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1. Introduction

Climate change has aggravated heatwaves and droughts worldwide, re-
sulting in wildfires increasing in frequency, size, and intensity and longer
smoke seasons (Mazdiyasni and AghaKouchak, 2015a, b; Schiermeier,
2018a, b; Woodward et al., 2014). Climate predictions show that signifi-
cant fire events, including mega-forest fires, will continue and become
less predictable (Natole et al., 2021a, b). Smoke from wildfires is more
harmful to human health than other forms of air pollution (Aguilera
et al., 2021a, b) because it contains toxic particles, such as soot, and
chemicals, such as carbon monoxide. One of the main concerns is PM, s,
which can penetrate the lungs and circulatory system, often causing ad-
verse health effects (Crouse et al., 2015; Makar et al., 2017). Acknowledg-
ing that wildfire activities may likely continue to rise, it is an urgent
research priority to accurately predict air pollutant concentration induced
by wildfire smoke, especially in wildfire-prone areas.

Air quality predictions for fire-prone areas can significantly help emer-
gency managers and public health officials mitigate potentially adverse en-
vironmental and public health impacts. However, accurate prediction of air
pollutant concentration, especially those that are wildfire-sourced, is chal-
lenging as such scenarios are highly related to wildfire characteristics,
such as the state of the atmosphere, topography, fuel, and moisture (Jaffe
et al., 2020). First, wildfire smoke is highly dynamic in space and time, re-
sulting in air quality measurements drastically changing in spatiotemporal
dimensions (Khaykin et al., 2020). Regulatory air quality sensors typically
have long distances between stations so that fire smoke atmospheric dy-
namics and chemistry and environmental and public health impacts can
be missed by sparsely distributed stations (Lu et al., 2021). Given limited
air quality measurement platforms, it is often difficult to grasp the full im-
pact of a specific fire event over a geographic area by relying on a single
source. Second, it is challenging to accurately predict the location of the
smoke in the air column — whether it is floating along the surface or aloft
- owing to dynamic perimeters and behaviors of wildfires producing
smoke and local weather conditions (e.g., wind speed and direction, etc.)
(Liu et al., 2019b). There is an urgent need to incorporate dynamic fire be-
havior and the complex multi-dimensional (horizontal, vertical, and time)
and multivariate (e.g., meteorological conditions, land use, and terrain) in-
teractions for smoke emission into the prediction methods.

Traditionally, numerical models for smoke forecasts have been used to
produce short-term air quality predictions in wildfire-prone areas. The in-
creased resolution of numerical weather prediction and computational
power recently opened new avenues for developing integrated systems in
a more coupled way. WRF-SFIRE-CHEM couples fire progression, plume
rise, smoke dispersion, and chemical transformations (Kochanski et al.,
2016). High-Resolution Rapid Refresh-Smoke (HRRR-Smoke) (Ahmadov
et al., 2017) leverages WRF-CHEM and satellite-derived fire radiative
power to simulate biomass burning emissions, plume rise, and smoke trans-
port but does not couple fire progression. Wildland-urban interface Fire Dy-
namics Simulator (WFDS) (Mell et al., 2007, 2009; Mueller et al., 2014) and
FIRETEC (Linn et al., 2002, 2005; Pimont et al., 2011) resolve combustion
and small-scale plume dynamics but without atmospheric chemistry. Com-
munity Multiscale Air Quality (CMAQ) model represents chemical trans-
port models that focus on chemical smoke transformations and rely on
external parameterizations for plume height and emission computations
(Appel et al.,, 2017); concomitantly, CMAQ does not resolve fire-
atmosphere interactions and plume dynamics of fire progression. Satellite
and ground-observed smoke emissions have been utilized to evaluate
these physical models, help reduce model bias, optimize smoke exposure
estimates, and study the spatiotemporal variability of wildfire smoke
(Mallia et al., 2020; Zou et al., 2019). However, several improvements for
fire and smoke models were suggested (Liu et al., 2019a), including 1) pa-
rameterization of lateral fire spread; 2) profiles of vertical plume concentra-
tions; and 3) estimates or measurements of near-event and downwind Os,
PM, s, their precursors, and intermediate chemical species (e.g., organic
matter, SO7 ~, mineral dust, elemental carbon, etc.). However, uncertainty
exists with varying physical schemes and model configurations, and these

Science of the Total Environment 860 (2023) 160446

numerical models are not readily available and not interpreted in a way
that is helpful for the public.

Emerging trends leverage data-driven methods (e.g., time-series predic-
tion, space-time interpolation, convolutional neural network (CNN), and
deep fully convolutional neural network (FCNN)) based on historical air
pollutant concentrations and meteorological conditions to predict air qual-
ity impacts by smoke emissions. CNN and deep FCNN have been applied to
detect smoke plumes from high-resolution geostationary satellite imagery
(Larsen et al., 2021; Ramasubramanian et al., 2019), with the limitation
that satellite imagery can be skewed by cloud cover, terrain, and light
and heat emitted by factories (Brey et al., 2018; Buysse et al., 2019). Re-
search has also been conducted to fill in the gaps between ground-level sen-
sors and provide a map distribution of air quality using data-driven
methods (Cheng et al., 2018; Lin et al., 2018; Yi et al., 2018). However,
these models might suffer from overgeneralizing the temporal trends of
air pollutant concentrations, especially regarding the air quality being
abruptly impacted by a nearby fire, leading to significant underestimations
of air pollutant concentrations during wildfire situations. There is also a
lack of thorough examination of different impacting variables regarding
smoke emissions from fires, the relationship between air pollutants within
the smoke, and how they drift in space.

The challenges expressed above will be addressed to provide more accu-
rate predictions and examinations of the multi-dimensional and multivari-
ate interactions that influence PM,s concentration. This research,
therefore, proposes a novel deep learning framework that learns the spatio-
temporal trends of wildfire, smoke, and air pollutants by considering their
spatial, temporal, and variable-wise dependencies. Specifically, this re-
search aims to provide improved hourly predictions of PM, 5 concentration
by learning through the spatiotemporal dependencies among the input var-
iables, including fire and smoke observations, meteorological conditions,
and traffic conditions. Section 2 will review the literature on spatiotempo-
ral prediction using machine learning and data-driven predictive methods
for air pollution from wildfires. Section 3 will describe the problem state-
ment and background of proposing a novel deep learning framework for
spatiotemporal air quality prediction, especially in wildfire-prone areas.
Section 4 will introduce the proposed model in detail. Section 5 will de-
scribe the data used for the experiments, comparative results, and model in-
terpretation, followed by discussions and conclusions.

