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Unveiling non-equilibrium dynamics of solitonic and topological defect structures in a multidimen-
sional nonlinear medium is a current frontier across diverse fields. One of the quintessential objects
is a ring dark soliton (RDS), whose dynamics are expected to display remarkable interplay between
symmetry and self-patterned topological defect formation from a transverse (snake) instability but
has thus far evaded full experimental observations. Here, we report an experimental realization of
RDS generation in a two-dimensional atomic superfluid trapped in a circular box. By quenching the
confining box potential, we observe an RDS emitted from the edge and its peculiar signature in the
radial motion. As an RDS evolves, we observe transverse modulations at discrete azimuthal angles,
which clearly result in a patterned formation of a circular vortex dipole array. Through collisions of
the vortex dipoles with the box trap, we observe vortex unbinding, vortex pinning to the edge, and
emission of rarefaction pulses. Our box-quench protocol opens a new way to study multidimensional
dark solitons, structured formation of topological defects, and potentially the dynamics of ordered
quantum vortex matter.

Vortices and dark solitons are fundamental defect8

structures that appear in nonlinear physics at all scales,9

from superfluids, nonlinear optics, to the cosmic fluid.10

They play critical roles in understanding the dynam-11

ics and microscopic characters of the hosting medium.12

A quantized vortex emerges as a result of a topologi-13

cally protected singularity with a 2π phase winding. In14

quantum gases, beginning with seminal experiments with15

dynamical optical imprinting techniques [1], vortices are16

also produced by injecting angular momentum through17

stirring [2–7]. Several other techniques have been dis-18

covered [8]. While most experiments have excited disor-19

dered vortices with equal or both circulations or a vortex20

lattice of the same charges [2, 3], few-vortex structures21

with engineered flow patterns were realized only recently22

[9, 10]. A dark soliton, on the other hand, features a23

phase jump across a non-topological defect in the wave24

function, and is discovered primarily through phase [11–25

13], density [14, 15], or state [16, 17] engineering tech-26

niques or by matter-wave interference [18–20]. By driv-27

ing a quantum gas through a continuous phase transi-28

tion, both vortices and solitonic defects are found to form29

spontaneously via the Kibble-Zurek mechanism [21–25],30

indicating their complimentary roles in a universal defect31

formation process.32

Remarkably, in two or three dimensions, dark solitons33

are fundamentally connected to highly ordered vortex34

states of complex phase patterns through an intrinsic35

instability [26], where a self-amplifying transverse mod-36

ulation can fragment a stripe (or plane) of phase defect37

into an ordered array of vortex and antivortex (line/ring)38
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pairs. This fascinating process, called transverse instabil-39

ity (TI), has been under heavy investigations in diverse40

fields for decades [27], including also quantum gas exper-41

iments [13, 14, 16, 19, 28, 29]. In previous experimental42

studies, however, vortices were often observed as disor-43

dered decay products of dark solitons. Self-patterned,44

ordered vortex dipole arrays have never been clearly vi-45

sualized.46

Controlling soliton generations and its instability could47

open a doorway towards forming complex vortex struc-48

tures that are arduous to be artificially reached. In a two-49

dimensional (2D) quantum fluid, an interesting example50

emerges from a ring dark soliton (RDS) [30] that man-51

ifests as a circular dark stripe formed under rotational52

symmetry. An RDS does not disperse due to the balance53

between self-defocusing and wave dispersion [31, 32], sim-54

ilarly to straight counterparts, and naturally exhibits ra-55

dial oscillations while varying its profile. Breaking rota-56

tional symmetry of an RDS feeds TI [27, 33]. This results57

in elusive formation of a vortex dipole ‘necklace’, which58

consists of a circular array of vortex-antivortex pairs59

[34]. Remarkably, such ordered vortices with alternat-60

ing charges may exhibit a variety of many-body dynam-61

ics, including persistent revivals of structures [19, 33, 35]62

and clusterization [35–38], which do not occur in disor-63

dered vortex matter [6, 7]. Moreover, structured vortex64

matter can melt under significant perturbation and may65

eventually lead to chaos or turbulence [38–40].66

While RDS-like dark waves were previously engineered67

via phase imprinting in nonlinear optics [41, 42], or have68

emerged from shock wave emissions in atomic/polaritonic69

condensates [43, 44] and optics [45], one central question70

concerning this study is whether self-patterned solitonic71

and topological defect formation via an RDS can be con-72

trolled and clearly observed. Here, we show that a box-73

confined superfluid serves as a perfect arena [46]. RDS74
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FIG. 1. Spontaneous formation of ring dark solitons. (a)
A superfluid confined in a 2D circular box with a Gaussian
wall (top) is subject to a potential quench-down at t = 0,
and emits ring dark solitons (RDSs) from the edge (bottom).
(b) Time evolution of the density linecut across the box center
and (c) 2D density images (top row), evaluated using a Gross-
Pitaevskii equation (GPE). Images at the bottom row are
obtained at the same indicated time, but with initial density
fluctuations simulated in the GPE calculation (Appendix C).
Single-shot in situ images in (d) demonstrate formation of
RDSs (green boxes), onset of TI (red box), and formation of
vortex dipoles (blue box), respectively. Image resolution is
≈ 0.8 µm.

