT libraries (Figure 1A). At the cDNA amplification step in the 10x Genomics
protocol, 1 uL of 1 uM spike-in primer (5’-GATCCTCGTCCTCATTGAACCGC-3’) was added to increase the yield of SF3B71 cDNA and
1 puL of 0.2 uM ADT PCR additive primer (5’ = CCTTGGCACCCGAGAATTCC - 3’) was added to amplify ADT. After cDNA ampilification
and a double-sided cleanup with SPRI beads to separate cDNA and ADT fractions, the ADT fraction was amplified for 10 cycles with
SI-PCR oligo (10x Genomics) and TruSeq Small RNA RPI-x (lllumina) primers to index the samples. SPRI was used to clean up the
ADT final products. In both samples in which CITE-seq was conducted and not conducted, cDNA was allocated for gene expression
library creation (standard 10x protocol; 25% of cDNA), targeted genotyping (10% of cDNA), and ONT sequencing with biotin enrich-
ment (10 ng of cDNA). Any remaining cDNA was stored. For locus-specific amplification (GoT), two serial PCRs were performed with
nested reverse primers, based on the SF3B1 mutation of interest. For mutations upstream of K700E, (5’-GATCCTCGTGGTCATT
GAACCGC-3’ and 5’-CACCCGAGAATTCCAGGCTACTATGATCTCTACCATGAGACCTG-3’) and, for K700E mutations, (5’-GTGC
AAAAGCAAGAAGTCCT-3’ and 5’-CACCCGAGAATTCCATGAACATGGTCTTGTGGATGAG-3’) were used as reverse primers. These
reverse primers and the generic forward SI-PCR amplify the site of interest from the cDNA template (10 PCR cycles each). The sec-
ond locus-specific reverse primers contain a partial lllumina TruSeq Small RNA read 2 handle and a locus-specific region to allow
SF3B1 specific priming. The SI-PCR oligo (10x Genomics) anneals to the partial lllumina TruSeq read 1 sequence, preserving the
cell barcode (CB) and unique molecule identifier (UMI). After these rounds of ampilification and SPRI purification to remove unincor-
porated primers, a third PCR was performed with a generic forward PCR primer (P5_generic, 5 - AATGATACGGCGACCACCGA
GATCTACAC - 3’) to retain the CB and UMI together with an RPI-x primer (lllumina) to complete the P7 end of the library and add
a sample index (6 PCR cycles). Gene expression, ADT, and SF3B71 amplicon libraries were pooled to receive 25,000, 5,000, and
5,000 reads per cell, respectively, during lllumina sequencing. The cycle settings were as follows: 28 cycles for read 1, 90 cycles
for read 2, 10 cycles for i7, and 10 cycles for i5 sample index. To examine splicing patterns broadly in the whole transcriptome,
full-length cDNA was sequenced using the Oxford Nanopore Technologies sequencing on PromethlON and GridlON flow cells.
To enrich for transcripts that contain CBs and UMIs and decrease the presence of PCR artifacts, on-bead PCR with a biotinylated
primer selecting for an adapter upstream of the CB was completed®” (Figure 2A). In brief, 10 ng of full-length cDNA was amplified with
LongAmp master mix (NEB) and TSO (5’-NNNAAGCAGTGGTATCAACGCAGAG-3’) and biotinylated read 1 (5’-/5Biosg/AAAAACTA
CACGACGCTCTTCCGATCT-3’) primers for 5 cycles. M270 streptavidin beads (ThermoFisher) were washed with 1X SSPE buffer,
resuspended in 5X SSPE buffer and incubated with PCR amplicon after clean-up with 0.8X SPRI beads. After a 15-minute incubation,
the beads were washed with 1X SSPE and 10 mM Tris-HCI (pH 8) resuspended in PCR master mix, and further amplified with
LongAmp master mix, TSO and read 1 (5° — NNNCTACACGACGCTCTTCCGATCT - 3’) primers for 5 cycles. After cleanup with
SPRI, 100-300 ng of each full-length cDNA library was sequenced on one PromethlON or GridION flow cell with SQK-LSK110.

