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• Conduct time series forecasting on PM2.5

concentrations at 19 EPA's AQS station lo-

cations in the greater Los Angeles area

• ST-Transformer model achieved an aver-

age RMSE of 6.92 (±2.93) μg m−3 and

outperformed benchmark models.

• Sparse attention attends only to the useful

and relevant information, preventing

overestimation of PM2.5 concentration.

• ST-Transformer can predict an abrupt, sig-

nificant increase in PM2.5 concentration

during wildfires.
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Globally, wildfires are becoming more frequent and destructive, generating a significant amount of smoke that can

transport thousands of miles. Therefore, improving air pollution forecasts fromwildfires is essential and informing cit-

izens of more frequent, accurate, and interpretable updates related to localized air pollution events. This research pro-

poses a multi-head attention-based deep learning architecture, SpatioTemporal (ST)-Transformer, to improve

spatiotemporal predictions of PM2.5 concentrations in wildfire-prone areas. The ST-Transformer model employed a

sparse attention mechanism that concentrates on the most useful contextual information across spatial, temporal,

and variable-wise dimensions. Themodel includes critical driving factors of PM2.5 concentrations as predicting factors,

including wildfire perimeter and intensity, meteorological factors, road traffic, PM2.5, and temporal indicators from

the past 24 h. The model is trained to conduct time series forecasting on PM2.5 concentrations at EPA's air quality sta-

tions in the greater Los Angeles area. Prediction results were compared with other existing time series forecasting

methods and exhibited better performance, especially in capturing abrupt changes or spikes in PM2.5 concentrations

during wildfire situations. The attention matrix learned by the proposed model enabled interpretation of the complex

spatial, temporal, and variable-wise dependencies, indicating that the model can differentiate between wildfires and

non-wildfires. The ST-Transformer model's accurate predictability and interpretation capacity can help effectively

monitor and predict the impacts of wildfire smoke and be applicable to other complex spatiotemporal prediction

problems.
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1. Introduction

Climate change has aggravated heatwaves and droughts worldwide, re-

sulting in wildfires increasing in frequency, size, and intensity and longer

smoke seasons (Mazdiyasni and AghaKouchak, 2015a, b; Schiermeier,

2018a, b; Woodward et al., 2014). Climate predictions show that signifi-

cant fire events, including mega-forest fires, will continue and become

less predictable (Natole et al., 2021a, b). Smoke from wildfires is more

harmful to human health than other forms of air pollution (Aguilera

et al., 2021a, b) because it contains toxic particles, such as soot, and

chemicals, such as carbon monoxide. One of the main concerns is PM2.5,

which can penetrate the lungs and circulatory system, often causing ad-

verse health effects (Crouse et al., 2015; Makar et al., 2017). Acknowledg-

ing that wildfire activities may likely continue to rise, it is an urgent

research priority to accurately predict air pollutant concentration induced

by wildfire smoke, especially in wildfire-prone areas.

Air quality predictions for fire-prone areas can significantly help emer-

gency managers and public health officials mitigate potentially adverse en-

vironmental and public health impacts. However, accurate prediction of air

pollutant concentration, especially those that are wildfire-sourced, is chal-

lenging as such scenarios are highly related to wildfire characteristics,

such as the state of the atmosphere, topography, fuel, and moisture (Jaffe

et al., 2020). First, wildfire smoke is highly dynamic in space and time, re-

sulting in air quality measurements drastically changing in spatiotemporal

dimensions (Khaykin et al., 2020). Regulatory air quality sensors typically

have long distances between stations so that fire smoke atmospheric dy-

namics and chemistry and environmental and public health impacts can

be missed by sparsely distributed stations (Lu et al., 2021). Given limited

air quality measurement platforms, it is often difficult to grasp the full im-

pact of a specific fire event over a geographic area by relying on a single

source. Second, it is challenging to accurately predict the location of the

smoke in the air column – whether it is floating along the surface or aloft

– owing to dynamic perimeters and behaviors of wildfires producing

smoke and local weather conditions (e.g., wind speed and direction, etc.)

(Liu et al., 2019b). There is an urgent need to incorporate dynamic fire be-

havior and the complex multi-dimensional (horizontal, vertical, and time)

and multivariate (e.g., meteorological conditions, land use, and terrain) in-

teractions for smoke emission into the prediction methods.

Traditionally, numerical models for smoke forecasts have been used to

produce short-term air quality predictions in wildfire-prone areas. The in-

creased resolution of numerical weather prediction and computational

power recently opened new avenues for developing integrated systems in

a more coupled way. WRF-SFIRE-CHEM couples fire progression, plume

rise, smoke dispersion, and chemical transformations (Kochanski et al.,

2016). High-Resolution Rapid Refresh-Smoke (HRRR-Smoke) (Ahmadov

et al., 2017) leverages WRF-CHEM and satellite-derived fire radiative

power to simulate biomass burning emissions, plume rise, and smoke trans-

port but does not couple fire progression. Wildland-urban interface Fire Dy-

namics Simulator (WFDS) (Mell et al., 2007, 2009;Mueller et al., 2014) and

FIRETEC (Linn et al., 2002, 2005; Pimont et al., 2011) resolve combustion

and small-scale plume dynamics but without atmospheric chemistry. Com-

munity Multiscale Air Quality (CMAQ) model represents chemical trans-

port models that focus on chemical smoke transformations and rely on

external parameterizations for plume height and emission computations

(Appel et al., 2017); concomitantly, CMAQ does not resolve fire-

atmosphere interactions and plume dynamics of fire progression. Satellite

and ground-observed smoke emissions have been utilized to evaluate

these physical models, help reduce model bias, optimize smoke exposure

estimates, and study the spatiotemporal variability of wildfire smoke

(Mallia et al., 2020; Zou et al., 2019). However, several improvements for

fire and smoke models were suggested (Liu et al., 2019a), including 1) pa-

rameterization of lateral fire spread; 2) profiles of vertical plume concentra-

tions; and 3) estimates or measurements of near-event and downwind O3,

PM2.5, their precursors, and intermediate chemical species (e.g., organic

matter, SO4
2−, mineral dust, elemental carbon, etc.). However, uncertainty

exists with varying physical schemes and model configurations, and these

numerical models are not readily available and not interpreted in a way

that is helpful for the public.

Emerging trends leverage data-drivenmethods (e.g., time-series predic-

tion, space-time interpolation, convolutional neural network (CNN), and

deep fully convolutional neural network (FCNN)) based on historical air

pollutant concentrations and meteorological conditions to predict air qual-

ity impacts by smoke emissions. CNN and deep FCNN have been applied to

detect smoke plumes from high-resolution geostationary satellite imagery

(Larsen et al., 2021; Ramasubramanian et al., 2019), with the limitation

that satellite imagery can be skewed by cloud cover, terrain, and light

and heat emitted by factories (Brey et al., 2018; Buysse et al., 2019). Re-

search has also been conducted tofill in the gaps between ground-level sen-

sors and provide a map distribution of air quality using data-driven

methods (Cheng et al., 2018; Lin et al., 2018; Yi et al., 2018). However,

these models might suffer from overgeneralizing the temporal trends of

air pollutant concentrations, especially regarding the air quality being

abruptly impacted by a nearby fire, leading to significant underestimations

of air pollutant concentrations during wildfire situations. There is also a

lack of thorough examination of different impacting variables regarding

smoke emissions from fires, the relationship between air pollutants within

the smoke, and how they drift in space.