formation can be realized in a box trap with a sharp75

wall, whose width is comparable to or smaller than the76

superfluid healing length. The edge profile of a super-77

fluid can be viewed as a density defect [Fig. 1(a) top78

panel]. A quench-down of the potential height or an in-79

teraction quench-up would effectively cause shrinkage of80

the defect, because the edge of the superfluid expands81

outwards [bottom panel]. This dynamics forces the edge82

to emit dark solitons to conserve atom number, an effect83

that has recently been discussed in a case of an interac-84

tion quench-up with a perfect wall [47]. The mechanism85

is similar to an interaction quench that splits a full dark86

soliton described in Refs. [48, 49]. An alternative inter-87

pretation of this edge effect is self-interference [50], where88

an expanding superfluid bounces off the wall, and the89

interference between the bulk and the reflected flow in-90

duces phase slips, thus forming dark solitons. This effect91

should occur in quenched nonlinear systems with sharp92

boundaries—a (D−1)-dimensional shell wave could form93

from a D-dimensional system, which is difficult to be94

achieved with existing engineering techniques [11–20].95

In this article, we report the first observation of self-96
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FIG. 2. Characterization of ring dark solitons. (a) Left:
Time evolution of mean density linecuts n̄(x, y0). Right: Cen-
ter of the dark waves and linear fits (color lines) highlighted
in a filtered image. (b) Propagation speeds of the darker
waves determined at x < 0 (filled symbols) and x > 0 (open
symbols), respectively. Results obtained at a higher chemi-
cal potential are plotted for comparison. Solid curve is the
calculated sound speed vs. (c) Single-shot density linecuts at
t = 17.5 (circles), 23.5 (triangles), and 39.5 (diamonds) ms,
respectively. Solid lines are fits. (d) Fitted depths d and
widths w versus radial position from single-shots (crosses)
and their means (circles). Sold lines are the case of a non-
perturbed RDS, expected from Eq. (1). (e) Healing length

ξ = w
√
d determined from single-shot fit results (insets).

Solid lines are expectations ξ = ℏ/√mµ. Error bars are stan-
dard deviations.

patterned defect formation in a box-confined 2D super-97

fluid. We demonstrate spontaneous RDS formation, and98

unveil its radial dynamics with a symmetry-breaking99

TI at discrete azimuthal angles. We visualize struc-100

tured fragmentation of an RDS into a necklace of vortex101

dipoles. The observed vortex dipole structures include102

not only weakly bound vortex-antivortex pairs, but also103

coalesced vortex cores and rarefaction pulses. They are104

subject to collisions, interactions with the boundary, and105

annihilation, potentially showing rich non-equilibrium106

dynamics of quantized 2D vortex matter.107

Our experimental scheme is illustrated in Fig. 1(a).108

A 2D circular box is enclosed by a ring-shaped repul-109

sive wall that has an approximate Gaussian radial pro-110

file (1/e2 width ∼ 5 µm). The box confines a homo-111

geneous 2D superfluid, with negligible thermal compo-112

nents, formed by cesium atoms with an initial bulk den-113

sity n ≈ 50µm−2 and prepared at a fixed coupling con-114

stant g ≈ 0.017, which leads to a long healing length115

ξ = 1/
√
ng ≈ 1.2 µm convenient for in situ defect116
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measurements (Appendix A). The chemical potential is117

µ ≈ ℏ2/(mξ2) ≈ kB × 3 nK, where ℏ = h/2π is the re-118

duced Planck constant, m is the atomic mass, and kB is119

the Boltzmann constant. At time t = 0, the height of the120

wall potential is quenched from ≈ kB × 35 nK to 9 nK.121

Due to the much reduced repulsion from the Gaussian122

wall, the superfluid would expand outwards, forcing the123

boundary to emit a ring-shaped dark wave.124

One signature of an RDS is its radial collapse dynam-125

ics, described by a wave function that is essentially iden-126

tical to a 1D dark soliton in the radial coordinate [30],127

ψ(r, t) =
√
n
(
i
√
1− d+

√
d tanh r−rc

w

)
e−iµt/ℏ, where128

rc(t) is a time-dependent radius. The depth d controls129

the radial velocity ṙc = ±vs
√
1− d and the characteristic130

width w = ξ/
√
d, where vs = ℏ/mξ is the sound speed.131

Unlike linear dark solitons, the depth of an RDS does not132

remain constant but acquires an adiabatic radial depen-133

dence to conserve its energy (Appendix B),134

d ≈ d(ti)

