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Observation of self-patterned defect formation in atomic superfluids
— from ring dark solitons to vortex dipole necklaces

Hikaru Tamura,!"* Cheng-An Chen," ! and Chen-Lung Hung! 2:#
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2 Purdue Quantum Science and Engineering Institute,
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Unveiling non-equilibrium dynamics of solitonic and topological defect structures in a multidimen-
sional nonlinear medium is a current frontier across diverse fields. One of the quintessential objects
is a ring dark soliton (RDS), whose dynamics are expected to display remarkable interplay between
symmetry and self-patterned topological defect formation from a transverse (snake) instability but
has thus far evaded full experimental observations. Here, we report an experimental realization of
RDS generation in a two-dimensional atomic superfluid trapped in a circular box. By quenching the
confining box potential, we observe an RDS emitted from the edge and its peculiar signature in the
radial motion. As an RDS evolves, we observe transverse modulations at discrete azimuthal angles,
which clearly result in a patterned formation of a circular vortex dipole array. Through collisions of
the vortex dipoles with the box trap, we observe vortex unbinding, vortex pinning to the edge, and
emission of rarefaction pulses. Our box-quench protocol opens a new way to study multidimensional
dark solitons, structured formation of topological defects, and potentially the dynamics of ordered
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quantum vortex matter.

Vortices and dark solitons are fundamental defect
structures that appear in nonlinear physics at all scales,
from superfluids, nonlinear optics, to the cosmic fluid.
They play critical roles in understanding the dynam-
ics and microscopic characters of the hosting medium.
A quantized vortex emerges as a result of a topologi-
cally protected singularity with a 27 phase winding. In
quantum gases, beginning with seminal experiments with
dynamical optical imprinting techniques [1], vortices are
also produced by injecting angular momentum through
stirring [2-7]. Several other techniques have been dis-
covered [8]. While most experiments have excited disor-
dered vortices with equal or both circulations or a vortex
lattice of the same charges [2, 3], few-vortex structures
with engineered flow patterns were realized only recently
[9, 10]. A dark soliton, on the other hand, features a
phase jump across a non-topological defect in the wave
function, and is discovered primarily through phase [11-
13], density [14, 15], or state [16, 17] engineering tech-
niques or by matter-wave interference [18-20]. By driv-
ing a quantum gas through a continuous phase transi-
tion, both vortices and solitonic defects are found to form
spontaneously via the Kibble-Zurek mechanism [21-25],
indicating their complimentary roles in a universal defect
formation process.

Remarkably, in two or three dimensions, dark solitons
are fundamentally connected to highly ordered vortex
states of complex phase patterns through an intrinsic
instability [26], where a self-amplifying transverse mod-
ulation can fragment a stripe (or plane) of phase defect
into an ordered array of vortex and antivortex (line/ring)
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pairs. This fascinating process, called transverse instabil-
ity (TI), has been under heavy investigations in diverse
fields for decades [27], including also quantum gas exper-
iments [13, 14, 16, 19, 28, 29]. In previous experimental
studies, however, vortices were often observed as disor-
dered decay products of dark solitons. Self-patterned,
ordered vortex dipole arrays have never been clearly vi-
sualized.

Controlling soliton generations and its instability could
open a doorway towards forming complex vortex struc-
tures that are arduous to be artificially reached. In a two-
dimensional (2D) quantum fluid, an interesting example
emerges from a ring dark soliton (RDS) [30] that man-
ifests as a circular dark stripe formed under rotational
symmetry. An RDS does not disperse due to the balance
between self-defocusing and wave dispersion [31, 32], sim-
ilarly to straight counterparts, and naturally exhibits ra-
dial oscillations while varying its profile. Breaking rota-
tional symmetry of an RDS feeds TT [27, 33]. This results
in elusive formation of a vortex dipole ‘necklace’, which
consists of a circular array of vortex-antivortex pairs
[34]. Remarkably, such ordered vortices with alternat-
ing charges may exhibit a variety of many-body dynam-
ics, including persistent revivals of structures [19, 33, 35]
and clusterization [35-38], which do not occur in disor-
dered vortex matter [6, 7]. Moreover, structured vortex
matter can melt under significant perturbation and may
eventually lead to chaos or turbulence [38-40].