The challenges expressed abovewill be addressed to providemore accu-

rate predictions and examinations of the multi-dimensional and multivari-

ate interactions that influence PM2.5 concentration. This research,

therefore, proposes a novel deep learning framework that learns the spatio-

temporal trends of wildfire, smoke, and air pollutants by considering their

spatial, temporal, and variable-wise dependencies. Specifically, this re-

search aims to provide improved hourly predictions of PM2.5 concentration

by learning through the spatiotemporal dependencies among the input var-

iables, including fire and smoke observations, meteorological conditions,

and traffic conditions. Section 2 will review the literature on spatiotempo-

ral prediction using machine learning and data-driven predictive methods

for air pollution from wildfires. Section 3 will describe the problem state-

ment and background of proposing a novel deep learning framework for

spatiotemporal air quality prediction, especially in wildfire-prone areas.

Section 4 will introduce the proposed model in detail. Section 5 will de-

scribe the data used for the experiments, comparative results, andmodel in-

terpretation, followed by discussions and conclusions.

2. Literature review

2.1. Machine learning for spatiotemporal prediction

Spatiotemporal prediction is challenging due to complex variable het-

erogeneity, non-stationarity, spatial and long-range temporal dependencies

(Li and Moura, 2020). Spatial dependency is complex; for example, air pol-

lutant concentrations at a monitoring station may correlate more with far

away stations than closer ones. Temporal dependencies might be long-

range; for instance, measurements at a certain hour may be correlated

with ones at closer time points butmay also be correlatedwith themeasure-

ments from the same hour a day prior. Spatiotemporal predictionsmay rely

on supporting relevant factors that are generally heterogeneous,

e.g., wildfire progression influenced by wind speed and directions, and

might be non-stationary due to expected or unexpected incidents, such as

air quality impacted by fireworks or wildfires. These challenges hinder ac-

curate forecasting when using traditional statistical time series forecasting

methods, such as persistence and autoregressive integratedmoving average

(ARIMA) (Lim and Zohren, 2021).More recently, deep learning approaches

for time series forecasting generally rely on a sequence-to-sequence frame-

work that canmap a context of the recent past to a target in the future, such

as recurrent neural networks (RNNs), graph neural networks (GNNs), and

attention mechanisms (Graves, 2012; Li et al., 2019; Wu et al., 2020;

Zhou et al., 2021).

RNNs consist of feed-forward neural networks in which the hidden

nodes are connected in series, but they are limited by the autoregressive

problem that causes difficulty in interpreting long-term patterns (Wu
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et al., 2020). Using RNNs to predict time series at multiple locations for the

same targeting variable (such as air temperature, air quality, and precipita-

tion intensity), the models are trained with input predictors at multiple lo-

cations (Han et al., 2021; Yu et al., 2021). Training RNNs in this way

enables models to sufficiently capture temporal patterns for a particular lo-

cation but lack intrinsic structures that handle spatial patterns and poten-

tially the spatiotemporal intercorrelated dependencies between nearby

locations.

GNNs can address this issue by explicitly representing the spatial struc-

ture using the adjacency matrix, which can be constructed prior to training

using the distance between node pairs (Yu et al., 2018). In GNNs, informa-

tion associated with a particular location is embedded in the nodes and

passed to neighboring nodes along the edges, so spatial and spatiotemporal

dependencies are learnable during training. One potential limitation is that

the extracted spatial dependencies are generally local (between neighbor-

ing nodes) and might not be capable of predicting scenarios with long-

range spatial relationships between locations (such as locations that are

far away but have high semantic similarity) (Liu et al., 2019a, b, c). In ad-

dition, these spatial dependencies are modeled with a fixed Laplacian ma-

trix that might not capture the dynamics when the targeting variable has

a changing spatial dependency (Li et al., 2018). Instead of constructing

the adjacency matrix prior to training, a Multi-Task Graph Neural Network

Framework (MTGNN) was proposed to learn the adjacency matrix before

applying the convolutions in the model structure (Wu et al., 2020).

MTGNN improves the capability of GNN in learning dynamic spatial depen-

dencies and has the potential of capturing variable spatiotemporal depen-

dencies but still considers spatial and temporal dependencies as separate

features to learn.

Recent studies leverage multi-head attention mechanisms to explicitly

or implicitly capture the spatial and temporal dependencies for spatiotem-

poral predictions (Zhou et al., 2021; Li and Moura, 2020; Grigsby et al.,

2021). In multi-head attention mechanisms, each time series is compared

with all previous ones to propagate information over long sequences, and

important information is retained through self-attentions (Vaswani et al.,

2017). Based on this original work of using a multi-head attention mecha-

nism in an encoder-decoder architecture called Transformer, Zhou et al.

(2021) developed the Informer with improved temporal embeddings that

learn the non-stationary and long-range temporal dependencies. Although

Informer acknowledges the value ofmultiple variables per timestep as a sin-

gle input token, the model only focuses on learning “temporal attention”

among timesteps and ignores the different spatial relationships between

variables. To explicitly capture the joint spatial and temporal dependencies

in attention-based mechanisms, Li and Moura (2020) developed a graph

transformer to account for the dynamic strengths of spatial dependency

using a sparse Transformer, where the edges between less-dependent

nodes are trimmed before training. To capture long-range temporal and

complex spatial dependencies, Grigsby et al. (2021) developed the

Spacetimeformer to flatten multivariate time series into extended se-

quences to separate the influences of different input predictors. However,

the model will only consider spatial and temporal dependencies without

variable-wise dependencies, because it uses one variable at each station

as both the input and target variable instead of taking other relevant vari-

ables as predictors. In many cases of spatiotemporal prediction, the future

conditions of a targeting variable depend on multiple relevant factors,

which have non-linear and complex dependencies in spatial, temporal,

and variable dimensions.

2.2. Machine learning for spatiotemporal prediction of air pollution related to

wildfires

Studies have incorporated various observations or reanalysis datasets

for wildfire occurrence, behavior, and smoke dispersion to account for

wildfire impacts on air quality. Reid et al. (2015) utilized a generalized

boosting model to select an optimal prediction model for daily PM2.5 con-

centration predictions during the 2008 northern California wildfires from

a set of 11 statistical algorithms and 29 predictor variables. They leveraged

the simulation output of chemical transport models, satellite observation of

aerosol optical depth (AOD), distance to nearest fires, meteorological con-

ditions, land-use, traffic, and spatial and temporal characteristics. They con-

cluded that the most important predictors were satellite retrieved AOD,

simulation output, and distance to the nearest fire cluster. Yao et al.

(2018) utilized a random forest model to estimate hourly PM2.5 concentra-

tion at 5-km resolution duringwildfire seasons from2010 to 2015 in British

Columbia, Canada. A similar set of predictors are used, including ecozone

classification, fire activity, meteorology, and elevation. Two case studies

were chosen during wildfire seasons in certain areas within the study re-

gion to demonstrate the capability of the proposed model. Sensitivity anal-

ysis was conducted to explore the sufficiency of predictors, leading to the

conclusion that PM2.5 concentrations from 24 h prior and the satellite re-

trieved AOD values, contributed little to the model.