[
rc(ti)

rc

]2/3
, (1)

where d(ti) and rc(ti) are the initial conditions. Both135

radial speed and width also pick up their radial depen-136

dences accordingly. For a shrinking RDS, the maxi-137

mum depth (d = 1) can be reached at a minimum ra-138

dius rmin = rc(ti)d(ti)
3/2 ≳ ξ. At this point, the ra-139

dial motion would come to a complete stop, followed140

by expansion [30]. For a shallower or smaller RDS with141

rc(ti)d(ti)
3/2 ≲ ξ, it could collapse into a single defect.142

Numerical evaluation of a GPE (Appendix C) supports143

RDS emission from this quench protocol. As shown in144

Fig. 1(b, c), initially two distinct RDSs can be seen to145

emerge from the edge of the wave function. A slower-146

moving, darker ring shrinks until it reaches the maximum147

depth and a minimum radius. The ring then rebounds148

and expands radially. Another shallower, faster-moving149

ring appears to collapse at the center but would emerge150

again as an expanding ring. Both RDSs are later reflected151

off the box wall as discussed in a case of 1D solitons [51],152

exhibiting bouncing dynamics periodically. These box-153

trapped RDSs cross each other multiple times with pre-154

served shapes, and appear to be long-lived if rotational155

symmetry is not explicitly broken. They do however ra-156

diate additional shallow RDSs after collapsing at the box157

center, when the radial motion becomes non-adiabatic.158

We experimentally confirm RDS emission from in situ159

images of box-quenched superfluids. Figure 1(d) shows160

qualitative correspondences between single-shot experi-161

ment density profiles and GPE results. A prominent dark162

ring is clearly visible within t ≲ 50 ms until a minimum163

radius is reached. Linecut density [Fig. 2(a)] averaged164

over different experimental shots clearly shows the dark165

ring’s radial bouncing dynamics. A less visible, shal-166

lower dark wave is found to cross near the box center167

at t ≈ 30 ms, similar to the GPE result [Fig. 1(b)].168

Initial radial velocities of the darker (v1) rings are169

shown in Fig. 2(b). Wave speeds from samples with a170

larger chemical potential, but with the same quench pro-171

tocol, are plotted for comparison. All measured veloci-172

ties are significantly lower than the sound speed. We note173

that there is an anisotropy in the observed wave velocities174

across the box center. This originated from an azimuthal175

variation in the wall width, which is due to aberration in176

our optical potential, and this gives a slight anisotropy in177

the soliton depth and radial velocity as well. As a result,178

the dark ring center appears to be drifting slightly in the179

box, with (x0, y0) ≈ (2.6, −2.2)µm at t ≈ 50 ms. For all180

quoted positions in the following analyses, the shift has181

been corrected.182

The observed radial dynamics can be compared with183

predictions based on Eq. (1) and the measured initial184

conditions. From the initial wave velocity (v1 = ˙̄rc ≈185

0.3µm/ms) and ring radius r̄c ≈ 11 µm measured at186

ti ≈ 13ms, the dark ring is expected to reach a mini-187

mum radius rmin ≈ 3µm, agreeing well with our obser-188

vation ≈ 3.2µm. To compare the entire density evolution189

with expectations, we fit the detected ring density dips190

[Fig. 2(c)] with n(x) = |ψ(x, t)|2, and extract the width191

w as well as depth d versus position of the defect cen-192

ter xc in (d). We compare the relationship ξ ≈ w
√
d in193

(e). The results are consistent with predictions assuming194

a perfectly unperturbed RDS, except that the measured195

depth stops to increase with decreasing ring size at ra-196

dius ≲ 5 µm. We attribute this reduced contrast to an197

instability developing in the dark ring – as we shall now198

discuss.199

An RDS becomes unstable when the rotational sym-200

metry is broken [33], which in experiment occurs in the201

presence of thermal and quantum fluctuations or with202

an azimuthal variation in the generating box potential.203

An RDS would suffer transverse modulations from self-204

amplifying noise. This is clearly visible in our experi-205

ments especially when the dark ring reaches the minimum206

radius, as seen in Fig. 1(d). Seeding initial fluctuations in207

an otherwise smooth GPE wave function (Appendix C),208

qualitatively similar density perturbations are observed209

in Fig. 1(c).210

Interestingly, TI is intrinsically coupled to an RDS’s211

radial motion. For a dark soliton stripe with finite212

length L, it is known that TI manifests as sinusoidal213

‘snaking’ density modulations along the stripe, with dis-214

crete wavenumbers kl = 2πl/L ≲ 1/w (l ∈ N) limited215

by the transverse width w [52]. In an RDS, this sets a216

radius-dependent limit,217

l ≲
rc
w

∼
3
√
rminr2c
ξ

for l = 1, 2, 3, ... . (2)