2. Literature review
2.1. Machine learning for spatiotemporal prediction

Spatiotemporal prediction is challenging due to complex variable het-
erogeneity, non-stationarity, spatial and long-range temporal dependencies
(Li and Moura, 2020). Spatial dependency is complex; for example, air pol-
lutant concentrations at a monitoring station may correlate more with far
away stations than closer ones. Temporal dependencies might be long-
range; for instance, measurements at a certain hour may be correlated
with ones at closer time points but may also be correlated with the measure-
ments from the same hour a day prior. Spatiotemporal predictions may rely
on supporting relevant factors that are generally heterogeneous,
e.g., wildfire progression influenced by wind speed and directions, and
might be non-stationary due to expected or unexpected incidents, such as
air quality impacted by fireworks or wildfires. These challenges hinder ac-
curate forecasting when using traditional statistical time series forecasting
methods, such as persistence and autoregressive integrated moving average
(ARIMA) (Lim and Zohren, 2021). More recently, deep learning approaches
for time series forecasting generally rely on a sequence-to-sequence frame-
work that can map a context of the recent past to a target in the future, such
as recurrent neural networks (RNNs), graph neural networks (GNNs), and
attention mechanisms (Graves, 2012; Li et al., 2019; Wu et al., 2020;
Zhou et al., 2021).

RNNs consist of feed-forward neural networks in which the hidden
nodes are connected in series, but they are limited by the autoregressive
problem that causes difficulty in interpreting long-term patterns (Wu
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et al., 2020). Using RNNs to predict time series at multiple locations for the
same targeting variable (such as air temperature, air quality, and precipita-
tion intensity), the models are trained with input predictors at multiple lo-
cations (Han et al., 2021; Yu et al., 2021). Training RNNs in this way
enables models to sufficiently capture temporal patterns for a particular lo-
cation but lack intrinsic structures that handle spatial patterns and poten-
tially the spatiotemporal intercorrelated dependencies between nearby
locations.

GNNs can address this issue by explicitly representing the spatial struc-
ture using the adjacency matrix, which can be constructed prior to training
using the distance between node pairs (Yu et al., 2018). In GNNs, informa-
tion associated with a particular location is embedded in the nodes and
passed to neighboring nodes along the edges, so spatial and spatiotemporal
dependencies are learnable during training. One potential limitation is that
the extracted spatial dependencies are generally local (between neighbor-
ing nodes) and might not be capable of predicting scenarios with long-
range spatial relationships between locations (such as locations that are
far away but have high semantic similarity) (Liu et al., 2019a, b, c). In ad-
dition, these spatial dependencies are modeled with a fixed Laplacian ma-
trix that might not capture the dynamics when the targeting variable has
a changing spatial dependency (Li et al., 2018). Instead of constructing
the adjacency matrix prior to training, a Multi-Task Graph Neural Network
Framework (MTGNN) was proposed to learn the adjacency matrix before
applying the convolutions in the model structure (Wu et al., 2020).
MTGNN improves the capability of GNN in learning dynamic spatial depen-
dencies and has the potential of capturing variable spatiotemporal depen-
dencies but still considers spatial and temporal dependencies as separate
features to learn.

Recent studies leverage multi-head attention mechanisms to explicitly
or implicitly capture the spatial and temporal dependencies for spatiotem-
poral predictions (Zhou et al., 2021; Li and Moura, 2020; Grigsby et al.,
2021). In multi-head attention mechanisms, each time series is compared
with all previous ones to propagate information over long sequences, and
important information is retained through self-attentions (Vaswani et al.,
2017). Based on this original work of using a multi-head attention mecha-
nism in an encoder-decoder architecture called Transformer, Zhou et al.
(2021) developed the Informer with improved temporal embeddings that
learn the non-stationary and long-range temporal dependencies. Although
Informer acknowledges the value of multiple variables per timestep as a sin-
gle input token, the model only focuses on learning “temporal attention”
among timesteps and ignores the different spatial relationships between
variables. To explicitly capture the joint spatial and temporal dependencies
in attention-based mechanisms, Li and Moura (2020) developed a graph
transformer to account for the dynamic strengths of spatial dependency
using a sparse Transformer, where the edges between less-dependent
nodes are trimmed before training. To capture long-range temporal and
complex spatial dependencies, Grigsby et al. (2021) developed the
Spacetimeformer to flatten multivariate time series into extended se-
quences to separate the influences of different input predictors. However,
the model will only consider spatial and temporal dependencies without
variable-wise dependencies, because it uses one variable at each station
as both the input and target variable instead of taking other relevant vari-
ables as predictors. In many cases of spatiotemporal prediction, the future
conditions of a targeting variable depend on multiple relevant factors,
which have non-linear and complex dependencies in spatial, temporal,
and variable dimensions.

2.2. Machine learning for spatiotemporal prediction of air pollution related to
wildfires

Studies have incorporated various observations or reanalysis datasets
for wildfire occurrence, behavior, and smoke dispersion to account for
wildfire impacts on air quality. Reid et al. (2015) utilized a generalized
boosting model to select an optimal prediction model for daily PM, s con-
centration predictions during the 2008 northern California wildfires from
a set of 11 statistical algorithms and 29 predictor variables. They leveraged
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the simulation output of chemical transport models, satellite observation of
aerosol optical depth (AOD), distance to nearest fires, meteorological con-
ditions, land-use, traffic, and spatial and temporal characteristics. They con-
cluded that the most important predictors were satellite retrieved AOD,
simulation output, and distance to the nearest fire cluster. Yao et al.
(2018) utilized a random forest model to estimate hourly PM, 5 concentra-
tion at 5-km resolution during wildfire seasons from 2010 to 2015 in British
Columbia, Canada. A similar set of predictors are used, including ecozone
classification, fire activity, meteorology, and elevation. Two case studies
were chosen during wildfire seasons in certain areas within the study re-
gion to demonstrate the capability of the proposed model. Sensitivity anal-
ysis was conducted to explore the sufficiency of predictors, leading to the
conclusion that PM, 5 concentrations from 24 h prior and the satellite re-
trieved AOD values, contributed little to the model.

More recently, deep learning approaches and emerging datasets, such as
ensemble-based deep learning and low-cost sensor networks, have been
leveraged in the spatiotemporal prediction of air quality impacted by wild-
fire smoke. Li et al. (2020) utilized ensemble-based deep learning to esti-
mate PM, s concentrations in California at a 1 km x 1 km weekly
resolution, using satellite AOD retrieval, meteorological conditions, traffic,
and wildfire smoke dispersion factors. Using this model to predict a long
temporal range from 2008 to 2017, they concluded that integrating multi-
source heterogeneous impact factors and the non-linear modeling of deep
learning improved the spatiotemporal PM, 5 estimation over a regional
area. Lu et al. (2021) developed a random forest model that integrates
low-cost sensor networks to estimate the hourly PM, 5 concentrations at a
500-m resolution in Los Angeles County from 2018 to 2019. They used
the meteorological conditions, land-use variables, traffic conditions, and
temporal and spatial trends to account for the environmental context. Ac-
knowledging the fact that wildfire smoke may significantly contribute to
the improved predictions of PM, 5 concentrations in nearby areas, Hung
et al. (2021) separated smoke and non-smoke days based on satellite mea-
surements and aerosol reanalysis products to analyze the wildfire smoke's
impact on air quality in New York State from 2012 to 2019. They used an
artificial neural network to estimate the ground-level PM, 5 concentrations
at air quality monitoring stations and found that the smoke inflow from
fires and the vertical transport mechanisms of smoke generally improved
prediction accuracy.