More recently, deep learning approaches and emerging datasets, such as

ensemble-based deep learning and low-cost sensor networks, have been

leveraged in the spatiotemporal prediction of air quality impacted by wild-

fire smoke. Li et al. (2020) utilized ensemble-based deep learning to esti-

mate PM2.5 concentrations in California at a 1 km × 1 km weekly

resolution, using satellite AOD retrieval, meteorological conditions, traffic,

and wildfire smoke dispersion factors. Using this model to predict a long

temporal range from 2008 to 2017, they concluded that integrating multi-

source heterogeneous impact factors and the non-linear modeling of deep

learning improved the spatiotemporal PM2.5 estimation over a regional

area. Lu et al. (2021) developed a random forest model that integrates

low-cost sensor networks to estimate the hourly PM2.5 concentrations at a

500-m resolution in Los Angeles County from 2018 to 2019. They used

the meteorological conditions, land-use variables, traffic conditions, and

temporal and spatial trends to account for the environmental context. Ac-

knowledging the fact that wildfire smoke may significantly contribute to

the improved predictions of PM2.5 concentrations in nearby areas, Hung

et al. (2021) separated smoke and non-smoke days based on satellite mea-

surements and aerosol reanalysis products to analyze the wildfire smoke's

impact on air quality in New York State from 2012 to 2019. They used an

artificial neural network to estimate the ground-level PM2.5 concentrations

at air quality monitoring stations and found that the smoke inflow from

fires and the vertical transport mechanisms of smoke generally improved

prediction accuracy.

The validation process of the reviewed studies majorly focused on the

average prediction errors, but the individual prediction might vary signifi-

cantly from the observation, especially during abrupt changes in air pollut-

ant concentrations. A challenge to predicting air quality in areas with

potential impacts from various sources (includingwildfire events) is captur-

ing abrupt changes in air pollutant concentrations. This research will lever-

age a multi-head spatiotemporal attention mechanism that captures abrupt

changes in PM2.5 concentrations from wildfire smoke. The attention

evolves across spatial and temporal dimensions and adjusts to the

variable-wise dependencies over space and time.

3. Problem statement and background

3.1. Spatiotemporal air quality prediction problem

Predicting future air quality values given previous observations from

stations within a particular area of interest is of prime importance. The

complexity involves four axes: the prediction sequence's duration Lout, the

previous observations' duration Lin, the number of input variables consid-

ered at each timestep Nv, and the number of monitoring stations Ns. The

prediction model will use the input to predict air quality for future

timesteps: XNs∗Nv∗Lin
→ YNs∗Lout

. As the numbers along the four axes grow,

modeling the spatiotemporal relationships between stations and variables

becomes increasingly complex. In the case of air quality monitoring, sta-

tions might experience different meteorological patterns due to their geo-

graphic location. Measurements from monitoring stations also show

complex spatial relationships. For example, far away stations might be im-

pacted by wildfire smoke simultaneously, thus having a short-time high
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correlation between air quality measurements, but this correlation will not

be sustained (e.g., when wind speed changes or wildfire progresses away

from the stations).

3.2. Transformer for time series forecasting

To capture the spatiotemporal relationships between air quality mea-

surements and predictor variables across stations, the foundation of our

predictive model is the Transformer and its variant in time-series forecast-

ing. The Transformer (Vaswani et al., 2017) is a sequence-to-sequence pre-

diction model, which includes encoder and decoder layers (Fig. 1) and is

widely used for natural language processing tasks.

The encoder consists of an input layer, a positional encoding, and four

encoders. The input layer converts the input time series to a vector of di-

mension d through a fully connected layer, whichwill be used in the follow-

ing multi-head attention mechanism. An adjusted layer replaces the

original positional encoding with sine functions to match the predictand's

diurnal patterns with a tunable period of time steps to repeat the pattern.

The adjusted positional encoding encodes the time series data by

element-wise addition of the input vectorwith a positional encoding vector.

The resulting vector is fed into four encoder layers. Each encoder layer con-

sists of two sub-layers: a multi-head self-attention sub-layer and a fully con-

nected feed-forward sub-layer.

The multi-head self-attention sub-layer transforms the input vector

through linear projections into H distinct query matrices Q, key matrices

K, and value matrices V, where H represents the number of heads. Then

the scaled dot-product attention computes a sequence of vector outputs

for each head using Softmax (Goodfellow et al., 2016a, b) and matrix mul-

tiplication. The self-attention is computed as:

Attention Q,K, Vð Þ ¼ softmax
QKT

ffiffiffiffiffi
dk

p
� �

V (1)

Specifically, the value matrices V is affected by the attention weights

a ¼ softmax QKTffiffiffiffi
dk

p
� �

, which is defined by how each value in the input time

series (denoted byQ) is influenced by all other values in the time series (de-

noted by K). The Softmax function is applied to the attention weights a to

have a probability distribution between 0 and 1. All weights are then ap-

plied to all the values in the value matrices V. The multi-head mechanism

allows parallel linear projections of Q, K, and V forH times to have different

representations of the input data, so that the model can account for differ-

ent temporal dependence. The single attention output are further

concatenated and projected again to produce a final result.

A residual sum and normalization follow each sub-layer. The encoder

produces a d-dimensional vector to feed to the decoder. The decoder also

comprises an input layer, a positional encoding layer, four identical decoder

layers, and an output layer. The decoder input begins with the last data

point of the encoder input, denoted as “Outputs” that are fed to the bottom

decoder in the next time step. The decoder input layer maps the decoder

input to a d-dimensional vector. Besides the two sub-layers in each encoder,

the decoder inserts a third sub-layer (an encoder-decoder attention layer) to

apply self-attention mechanisms over the encoder output. A residual sum

and normalization follow each sub-layer. Finally, an output fully connected

layer maps the output of the last decoder layer to the target time sequence.

The idea behind the Transformer network in machine translation is to

allow encoding both short- and long-range correlations between words in

the sentence. For that, the multi-head self-attention allows modeling the

correlation of elements in sequences regardless of their distance, resulting

in an effective global receptive field. Thus, this multi-head attention ap-

proach provides aflexible way to capture the complex correlation dynamics

for applications withmultiple monitoring locations in the case of air quality

monitoring. However, while its global receptive field can effectively pro-

cess the discrete tokens (e.g., words), it can fail to consider the local trend

information inherent in continuous data. This failure of capturing local

trends will be magnified when the model tries to learn multivariate depen-

dencies across space and time, such as in the case of forecasting air quality,

which typically manifests spatiotemporally dynamic distributions, depend-

ing on the sources of air pollutants (e.g., fireworks, other anthropogenic

emissions, and extreme events, such as wildfires), wind speed, and wind di-

rections. In addition, using the full attention mechanismmay also overgen-

eralize the temporal trends, leading to inaccurate predictions, especially

Fig. 1. Architecture of the generic Transformer model.
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when there are abrupt changes in the environmental domain. Therefore,

applying the generic Transformer model to air quality forecasting is likely

to yield unreliable predictions in space and time.