Therefore, high frequency modulations stop growing as218

an RDS shrinks down. Around the minimum radius, only219

the most unstable mode(s) with l = lmax ≲ rmin/ξ could220

continue to amplify, until the RDS fragments into ∼ lmax221

pieces with angular separation ∆ϕ ≈ 2π/lmax.222

To visualize this dynamics, in Fig 3(a) we223

plot the angular density–density correlation func-224

tion in the dark ring, C∆ϕ = ⟨C(ϕ, ∆ϕ)⟩ϕ =225
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⟨⟨nϕnϕ+∆ϕ⟩ − ⟨nϕ⟩ ⟨nϕ+∆ϕ⟩⟩ϕ, where nϕ = n(rc, ϕ)226

is the atomic density near the measured ring position227

r = rc, and ⟨·⟩ (⟨·⟩ϕ) denotes ensemble (azimuthal)228

averaging. After a long enough time while the dark ring229

approaches its minimum radius, we observe very strong230

angular correlations at ∆ϕ ≈ 120◦ and 240◦ angles,231

corresponding to l = 3. This mode appears to create232

radial distortions of a triangular-shape, as exemplified233

by the single-shot images in the second column of234

Fig. 4(a). Interestingly, as the dark ring continues to235

evolve (t ≳ 50ms), a new correlation pattern develops236

at around 180◦ angle, that is, for l ≤ 2; see the images237

in the third column of Fig. 4(a).238

To observe this mode competition more clearly, we239

measure the Fourier spectrum by evaluating Al =240 〈∣∣∣∑∆ϕ C(ϕ,∆ϕ)e
il∆ϕ

∣∣∣〉
ϕ
. As shown in Fig. 3(b), insta-241

bility develops mostly within l ≤ 6, whose amplitudes242

are exponentially amplified as shown in (c). Figure 3(d)243

plots the initial growth rate for each mode, quantita-244

tively reproduced by the GPE simulations detailed in Ap-245

pendix F. In the experiments, the l = 3 mode is the most246

unstable with the largest growth rate. At t ≳ 40 ms,247

however, the growth of high frequency modes become ar-248

rested by the shrinking radius. The onset of growth sup-249

pression roughly follows the estimation given by Eq. (2),250

until the minimum ring radius is reached; see (b). Beyond251

t ≳ 50 ms, l = 1 and 2 modes continue to amplify un-252

til t ≳ 70ms when Al=1,2 become large enough to break253

the expanding dark ring. In real space, this corresponds254

to fragmentation of lmax = 2 pieces with 180◦ angular255

separation as evidenced in our observations.256

We identify these self-structured fragments as vortex257

dipoles [34] in which the vortex-antivortex distance ∆ is258

linked to the speed vd ∼ ℏ/m∆ and the incompressible259

kinetic energy of the flow E ∼ log(∆/ξ). Remarkably, we260

observed a variety of vortex dipole structures in experi-261

ment and in GPE simulations as well [Fig. 4(b)]; many262

of these structures were classified in Refs. [53, 54]. One263

type of defect is referred to as a weakly bound vortex264

dipole, appearing when the flow has a larger energy. It265

features two well-separated cores and phase singularities266

as shown in (i). A second type of defect is a rarefaction267

pulse shown in (ii), which shows a phase step without vor-268

ticities and propagates at a velocity closer to the sound269

speed. It emerges as a local density minimum weakly270

connected to other defects in the bulk or at the bound-271

ary. A third type, which we observe most frequently, is272

somewhat in between the first two. Its energy is large273

enough to preserve two phase vorticities but too small to274

separate their cores. It can be seen as an isolated density275

defect with an elongated width (≳ 2w) and is identified276

as a bounded dipole as in (iii). Oftentimes, the second277

and the third types of defects are referred to as coalesced278

vortices [55] or Jones-Roberts solitons [56].279

In Fig. 4(a), due to shot-to-shot fluctuations in atomic280

density (see also Appendix E), observed density defects281

exhibit various shapes as discussed above. Three rar-282

a b

c dl = 2

l = 3

l = 5

l = 6

FIG. 3. Pattern-forming instability. (a) Evolution of the
azimuthal density-density correlation function C∆ϕ showing
pattern formation. (b) Fourier spectra Al showing mode com-
petition. Peak position of each mode (l ≤ 6) is marked by a
gray square. Dashed line marks the calculated thresholds,
Eq. (2), below which modes are expected to be unstable. (c)
Fourier amplitude Al of indicated modes plotted in the loga-
rithmic scale. Solid lines are exponential fits to determine the
initial growth rates γl shown in (d). Red shaded band repre-
sents the GPE simulated rate, scaled by an overall constant
≈ 0.17 to match the data. Gray shaded band includes system-
atic effects in imaging, showing agreement with experiment
without any adjustable parameters. Details can be found in
Appendix F. Error bars in the data and vertical bands in the
simulated rate represent fitting uncertainty.