The validation process of the reviewed studies majorly focused on the
average prediction errors, but the individual prediction might vary signifi-
cantly from the observation, especially during abrupt changes in air pollut-
ant concentrations. A challenge to predicting air quality in areas with
potential impacts from various sources (including wildfire events) is captur-
ing abrupt changes in air pollutant concentrations. This research will lever-
age a multi-head spatiotemporal attention mechanism that captures abrupt
changes in PM, s concentrations from wildfire smoke. The attention
evolves across spatial and temporal dimensions and adjusts to the
variable-wise dependencies over space and time.

3. Problem statement and background
3.1. Spatiotemporal air quality prediction problem

Predicting future air quality values given previous observations from
stations within a particular area of interest is of prime importance. The
complexity involves four axes: the prediction sequence's duration Ly, the
previous observations' duration L;,, the number of input variables consid-
ered at each timestep N,, and the number of monitoring stations N;. The
prediction model will use the input to predict air quality for future
timesteps: Xy .n,:1, —> Yn.1,,- As the numbers along the four axes grow,
modeling the spatiotemporal relationships between stations and variables
becomes increasingly complex. In the case of air quality monitoring, sta-
tions might experience different meteorological patterns due to their geo-
graphic location. Measurements from monitoring stations also show
complex spatial relationships. For example, far away stations might be im-
pacted by wildfire smoke simultaneously, thus having a short-time high



M. Yuetal

correlation between air quality measurements, but this correlation will not
be sustained (e.g., when wind speed changes or wildfire progresses away
from the stations).

3.2. Transformer for time series forecasting

To capture the spatiotemporal relationships between air quality mea-
surements and predictor variables across stations, the foundation of our
predictive model is the Transformer and its variant in time-series forecast-
ing. The Transformer (Vaswani et al., 2017) is a sequence-to-sequence pre-
diction model, which includes encoder and decoder layers (Fig. 1) and is
widely used for natural language processing tasks.

The encoder consists of an input layer, a positional encoding, and four
encoders. The input layer converts the input time series to a vector of di-
mension d through a fully connected layer, which will be used in the follow-
ing multi-head attention mechanism. An adjusted layer replaces the
original positional encoding with sine functions to match the predictand's
diurnal patterns with a tunable period of time steps to repeat the pattern.
The adjusted positional encoding encodes the time series data by
element-wise addition of the input vector with a positional encoding vector.
The resulting vector is fed into four encoder layers. Each encoder layer con-
sists of two sub-layers: a multi-head self-attention sub-layer and a fully con-
nected feed-forward sub-layer.

The multi-head self-attention sub-layer transforms the input vector
through linear projections into H distinct query matrices Q, key matrices
K, and value matrices V, where H represents the number of heads. Then
the scaled dot-product attention computes a sequence of vector outputs
for each head using Softmax (Goodfellow et al., 2016a, b) and matrix mul-
tiplication. The self-attention is computed as:

T
Attention(Q, K, V) = softmax (%

\% 1
Vi W

N————

Specifically, the value matrices V is affected by the attention weights
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series (denoted by Q) is influenced by all other values in the time series (de-
noted by K). The Softmax function is applied to the attention weights a to
have a probability distribution between 0 and 1. All weights are then ap-
plied to all the values in the value matrices V. The multi-head mechanism
allows parallel linear projections of Q, K, and V for H times to have different
representations of the input data, so that the model can account for differ-
ent temporal dependence. The single attention output are further
concatenated and projected again to produce a final result.

A residual sum and normalization follow each sub-layer. The encoder
produces a d-dimensional vector to feed to the decoder. The decoder also
comprises an input layer, a positional encoding layer, four identical decoder
layers, and an output layer. The decoder input begins with the last data
point of the encoder input, denoted as “Outputs” that are fed to the bottom
decoder in the next time step. The decoder input layer maps the decoder
input to a d-dimensional vector. Besides the two sub-layers in each encoder,
the decoder inserts a third sub-layer (an encoder-decoder attention layer) to
apply self-attention mechanisms over the encoder output. A residual sum
and normalization follow each sub-layer. Finally, an output fully connected
layer maps the output of the last decoder layer to the target time sequence.

The idea behind the Transformer network in machine translation is to
allow encoding both short- and long-range correlations between words in
the sentence. For that, the multi-head self-attention allows modeling the
correlation of elements in sequences regardless of their distance, resulting
in an effective global receptive field. Thus, this multi-head attention ap-
proach provides a flexible way to capture the complex correlation dynamics
for applications with multiple monitoring locations in the case of air quality
monitoring. However, while its global receptive field can effectively pro-
cess the discrete tokens (e.g., words), it can fail to consider the local trend
information inherent in continuous data. This failure of capturing local
trends will be magnified when the model tries to learn multivariate depen-
dencies across space and time, such as in the case of forecasting air quality,
which typically manifests spatiotemporally dynamic distributions, depend-
ing on the sources of air pollutants (e.g., fireworks, other anthropogenic
emissions, and extreme events, such as wildfires), wind speed, and wind di-
rections. In addition, using the full attention mechanism may also overgen-
eralize the temporal trends, leading to inaccurate predictions, especially
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when there are abrupt changes in the environmental domain. Therefore,
applying the generic Transformer model to air quality forecasting is likely
to yield unreliable predictions in space and time.

4. SpatioTemporal Transformer

For an accurate times-series forecasting of air quality on heteroge-
neously distributed monitoring stations, the Transformer network needs
to capture the dynamic (and abruptly changing) spatial and temporal corre-
lations among those stations. Instead of using any predefined station dis-
tance structure, we utilize the SpatioTemporal Transformer model
(Fig. 2), which improves the generic Transformer model to include a spatio-
temporally dynamic and sparse dependency module. This enables the
model to capture the spatial, temporal, and variable-wise interactions or de-
pendencies. Thus, the SpatioTemporal Transformer replaces the regular
multi-head self-attention with a sparse attention mechanism. The spatial
and temporal dependencies among stations are embedded as weights in
the projection operations on the queries and keys. The dependencies are
captured separately by the spatial, temporal, and value embeddings.

4.1. Spatial, temporal, and value embeddings

4.1.1. Time embedding

In the SpatioTemporal Transformer model, the temporal dynamics are
entirely modeled by the time embedding of the multi-head self-attention
mechanism. Since attention builds the relationship between input and tar-
get with the weighted sum function (Eq. 1), the attention mechanism is ir-
relevant to the order of the input time series. Although temporal
dependencies might be complex (short-range or long-range), the order of
the input time series does matter — i.e., measurements may be correlated
with the ones at closer time points or with the measurements from the
same hour a day before. We explicitly embed the input order along with
the input time series to capture the complex temporal dependencies, assum-
ing that the model will be trained to learn the complex dependencies ac-
cording to different situations.