GoT in U2AF1 was performed with a similar protocol to the described above, targeting the U2AF1 S34F mutation using a cDNA
spiked primer to enrich for the transcript (5° - GCCTCCATCTTCGGCACCGAGA - 3’) and 2 PRC rounds (PCRO - Forward:
5’-GCCTCCATCTTCGGCACCGAGA-3’ PCRO - Reverse: 5’- CTACACGACGCTCTTCCGATCT -3’ and PCR1 - Forward: 5’- CACCC
GAGAATTCCAGCATGTCGTCATGGAGACAGGTGC-3’ PCR1 - Reverse: 5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTC -3’) with the same specifications as SF3B1. The full-length GoT library was sequenced on a MinlON flow cell with
SQK-LSK114.

ScRNA-seq lllumina data processing, alignment, clustering, and cell-type classification

10x lllumina data were processed using Cell Ranger (v.3.1.0) with default parameters and reads were aligned to the human reference
sequence GRCh38. For all samples, the Seurat package (v.3.1) was used to perform QC filtering, and unbiased clustering of CD34+
sorted cells.'“® As an overview, for each sample dataset, cells with number of UMIs (nCount_RNA) < 1,500 or nCount_RNA > 3 me-
dian absolute deviation above the median nCount_RNA value, number of unique genes (nFeature_RNA) > 3 median absolute devi-
ation above the median nFeature_RNA value and mitochondrial gene percentage (perc.mito) > 20% were filtered. Using the SCTrans-
form function, each dataset was log normalized using the default scale factor of 10,000, scaled and potential confounders (such as
nCount_RNA, perc.mito and S phase and G2M phase gene expression scores) were regressed out of the data. SCTransform also
identified the top 3,000 variable genes found in each dataset that are used for integration. Before clustering, the individual datasets
were integrated based on disease status (i.e. primary MDS samples, MDS01-03, were integrated together, MDS validation samples,
MDS04-06, from patient treated with growth factors at the time of biopsy were integrated together and then the CH samples, CHO1-
02, were integrated together) and underwent batch correction within Seurat which implements canonical correlation analysis (CCA)
and the principles of mutual nearest neighbors (MMN)."** For integration, 30 canonical vectors were used for the CCA in the
FindIntegrationAnchors function, and 30 principal components were used for the anchor weightings step in the IntegrateData func-
tion (as recommended in Seurat). Next, a principal component analysis (PCA) was performed using the variable genes of the inte-
grated dataset and the JackStraw method was used to determine statistically significant principal components (PCs) to be used
as inputs into the UMAP algorithm for cluster visualization. Clustering was performed with the FindNeighbors (using only significant
PCs) and the FindClusters (resolution = 2) functions which rely on the k-nearest neighbors (KNN) algorithm to identify cell clusters.
Unique clusters were manually assigned based on differentially expressed genes identified with the FindAlIMarkers function which
looked only at genes found in at least 25% of cells in either of the two input comparison groups and only returned results for genes
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with at least a 0.25 log transformed fold change between groups. More specifically, cluster annotations were made according to the
differential expression of canonical lineage marker genes identified in previous single-cell RNA-seq data of normal hematopoietic
progenitor cells®” (Table S1). Clusters with similar increased expression of these canonical markers were merged to form the
main progenitor subsets: HSPCs, IMPs, NPs, MkPs, MEP, EPs, Pre-Bs and E/B/Ms in the primary MDS, MDS validation and CH
cohort as well as Mono, MonoDCs, DCs, B cells and T cells in MDS and MDS validation. Finally, pseudotime analysis was performed
using the Monocle3 R package with recommended parameters (v.0.2.1).'%°

IronThrone GoT for processing targeted amplicon sequences and performing mutation calling