4. SpatioTemporal Transformer

For an accurate times-series forecasting of air quality on heteroge-

neously distributed monitoring stations, the Transformer network needs

to capture the dynamic (and abruptly changing) spatial and temporal corre-

lations among those stations. Instead of using any predefined station dis-

tance structure, we utilize the SpatioTemporal Transformer model

(Fig. 2), which improves the generic Transformermodel to include a spatio-

temporally dynamic and sparse dependency module. This enables the

model to capture the spatial, temporal, and variable-wise interactions or de-

pendencies. Thus, the SpatioTemporal Transformer replaces the regular

multi-head self-attention with a sparse attention mechanism. The spatial

and temporal dependencies among stations are embedded as weights in

the projection operations on the queries and keys. The dependencies are

captured separately by the spatial, temporal, and value embeddings.

4.1. Spatial, temporal, and value embeddings

4.1.1. Time embedding

In the SpatioTemporal Transformer model, the temporal dynamics are

entirely modeled by the time embedding of the multi-head self-attention

mechanism. Since attention builds the relationship between input and tar-

get with the weighted sum function (Eq. 1), the attention mechanism is ir-

relevant to the order of the input time series. Although temporal

dependencies might be complex (short-range or long-range), the order of

the input time series does matter – i.e., measurements may be correlated

with the ones at closer time points or with the measurements from the

same hour a day before. We explicitly embed the input order along with

the input time series to capture the complex temporal dependencies, assum-

ing that the model will be trained to learn the complex dependencies ac-

cording to different situations.

The temporal features are extracted separately for each station from the

date and time of the input timestamps: the hour of the day, day of the

month, the month of the year, and day of the week. Each temporal feature

is first embedded using a positional encoding component provided by the

original Transformer paper (Vaswani et al., 2017):

PE pos, 2ið Þ ¼ sin pos=10, 000
2i

dmodel

� �

PE pos, 2iþ 1ð Þ ¼ cos
pos

10, 000
2i

dmodel

 !
,

8
>>><

>>>:
(2)

where pos is the position of Xt in the input time series, and i represents the

ith dimension in the input vector. The positional encoding converted the

order of the timestamp within the input time series as a vector. The result-

ing PE is then used as the input of a standard embedding layer thatmaps the

integer index of each series to a higher-dimensional representation. The

standard embedding layer will serve as a look-up table that stores the em-

beddings of fixed hours, days, months, and weekdays. The final time em-

bedding EmbT is generated by flattening the separate temporal features

into a vectorized index for each new timestamp.

4.1.2. Spatial embedding

The spatial dynamics are also captured by the multi-head self-attention

mechanism to represent the correlation strengths among stations. The spa-

tial embedding EmbS indicates at which station the time series originate. In

addition to having dynamically changing air quality values, each monitor-

ing station is also associated with other varying spatial characteristics, in-

cluding the local geography of the monitoring station, the meteorological

conditions, the nearby wildfire influences, and the emissions from nearby

road traffic. Some of these spatial characteristics (e.g., location, elevation,

distance to traffic) are invariant over time but vary over space, thereby,

warrants accounting for spatial heterogeneity. However, other characteris-

tics, such as air humidity and wind speed, simultaneously vary over space

and time, requiring accounting for spatiotemporal variability. Therefore,

this spatial embedding EmbS will capture not only static but also dynamic

spatial dependencies.

Fig. 2. Architecture of the proposed SpatioTemporal Transformer model.
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The spatial embedding will first project each time stamp's input values

(Ns × Nv) into high-dimensional latent subspaces, using the feed-forward

neural networks:

Z t ¼ w∗Xt þ b, (3)

where Zt is the high-dimensional representation of the input variables at

timestamp t. Based on Zt, the correlation strength St, ij between station i

and station j can be calculated using a cross-correlation function:

St,ij ¼ xcorr Z t,i,Z t,j

� �
, (4)

and the resulting St is a Ns × Ns square matrix represents the correlation

strengths of any two stations at a particular timestamp t. The final spatial

embedding at a particular timestamp is then calculated as:

EmbS ¼ w∗St∗Z t þ b: (5)

4.1.3. Value embedding

To account for the intercorrelations amongmultiple variables, the value

embeddingmodule projects the input time series (Ns×Nv× Lin) into high-

dimensional representations EmbV, using the one-dimensional convolutions

with a hidden dimension of dmodel. The value embedding is different from

spatial embedding, which separates different timestamps to calculate the

correlation between stations and uses the correlations as weights to adjust

the high-dimensional representation of input variables from all stations. In-

stead of separating timestamps, value embedding uses the entire input time

series and transforms them into a single high-dimensional representation

matrix, so that the complex interdependencies among variables and their

dynamics can be highlighted in the model. The spatial, temporal, and

value embeddings are then concatenated to represent a comprehensive em-

bedded feature:

XST ¼ EmbT⊕EmbS⊕EmbV : ð6Þ

4.2. Sparse attention

To prevent overgeneralization of the temporal trends and capture the

abrupt changes in air pollutant concentration (and not allow the multi-

head attentionmechanism to attend to all information), we utilized a sparse

attention mechanism to concentrate on relevant information based on the

final embedding XST. The sparse attention enables the focus on a few con-

textual information through the selection; this follows the idea of

ProbAttention in Informer (Zhou et al., 2021) but in a simplified way.

Themost critical components for the attention are reserved, and other irrel-

evant information is removed.

In each self-attention head, the embedded feature XST are projected

using feed-forward layers into three key components: namely the query

QST, the key KST, and the value VST, where QST = XSTWST
q , KST = XSTWST

k ,

and VST= XSTWST
v . Here,WST

q ,WST
k , andWST

v represent the weight matrices

for QST, KST, and VST, respectively. An attention score S is calculated based

on the query and key components:

S ¼ QSTKST
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dmodel

p : (7)

The higher attention scores are selected based on a tunable threshold thr

along each row of the attention score matrix S. This threshold thr is initially

tuned to be the 80th percentile value. Each position in S can be referred to

as Sij, where i and j represents the row and column index of S. If Sij is lower

than the thri, then Sij is adjusted to be−∞. With the adjusted S, the sparse

attention is calculated in the same way as the original Transformer model:

Sparse Attention ¼ softmax Sð ÞVST : (8)

The model can obtain more focused attention related to contexts by com-

bining the spatial, temporal, and value embeddings with the sparse atten-

tion mechanism.

In a nutshell, the differences between the proposed model with existing

Transformer variants are three-fold. First, each monitoring station has the

target variable and the impacting factors related to those target variables.

Therefore, now, the model can distinguish between timestamps and tell

the difference between the variables and stations. Second, the sparse con-

nections are no longer along the spatial dimension alone; instead, they sup-

port joint connections along spatial, temporal, and variable dimensions. By

attending to the most important information across multiple dimensions,

the model can improve the predictive accuracy by identifying emerging

hotspots among the environmental contexts. Third, the sparse attention

mechanism can provide physically interpretable spatiotemporal attentions

that explain the emerging hotspots learned from the model.

5. Experiments

We present our experimental results on the air quality measurements

from 2017 to 2020 from 19 EPA AQS stations in the greater Los Angeles

(LA) area. We also collect hourly information for each station's meteorolog-

ical, wildfire, and traffic conditions. The proposedmodel predicts the PM2.5

concentrations for the next 12 h based on the input of multiple variables of

the previous 24 h. We removed the time series with missing values and ap-

plied the min-max normalization per variable.

5.1. Data

To evaluate the model performance, we divide the data into the train-

ing, validation, and testing set based on date, with the corresponding pro-

portions being 70 %, 15 %, and 15 %, respectively. The predictors

include the past 24 h of PM2.5 concentrations, meteorological, wildfire-

derived, and traffic flow variables. The predictand is the PM2.5 concentra-

tions for the next 12 h.