While RDS-like dark waves were previously engineered
via phase imprinting in nonlinear optics [41, 42], or have
emerged from shock wave emissions in atomic/polaritonic
condensates [43, 44] and optics [45], one central question
concerning this study is whether self-patterned solitonic
and topological defect formation via an RDS can be con-
trolled and clearly observed. Here, we show that a box-
confined superfluid serves as a perfect arena [46]. RDS
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FIG. 1.

Spontaneous formation of ring dark solitons. (a)
A superfluid confined in a 2D circular box with a Gaussian
wall (top) is subject to a potential quench-down at ¢t = 0,
and emits ring dark solitons (RDSs) from the edge (bottom).
(b) Time evolution of the density linecut across the box center
and (c) 2D density images (top row), evaluated using a Gross-
Pitaevskii equation (GPE). Images at the bottom row are
obtained at the same indicated time, but with initial density
fluctuations simulated in the GPE calculation (Appendix C).
Single-shot in situ images in (d) demonstrate formation of
RDSs (green boxes), onset of TI (red box), and formation of
vortex dipoles (blue box), respectively. Image resolution is
~ 0.8 pm.

7 formation can be realized in a box trap with a sharp
% wall, whose width is comparable to or smaller than the
7 superfluid healing length. The edge profile of a super-
7 fluid can be viewed as a density defect [Fig. 1(a) top
7 panel]. A quench-down of the potential height or an in-
s teraction quench-up would effectively cause shrinkage of
a1 the defect, because the edge of the superfluid expands
2 outwards [bottom panel]. This dynamics forces the edge
&3 to emit dark solitons to conserve atom number, an effect
& that has recently been discussed in a case of an interac-
s tion quench-up with a perfect wall [47]. The mechanism
g 18 similar to an interaction quench that splits a full dark
& soliton described in Refs. [48, 49]. An alternative inter-
ss pretation of this edge effect is self-interference [50], where
s an expanding superfluid bounces off the wall, and the
o interference between the bulk and the reflected flow in-
o1 duces phase slips, thus forming dark solitons. This effect
o2 should occur in quenched nonlinear systems with sharp
s boundaries—a (D —1)-dimensional shell wave could form
w from a D-dimensional system, which is difficult to be
s achieved with existing engineering techniques [11-20].

o In this article, we report the first observation of self-
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FIG. 2.  Characterization of ring dark solitons. (a) Left:

Time evolution of mean density linecuts 7i(z, yo). Right: Cen-
ter of the dark waves and linear fits (color lines) highlighted
in a filtered image. (b) Propagation speeds of the darker
waves determined at x < 0 (filled symbols) and = > 0 (open
symbols), respectively. Results obtained at a higher chemi-
cal potential are plotted for comparison. Solid curve is the
calculated sound speed vs. (c) Single-shot density linecuts at
t = 17.5 (circles), 23.5 (triangles), and 39.5 (diamonds) ms,
respectively. Solid lines are fits. (d) Fitted depths d and
widths w versus radial position from single-shots (crosses)
and their means (circles). Sold lines are the case of a non-
perturbed RDS, expected from Eq. (1). (e) Healing length
¢ = wvd determined from single-shot fit results (insets).
Solid lines are expectations & = h/,/mpu. Error bars are stan-
dard deviations.

o7 patterned defect formation in a box-confined 2D super-
¢ fluid. We demonstrate spontaneous RDS formation, and
9 unveil its radial dynamics with a symmetry-breaking
w0 TT at discrete azimuthal angles. We visualize struc-
w1 tured fragmentation of an RDS into a necklace of vortex
dipoles. The observed vortex dipole structures include
not only weakly bound vortex-antivortex pairs, but also
coalesced vortex cores and rarefaction pulses. They are
subject to collisions, interactions with the boundary, and
annihilation, potentially showing rich non-equilibrium
dynamics of quantized 2D vortex matter.