The temporal features are extracted separately for each station from the
date and time of the input timestamps: the hour of the day, day of the
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month, the month of the year, and day of the week. Each temporal feature
is first embedded using a positional encoding component provided by the
original Transformer paper (Vaswani et al., 2017):

PE(pos, 2i) = sin (pos/ 10, 000@)

(2)
PE(pos,2i + 1) = cos L s
10, 000%modt

where pos is the position of X, in the input time series, and i represents the
ith dimension in the input vector. The positional encoding converted the
order of the timestamp within the input time series as a vector. The result-
ing PE is then used as the input of a standard embedding layer that maps the
integer index of each series to a higher-dimensional representation. The
standard embedding layer will serve as a look-up table that stores the em-
beddings of fixed hours, days, months, and weekdays. The final time em-
bedding Emby is generated by flattening the separate temporal features
into a vectorized index for each new timestamp.

4.1.2. Spatial embedding

The spatial dynamics are also captured by the multi-head self-attention
mechanism to represent the correlation strengths among stations. The spa-
tial embedding Embg indicates at which station the time series originate. In
addition to having dynamically changing air quality values, each monitor-
ing station is also associated with other varying spatial characteristics, in-
cluding the local geography of the monitoring station, the meteorological
conditions, the nearby wildfire influences, and the emissions from nearby
road traffic. Some of these spatial characteristics (e.g., location, elevation,
distance to traffic) are invariant over time but vary over space, thereby,
warrants accounting for spatial heterogeneity. However, other characteris-
tics, such as air humidity and wind speed, simultaneously vary over space
and time, requiring accounting for spatiotemporal variability. Therefore,
this spatial embedding Embs will capture not only static but also dynamic
spatial dependencies.
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Fig. 2. Architecture of the proposed SpatioTemporal Transformer model.
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The spatial embedding will first project each time stamp's input values
(N x N,) into high-dimensional latent subspaces, using the feed-forward
neural networks:

Z; = w=X, + b, 3

where Z, is the high-dimensional representation of the input variables at
timestamp t. Based on Z, the correlation strength S, ; between station i
and station j can be calculated using a cross-correlation function:

Syj = xcorr(Zi, Z,j), N

and the resulting S, is a Ny X N; square matrix represents the correlation
strengths of any two stations at a particular timestamp t. The final spatial
embedding at a particular timestamp is then calculated as:

Embg = wxS,%Z, + b. 5)

4.1.3. Value embedding

To account for the intercorrelations among multiple variables, the value
embedding module projects the input time series (N; X N, X L) into high-
dimensional representations Emby, using the one-dimensional convolutions
with a hidden dimension of d,;;oq.- The value embedding is different from
spatial embedding, which separates different timestamps to calculate the
correlation between stations and uses the correlations as weights to adjust
the high-dimensional representation of input variables from all stations. In-
stead of separating timestamps, value embedding uses the entire input time
series and transforms them into a single high-dimensional representation
matrix, so that the complex interdependencies among variables and their
dynamics can be highlighted in the model. The spatial, temporal, and
value embeddings are then concatenated to represent a comprehensive em-
bedded feature:

Xsr = Embr®Embs®Emby . (6)

4.2. Sparse attention

To prevent overgeneralization of the temporal trends and capture the
abrupt changes in air pollutant concentration (and not allow the multi-
head attention mechanism to attend to all information), we utilized a sparse
attention mechanism to concentrate on relevant information based on the
final embedding Xsr. The sparse attention enables the focus on a few con-
textual information through the selection; this follows the idea of
ProbAttention in Informer (Zhou et al., 2021) but in a simplified way.
The most critical components for the attention are reserved, and other irrel-
evant information is removed.

In each self-attention head, the embedded feature Xsr are projected
using feed-forward layers into three key components: namely the query
Qs the key Ksr, and the value Vsr, where Qst = XstWér, Kst = XorWer,
and Vg = Xg;W¥r. Here, Wiy, Wiy, and WY, represent the weight matrices
for Qst, Kst, and Vs, respectively. An attention score S is calculated based
on the query and key components:

_ OsrKsr”

dmodel

S @

The higher attention scores are selected based on a tunable threshold thr
along each row of the attention score matrix S. This threshold thr is initially
tuned to be the 80th percentile value. Each position in S can be referred to
as Sy, where i and j represents the row and column index of S. If S is lower
than the thr;, then S; is adjusted to be — . With the adjusted S, the sparse
attention is calculated in the same way as the original Transformer model:

Sparse Attention = softmax (S)Vsr. (€))
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The model can obtain more focused attention related to contexts by com-
bining the spatial, temporal, and value embeddings with the sparse atten-
tion mechanism.

In a nutshell, the differences between the proposed model with existing
Transformer variants are three-fold. First, each monitoring station has the
target variable and the impacting factors related to those target variables.
Therefore, now, the model can distinguish between timestamps and tell
the difference between the variables and stations. Second, the sparse con-
nections are no longer along the spatial dimension alone; instead, they sup-
port joint connections along spatial, temporal, and variable dimensions. By
attending to the most important information across multiple dimensions,
the model can improve the predictive accuracy by identifying emerging
hotspots among the environmental contexts. Third, the sparse attention
mechanism can provide physically interpretable spatiotemporal attentions
that explain the emerging hotspots learned from the model.

5. Experiments

We present our experimental results on the air quality measurements
from 2017 to 2020 from 19 EPA AQS stations in the greater Los Angeles
(LA) area. We also collect hourly information for each station's meteorolog-
ical, wildfire, and traffic conditions. The proposed model predicts the PM, 5
concentrations for the next 12 h based on the input of multiple variables of
the previous 24 h. We removed the time series with missing values and ap-
plied the min-max normalization per variable.

5.1. Data

To evaluate the model performance, we divide the data into the train-
ing, validation, and testing set based on date, with the corresponding pro-
portions being 70 %, 15 %, and 15 %, respectively. The predictors
include the past 24 h of PM, 5 concentrations, meteorological, wildfire-
derived, and traffic flow variables. The predictand is the PM, 5 concentra-
tions for the next 12 h.

5.1.1. Predictand: PM 5 concentrations from EPA air quality system

Hourly PM, 5 concentrations measured at U.S. Environmental Protec-
tion Agency (EPA) federal reference monitors (FRM) sites were used in
the greater LA area for 2017-2020. PM, s measurements and station loca-
tions were downloaded from the EPA's Air Quality System (AQS) Technol-
ogy Transfer Network.! The PM, 5 values from monitoring station data
represent fine particulate matter from all sources, including ambient levels
and wildfire smoke. PM, s stations with >25 % missing data were excluded
from the analysis, and missing values are imputed based on linear interpo-
lation for each station. Ultimately, 19 PM, s stations are included in this
study (Fig. 3).