Genotyping of single cells was carried out with the IronThrone (v.2.1) pipeline as previously described.'>"*® In brief, individual am-
plicon reads were assessed for the appropriate structure (i.e., presence of the primer sequence and the expected sequence between
the primer and given mutation site) and all reads were assessed for a matching cell barcode to the list generated from the 10x paired
GEX dataset. A Levenshtein distance of 0.1 was allowed for all sequence matching and collapsing steps and only UMIs with a min-
imum of 2 supporting reads were retained for final genotyping. Following UMI collapse, genotype assignment of individual UMIs was
conducted as described previously with majority rule of supporting reads for wildtype or mutant status (using a 0.7 PCR read ratio,
above which the majority of PCR reads must be for a UMI to be called definitively). Rare UMIs that did not pass this threshold were
removed as ambiguous. Additionally, to remove reads that result from PCR recombination, UMIs in the amplicon library that match
UMIs of non-SF3B1 genes in the gene expression library were discarded (as described in the IronThrone GoT pipeline).'>'*® Finally,
given the heterozygous nature of these SF3B1 mutations, each single cell was assigned as either mutant (MUT) or wildtype (WT) as
follows: cells with at least 1 mutant UMI were assigned as MUT cells and cells with 0 mutant UMIs and at least 1 wildtype UMI were
assigned as WT. As benchmarking, the SF3B7 genomic regions of interest that were used for GoT were examined in each matching
GEX library to determine how many UMIs were able to successfully capture the targeted sequence in conventional 10x data and, in all
cases, less UMIs were captured in the GEX library (Figures S2B and S6E). While the genotyping information is derived from tran-
scribed molecules alone and may be affected by whether transcripts from wildtype versus mutant alleles were expressed and/or
captured, the fraction of MUT cells as determined by GoT using all cells with at least 1 UMI yielded similar values to those determined
by bulk DNA exon sequencing (Figure S2A). Despite this, we systematically applied specific approaches to exclude the effect of this
confounder (that is, the expression level of the target gene) on the conclusions of other downstream analyses. First, to rule out the
possibility that higher SF3B1 expression results in a greater ability to detect mutant alleles, and thereby in a higher mutant-cell fre-
quency, we downsampled all cells to a single amplicon UMI before mutation calling when conducting the mutant-cell frequency an-
alyses. Then, for the remaining of our downstream analyses between SF3B7 mutant and wildtype cells (except for the differential
gene expression and gene set enrichment analyses in CH due to low fraction of mutated cells, which decreases the likelihood of mis-
classifying mutant as wildtype), we took the more conservative approach considering only genotyped cells with two or more geno-
typing amplicon UMls.

Mutant cell frequency

The frequency of mutant cells, as determined by GoT, was assessed as previously performed in Nam et al.'*® Firstly, we used only
cells with at least 1 UMI and only considered cell types with at least 300 genotyped cells. To account for the potential confounding
effect of a heterozygous mutation as well as variable SF3B1 expression, we performed amplicon UMI downsampling to 1 UMI per
genotyped cell prior to mutation calling for calculating MUT cell frequencies. An equal number of cells from each sample within
the MDS cohort, were subsampled randomly for the integrated data to ensure equal representation from each patient. Genotyping
amplicon UMIs were downsampled (x100 iterations) to 1 UMI per cell and MUT cell frequency was determined for each progenitor
cluster for either the integrated dataset or individual samples. This frequency was then divided by the total mutant cell frequency
across all progenitor subsets for each of the iterations. Linear mixed effects analysis was performed using the Ime4 package
(v.1.2-1). Progenitor identity was defined as the fixed effect, and for random effects, we used intercepts for individual patients (sub-
jects) and iterative downsampling. p values were obtained by likelihood ratio tests of the full model with the fixed effect against the
model without the fixed effect.'*’

Differential gene expression and gene set enrichment

The differential gene expression analysis (DGEA) comparing WT and MUT cells and gene set enrichment analysis (GSEA) were per-
formed as done in Nam et al.’*® In brief, for each cohort we used a within-sample permutation test for the analysis of each progenitor
cell subtype. To ensure equal representation from each patient, we downsampled the total number of mutated and wildtype cells to
the same number across all patients. The observed logs fold change values were calculated comparing the MUT versus WT cells for
the tested genes. The tested genes included the top 2,000 most variable genes (excluding mitochondrial genes) which were filtered
for those expressed in at least 10% of either group (MUT versus WT), for each progenitor subtype. Next, the WT and MUT labels were
shuffled over 100,000 iterations, within each patient, and fold change values were re-calculated to create a background distribution.
P-values were calculated per gene as a percent of permutations whose absolute fold change values were more extreme than the
absolute value of the observed fold change (Tables S3 and S5). Hypergeometric test for GSEA of the integrated differentially ex-
pressed genes (p value < 0.05, logs(fold change) > 0.1) was performed using the Cluster Profile package (v.0.1.9). FDR multiple hy-
pothesis testing correction was performed. MSigDB C2 curated gene sets were included in the analyses (Tables S3 and S5).
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ADT processing