5.1.1. Predictand: PM2.5 concentrations from EPA air quality system

Hourly PM2.5 concentrations measured at U.S. Environmental Protec-

tion Agency (EPA) federal reference monitors (FRM) sites were used in

the greater LA area for 2017–2020. PM2.5 measurements and station loca-

tions were downloaded from the EPA's Air Quality System (AQS) Technol-

ogy Transfer Network.1 The PM2.5 values from monitoring station data

represent fine particulate matter from all sources, including ambient levels

and wildfire smoke. PM2.5 stations with>25%missing data were excluded

from the analysis, and missing values are imputed based on linear interpo-

lation for each station. Ultimately, 19 PM2.5 stations are included in this

study (Fig. 3).

5.1.2. Predictors

5.1.2.1. Meteorology. Meteorology data were obtained from ERA-5

(Hersbach et al., 2020), a reanalysis dataset produced by ECMWF that con-

tains hourly estimates of atmospheric, land, and oceanic climate variables.

ERA5 combines vast amounts of historical observations into global esti-

mates using advanced modeling and data assimilation systems. The meteo-

rological features include boundary layer height (m), 2 m dewpoint

temperature (K), surface pressure (Pa), 2 m temperature (K), 10 m u-

component of wind (m s−1), and 10 m v-component of wind (m s−1).

The u-component and v-components of wind are further computed into

wind direction and speed. All meteorological parameters were obtained

at the hourly temporal resolution and 0.25° × 0.25° spatial resolution.

5.1.2.2. Temporal trending variables. We included the “hour of the day” and

“day of the year” to account for daily, monthly, and seasonal temporal

1 http://www.epa.gov/ttn/airs/airsaqs.
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variations. In our study period, extremely high PM2.5 concentrations (>100

μg/m3) were observed on July 4 and 5, primarily due to fireworks.

5.1.2.3. Road traffic. Traffic emissions are considered a significant source of

PM2.5 (Habre et al., 2021). We downloaded hourly traffic flow data from

sensors deployed on the freeway system from the Caltrans Performance

Measurement System (PeMS)'s clearinghouse.2 For each AQS station, we

computed the total hourly traffic flow from PeMS sensors within 5 km.

5.1.2.4. Wildfire perimeter. Smoke caused by wildfire is a crucial ambient

PM2.5 source that contributes to the health burden (for cardiovascular dis-

ease, cancer, respiratory diseases, etc.) in many regions, especially in Cali-

fornia, where wildfire frequency and intensity have increased over recent

decades (Gupta et al., 2018; Reid et al., 2015). The fire perimeter data

was downloaded from CAL FIRE.3 The alarm date, containment date, and

the polygon representing the fire perimeter were recorded for each fire

event. For each AQS station, at a particular hour, the inverse distance of

the nearest fire (when available) is calculated.

5.1.2.5.Wildfire intensity. Thefire intensity data was derived from the NASA

Fire Information for Resource Management System (FIRMS) Moderate Res-

olution Imaging Spectroradiometer (MODIS) or Visible Infrared Imaging

Radiometer Suite (VIIRS) Fire/Hotspot Data.4 The fire intensity data is ag-

gregated from the two sources: 1) MODIS Thermal Anomalies, and 2) VIIRS

Active Fire and Thermal Anomalies. The data is composed of points or grids

with the same resolution as the source satellite (MODIS: 1 km, VIIRS: 375

m), and each grid represents a hot spot of an area with high brightness tem-

perature (BT) at a specific date and time. The high temperature can be con-

sidered high fire intensity for the observed date and time.

Two predictors were derived from this data: 1) IDWFI_FP (K) as the in-

verse distance weighted sum of brightness temperature from grids within

any CAL FIRE fire perimeter at the current hour; 2) IDWFI (K) as the inverse

distanceweighted sum of brightness temperature from all grids available at

the current hour. IDWFI is calculatedwhenmultiple wildfire hotspots occur

at the hour of interest, and a more nearby wildfire hotspot has a higher

weight in calculating the overall brightness temperature at a particular

AQS station. With n as the number of wildfire hotspots, disti, i ∈ (1,…,n)

Fig. 3. (a) The locations of PM2.5 monitoring stations in the greater Los Angeles area operated by the U.S. EPA's AQS network. (b) Hourly PM2.5 concentrations from the 19

AQS stations: mean value and 95 % confidence interval.

2 https://pems.dot.ca.gov/?dnode=Clearinghouse.
3 https://frap.fire.ca.gov/frap-projects/fire-perimeters/. 4 https://firms.modaps.eosdis.nasa.gov/active_fire/.
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as the distance from each hotspot to the AQS station of interest, IDWFI is

calculated as:

IDWFI ¼ ∑
n
i

dist i

∑
n
1
dist i

� BT: (9)

IDWFI_FP uses the same equation for calculation, but the number of wild-

fire hotspots is smaller as wildfire hotspots that are not intersected with

any fire perimeter provided by CAL FIRE are eliminated. Table 1 provides

a full list of datasets used as predictors in this study.

5.2. Comparison and analysis of results on PM2.5 concentration prediction

We compared the performance of the proposed ST-Transformer model

with baselinemodels, including the Auto Regressive IntegratedMoving Av-

erage (ARIMA; Box et al., 2015), Feedforward Neural Networks (FNN),

Long Short Term Memory (LSTM), Multivariate Time Series Forecasting

with Graph Neural Networks (MTGNN, (Wu et al., 2020) and Time Series

Transformer (Li et al., 2019; Vaswani et al., 2017).

1) ARIMA uses the relationship between the current and historical values

within the time series to predict future values. It assumes that data has

an autoregression relationship with its past values. We used the Auto

ARIMA model without tuning the required parameters (i.e., the p, d,

and q values) of ARIMA to provide optimal forecasting.

2) Feedforward Neural Networks (FNN) is a multi-layer perceptron with

additional hidden nodes between the input and the output layers.

Data moves in the only forward direction in this network without any

cycles or loops (Schmidhuber, 2015a, b). This research aims to produce

multi-horizon time-series predictions so designing an FNNwithmultiple

outputs is essential. In the output layer, each neuron focuses on

predicting the target variable at a different predicting hour so the

model does not consider the outputs to be sequential (i.e., the same var-

iable at different time steps). The problem with the FNN architecture is

that the outputs are essentially predicted fromdifferent systems simulta-

neously.

3) The Stacked-LSTM model has a stack of two LSTM layers and a final

fully connected layer to predict the multi-step time series. Stacking

LSTM allows for greater model complexity (Graves, 2012). The LSTM

layers encode sequential information from input through the recurrent

network. The densely connected layer takes the final output from the

second LSTM layer for predictions.

4) The MTGNN model is a graph neural network that learns to connect

multiple variables for time series prediction. The model architecture

consists of three major components: graph structure learning, graph

convolution, and temporal convolution. Instead of leveraging a

predefined graph structure, MTGNN is adaptive to input data to learn

the evolving adjacency matrices representing sparse neighboring

dependencies. The temporal convolution is responsible for identifying

temporal patterns with multiple frequencies and can handle long time

series.