efaction pulses (green ovals) that are weakly linked in a283

triangular shape are often found at t ∼ 50ms. Pairs of284

bounded vortex dipoles (blue ovals) are most frequently285

identified immediately after an RDS fragments. Weakly286

bound dipoles (brown ovals) sometimes appear, poten-287

tially due to stronger snaking modulations and a larger288

flow energy to separate the cores. At longer times, many289

isolated vortices (red circles) are found near the edge of290

the box, presumably exhibiting similar orbital dynam-291

ics as seen in [57]. Detailed identification algorithms of292

density defects can be found in Appendix D and E.293

Clear distinction of vortex dipoles can be visualized294

from their interaction with the wall potential, where the295

density gradient induces an inward force on both the vor-296

tex and the antivortex and this triggers the Magnus ef-297

fect. A vortex dipole would decelerate and unbind upon298

hitting the wall as shown in (i) and (iii) of Fig. 4(b).299

The unbound vortices appear pinned to the superfluid300

boundary and move along the rim with opposite circu-301

lation. If instead a rarefaction pulse is incident upon302

the wall, it forms an arc-like defect structure as shown303
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FIG. 4. Structured formation of vortex dipole necklace and
vortex unbinding. (a) Single-shot in-situ images in each col-
umn are collected within the indicated time interval. The
first three columns show samples right before, during, and
right after patterned fragmentation, respectively. The last
three columns present samples with density defects likely be-
fore, during, and after they reach the superfluid boundary.
Identified density defects are circled and categorized as one
of the following: weakly bound vortex dipoles (brown), rar-
efaction pulses (green), bounded dipoles (blue), and pinned
vortices (red). (b) Dynamics of a weakly bound dipole (i), a
rarefaction pulse (ii), and a bounded dipole (iii) in GPE sim-
ulations. Images in each box, from left to right, respectively,
show the density (top) and phase (bottom) profiles before
and after a defect hits the wall. The propagation direction
of each defect is marked by an arrow. (c) Left: Occurrence
of azimuthal width versus radial position of detected defects,
obtained from images taken after t = 60ms. Right: Proba-
bility distribution for detected widths at r ≥ 9µm showing a
peak near the healing length (dashed line).

in (ii), eventually breaking into a reflecting rarefaction304

pulse, and occasionally also two vortices pinned to the305

boundary with opposite circulations. These rarefaction306

arcs are evidenced by defects marked with large green307

circles in Fig. 4(a). Long after all vortex dipoles have308

a

t = 34 ms 44 ms 54 ms

b

c

0 100

0 20n (μm-2)

20 μm

FIG. 5. Self-patterned defect structures imaged after 40ms
of time-of-flight. Single-shot images in each column are col-
lected with the indicated hold time, showing a necklace of
weakly bound vortex dipoles (a), bounded dipoles (b), and
rarefaction pulses (c). Inset shows a sample in situ image at
t = 34ms, held in a circular box of radius ≈ 11µm.

interacted with the wall, we identified a high probabil-309

ity for observing vortex-like density defects (azimuthal310

size ∼ ξ) near the boundary r ≳ 9 µm, as shown in311

Fig. 4(c). Other defects at r ≲ 9 µm have a wide spread312

of azimuthal widths (≳ 2ξ). They are likely rarefaction313

pulses, rebounded dipoles, or colliding defects in the bulk.314

We have demonstrated in situ images of self-structured315

density defects. This enables directly probing self-316

patterning dynamics in a superfluid for the first time.317

To further enhance visualization of vortex dipole neck-318

laces, we can extinguish the horizontal trap confinement319

and image after a long time-of-flight (TOF) expansion in320

2D; see Fig. 5. We note that these structures continue321

to evolve during the expansion. Here, we use a smaller322

box to increase the initial density, chemical potential,323

and thus the TOF expansion rate. Vortex cores in l = 2324

vortex dipole necklaces dramatically expand during TOF325

due to much reduced healing length, clearly visible in (a).326

As dipoles propagate towards the boundary, their core327

size further increases due to reduced background density.328

We have also observed l = 2 or 3 bounded dipoles (b) and329

rarefaction pulses (c), identified based on their widths330

and connections with adjacent defects. Faster moving331

RDSs can also be seen near the boundary of expanded332

superfluids.333

In summary, we observed very rich non-equilibrium334

dynamics and self-patterning with RDSs that emerged335

purely from a box quench. Both 180◦ (lmax = 2) and 120◦336

ordered (lmax = 3) vortex dipole necklaces have been ob-337

served in Figs. 4 and 5, respectively. Even higher-order338

lmax ≥ 3 can be created with either a larger bulk chem-339

ical potential (for shorter-scale most unstable modes)340
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or larger initial short-scale density perturbations (Ap-341

pendix C). Our quench experiment demonstrates a new342

tool to generate dark solitons in versatile forms as well343

as ordered quantum vortex matter in a uniform box trap344

[46]. By incorporating box quenches together with in-345

teraction tuning using a Fechbach resonance, multiple346

RDSs [58, 59] and vortex dipole necklaces may be gen-347

erated in one sample, thus creating complex vortex mat-348

ter. It may be possible to trap a stationary RDS [34]349

and further control its stability by applying a radial po-350

tential when rc = rmin [52, 60]. By incorporating non-351

destructive imaging [61], our work can be extended to352

study inverted TI [33], persistent revivals and clusteri-353

zation [35–38] of ordered vortex dipoles, and may open354

new ways to explore spontaneous clustering [62–64] in 2D355

vortex matter.356
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Appendix A: Preparation of a 2D superfluid364