CITE-seq was performed on the primary MDS cohort (for samples MDS02-03) and as mentioned above, the 10x lllumina ADT data
was processed using Cell Ranger (v.3.1.0) with default parameters and counts were generated for each marker in the CITE-seq panel
(Table S2). After using the Seurat package (v.3.1) for QC filtering, and unbiased clustering of the CD34+ sorted cells based on RNA
data, ADT data was also normalized using centered log-ratio (CLR) normalization, scaled and the expression of various ADT markers
was used in confirming the cell-type assignment of different progenitor subsets. For benchmarking purposes, Seurat’s Weighted
Nearest Neighbor (WNN) Analysis was also performed, which is a multi-modal analysis that integrates both RNA and ADT data
when performing cell clustering. This was used to compare to the clustering output when using the KNN algorithm that relies on
RNA data alone (Figure ST1H). For the WNN analysis, cells were filtered and integrated using SCTransform (as described above).
The RNA data was logNormalized and the ADT data was run through CLR normalization and the RunPCA function for dimensionality
reduction was also run independently on each modality. Next, the FindMultiModalNeighbors function was used which for each cell,
calculates its closest neighbors in the dataset based on a weighted combination of RNA and ADT similarities. This constructs a WNN
graph that was visualized with the RunUMAP function. The cell-type assignments generated from the initial clustering (with RNA data
alone) were then projected onto this new UMAP for comparison (Figure S1H).

Denoised scaled by background normalization (DSB) filtering and differential protein expression

We used the dsb package'*® (v.0.1.0) as an alternative form of normalization for the ADT protein expression values. Normalized
values were applied for selection filtering of ADT markers for which the true signal was above the background noise levels, within
the captured cell-contained droplets. dsb discriminates between background noise by differentiating between empty droplets (con-
taining ambient MRNA and antibody but no cell) and true cell-containing droplets. The background matrix was defined from the com-
parison of the raw feature barcode matrices from the 10x sequencing output versus the processed filtered feature barcode matrix
results generated from running Cell Ranger (see STAR Methods above). The final output filters out empty droplets and retains
only true cell-containing droplets based on the 10x cell calling algorithm. As such, the matrix of background noise is generated
by subtracting out the positive cell containing droplets found in the filtered matrices from the negative empty droplets in the raw
matrices. Furthermore, with an additional filter requiring the removal of drops with protein library size > 1.5 and number of genes < 80
was applied to refine the background noise signal. Normalization was performed using the DSBNormalizeProtein function omitting
isotype controls and denoised counts. The dsb normalized values were defined as the number of standard deviations above the
background noise and antibodies were then filtered, keeping only those with a dsb normalized expression value of > 2 in at least
1 cell type (Table S2). When performing the differential protein expression analysis across our patient samples, we used an iterative
downsampling (x1,000) approach that, at each iteration, randomly samples an equal number of SF3B1™* and SF3B1** cells from
each patient sample before calculating the median log;oFC of protein expression between SF3B1™ / SF3B1" cells. This was
done to ensure equal representation of genotyped cells from each patient. To calculate the median log;oFC of SF3B1™! / SF3B1"!
cells, we first modified the Seurat’s FindMarker function to calculate the median instead of the mean expression, a measure that is
more robust to outlier values. Then, for each downsampled object we obtained a table containing the log1oFC of each antibody per
cell type. log1oFC matrices are combined by taking the median across the downsampled iterations, resulting in the median log,FC
values. Statistical significance was assessed by performing permutation tests (x10,000) within each patient sample matrix. (Figure 1F)
shows normalized ADT expression across cell types, using the maximum expression.

ScRNA-seq ONT long-read sequencing data processing, alignment, junction calling and annotation