5.1.2. Predictors

5.1.2.1. Meteorology. Meteorology data were obtained from ERA-5
(Hersbach et al., 2020), a reanalysis dataset produced by ECMWF that con-
tains hourly estimates of atmospheric, land, and oceanic climate variables.
ERAS5 combines vast amounts of historical observations into global esti-
mates using advanced modeling and data assimilation systems. The meteo-
rological features include boundary layer height (m), 2 m dewpoint
temperature (K), surface pressure (Pa), 2 m temperature (K), 10 m u-
component of wind (m s™1), and 10 m v-component of wind (m s™h).
The u-component and v-components of wind are further computed into
wind direction and speed. All meteorological parameters were obtained
at the hourly temporal resolution and 0.25° x 0.25° spatial resolution.

5.1.2.2. Temporal trending variables. We included the “hour of the day” and
“day of the year” to account for daily, monthly, and seasonal temporal

1 http://www.epa.gov/ttn/airs/airsags.
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a. The locations of PM2.5s monitoring stations in the greater Los Angeles area operated by the
U.S. EPA’s AQS network
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b. Hourly PM2.s concentrations from the 19 AQS stations: mean value and 95% confidence
interval within the study period
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Fig. 3. (a) The locations of PM, 5 monitoring stations in the greater Los Angeles area operated by the U.S. EPA's AQS network. (b) Hourly PM, 5 concentrations from the 19

AQS stations: mean value and 95 % confidence interval.

variations. In our study period, extremely high PM, 5 concentrations (>100
pg/m>) were observed on July 4 and 5, primarily due to fireworks.

5.1.2.3. Road traffic. Traffic emissions are considered a significant source of
PM, 5 (Habre et al., 2021). We downloaded hourly traffic flow data from
sensors deployed on the freeway system from the Caltrans Performance
Measurement System (PeMS)'s clearinghouse.2 For each AQS station, we
computed the total hourly traffic flow from PeMS sensors within 5 km.

5.1.2.4. Wildfire perimeter. Smoke caused by wildfire is a crucial ambient
PM, 5 source that contributes to the health burden (for cardiovascular dis-
ease, cancer, respiratory diseases, etc.) in many regions, especially in Cali-
fornia, where wildfire frequency and intensity have increased over recent
decades (Gupta et al., 2018; Reid et al., 2015). The fire perimeter data
was downloaded from CAL FIRE.® The alarm date, containment date, and
the polygon representing the fire perimeter were recorded for each fire
event. For each AQS station, at a particular hour, the inverse distance of
the nearest fire (when available) is calculated.

2 https://pems.dot.ca.gov/?dnode = Clearinghouse.
3 https://frap.fire.ca.gov/frap-projects/fire-perimeters/.

5.1.2.5. Wildfire intensity. The fire intensity data was derived from the NASA
Fire Information for Resource Management System (FIRMS) Moderate Res-
olution Imaging Spectroradiometer (MODIS) or Visible Infrared Imaging
Radiometer Suite (VIIRS) Fire/Hotspot Data.* The fire intensity data is ag-
gregated from the two sources: 1) MODIS Thermal Anomalies, and 2) VIIRS
Active Fire and Thermal Anomalies. The data is composed of points or grids
with the same resolution as the source satellite (MODIS: 1 km, VIIRS: 375
m), and each grid represents a hot spot of an area with high brightness tem-
perature (BT) at a specific date and time. The high temperature can be con-
sidered high fire intensity for the observed date and time.

Two predictors were derived from this data: 1) IDWFL_FP (K) as the in-
verse distance weighted sum of brightness temperature from grids within
any CAL FIRE fire perimeter at the current hour; 2) IDWFI (K) as the inverse
distance weighted sum of brightness temperature from all grids available at
the current hour. IDWFT is calculated when multiple wildfire hotspots occur
at the hour of interest, and a more nearby wildfire hotspot has a higher
weight in calculating the overall brightness temperature at a particular
AQS station. With n as the number of wildfire hotspots, dist;, i € (1,...,n)

4 https://firms.modaps.eosdis.nasa.gov/active_fire/.
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as the distance from each hotspot to the AQS station of interest, IDWFI is

calculated as:

dist;
IDWFI = 3 .
t Sndist;

x BT. ©

IDWFI_FP uses the same equation for calculation, but the number of wild-
fire hotspots is smaller as wildfire hotspots that are not intersected with
any fire perimeter provided by CAL FIRE are eliminated. Table 1 provides
a full list of datasets used as predictors in this study.

5.2. Comparison and analysis of results on PM s concentration prediction

We compared the performance of the proposed ST-Transformer model
with baseline models, including the Auto Regressive Integrated Moving Av-
erage (ARIMA; Box et al., 2015), Feedforward Neural Networks (FNN),
Long Short Term Memory (LSTM), Multivariate Time Series Forecasting
with Graph Neural Networks (MTGNN, (Wu et al., 2020) and Time Series
Transformer (Li et al., 2019; Vaswani et al., 2017).

1) ARIMA uses the relationship between the current and historical values
within the time series to predict future values. It assumes that data has
an autoregression relationship with its past values. We used the Auto
ARIMA model without tuning the required parameters (i.e., the p, d,
and q values) of ARIMA to provide optimal forecasting.

2) Feedforward Neural Networks (FNN) is a multi-layer perceptron with
additional hidden nodes between the input and the output layers.
Data moves in the only forward direction in this network without any
cycles or loops (Schmidhuber, 2015a, b). This research aims to produce
multi-horizon time-series predictions so designing an FNN with multiple
outputs is essential. In the output layer, each neuron focuses on
predicting the target variable at a different predicting hour so the
model does not consider the outputs to be sequential (i.e., the same var-
iable at different time steps). The problem with the FNN architecture is
that the outputs are essentially predicted from different systems simulta-
neously.

The Stacked-LSTM model has a stack of two LSTM layers and a final

fully connected layer to predict the multi-step time series. Stacking

LSTM allows for greater model complexity (Graves, 2012). The LSTM

layers encode sequential information from input through the recurrent

network. The densely connected layer takes the final output from the
second LSTM layer for predictions.

4) The MTGNN model is a graph neural network that learns to connect
multiple variables for time series prediction. The model architecture
consists of three major components: graph structure learning, graph
convolution, and temporal convolution. Instead of leveraging a
predefined graph structure, MTGNN is adaptive to input data to learn
the evolving adjacency matrices representing sparse neighboring

3

=
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Table 2
Performance comparison among the six considered models on the same testing
dataset.

Models RMSE (ug m~?) MAE (ug m ™~ 3) BIAS (pg m ™)
ARIMA 10.0 = 3.28 6.05 * 1.6 2.51 * 2.97
FNN 8.83 + 2.77 6.01 = 1.93 3.26 * 3.44
Stacked-LSTM 8.38 + 2.92 5.73 + 2.01 2.8 + 3.55
MTGNN 9.78 + 2.98 6.65 = 1.1 0.23 = 4.05
Transformer 8.48 + 3.86 5.42 = 3.0 1.76 + 4.24
ST-Transformer 6.92 + 2.93 4.0 + 1.36 —0.51 = 0.87

dependencies. The temporal convolution is responsible for identifying
temporal patterns with multiple frequencies and can handle long time
series.