Our experimental scheme is illustrated in Fig. 1(a).
100 A 2D circular box is enclosed by a ring-shaped repul-
1o sive wall that has an approximate Gaussian radial pro-
w file (1/e? width ~ 5 um). The box confines a homo-
geneous 2D superfluid, with negligible thermal compo-
nents, formed by cesium atoms with an initial bulk den-
sity m ~ 50 um~2 and prepared at a fixed coupling con-
us stant ¢ ~ 0.017, which leads to a long healing length
w § = 1/\/ng ~ 1.2 pum convenient for in situ defect
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ur measurements (Appendix A). The chemical potential is
us p ~ h?/(m€?) ~ kp x 3 nK, where h = h/2r is the re-
19 duced Planck constant, m is the atomic mass, and kg is
120 the Boltzmann constant. At time ¢ = 0, the height of the
1 wall potential is quenched from =~ kp x 35nK to 9nK.
122 Due to the much reduced repulsion from the Gaussian
123 wall, the superfluid would expand outwards, forcing the
122 boundary to emit a ring-shaped dark wave.

s One signature of an RDS is its radial collapse dynam-
16 ics, described by a wave function that is essentially iden-
7 tical to a 1D dark soliton in the radial coordinate [30],
o Y(rt) = A (z’\/l —d+ Vdtanh —T> e=int/h where
19 7c(t) is a time-dependent radius. The depth d controls
130 the radial velocity 7. = £vsv/1 — d and the characteristic
1 width w = €/v/d, where vy = i/mé is the sound speed.
122 Unlike linear dark solitons, the depth of an RDS does not
133 remain constant but acquires an adiabatic radial depen-
13 dence to conserve its energy (Appendix B),

Tc(ti)r/g 7

T'c

ax ) | )
where d(t;) and r.(¢;) are the initial conditions. Both
radial speed and width also pick up their radial depen-
dences accordingly. For a shrinking RDS, the maxi-
mum depth (d = 1) can be reached at a minimum ra-
dius ryi, = rc(ti)d(ti)?’/2 > & At this point, the ra-
dial motion would come to a complete stop, followed
by expansion [30]. For a shallower or smaller RDS with
re(t)d(t;)3/? < €, it could collapse into a single defect.
Numerical evaluation of a GPE (Appendix C) supports
RDS emission from this quench protocol. As shown in
Fig. 1(b, ¢), initially two distinct RDSs can be seen to
emerge from the edge of the wave function. A slower-
moving, darker ring shrinks until it reaches the maximum
depth and a minimum radius. The ring then rebounds
and expands radially. Another shallower, faster-moving
ring appears to collapse at the center but would emerge
again as an expanding ring. Both RDSs are later reflected
off the box wall as discussed in a case of 1D solitons [51],
exhibiting bouncing dynamics periodically. These box-
trapped RDSs cross each other multiple times with pre-
served shapes, and appear to be long-lived if rotational
symmetry is not explicitly broken. They do however ra-
diate additional shallow RDSs after collapsing at the box
center, when the radial motion becomes non-adiabatic.
We experimentally confirm RDS emission from in situ
images of box-quenched superfluids. Figure 1(d) shows
qualitative correspondences between single-shot experi-
ment density profiles and GPE results. A prominent dark
ring is clearly visible within ¢ < 50 ms until a minimum
radius is reached. Linecut density [Fig. 2(a)] averaged
over different experimental shots clearly shows the dark
ring’s radial bouncing dynamics. A less visible, shal-
lower dark wave is found to cross near the box center
at t &~ 30 ms, similar to the GPE result [Fig. 1(b)].
Initial radial velocities of the darker (vq) rings are
shown in Fig. 2(b). Wave speeds from samples with a
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1 larger chemical potential, but with the same quench pro-
2 tocol, are plotted for comparison. All measured veloci-
173 ties are significantly lower than the sound speed. We note
s that there is an anisotropy in the observed wave velocities
across the box center. This originated from an azimuthal
variation in the wall width, which is due to aberration in
our optical potential, and this gives a slight anisotropy in
the soliton depth and radial velocity as well. As a result,
the dark ring center appears to be drifting slightly in the
box, with (zg, yo) ~ (2.6, —2.2) um at ¢ ~ 50 ms. For all
quoted positions in the following analyses, the shift has
been corrected.

The observed radial dynamics can be compared with
predictions based on Eq. (1) and the measured initial
conditions. From the initial wave velocity (v; = T
0.3 pm/ms) and ring radius 7. ~ 11 pm measured at
t; =~ 13ms, the dark ring is expected to reach a mini-
mum radius ryi, ~ 3 um, agreeing well with our obser-
vation ~ 3.2 um. To compare the entire density evolution
with expectations, we fit the detected ring density dips
[Fig. 2(c)] with n(z) = |¢(z,t)|?, and extract the width
w as well as depth d versus position of the defect cen-
ter z. in (d). We compare the relationship £ ~ wv/d in
(e). The results are consistent with predictions assuming
a perfectly unperturbed RDS, except that the measured
depth stops to increase with decreasing ring size at ra-
dius < 5 pm. We attribute this reduced contrast to an
instability developing in the dark ring — as we shall now
discuss.