The detailed experimental apparatus is detailed in365

[65] with an updated objective lens (numerical aperture366

≈ 0.6). We begin the preparation of a Bose-Einstein367

condensate (BEC) of cesium atoms confined in an opti-368

cal dipole trap with horizontal (vertical) trap frequency369

of ∼ 12Hz (∼ 70Hz) through an evaporative cooling pro-370

cedure. The s-wave scattering length is then gradually371

decreased to a small value a ≈ 12a0 via a Fechbach res-372

onance [66], where a0 is the Bohr radius. The BEC is373

then loaded into a 2D box potential. The vertical con-374

finement of the box is provided by a single node of a375

repulsive standing wave potential with 3 µm periodic-376

ity. The measured vertical trap frequency in the node377

is ωz ≈ 2π × 1.8 kHz (≫ kBT/ℏ, µ/ℏ) deeply in the 2D378

regime, where kB is the Boltzmann constant, T < 10 nK379

is the temperature, µ is the chemical potential, and ℏ the380

reduced Plank constant. The atoms populate the vibra-381

tional ground state in the vertical trap with a harmonic382

oscillator length lz =
√
ℏ/(mωz) ≈ 207 nm, where m383

is the atomic mass. The horizontal confinement is arbi-384

trarily configured via a blue-detuned light (780 nm) pat-385

terned with a digital mirror device and projected through386

the objective lens. In this work we use a circular box with387

an inner radius of ≈ 15µm and a width of ≈ 5µm. We388

obtain in situ density distribution of 2D gases by per-389

forming absorption imaging through the same objective390

lens and recording the image on a CCD camera. The391

image resolution is ∼ 0.8µm. The atomic surface den-392

sity n is calibrated using a similar scheme discussed in393

[67]. Typical initial density is n ≈ 50µm−2 at a fixed394

2D interaction strength g =
√
8πa/lz ≈ 0.017. Shortly395

after the box potential height is quenched to the final396

strength (≈ kB × 9 nK), the bulk density reduces to397

n ≈ 42µm−2 and remains roughly constant throughout398

the subsequent evolution, presumably due to initial finite399

atom spilling over the box wall. The resulting healing400

length is ξ = 1/
√
ng ≈ 1.2µm, larger than our image401

resolution. This allows us to resolve individual vortices402

with spacing comparable to or smaller than the healing403

length. Note that in situ imaging of vortices has been404

demonstrated using a dark-field imaging technique [68]405

and most recently using high-resolution absorption imag-406

ing [9, 69].407

Appendix B: Wave function and radial dynamics of408

a ring dark soliton409

An RDS is a quasi-stationary solution of the time-410

dependent 2D Gross-Pitaevskii equation (GPE),411

iℏ
∂ψ

∂t
=

[
− ℏ2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2

)
+

ℏ2g
m

|ψ|2
]
ψ .

(B1)
Assuming rotational symmetry, the wave function of a412

perfect RDS only has radial dependence. To good ap-413

proximation, it can be written as414

ψ(r, t) =
√
n
[
i
√
1− d+

√
d tanh(r − rc)/w

]
e−iµt/ℏ ,

(B2)
where rc(t) is the radial position of the density defect,415

d = 1 − (v/vs)
2 ≤ 1 its depth, v = ṙc its radial veloc-416

ity, and w = ξ/
√
d its characteristic width. Here, the417

background density n, the healing length ξ = 1/
√
ng,418

the sound speed vs = ℏ/ξm, and the chemical poten-419

tial µ = mv2s are the bulk properties of the superfluid.420

Whereas, the radial motion v, width w and depth d are421

all related to each other; fixing one parameter completely422

determines the other two. A faster-(slower-)moving soli-423

ton would have a shallower (deeper) depth and a broader424

(narrower) density profile.425

This radial wave function is essentially the dark soli-426

ton solution in 1D, except that it is perturbed by the427

r−1∂/∂r Laplace term in the 2D GPE. A consequence of428

this perturbation is that (d,w, v) slowly evolves as the429

radius of an RDS changes [30]. The dynamics of an RDS430

differs from that of a 1D dark soliton. In particular, the431

soliton depth follows the relation432

d = d(ti)

[
rc(ti)

rc

]2/3
, (B3)

where d(ti) and rc(ti) are the initial depth and radius of433

the RDS, determined at time ti. This additional equa-434

tion further relates (d,w, v) with rc. The depth increases435
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FIG. 6. Single-shot in-situ images of RDSs. The red shaded area represents the radius r̄c of produced RDSs from the averaged
image. Even though RDSs fragment into multiple pieces for a longer time, their locations are efficiently captured.