5) The Time Series Transformer model is described in Section 3.2. We used
a latent dimension d of 96, a query size of 48, a value size of 48, a head
number of 8, 4 layers of encoder and decoder to stack, and 48 backward
elements to apply attention. We apply dropout techniques for the three
types of sub-layers in the encoder and decoder: the self-attention sub-
layer, the feed-forward sub-layer, and the normalization sub-layer. A
dropout rate of 0.2 is used for each sub-layer.

In the experiments, we measure the accuracy of the models using mean
absolute error (MAE), root mean squared error (RMSE), and mean bias:

1 N
Mean absolute error : MAE = - _;} 19 — il 10)

1
Root mean squared error : RMSE = 4 /— _21 G —v)? an
ni=

Bias error : Bias = y, — y;, (12)

where y; is the prediction and y; is the ground truth for data sample i.
Table 2 shows that all models considered achieve a mean RMSE within
the range of 7-10 pg m ~ 3, The ST-Transformer model achieves the best per-
formance of all models considered while the Stacked-LSTM model achieves
the second-best performance. The Time Series Transformer has a similar
RMSE and MAE as the Stacked-LSTM but exhibits a wider range of errors.
Higher errors generally occur during wildfire events, especially when
smoke observations are not considered important in the models. The
RMSE, MAE, and BIAS values for each predicting hour during the test pe-
riod are illustrated in Fig. 4. Most models, except for MTGNN, show the
decaying performance of RMSE and MAE with the predicting future hour.
As the best performing model, ST-Transformer has an increasing RMSE
value from 7 to 8 pg m ™3, while the worst performing model, ARIMA,
has an increasing RMSE from 7.5 to 12 pg m™ . Except for ST-
Transformer, the other models considered show a significant

Table 1
Datasets used in this study.
Source Shortname Variable Resolutions
EPA Air Quality System (AQS) PM, 5 PMS 5 concentration (ug m ™~ >) Hourly
ECMWF ERA-5 BLH Boundary layer height (m) 0.25° x 0.25°%
D2M 2 m dewpoint temperature (K) hourly
Sp Surface pressure (Pa)
T2M 2 m temperature (K)
WD 10 m wind direction (%)
WS 10 m wind speed (ms 1)
California Department of Forestry and Fire Protection IDWF Inverse distance of the nearest fire (km ™ ") -
(CAL FIRE)
Temporal trends Day Day of year -
Hour Hour of day
Caltrans Performance Measurement System (PeMS) TRF Total traffic flow within 5 km (count) Hourly
NASA Fire Information for Resource Management IDWFLFP  Inverse distance weighted sum of brightness temperature of fire hotspots within CALFIRE ~ Sub-daily, 1 km
System (FIRMS) fire perimeters (K) grids
IDWFI Inverse distance weighted sum of brightness temperature of all fire hotspots (K)




M. Yuetal

underestimation of PM, 5 concentrations due to the failure to predict high
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Fig. 4. Performance changes of different models on the test dataset as the predicting hour increases.

PM,, 5 concentration values after wildfires.

To examine the spatial distribution of the prediction errors, we com-
pared the average RMSE values for each station between the considered
models (Fig. 5). The averaged RMSEs of ARIMA are large in Los Angeles
County, where PM, 5 concentrations vary significantly from hour to hour.
FNN and LSTM showed a similar spatial distribution of RMSE values to
ARIMA, but with lower RMSE values in general. The other three models,

MTGNN, Transformer, and ST-Transformer show similar spatial distribu-
tions, where the Glendora station in Los Angeles County has the highest
mean RMSE. In the ST-Transformer model, most stations (except for the
Glendora station) benefited from leveraging neighboring stations' informa-
tion with evolving attention. Without spatiotemporal attention, the Trans-
former model failed to predict accurately for stations in Ventura County,
even with the information from neighboring stations. The RMSE spatial dis-
tribution of the MTGNN prediction showed that the learned adjacency
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Fig. 5. Visualization of spatial RMSEs of the considered model predictions compared with the ground truth.
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matrix might be adjusted with data, but in an area impacted by occasional
wildfire smoke, the learned adjacency matrix is insufficient for predicting
highly variable PM, 5 concentrations.

5.3. Time series prediction

To demonstrate the effectiveness of the proposed ST-Transformer
model, we showcase the predictions for days with and without nearby wild-
fires during the test period, along with the observed time series and the pre-
dictions from Transformer. Fire incidents are selected from the CAL FIRE
database of 2020 wildfire incidents when the incident caused a burn area
larger than 1000 acres (Table 3), whereas the non-wildfire period is se-
lected when no major wildfires are on record.

The characteristics of air quality time series during wildfire events show
rapidly increased air pollutant concentrations, significantly different from
the days without wildfire impacts. It is challenging to model air quality
for areas with potential wildfire impacts, because air quality time series
are not easily separated into wildfire-impacted or non-wildfire days.
When training a time series forecasting model, using the days without wild-
fire impacts, the predictions are more likely to follow the usual scenario of a
daily or weekly recurrent pattern. When training the model using days with
wildfire impacts, the predictions will be higher values with greater vari-
ance. We trained our models using all of the time series, regardless of dis-
tance to an existing wildfire, so that the models can predict PM, 5
concentrations as a function of distance from wildfires.

The ST-Transformer predictions, Transformer predictions, and observa-
tions are illustrated in Fig. 6, in orange, green, and blue lines. In each panel,
the blue curve is the observed PM, s concentrations, and the orange and
green curves are the predicted concentrations by ST-Transformer and
Transformer models. The ST-Transformer predictions can capture the
peaked PM, 5 concentrations during wildfire events, while the Transformer
predictions significantly underestimate the high PM, 5 concentrations. For
example, during the Lake Fire (Aug 12-Sep 6, 2020) and the co-occurring
Ranch 2 Fire (Aug 13-Oct 5, 2020) in Los Angeles County, spiking high
PM, 5 concentration values were observed on Sep 29-31, 2020, for most
monitoring stations in Los Angeles County (Fig. 6a—f). While the Trans-
former model can qualitatively predict an increase in PM, 5 concentration,
it cannot predict the same magnitude of the observation, which is ~200 pg
m 3. However, the ST-Transformer can predict an abrupt increase in PMs 5
concentration. Such improvement of the ST-Transformer over the Trans-
former should be expected because the embedded spatial attention mecha-
nism can utilize the interaction among stations by adjusting the attention
weights. The attention mechanism captures the flow of spatial, temporal,
and variable dependencies about the environmental contexts, including
wildfire hotspots, wildfire smoke detection, and wind speed and direction
(mode details are provided in Section 5.4).

In addition, the Transformer model may overestimate the PM, 5 concen-
trations while taking information from neighboring stations. For example,
during the Lake Fire (Aug 12-Sep 6, 2020) and the co-occurring Ranch 2

Table 3
Fire incidents in the study area during the test period (CAL FIRE: https://www.fire.
ca.gov/incidents/2020/).