5) The Time Series Transformermodel is described in Section 3.2. We used

a latent dimension d of 96, a query size of 48, a value size of 48, a head

number of 8, 4 layers of encoder and decoder to stack, and 48 backward

elements to apply attention. We apply dropout techniques for the three

types of sub-layers in the encoder and decoder: the self-attention sub-

layer, the feed-forward sub-layer, and the normalization sub-layer. A

dropout rate of 0.2 is used for each sub-layer.

In the experiments, we measure the accuracy of the models using mean

absolute error (MAE), root mean squared error (RMSE), and mean bias:

Mean absolute error : MAE ¼ 1

n
∑
n

i¼1

byi � yij j (10)

Root mean squared error : RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1

byi � yið Þ2
r

(11)

Bias error : Bias ¼ byi � yi, (12)

where byi is the prediction and yi is the ground truth for data sample i.

Table 2 shows that all models considered achieve a mean RMSE within

the range of 7–10 μgm−3. The ST-Transformermodel achieves the best per-

formance of all models consideredwhile the Stacked-LSTMmodel achieves

the second-best performance. The Time Series Transformer has a similar

RMSE and MAE as the Stacked-LSTM but exhibits a wider range of errors.

Higher errors generally occur during wildfire events, especially when

smoke observations are not considered important in the models. The

RMSE, MAE, and BIAS values for each predicting hour during the test pe-

riod are illustrated in Fig. 4. Most models, except for MTGNN, show the

decaying performance of RMSE and MAE with the predicting future hour.

As the best performing model, ST-Transformer has an increasing RMSE

value from 7 to 8 μg m−3, while the worst performing model, ARIMA,

has an increasing RMSE from 7.5 to 12 μg m−3. Except for ST-

Transformer, the other models considered show a significant

Table 1

Datasets used in this study.

Source Shortname Variable Resolutions

EPA Air Quality System (AQS) PM2.5 PM2.5 concentration (μg m−3) Hourly

ECMWF ERA-5 BLH Boundary layer height (m) 0.25° × 0.25°,

hourlyD2M 2 m dewpoint temperature (K)

SP Surface pressure (Pa)

T2M 2 m temperature (K)

WD 10 m wind direction (°)

WS 10 m wind speed (ms−1)

California Department of Forestry and Fire Protection

(CAL FIRE)

IDWF Inverse distance of the nearest fire (km−1) –

Temporal trends Day Day of year –

Hour Hour of day

Caltrans Performance Measurement System (PeMS) TRF Total traffic flow within 5 km (count) Hourly

NASA Fire Information for Resource Management

System (FIRMS)

IDWFI_FP Inverse distance weighted sum of brightness temperature of fire hotspots within CALFIRE

fire perimeters (K)

Sub-daily, 1 km

grids

IDWFI Inverse distance weighted sum of brightness temperature of all fire hotspots (K)

Table 2

Performance comparison among the six considered models on the same testing

dataset.

Models RMSE (μg m−3) MAE (μg m−3) BIAS (μg m−3)

ARIMA 10.0 ± 3.28 6.05 ± 1.6 2.51 ± 2.97

FNN 8.83 ± 2.77 6.01 ± 1.93 3.26 ± 3.44

Stacked-LSTM 8.38 ± 2.92 5.73 ± 2.01 2.8 ± 3.55

MTGNN 9.78 ± 2.98 6.65 ± 1.1 0.23 ± 4.05

Transformer 8.48 ± 3.86 5.42 ± 3.0 1.76 ± 4.24

ST-Transformer 6.92 ± 2.93 4.0 ± 1.36 −0.51 ± 0.87
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underestimation of PM2.5 concentrations due to the failure to predict high

PM2.5 concentration values after wildfires.

To examine the spatial distribution of the prediction errors, we com-

pared the average RMSE values for each station between the considered

models (Fig. 5). The averaged RMSEs of ARIMA are large in Los Angeles

County, where PM2.5 concentrations vary significantly from hour to hour.

FNN and LSTM showed a similar spatial distribution of RMSE values to

ARIMA, but with lower RMSE values in general. The other three models,

MTGNN, Transformer, and ST-Transformer show similar spatial distribu-

tions, where the Glendora station in Los Angeles County has the highest

mean RMSE. In the ST-Transformer model, most stations (except for the

Glendora station) benefited from leveraging neighboring stations' informa-

tion with evolving attention. Without spatiotemporal attention, the Trans-

former model failed to predict accurately for stations in Ventura County,

evenwith the information from neighboring stations. The RMSE spatial dis-

tribution of the MTGNN prediction showed that the learned adjacency

Fig. 4. Performance changes of different models on the test dataset as the predicting hour increases.

Fig. 5. Visualization of spatial RMSEs of the considered model predictions compared with the ground truth.
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matrix might be adjusted with data, but in an area impacted by occasional

wildfire smoke, the learned adjacency matrix is insufficient for predicting

highly variable PM2.5 concentrations.

5.3. Time series prediction

To demonstrate the effectiveness of the proposed ST-Transformer

model, we showcase the predictions for days with andwithout nearbywild-

fires during the test period, alongwith the observed time series and the pre-

dictions from Transformer. Fire incidents are selected from the CAL FIRE

database of 2020 wildfire incidents when the incident caused a burn area

larger than 1000 acres (Table 3), whereas the non-wildfire period is se-

lected when no major wildfires are on record.

The characteristics of air quality time series duringwildfire events show

rapidly increased air pollutant concentrations, significantly different from

the days without wildfire impacts. It is challenging to model air quality

for areas with potential wildfire impacts, because air quality time series

are not easily separated into wildfire-impacted or non-wildfire days.

When training a time series forecastingmodel, using the days without wild-

fire impacts, the predictions aremore likely to follow the usual scenario of a

daily or weekly recurrent pattern. When training themodel using days with

wildfire impacts, the predictions will be higher values with greater vari-

ance. We trained our models using all of the time series, regardless of dis-

tance to an existing wildfire, so that the models can predict PM2.5

concentrations as a function of distance from wildfires.

The ST-Transformer predictions, Transformer predictions, and observa-

tions are illustrated in Fig. 6, in orange, green, and blue lines. In each panel,

the blue curve is the observed PM2.5 concentrations, and the orange and

green curves are the predicted concentrations by ST-Transformer and

Transformer models. The ST-Transformer predictions can capture the

peaked PM2.5 concentrations during wildfire events, while the Transformer

predictions significantly underestimate the high PM2.5 concentrations. For

example, during the Lake Fire (Aug 12–Sep 6, 2020) and the co-occurring

Ranch 2 Fire (Aug 13–Oct 5, 2020) in Los Angeles County, spiking high

PM2.5 concentration values were observed on Sep 29–31, 2020, for most

monitoring stations in Los Angeles County (Fig. 6a–f). While the Trans-

former model can qualitatively predict an increase in PM2.5 concentration,

it cannot predict the same magnitude of the observation, which is ~200 μg

m−3. However, the ST-Transformer can predict an abrupt increase in PM2.5

concentration. Such improvement of the ST-Transformer over the Trans-

former should be expected because the embedded spatial attention mecha-

nism can utilize the interaction among stations by adjusting the attention

weights. The attention mechanism captures the flow of spatial, temporal,

and variable dependencies about the environmental contexts, including

wildfire hotspots, wildfire smoke detection, and wind speed and direction

(mode details are provided in Section 5.4).