Guppy (v.3.0.6 - 4.0.11) was used for base calling FASTS5 files output from ONT sequencing. We then filtered for only reads containing
a polyA tail within 100 base pairs of either 5’ or 3’ end using the ‘NanoporeReadScanner-0.5.jar* within the SiCeLoRe-1.0 workflow.
Due to the low number of genotyped cells (139) with two or more genotyping amplicon UMIs, MDS01 was excluded from all down-
stream splicing analyses. Filtered reads are aligned to the primary human genome, assembly GRCh38.p12 using minimap2 (v.2.17).
Minimap2 was used with the ‘-ax splice‘ flag to prioritize annotated splice junctions. Additionally, we made use of the ‘—junc-bed’
option, to increase alignment scores for those splice junctions found in the reference junction bed file. For our reference junctions,
we used splice junctions from single-cell Smart-Seg2 data from human CD34+ cells obtained from a CH sample with no SF3B71 mu-
tation. Additionally, we used ‘—secondary=no‘ to suppress multi-mappings. In preparation to identify the cell barcodes and UMIs pre-
sentin the long-read sequencing, we used the ‘llluminaParser-1.0.jar* in SiCeLoRe to parse the cell barcodes and UMIs present in the
complementary short-read sequencing library. We continued to use SiCelLoRe to tag the aligned BAM files with cell barcodes and
UMis identified in the short-read library and generate consensus sequences for each unique cell barcode and UMI combination.
Consensus sequences were used to create a gene by cell count matrix. For all other steps, we used the default parameters set
by SiCelLoRe-1.0, following the workflow found at https://github.com/ucagenomix/sicelore. Intron-junction calling is then performed
on consensus sequence BAM files, adapted from the method used in the LeafCutter pipeline for short-read RNA-seq data.”*"'*® In
brief, the intron-junction calling pipeline utilizes the pysam.fetch() function and iterates through each transcript in the BAM file, noting
its cell barcode (CB) tag as well as the coordinates of each intron-junction for that transcript. On iterating through the BAM file, counts
for the usage of each unique intron-junction and the corresponding CB are recorded. This ultimately generates an Intron-Junction x
Cell Barcode count matrix for the given BAM file. Each intron-junction is then identified using annotations available in the GENCODE
GRCh38.p12 v31 basic annotation reference file as canonical 3’, canonical 5’, alternative 3’, alternative 5’. This outputs a metadata
file with annotations for each junction corresponding to the junctions of the Intron-Junction x Cell Barcode count matrix. The
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metadata included the 3’ and 5’ sites defining each junction, the distance from the canonical 3’ or 5’ site end for each start and end
site, and the classification of each site. Additionally, junctions that share the same 3’ or 5’ splice site are classified into “junction clus-
ters”, providing a cluster coverage which is used in subsequent analyses, such as for calculating the percent spliced in values of
different splicing events. Alternative 3’ and 5’ junctions were further broken down into alternative and cryptic based on the distance
the junction was from the canonical splice site. If the alternative splice site was within 100 base pairs of the canonical splice site, it was
classified as a cryptic splice site. Given the intron-centric approach of the pipeline, each event could be classified as either anno-
tated, alternative 3’, alternative 5’, a cryptic 3’ splice site, a cryptic 5’ splice site or an exon-skipping event (see STAR Methods below
for exon-skipping annotation; Tables S4 and S6).

Junction calling and annotation of short-read sequencing data and comparison to long-read sequencing

Using SAMtools (v.1.9), the post-aligned short-read sequencing BAM file (see STAR Methods above) was filtered to include only
reads from the filtered cell barcodes (CB) selected through Cell Ranger, to remove all non-primary alignments and reads mapping
to multiple genes. Next, using umi-tools (v.1.1.2) we ran umi-tools group with the ‘—per-cell flag, cell barcode and UMI pairs with
only one supporting read were filtered out and umi-tools dedup was used to remove all duplicate reads. Intron junction calling
and annotation was performed as described above. To compare the junction recovery across the transcript region, we used the En-
sembl annotation database (v.104) to generate a transcript reference and filtered the database to include only protein coding tran-
scripts as well as those with a transcript support level = 1 (i.e., those representing the most well supported transcript for that gene).
From here, we calculated the distance of a junction from the end of its transcript by calculating the distance between the 3’ end of that
junction to the furthermost 3’ junction end (which is at the 3’ end of the transcript). This was done to avoid any measurement biases
due to long UTR annotations.

Copy number variation analysis

The InferCNV package (v.1.4.0)'“° was used to analyze the single cell dataset for any duplications or deletions of entire chromosomes
or large chromosome fragments. Briefly, by comparing expression levels of genes annotated by chromosomal position (using the
CONICSmat package v.0.0.0.1'*") to a set of reference cells (in this case, a one-versus-rest comparison of cells by patient of origin),
a heatmap of relative expression can be generated and used to identify regions with significantly increased or decreased expression.
We removed the few genes for which alternative positions have been reported (<2% of genes). We ran the InferCNV workflow with
recommended parameters, using the i6 6-state Hidden Markov model (Figure S6F).