Fire event Start date Containment  County Acres
date

Ranch 2 Fire 8/13/2020 10/5/2020 Los Angeles 4237

Lake Fire 8/12/2020  9/28/2020 Los Angeles 31089

Soledad Fire 7/5/2020 7/10/2020 Los Angeles 1525

Bond Fire 12/2/2020 12/10/2020  Orange 6686

Blue Ridge 10/26/2020 11/7/2020 Orange 13964
Fire

Silverado Fire  10/26/2020 11/7/2020 Orange 12466

Sanderson 12/12/2020 12/14/2020  Riverside 1933
Fire

Airport Fire 12/1/2020 12/12/2020  Riverside 1087

El Dorado Fire  9/5/2020 11/16/2020  San Bernardino and Riverside 22744

Holser Fire 8/17/2020  8/30/2020 Ventura 3000

10

Science of the Total Environment 860 (2023) 160446

Fire (Aug 13-Oct 5, 2020) in Los Angeles County, most stations had spiking
PM, 5 concentrations of ~200 pg m~ 3, whereas the Santa Clarita station
was less impacted by the nearby wildfires, resulting in a lower PM, 5 con-
centration increase to ~60 pg m > (Fig. 6€). The Transformer model uses
a full attention mechanism that leverages the nearby stations' information
equally, thus resulting in an overestimation during days without wildfire
impacts (Fig. 6e, green line representing Transformer results). A similar ex-
ample can be observed at the Riverside-Rubidoux station (Fig. 6h) during
Airport Fire (Dec 1-12, 2020) and the co-occurring Sanderson Fire (Dec
12-14, 2020). The full attention inside the Transformer model leads to an
overestimation of PM, 5 concentration based on the nearby stations' con-
text, whereas the ST-Transformer accurately attends only to the useful
and relevant information.

Such overestimations are also observed during days without major co-
occurring wildfires. During non-wildfire days, observations of PM, 5 con-
centrations generally show weekly or daily recurrent patterns. ST-
Transformer generally follows the temporal patterns of the observed
PM, 5 concentration, whereas Transformer may overestimate due to the
full attention mechanism (Fig. 7). For example, during Oct 1-15, 2020,
no major wildfires were happening in the study area, but Transformer
overestimated the PM, 5 concentration at Santa Clarita, Crestline-Lake
Gregory, Upland, Thousand Oak-Moorpark Road, and Piru-Pacific stations
(Fig. 7a, i, k, m, n). These overestimations indicated that the full attention of
the Transformer model attends equally to the information from nearby po-
sitions in the high dimensional subspaces, so the trained model may not dif-
ferentiate non-wildfire situations from wildfire situations well. However,
the ST-Transformer uses evolving sparse attention to actively select mean-
ingful information from explicitly separated spatial, temporal, and variable
dimensions, resulting in better differentiation between wildfire and non-
wildfire situations.

5.4. Model interpretation

The attention weights learned by the ST-Transformer to account for the
evolving spatiotemporal information of multiple factors can provide hints
on the importance of different stations for predictions. Fig. 8 demonstrates
the spatial attention weights on six time series chosen from the test dataset,
in which three of them are under the influence of wildfire and the other
three without fire. Each panel corresponds to an attention weight matrix
with its (i, j)th element being the weight measuring how much information
is learned from station j for forecasting the air quality at station i. The color
of the blocks in each panel represents the magnitude of attention weight.
Wildfire influences can be associated with a single station (Fig. 8a: nearby
fire), multiple stations (Fig. 8b: nearby fire and smoke transported by
wind), or all stations within the area (Fig. 8c: large or long-term fire). Com-
paring attention weights with and without wildfire influence, wildfire sig-
nals are more outstanding than the ones in no-fire situations, where the
latter show lower attention weights and relatively similar influences from
other stations. The more important variables are also not related to wild-
fires, no matter the prediction relies on information from one station
(Fig. 8d: previous PM, s5), multiple stations (Fig. 8e: temporal indicator),
or all stations in the area (Fig. 8f: traffic).

These attention weights can be decomposed to understand the attention
learned from other stations at different past time steps. To predict the air
quality at station j, the ST-Transformer learns to attend to the past informa-
tion from station j itself, multiple stations, or all available stations in the re-
gion (Figs. 9). For predictions that rely on past information from its own
station (Fig. 9a and d), temporal dependency generally becomes more im-
portant as the time approaches the predicted future time steps (Fig. 9al
and d1). The variable-temporal attention plots (Fig. 9a2 and d2) generally
show one identifiable hotspot, indicating the variables' joint influence on
the prediction. Under wildfire influence, Fig. 9(a2) shows an attention
hotspot from the past 16th-22nd time steps in variables: 2 m temperature
(T2M), 10 m wind direction (WD), 10 m wind speed (WS), day of year,
and hour of day. In contrast, without wildfire influence, variables that are
not relevant to wildfire show higher attention weights. For example,
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Fig. 6. The observation, Transformer prediction, and ST-Transformer prediction of PM, 5 concentrations during wildfire events. (Note: the y-axis ranges may vary.) Models
are initiated every 3 h, and predictions are averaged from model results in a rolling update manner.

Fig. 9(d2) shows a more focused hotspot from the past 11th time step of
PM, s, indicating that the prediction relies majorly on that single variable
from the past.

For predictions that rely on past information from multiple stations in
the region (Fig. 9b and e), the stations used to predict at a targeting station
are not necessarily nearby, indicating that the complex and long-range spa-
tial dependencies are being captured in the model. The scattered hotspots
are easy to be identified. Under the influence of wildfire, Fig. 9(b2) shows
great attention weights for the inverse distance of the fire intensity
(IDWFI) and wind direction (WD), indicating the high impact of nearby
wildfires on multiple stations. Without wildfire influences, Fig. 9(e2)
shows the single hotspot of attention from the variable ‘hour of day’ at
Hour 13.
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For predictions that rely on past information from all stations in the re-
gion (Fig. 9c and f), the temporal dependency shows scattered hotspots
across the past hours and different stations (Fig. 9c1 and f1), but the tempo-
ral attentions are more complex than in previous cases, with more rapidly
increasing and decreasing attentions The variable-temporal attention
plots (Fig. 9c2 and f2) also show more than one identifiable hotspots, indi-
cating that the variables' influences on the prediction are complex and dy-
namic. Notably, PM, 5 concentrations from past hours are not necessarily
the most important variable (Fig. 9¢2), and the temporal dependency be-
tween predicting variables and predictions is not necessarily more impor-
tant over time. Under wildfire influences, the temporal attentions from
wildfire variables, especially IDWFI_FP (code: 11) and IDWFI (code: 12),
show scattered hotspots at different past hours. Without wildfire influences,
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Fig. 7. The observation, Transformer prediction, and ST-Transformer prediction of PM, 5 concentrations during non-wildfire situations. (Note: the y-axis ranges may vary.)
Models are initiated every three hours, and predictions are averaged from model results in a rolling update manner.
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Fig. 9(f2) shows multiple hotspots, but one of them indicated great atten-
tion to traffic flow at Hours 2-5.