In addition, the Transformermodelmay overestimate the PM2.5 concen-

trations while taking information from neighboring stations. For example,

during the Lake Fire (Aug 12–Sep 6, 2020) and the co-occurring Ranch 2

Fire (Aug 13–Oct 5, 2020) in Los Angeles County, most stations had spiking

PM2.5 concentrations of ~200 μg m−3, whereas the Santa Clarita station

was less impacted by the nearby wildfires, resulting in a lower PM2.5 con-

centration increase to ~60 μg m−3 (Fig. 6e). The Transformer model uses

a full attention mechanism that leverages the nearby stations' information

equally, thus resulting in an overestimation during days without wildfire

impacts (Fig. 6e, green line representing Transformer results). A similar ex-

ample can be observed at the Riverside–Rubidoux station (Fig. 6h) during

Airport Fire (Dec 1–12, 2020) and the co-occurring Sanderson Fire (Dec

12–14, 2020). The full attention inside the Transformer model leads to an

overestimation of PM2.5 concentration based on the nearby stations' con-

text, whereas the ST-Transformer accurately attends only to the useful

and relevant information.

Such overestimations are also observed during days without major co-

occurring wildfires. During non-wildfire days, observations of PM2.5 con-

centrations generally show weekly or daily recurrent patterns. ST-

Transformer generally follows the temporal patterns of the observed

PM2.5 concentration, whereas Transformer may overestimate due to the

full attention mechanism (Fig. 7). For example, during Oct 1–15, 2020,

no major wildfires were happening in the study area, but Transformer

overestimated the PM2.5 concentration at Santa Clarita, Crestline–Lake

Gregory, Upland, Thousand Oak–Moorpark Road, and Piru–Pacific stations

(Fig. 7a, i, k,m, n). These overestimations indicated that the full attention of

the Transformer model attends equally to the information from nearby po-

sitions in the high dimensional subspaces, so the trainedmodel may not dif-

ferentiate non-wildfire situations from wildfire situations well. However,

the ST-Transformer uses evolving sparse attention to actively select mean-

ingful information from explicitly separated spatial, temporal, and variable

dimensions, resulting in better differentiation between wildfire and non-

wildfire situations.

5.4. Model interpretation

The attention weights learned by the ST-Transformer to account for the

evolving spatiotemporal information of multiple factors can provide hints

on the importance of different stations for predictions. Fig. 8 demonstrates

the spatial attention weights on six time series chosen from the test dataset,

in which three of them are under the influence of wildfire and the other

three without fire. Each panel corresponds to an attention weight matrix

with its (i, j)th element being the weight measuring howmuch information

is learned from station j for forecasting the air quality at station i. The color

of the blocks in each panel represents the magnitude of attention weight.

Wildfire influences can be associated with a single station (Fig. 8a: nearby

fire), multiple stations (Fig. 8b: nearby fire and smoke transported by

wind), or all stations within the area (Fig. 8c: large or long-term fire). Com-

paring attention weights with and without wildfire influence, wildfire sig-

nals are more outstanding than the ones in no-fire situations, where the

latter show lower attention weights and relatively similar influences from

other stations. The more important variables are also not related to wild-

fires, no matter the prediction relies on information from one station

(Fig. 8d: previous PM2.5), multiple stations (Fig. 8e: temporal indicator),

or all stations in the area (Fig. 8f: traffic).

These attentionweights can be decomposed to understand the attention

learned from other stations at different past time steps. To predict the air

quality at station j, the ST-Transformer learns to attend to the past informa-

tion from station j itself, multiple stations, or all available stations in the re-

gion (Figs. 9). For predictions that rely on past information from its own

station (Fig. 9a and d), temporal dependency generally becomes more im-

portant as the time approaches the predicted future time steps (Fig. 9a1

and d1). The variable-temporal attention plots (Fig. 9a2 and d2) generally

show one identifiable hotspot, indicating the variables' joint influence on

the prediction. Under wildfire influence, Fig. 9(a2) shows an attention

hotspot from the past 16th–22nd time steps in variables: 2 m temperature

(T2M), 10 m wind direction (WD), 10 m wind speed (WS), day of year,

and hour of day. In contrast, without wildfire influence, variables that are

not relevant to wildfire show higher attention weights. For example,

Table 3

Fire incidents in the study area during the test period (CAL FIRE: https://www.fire.

ca.gov/incidents/2020/).

Fire event Start date Containment

date

County Acres

Ranch 2 Fire 8/13/2020 10/5/2020 Los Angeles 4237

Lake Fire 8/12/2020 9/28/2020 Los Angeles 31089

Soledad Fire 7/5/2020 7/10/2020 Los Angeles 1525

Bond Fire 12/2/2020 12/10/2020 Orange 6686

Blue Ridge

Fire

10/26/2020 11/7/2020 Orange 13964

Silverado Fire 10/26/2020 11/7/2020 Orange 12466

Sanderson

Fire

12/12/2020 12/14/2020 Riverside 1933

Airport Fire 12/1/2020 12/12/2020 Riverside 1087

El Dorado Fire 9/5/2020 11/16/2020 San Bernardino and Riverside 22744

Holser Fire 8/17/2020 8/30/2020 Ventura 3000
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Fig. 9(d2) shows a more focused hotspot from the past 11th time step of

PM2.5, indicating that the prediction relies majorly on that single variable

from the past.

For predictions that rely on past information from multiple stations in

the region (Fig. 9b and e), the stations used to predict at a targeting station

are not necessarily nearby, indicating that the complex and long-range spa-

tial dependencies are being captured in the model. The scattered hotspots

are easy to be identified. Under the influence of wildfire, Fig. 9(b2) shows

great attention weights for the inverse distance of the fire intensity

(IDWFI) and wind direction (WD), indicating the high impact of nearby

wildfires on multiple stations. Without wildfire influences, Fig. 9(e2)

shows the single hotspot of attention from the variable ‘hour of day’ at

Hour 13.

For predictions that rely on past information from all stations in the re-

gion (Fig. 9c and f), the temporal dependency shows scattered hotspots

across the past hours and different stations (Fig. 9c1 and f1), but the tempo-

ral attentions are more complex than in previous cases, with more rapidly

increasing and decreasing attentions The variable-temporal attention

plots (Fig. 9c2 and f2) also show more than one identifiable hotspots, indi-

cating that the variables' influences on the prediction are complex and dy-

namic. Notably, PM2.5 concentrations from past hours are not necessarily

the most important variable (Fig. 9c2), and the temporal dependency be-

tween predicting variables and predictions is not necessarily more impor-

tant over time. Under wildfire influences, the temporal attentions from

wildfire variables, especially IDWFI_FP (code: 11) and IDWFI (code: 12),

show scattered hotspots at different past hours.Withoutwildfire influences,

Fig. 6. The observation, Transformer prediction, and ST-Transformer prediction of PM2.5 concentrations during wildfire events. (Note: the y-axis ranges may vary.) Models

are initiated every 3 h, and predictions are averaged from model results in a rolling update manner.
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Fig. 7. The observation, Transformer prediction, and ST-Transformer prediction of PM2.5 concentrations during non-wildfire situations. (Note: the y-axis ranges may vary.)

Models are initiated every three hours, and predictions are averaged from model results in a rolling update manner.
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Fig. 9(f2) shows multiple hotspots, but one of them indicated great atten-

tion to traffic flow at Hours 2–5.