An RDS becomes unstable when the rotational sym-
metry is broken [33], which in experiment occurs in the
presence of thermal and quantum fluctuations or with
an azimuthal variation in the generating box potential.
An RDS would suffer transverse modulations from self-
amplifying noise. This is clearly visible in our experi-
ments especially when the dark ring reaches the minimum
radius, as seen in Fig. 1(d). Seeding initial fluctuations in
an otherwise smooth GPE wave function (Appendix C),
qualitatively similar density perturbations are observed
in Fig. 1(c).

Interestingly, TI is intrinsically coupled to an RDS’s
radial motion. For a dark soliton stripe with finite
length L, it is known that TI manifests as sinusoidal
‘snaking’ density modulations along the stripe, with dis-
crete wavenumbers k; = 27l/L < 1/w (I € N) limited
by the transverse width w [52]. In an RDS, this sets a
radius-dependent limit,

1< \3/ 7"minT.g

Therefore, high frequency modulations stop growing as
an RDS shrinks down. Around the minimum radius, only
the most unstable mode(s) with I = lax < min/§ could
continue to amplify, until the RDS fragments into ~ [y«
22 pieces with angular separation A¢ =~ 27/l pax-

23 To wvisualize this dynamics, in Fig 3(a) we
24 plot  the angular density—density correlation func-
»s tion in the dark ring, CA(zg <O(¢, A¢)>¢
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((ngng+ag) — (ng) (Ng+ap)) 4 Where ng = n(re,d)
is the atomic density near the measured ring position
r = rc, and (-) ({),) denotes ensemble (azimuthal)

averaging. After a long enough time while the dark ring
approaches its minimum radius, we observe very strong
angular correlations at A¢ ~ 120° and 240° angles,
corresponding to [ = 3. This mode appears to create
radial distortions of a triangular-shape, as exemplified
by the single-shot images in the second column of
Fig. 4(a). Interestingly, as the dark ring continues to
evolve (¢ 2 50ms), a new correlation pattern develops
at around 180° angle, that is, for | < 2; see the images
in the third column of Fig. 4(a).

To observe this mode competition more clearly, we
measure the Fourier spectrum by evaluating A

< > -as C(0, A¢)€“A¢’>¢. As shown in Fig. 3(b), insta-

bility develops mostly within I < 6, whose amplitudes
are exponentially amplified as shown in (c). Figure 3(d)
plots the initial growth rate for each mode, quantita-
tively reproduced by the GPE simulations detailed in Ap-
pendix F. In the experiments, the [ = 3 mode is the most
unstable with the largest growth rate. At ¢ = 40 ms,
however, the growth of high frequency modes become ar-
rested by the shrinking radius. The onset of growth sup-
pression roughly follows the estimation given by Eq. (2),
until the minimum ring radius is reached; see (b). Beyond
t 2 50 ms, I = 1 and 2 modes continue to amplify un-
til ¢ 2 70ms when A;—; » become large enough to break
the expanding dark ring. In real space, this corresponds
to fragmentation of l,,x = 2 pieces with 180° angular
separation as evidenced in our observations.

We identify these self-structured fragments as vortex
dipoles [34] in which the vortex-antivortex distance A is
linked to the speed vq ~ A/mA and the incompressible
kinetic energy of the flow E ~ log(A/£). Remarkably, we
observed a variety of vortex dipole structures in experi-
ment and in GPE simulations as well [Fig. 4(b)]; many
of these structures were classified in Refs. [53, 54]. One
type of defect is referred to as a weakly bound vortex
dipole, appearing when the flow has a larger energy. It
features two well-separated cores and phase singularities
as shown in (i). A second type of defect is a rarefaction
pulse shown in (ii), which shows a phase step without vor-
ticities and propagates at a velocity closer to the sound
speed. It emerges as a local density minimum weakly
connected to other defects in the bulk or at the bound-
ary. A third type, which we observe most frequently, is
somewhat in between the first two. Its energy is large
enough to preserve two phase vorticities but too small to
separate their cores. It can be seen as an isolated density
defect with an elongated width (= 2w) and is identified
as a bounded dipole as in (iii). Oftentimes, the second
and the third types of defects are referred to as coalesced
vortices [55] or Jones-Roberts solitons [56].