(decreases) as an RDS shrinks (expands), and the width436

and radial velocity change accordingly.437

An explanation for this radius-dependent dynamics is438

from energy conservation. As discussed in [70], the en-439

ergy of a 1D dark soliton is ϵ = (4/3)ℏvsnd3/2. For a dark440

soliton stripe in 2D, ϵ is the linear energy density. In a441

uniform medium, the total energy of an RDS is 2πrcϵ.442

For an adiabatic evolution with conserved RDS total en-443

ergy, one must have rc(ti)d(ti)
3/2 = rcd

3/2, thus leading444

to the same result obtained from the perturbation theory445

[30].446

Appendix C: Time-dependent GPE simulation447

We perform 2D GPE simulations [71, 72] to obtain448

numerical evidence of RDS emission in our quench pro-449

tocol. The initial ground state wave function is confined450

in a repulsive wall potential of the form451

U(r) =

{
U0e

−2(r−R)2/σ2

r ≤ R

U0 r > R
(C1)

where U0 is the trap strength, R the box radius, and σ452

the experimentally calibrated 1/e2 width of the wall. In453

the time-dependent GPE, the trap strength is quenched454

from U0 = kB×60 nK to the final value Uf = kB×9 nK,455

and we evaluate the subsequent dynamics of the wave456

function. We note that in the experiment the wall has a457

radial Gaussian profile of finite width instead of a semi-458

infinite form taken in the GPE simulation. The former459

is responsible for finite atom spilling after the potential460

is quenched down. The results shown in Fig. 1 are calcu-461

lated using atom number N = 2.2 × 104 matching that462

of the initial experimental condition. While we have ob-463

tained qualitative one-to-one agreement of RDS emission464

and its subsequent evolution, the exact timing cannot be465

fully matched. The emitted RDS tends to move faster466

in GPE simulation, and we have increased U0 by ∼ 70%467

to increase the quench contrast, which slows down the468

RDS velocity. The slower RDS dynamics observed in the469

experiment may be due to finite atom-spilling right after470

the quench, which leads to a lower sound speed and thus471

a lower RDS velocity.472

To take into account density fluctuations in a super-473

fluid, we imprint phase noise in the initial GPE wave474

function to simulate phonon excitations. Given an initial475

temperature (T ≈ 3 − 7 nK), we calculate the phonon476

populations according to the Bose-Einstein distribution477

plus zero-point fluctuations,478

np(k) =
1

eE(k)/kBT − 1
+

1

2
=

1

2
coth

E(k)

2kBT
, (C2)

where E(k) is the Bogoliubov phonon dispersion relation.479

We populate random Bogoliubov phonon excitations in480

the ground state wavefunction, with statistical amplitude481

variance in each mode matching np(k). We then evolve482

the wave function in the time-dependent GPE. We have483

also taken into account total atom number fluctuations484

in the experiment, and performed a series of GPE cal-485

culations with N = (2.2 ± 0.4) × 104. Given the range486

of temperature and atom number fluctuations, we ob-487

serve numerically RDS fragmentation into necklaces of488

weakly bound vortex dipoles, tightly bound dipoles, or489

rarefaction pulses. Representative results are plotted in490

Fig. 4(b). Most of the necklaces consist of a chain of491

l = 2 vortex dipoles or rarefaction pulses. Increasing the492

atom number or interaction strength g, l ≥ 3 necklaces493

can be observed.494

Appendix D: Soliton detection algorithm495

To obtain the position and size of a ring dark soli-496

ton (RDS), we measure mean density linecuts n̄(x, y0)497

typically averaged over ≥ 5 realizations. By convolving498

the linecuts with a Gaussian Kernel of a width ∼ the499

healing length ξ, we obtain a scale-space representation500

that suppresses features smaller than ξ. A Laplacian of501

this convolution generates positive features for intensity502

minima, which correspond to the mean locations of dark503

stripes. These procedures are applied to the density line-504

cuts obtained at different times t to visualize the evolu-505

tion of dark stripe locations, as shown in the right panel506

of Fig.2(a). We then extract the stripe speed and loca-507

tion. We perform the same analysis to averaged density508

linecuts along the y axis, n̄(x0, y). With those informa-509

tion obtained from the mean linecuts along the two axes,510

we predict the time-dependent center r0 and radius rc511

of RDSs in single-shot images, see red areas in Fig. 6.512

For the analysis of instability in RDSs [see Fig.3] we use513
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FIG. 7. In-situ vortex detection in a box-trapped 2D superfluid. (a) Mean density profile n̄ averaged over > 300 experimental
realizations at > 60ms. (b) Examples of single-shot in-situ density images n. Detected defects are marked by red circles. (c)
Residual from the mean density, δn = n− n̄.