6. Discussions

This research aimed to address the challenge of a deep learning-based

approach to accurately predicting and physically interpreting air quality

dynamics in space and time, particularly the concentration of PM2.5 amidst

ongoing wildfire activity. Specifically, we address two challenges: 1) accu-

rately capture dynamic multivariate dependencies across space and time;

and 2) prevent overgeneralizing the temporal trends of PM2.5 concentration

when wildfires cause abrupt environmental changes. The proposed spatio-

temporal Transformer (ST-Transformer) network addresses these chal-

lenges by dynamically scaling the multi-head attention's receptive field to

capture multivariate dependencies via learning spatial, temporal, and

value embeddings and by introducing a sparse attention mechanism to cap-

ture abrupt changes in data. This study contributes to the existing literature

on using attention mechanisms for multivariate time series forecasting,

with a novelty that the multivariate represents spatial locations, temporal

changes, and contextual variables used in the model. Adding multiple con-

textual variables at a particular station location complicates the problem

into another dimension; thus, the interactions between the input variables

and the target variable are more complex. As our experiments suggest,

the ST-Transformer model captures the complex dependencies across mul-

tiple dimensions using the sparse attentionmechanism and outperforms the

other existing spatiotemporal forecasting models.

This research particularly focused on applying the proposed ST-

Transformer model to accurately predict PM2.5 concentrations in a

wildfire-prone area, where a significant source of PM2.5 is the emission

from wildfires. The model considers contextual variables that account for

the wildfire behavior and smoke coverage to accurately predict PM2.5 con-

centration in such areas. Although wildfire behavior and smoke transport

are dynamic and challenging to quantify, the ST-transformer model is

designed to learn the environmental changes and their impacts on regulat-

ing PM2.5 concentration in local regions. The other benefit of using ST-

Transformer lies in the availability of model interpretation, as attention-

based mechanisms provide attention maps learned from the model. Visual-

izing the attention matrices demonstrated the complex dependencies along

spatial, temporal, and variable-wise dimensions. In the attention visualiza-

tions, one or more high attention clusters, or hotspots, can be observed and

identify the spatial, temporal, and variable factors that contribute to the

change of PM2.5 concentration in the prediction. These attention visualiza-

tions demonstrate the feasibility of using ST-Transformer for wildfire

smoke-induced PM2.5 concentration mapping. When nearby wildfires are

the major sources of the increase of PM2.5 concentration, the attention

mechanisms generally show high attention values in those variables related

to wildfire occurrence. However, these high attention values are not neces-

sarily associatedwith just nearby stations; instead, theymight be associated

with stations far away from each other but simultaneously impacted by the

dynamic transport of wildfire smoke. Moreover, in non-fire situations, the

attention visualizations may show spikes in surface temperature, wind

speed and direction, past PM2.5 concentration, or traffic flow. Therefore,

the ST-Transformer model can be used to identify complex dependencies

among wildfires, other emission sources, and air pollution over space and

time.

Another advantage of the ST-Transformer model is its capability to pre-

dict abrupt changes in PM2.5 concentrations based on contextual informa-

tion. Compared to other existing time series forecasting models

(e.g., ARIMA, FNN, LSTM, MTGNN, and Time Series Transformer), the

ST-Transformer model predicts more accurately when there are spikes in

the observed PM2.5 concentrations due to nearby wildfires, while other

models tend to underestimate the PM2.5 concentrations significantly.

With the sparse attention mechanisms, the ST-Transformer model can bet-

ter differentiate the situations of wildfire and non-wildfire and choose to le-

verage the contextual information more intelligently. The accurate

predictions from the ST-transformermodel of PM2.5 duringwildfire seasons

Fig. 8.Visualization of the attentionweights learned by the ST-Transformer. Each panel corresponds to the spatial attentionweights of one of the six chosen days (three under

the influence of wildfire, three without fire) from the testing data set. Each panel corresponds to an attention weight matrix with its (i, j)th element of the weight measuring

how much information is learned from station j for forecasting the air quality at station i.
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will be helpful to anyone as a citizen or those in the Emergency Services

Sectorwho need tomonitor and predict the impacts of wildfire smoke effec-

tively. The predictions will also help public health officials provide appro-

priate guidelines to vulnerable populations more sensitive to the increase

of PM2.5 amounts in the atmosphere.

Future improvements for this research are threefold. First, the gen-

eralizability of the model can be tested across different regions within

the wildfire-prone area, and the interpretation of feature spatiotempo-

ral importance can be used to understand the local context for air pol-

lution predictions. Second, the sensitivity of historical periods and

predicting periods can be tested across a series of experiments to inves-

tigate the model's capability of predicting longer-term time series.

Third, while this research predicts PM2.5 concentrations, the compo-

nents of PM2.5 can be further decomposed as the output of the predic-

tions, providing a more comprehensive estimation for public health

guidance. Fourth, the model conducts time series forecasting for loca-

tions of monitoring stations, but does not provide estimates for places

without a monitoring station. Future developments of spatiotemporal

forecasting models that can estimate air quality for places both with

and without monitoring stations will be more beneficial for air pollu-

tion exposure studies.

7. Conclusion

This research presented a spatiotemporal Transformer (ST-Trans-

former) model to address the challenge of accurately predicting and physi-

cally interpreting air quality, particularly PM2.5 concentration. The model

supports separate embedding components that isolate spatial, temporal,

and value embeddings to facilitate a more focused and sparse attention

mechanism that helps learn the complex and dynamically changing spatial,

temporal, and variable-wise dependencies for estimating air quality during

wildfires. The proposed model is applied and investigated for an hourly

PM2.5 concentration prediction in the greater LA area from 2017 to 2020.

The input variables include wildfire perimeter (CAL FIRE), wildfire inten-

sity (NASA Active Fire), meteorological factors, traffic, PM2.5 concentra-

tion, and temporal indicators from the past 24 h, and the targeting output

variable is the PM2.5 concentrations in the future 12 h. The ST-

Transformer model achieved an average RMSE of 6.92 (±2.93) μg m−3

and outperformed other considered models, including the ARIMA, FNN,

LSTM, MTGNN, and Time Series Transformer. The ST-Transformer model

also showed significant improvements from other considered models dur-

ing wildfire events, where the time series of PM2.5 concentration shows

an identifiable spike. The attention matrix learned by the model also

Fig. 9. Visualization of the attention weights learned by the ST-Transformer, where attention weights are learned only from the to-be-predicted station.
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interpreted the complex spatial, temporal, and variable-wise dependencies,

indicating that themodel can differentiate situations betweenwildfires and

non-wildfires. The ST-Transformer model can be easily adopted for other

spatiotemporal prediction problems, such as predicting water quality, pre-

cipitation, and solar radiation, at multiple monitoring sites where each ob-

servation location is associated with multiple environmental variables. The

model is also suitable for predicting variables with complex temporal de-

pendencies, such as when observations generally show spikes or pits with-

out clear reasons. The ST-Transformer model supports generating attention

matrices that might help understand the reasons for spikes and pits through

the decomposed visualization of attention clusters across the spatial, tem-

poral, and variable-wise dimensions. The accurate predictability and inter-

pretation capacity of the ST-transformer can help effectively monitor and

predict the impacts of wildfire smoke and can be applicable to other com-

plex spatiotemporal prediction problems, including water quality, precipi-

tation, and solar radiation mapping.
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