Differential transcript usage

All alternative 3’ junctions were filtered to only include those that contained at least 5 total reads. To identify differentially used tran-
scripts between SF3B1™ and SF3B1"* cells, junction reads were then pseudobulked based on mutation status across all MDS pa-
tients or all CH patients. We then computed the logio(odds ratio) of the likelihood of each junction being observed in the MUT cells
over the WT cells. The genotype labels of each of the cells was permuted 100,000 times and we then repeated pseudobulking and
computation of the logo(odds ratio) of each junction. Permutations of the genotype label were patient aware, so the mutant cell fre-
quency across patients was unchanged for each permutation. The p value was determined based on the likelihood of seeing the
observed odds ratio in comparison to the null distribution of the permuted odds ratios for each junction. The same testing was
done within each cell type to identify the differentially used junctions between SF3B1™" and SF3B1"! cells within a specific cell
type. We classified junctions as differentially spliced events if they had P-value < 0.05 and delta percent spliced in (dPSI) of >= 2
(a positive dPSI here represents a splicing event more highly used in the SF3B1™ population of cells). To observe the usage of these
differentially spliced cryptic 3’ events (p value < 0.05 and dPSI >= 2) across the continuum of erythroid maturation as opposed to
within discrete cellular states, erythroid lineage MUT cells (HSPCs, IMPs, MEPs, and EPs) were ordered from least to most differen-
tiated, grouped into bins and the MUT cell PSI for each cryptic event was calculated per bin (Figures 4A and 6D). Specifically, in the
primary MDS cohort (Figure 4A), 6301 SF3B1™! cells were ordered by the expression of the erythroid marker CD71 (obtained from
CITE-seq) and a bin size of 3000 SF3B1™ cells, sliding by 300 SF3B1™! cells at each step, was used to capture the continuous
change in the usage of the different cryptic 3’ junctions via the MUT cell PSI measurements per bin. The variance in the usage of
each cryptic 3’ event was measured by calculating the range of PSls across all the bins along the continuum and only cryptic junc-
tions that had a PSI range of at least 2 and average coverage across all bins of 10 reads were considered. This approach was taken to
focus on cryptic events that had a variable signal and that were also well supported. In CH (Figure 6D), 1,020 MUT cells were ordered
by pseudotime and a bin size of 600 SF387™ cells, sliding by 60 SF3B71™ cells at each step, was used to capture the MUT cell PSI
per bin. Similarly, only cryptic junctions that had a PSI range of at least 2 and average coverage of 10 reads were considered.

For the BAX cryptic event (Figure 6E), to directly compare the per bin PSI values across all 3 cohorts (MDS, MDS validation and CH)
we adjusted the bin and window sizes across the cohorts to ensure the same number of final bins for each cohort. To achieve this, we
took the following approach: MDS - MUT cells ordered by CD71 expression, window size of 3750 SF3B1™ cells, sliding by 375
SF3B1™ cells, MDS validation: cells ordered by pseudotime, window size of 580 SF3B1™ cells, sliding by 58 SF3B1™ cells,
CH: cells ordered by pseudotime, window size of 600 SF3B1™ cells, sliding by 60 SF3B1™ cells. To note, for each of the sliding
window analyses, only MUT cells with at least 2 genotyping amplicon UMIs were considered.
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Exon skipping and nonsense-mediated decay (NMD) annotations

To identify exon skipping events, for each gene in the GENCODE GRCh38.p12 v31 basic annotation reference file we determined its
main functional isoform (as those that belong to the APPRIS database and carry the “appris_princial” tags) to compare to the tran-
script isoforms generated in our data. With this, for a given gene, each identified intron junction within our data was compared to the
reference and labeled as an “exon_skip” if it excluded any of the exons present in the reference. The number of exons skipped was
also recorded. To identify NMD inducing alternative splicing events, we also developed a pipeline that inspects each intron junction in
the Intron-Junction x Cell Barcode count matrix and detects the presence of premature termination codons (PTCs) and frameshift
events induced because of alternative splicing. In brief, this is done by grabbing the entire nucleotide sequence of a particular isoform
noting the position of the last exon-exon junction, finding the position of the first start codon and from there, phasing along the triplets
of nucleotides of that given sequence string. By following the known rules of NMD, each intron junction was further annotated as
being (i) NMD-inducing (which would lead to NMD of its associated transcript) or (i) NMD-neutral. Specifically, the 50-nucleotide
rule was followed such that an event is labeled NMD-inducing if a PTC is introduced greater than 50 nucleotides away from the
last exon-exon junction or NMD-neutral if a PTC is introduced within 50 nucleotides of the transcript’s last exon-exon junction. Finally,
Intron-junctions were labeled to cause frameshifts if the total number of nucleotides involved in an alternative 3’ or 5’ splicing event
was not divisible by 3.