single-shot density profiles averaged in the radial interval514

|r − rc| ≲ 0.9µm.515

Appendix E: Vortex detection algorithm516

At later times (t ≳ 60ms) after the box quench, an517

RDS breaks into vortices. They are detected using a518

scheme similar to a vortex image processing algorithm519

[73]. For each single-shot in situ image [Fig. 7(b)], we520

calculate the residual [Fig. 7(c)] from the mean density521

profile [Fig. 7(a)] averaged over many experimental shots.522

We then apply a Laplacian of Gaussian filter to enhance523

those defect structures having characteristic length scales524

of ∼ ξ. From these we obtain defect positions marked by525

circles in Fig. 6(b). We note that the analysis is restricted526

to defects having nearly zero local density (≲ 4µm−2)527

to avoid spurious detections. Detected defects have a528

large variation in the azimuthal width, while the radial529

spread is comparable with ∼ ξ. The azimuthal width and530

position of each detected defect are analyzed as shown in531

Fig.4(c).532

Appendix F: Pattern formation dynamics in GPE533

simulation534

A series of GPE simulations with initially seeded ran-535

dom fluctuations are analyzed according to the presented536

data in Fig. 3 for further understanding the pattern for-537

mation by snaking instability in RDSs. We first deter-538

mine the mean radius r̄c of generated RDSs and its mo-539

tion ˙̄rc from an radial density profile [Fig. 8(a)], averaged540

over multiple runs. We then analyze the angular density-541

density correlation function C∆ϕ = ⟨C(ϕ, ∆ϕ)⟩ϕ =542

⟨⟨nϕnϕ+∆ϕ⟩ − ⟨nϕ⟩ ⟨nϕ+∆ϕ⟩⟩ϕ, where ⟨·⟩ (⟨·⟩ϕ) repre-543

sents sample (azimuthal) average and nϕ is the azimuthal544

density at r = r̄c. As shown in Fig. 8(b), the simulated545

C∆ϕ is well consistent with the observation [Fig.3(a) in546

the main text]. The RDSs have no significant modula-547

tion in their azimuthal density at early time ≲ 20ms.548

However, at a later time when r̄c approaches to its min-549

imal value, C∆ϕ exhibits strong angular correlation at550

∆ϕ ≈ 120◦ and 240◦, corresponding l = 3 necklace for-551

mation. At even later time, the angular correlation at552

∆ϕ ≈ 180◦ (l = 2 mode) becomes comparable to the553

ones at ∆ϕ ≈ 120◦ and 240◦, resulting in the competi-554

tion among those unstable modes.555

In Fig. 8(c). we plot the dynamics of the Fourier556

spectrum, defined as Al =
〈∣∣∣∑∆ϕ C(ϕ,∆ϕ)e

il∆ϕ
∣∣∣〉

ϕ
. It557

marks the rise of modulation amplitude only for lower an-558

gular frequency modes due to the finite instability band559

l < lmax; l = 3 mode dominates at t ∼ 40ms, while560

lmax approaches to rmin/ξ ∼ 3 as the RDS shrinks. At561

t ∼ 60ms, l = 2 and l = 3 modes eventually display com-562

parable amplitudes. This dynamics naturally appears in563

shrinking RDSs, supporting our experimental observa-564

tion of mode competition dynamics in Fig. 3 (b,c). The565

detailed dynamics of Al is plotted in Fig. 8(d). We find566

that the amplifications in the prohibited band l > lmax567

are incompletely terminated at l ≥ 4. We attribute this568

potentially to the contribution from adjacent RDSs (see569

(a)) or the evolution of phonon fluctuations that may570

not be sensitively detected in the experiment. Also, in571

the simulation one can see a continuous reduction in Al572

at the early stage t ≲ 20ms during which the wavefunc-573

tion expands while solitary waves develop. Al starts to574

grow once RDSs form.575

Figure 8(e, f) compare the experimental data γl, as576

shown in Fig. 3(d), with the early-time growth rate577

γ
(sim)
l , obtained from exponential fits as in Fig. 8(d). In578

Fig. 8(e), the observed exponential growth within l ≲ 6 is579

well reproduced by the simulation, except for an overall580

scaling constant α ≈ 0.17 adjusted to match the data, in-581

dicating that the observed rate is roughly six times lower582

than that in the simulation. We believe the slower rate583

observed in the experiment is due to the systematic effect584

of finite resolution of our imaging system and image noise585

for example, photon shot-noise, which adds to each mea-586

sured Fourier amplitude Al an offset ∼ O(1). We find587

that the offset can effectively reduce the fitted growth588

rates. To see those systematic effects, we convolute the589
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FIG. 8. Pattern-forming instability in the simulation. (a) Radial density averaged over nine runs. Dashed line represents
detected radius r̄c of generated RDSs. (b) Azimuthal density-density correlation function C∆ϕ. (c) Fourier spectra Al. Dashed
line shows the maximal unstable mode lmax, expected from r̄c and ˙̄rc. (d) Dynamics of Al in the logarithmic scale. Solid lines

are exponential fits to determine the initial growth rates γ
(sim)
l . Shaded area shows a regime where the mode amplification is

expected to be halted l > lmax. (e) Experimental rates γl (dots), compared with γ
(sim)
l scaled by an overall factor α ≈ 0.17

(shaded area). Error bars and vertical width in αγ
(sim)
l represent fitting uncertainty. (f) Same as (e), except that γ

(sim)
l is from

the simulations including systematic effects. The simulated rates well reproduce the data with no free parameters.

GPE data with finite resolution and add the measured590

offsets to the GPE simulated amplitudes Al. We refit591

the growth rate γ
(sim)
l and indeed find that they agree592

well with experimentally determined values as shown in593

Fig. 8(f).594
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