6. Discussions

This research aimed to address the challenge of a deep learning-based
approach to accurately predicting and physically interpreting air quality
dynamics in space and time, particularly the concentration of PM, 5 amidst
ongoing wildfire activity. Specifically, we address two challenges: 1) accu-
rately capture dynamic multivariate dependencies across space and time;
and 2) prevent overgeneralizing the temporal trends of PM, 5 concentration
when wildfires cause abrupt environmental changes. The proposed spatio-
temporal Transformer (ST-Transformer) network addresses these chal-
lenges by dynamically scaling the multi-head attention's receptive field to
capture multivariate dependencies via learning spatial, temporal, and
value embeddings and by introducing a sparse attention mechanism to cap-
ture abrupt changes in data. This study contributes to the existing literature
on using attention mechanisms for multivariate time series forecasting,
with a novelty that the multivariate represents spatial locations, temporal
changes, and contextual variables used in the model. Adding multiple con-
textual variables at a particular station location complicates the problem
into another dimension; thus, the interactions between the input variables
and the target variable are more complex. As our experiments suggest,
the ST-Transformer model captures the complex dependencies across mul-
tiple dimensions using the sparse attention mechanism and outperforms the
other existing spatiotemporal forecasting models.

This research particularly focused on applying the proposed ST-
Transformer model to accurately predict PM, s concentrations in a
wildfire-prone area, where a significant source of PM, s is the emission
from wildfires. The model considers contextual variables that account for
the wildfire behavior and smoke coverage to accurately predict PM, s con-
centration in such areas. Although wildfire behavior and smoke transport
are dynamic and challenging to quantify, the ST-transformer model is
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designed to learn the environmental changes and their impacts on regulat-
ing PM, 5 concentration in local regions. The other benefit of using ST-
Transformer lies in the availability of model interpretation, as attention-
based mechanisms provide attention maps learned from the model. Visual-
izing the attention matrices demonstrated the complex dependencies along
spatial, temporal, and variable-wise dimensions. In the attention visualiza-
tions, one or more high attention clusters, or hotspots, can be observed and
identify the spatial, temporal, and variable factors that contribute to the
change of PM, 5 concentration in the prediction. These attention visualiza-
tions demonstrate the feasibility of using ST-Transformer for wildfire
smoke-induced PM, 5 concentration mapping. When nearby wildfires are
the major sources of the increase of PM, 5 concentration, the attention
mechanisms generally show high attention values in those variables related
to wildfire occurrence. However, these high attention values are not neces-
sarily associated with just nearby stations; instead, they might be associated
with stations far away from each other but simultaneously impacted by the
dynamic transport of wildfire smoke. Moreover, in non-fire situations, the
attention visualizations may show spikes in surface temperature, wind
speed and direction, past PM, 5 concentration, or traffic flow. Therefore,
the ST-Transformer model can be used to identify complex dependencies
among wildfires, other emission sources, and air pollution over space and
time.

Another advantage of the ST-Transformer model is its capability to pre-
dict abrupt changes in PM, s concentrations based on contextual informa-
tion. Compared to other existing time series forecasting models
(e.g., ARIMA, FNN, LSTM, MTGNN, and Time Series Transformer), the
ST-Transformer model predicts more accurately when there are spikes in
the observed PM, 5 concentrations due to nearby wildfires, while other
models tend to underestimate the PM, 5 concentrations significantly.
With the sparse attention mechanisms, the ST-Transformer model can bet-
ter differentiate the situations of wildfire and non-wildfire and choose to le-
verage the contextual information more intelligently. The accurate
predictions from the ST-transformer model of PM, 5 during wildfire seasons
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Fig. 9. Visualization of the attention weights learned by the ST-Transformer, where attention weights are learned only from the to-be-predicted station.

will be helpful to anyone as a citizen or those in the Emergency Services
Sector who need to monitor and predict the impacts of wildfire smoke effec-
tively. The predictions will also help public health officials provide appro-
priate guidelines to vulnerable populations more sensitive to the increase
of PM, 5 amounts in the atmosphere.

Future improvements for this research are threefold. First, the gen-
eralizability of the model can be tested across different regions within
the wildfire-prone area, and the interpretation of feature spatiotempo-
ral importance can be used to understand the local context for air pol-
lution predictions. Second, the sensitivity of historical periods and
predicting periods can be tested across a series of experiments to inves-
tigate the model's capability of predicting longer-term time series.
Third, while this research predicts PM, s concentrations, the compo-
nents of PM, 5 can be further decomposed as the output of the predic-
tions, providing a more comprehensive estimation for public health
guidance. Fourth, the model conducts time series forecasting for loca-
tions of monitoring stations, but does not provide estimates for places
without a monitoring station. Future developments of spatiotemporal
forecasting models that can estimate air quality for places both with
and without monitoring stations will be more beneficial for air pollu-
tion exposure studies.
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7. Conclusion

This research presented a spatiotemporal Transformer (ST-Trans-
former) model to address the challenge of accurately predicting and physi-
cally interpreting air quality, particularly PM, 5 concentration. The model
supports separate embedding components that isolate spatial, temporal,
and value embeddings to facilitate a more focused and sparse attention
mechanism that helps learn the complex and dynamically changing spatial,
temporal, and variable-wise dependencies for estimating air quality during
wildfires. The proposed model is applied and investigated for an hourly
PM, s concentration prediction in the greater LA area from 2017 to 2020.
The input variables include wildfire perimeter (CAL FIRE), wildfire inten-
sity (NASA Active Fire), meteorological factors, traffic, PM, 5 concentra-
tion, and temporal indicators from the past 24 h, and the targeting output
variable is the PM, s concentrations in the future 12 h. The ST-
Transformer model achieved an average RMSE of 6.92 (£2.93) pg m™°>
and outperformed other considered models, including the ARIMA, FNN,
LSTM, MTGNN, and Time Series Transformer. The ST-Transformer model
also showed significant improvements from other considered models dur-
ing wildfire events, where the time series of PM, 5 concentration shows
an identifiable spike. The attention matrix learned by the model also
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interpreted the complex spatial, temporal, and variable-wise dependencies,
indicating that the model can differentiate situations between wildfires and
non-wildfires. The ST-Transformer model can be easily adopted for other
spatiotemporal prediction problems, such as predicting water quality, pre-
cipitation, and solar radiation, at multiple monitoring sites where each ob-
servation location is associated with multiple environmental variables. The
model is also suitable for predicting variables with complex temporal de-
pendencies, such as when observations generally show spikes or pits with-
out clear reasons. The ST-Transformer model supports generating attention
matrices that might help understand the reasons for spikes and pits through
the decomposed visualization of attention clusters across the spatial, tem-
poral, and variable-wise dimensions. The accurate predictability and inter-
pretation capacity of the ST-transformer can help effectively monitor and
predict the impacts of wildfire smoke and can be applicable to other com-
plex spatiotemporal prediction problems, including water quality, precipi-
tation, and solar radiation mapping.
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