Motif enrichment analysis

High quality cryptic 3’ junctions (MUT read coverage > 3, PSI >= 2, junction cluster read coverage > 20 across at least 2 junction
clusters) were obtained from the junction quantification matrix from samples MDS05-06. Each of these cryptic 3’ splice sites
were then paired to a corresponding canonical junction, requiring both, canonical and cryptic junctions, to be part of the same
splicing cluster (as described above). Flanking sequences, 50 nucleotides upstream and 10 nucleotides downstream of the 3’ splice
site were obtained from the two junction sets and used to calculate position weight matrices (PWM). For each position, a log odds
ratio enrichment for each nucleotide was calculated using Fisher’s exact test, comparing the cryptic 3’ splice site nucleotide compo-
sition against the canonical. Reported positions were filtered according to their enrichment significance (p value < 0.05).

Isoform tool comparison

Given that full-length isoform tools provide transcript-level descriptions rather than local events like GoT-Splice (e.g., exon skipping
or cryptic splice sites), the comparison to FLAMES®® and IsoQuant’® was performed at the local level, overlapping junctions respon-
sible to define the local splicing changes. For this analysis, samples of the discovery cohort (MDS02-03) were used. First, FASTQ files
were processed in the FLAMES (v.1.3.4) multi-sample scRNA-seq pipeline with standard parameters and using the same genome
references than in GoT-Splice (described above). In parallel, collapsed BAM files resulting from the SiCeLoRe pipeline (see descrip-
tion above), were used as input for IsoQuant (v.3.1.1) in two steps: first all samples were run together, using the ‘nanopore‘ data type
input, generating an unified isoform annotation (in GTF format) and subsequently, each sample was processed individually to
generate isoform per cell barcode matrices, using the previously created GTF as reference, which includes new isoforms detected
across all the samples. To extract the junction annotations and assess quality of the recovered transcript annotations, SQANTI3 '
(v.5.1.1) QC script was applied, with default parameters, to the GTF isoform annotations produced by FLAMES and IsoQuant. Local
splicing events (cryptic splice sites and exon skipping) in the filtered SQANTI3 GTF annotations were then produced with the
SUPPA2'*® (v.2.3) ‘generateEvents* option. PSI values were estimated following a similar approach to the one described in
SUPPAZ2, briefly, PSI values reflect a ratio between the read counts corresponding to isoforms that include a particular event divided
by the total isoforms over a particular region (isoforms that do not include the event + isoforms including the events). To identify MUT
versus WT isoform proportion changes we merged the sample transcript per cell count matrices obtained in FLAMES or IsoQuant
and using DRIMSeq'** (v.1.22.0) we filtered for a minimal gene expression of 5, minimal transcript expression of 2 and gene ex-
pressed in a minimum of 2 cells and performed a likelihood ratio test (via the dmTest function). Isoforms with FDR adjusted p
value < 0.05 and change in proportion > 0.25 were considered as significantly changed. Estimation of a splicing aberration bias in
the significantly changed isoforms was determined by overlapping the isoforms with cryptic and alternative 3’ ss annotated with
GoT-Splice.

QUANTIFICATION AND STATISTICAL ANALYSIS

Categorical variables were compared using the hypergeometric test or Fisher’s Exact test. Continuous variables were compared
using the Wilcoxon rank-sum test, Student’s t-test, non-parametric permutation test or Kolmogorov-Smirnov test, as appropriate.
p values were adjusted for multiple comparisons by Benjamini-Hochberg FDR adjustment procedure. All P-values are two-sided
and considered significant at the 0.05 level unless otherwise noted. To add further stringency and confidence to the results, we
have independently analyzed a distinct cohort of samples (validation cohort) and specifically focused on reporting results that passed
a statistical cutoff of 0.2 for FDR adjusted p values in both cohorts. We report genes with FDR adjusted p value < 0.05 in either cohort
in Tables S4 and S6.
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