In Fig. 4(a), due to shot-to-shot fluctuations in atomic
density (see also Appendix E), observed density defects
exhibit various shapes as discussed above. Three rar-

1020 4 ()

200

Ag (degrees)

80 1 3 5 7 9
t (ms) /

FIG. 3. Pattern-forming instability. (a) Evolution of the
azimuthal density-density correlation function Cag showing
pattern formation. (b) Fourier spectra A; showing mode com-
petition. Peak position of each mode (I < 6) is marked by a
gray square. Dashed line marks the calculated thresholds,
Eq. (2), below which modes are expected to be unstable. (c)
Fourier amplitude A; of indicated modes plotted in the loga-
rithmic scale. Solid lines are exponential fits to determine the
initial growth rates ; shown in (d). Red shaded band repre-
sents the GPE simulated rate, scaled by an overall constant
~ 0.17 to match the data. Gray shaded band includes system-
atic effects in imaging, showing agreement with experiment
without any adjustable parameters. Details can be found in
Appendix F. Error bars in the data and vertical bands in the
simulated rate represent fitting uncertainty.

283 efaction pulses (green ovals) that are weakly linked in a
2 triangular shape are often found at ¢ ~ 50ms. Pairs of
25 bounded vortex dipoles (blue ovals) are most frequently
a6 identified immediately after an RDS fragments. Weakly
27 bound dipoles (brown ovals) sometimes appear, poten-
28 tially due to stronger snaking modulations and a larger
20 flow energy to separate the cores. At longer times, many
200 isolated vortices (red circles) are found near the edge of
20 the box, presumably exhibiting similar orbital dynam-
202 ics as seen in [57]. Detailed identification algorithms of
203 density defects can be found in Appendix D and E.

Clear distinction of vortex dipoles can be visualized
205 from their interaction with the wall potential, where the
206 density gradient induces an inward force on both the vor-
207 tex and the antivortex and this triggers the Magnus ef-
208 fect. A vortex dipole would decelerate and unbind upon
200 hitting the wall as shown in (i) and (iii) of Fig. 4(b).
s0 The unbound vortices appear pinned to the superfluid
sn boundary and move along the rim with opposite circu-
sz lation. If instead a rarefaction pulse is incident upon
503 the wall, it forms an arc-like defect structure as shown
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n (um2) 020

t=34ms

FIG. 5. Self-patterned defect structures imaged after 40 ms
of time-of-flight. Single-shot images in each column are col-
lected with the indicated hold time, showing a necklace of
weakly bound vortex dipoles (a), bounded dipoles (b), and
rarefaction pulses (c). Inset shows a sample in situ image at
t = 34 ms, held in a circular box of radius ~ 11pm.
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interacted with the wall, we identified a high probabil-
ity for observing vortex-like density defects (azimuthal
________ e ] = su size ~ £) near the boundary r = 9 um, as shown in
a2 Fig. 4(c). Other defects at » < 9 pm have a wide spread
of azimuthal widths (= 2£). They are likely rarefaction
s pulses, rebounded dipoles, or colliding defects in the bulk.
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@

FIG. 4. Structured formation of vortex dipole necklace and 3 We have demonstrated in situ images of self-structured

vortex unbinding. (a) Single-shot in-situ images in each col- 3 density. defects. .Th.is enables d.irectly probing §elf—
umn are collected within the indicated time interval. The =7 patterning dynamics in a superfluid for the first time.
first three columns show samples right before, during, and ss To further enhance visualization of vortex dipole neck-
right after patterned fragmentation, respectively. The last s laces, we can extinguish the horizontal trap confinement
three columns present samples with density defects likely be- ;, and image after a long time-of-flight (TOF) expansion in
fore, .during, a?d after they re?‘Ch the superﬁuid. boundary. 2D; see Fig. 5. We note that these structures continue
Identified depsmy defects are circled and. categorized as one 1 to evolve during the expansion. Here, we use a smaller
of the following: weakly bound vortex dipoles (brown), rar- . } A - . .

) . ; 23 box to increase the initial density, chemical potential,
efaction pulses (green), bounded dipoles (blue), and pinned . .

. . . . 24 and thus the TOF expansion rate. Vortex cores in [ = 2
vortices (red). (b) Dynamics of a weakly bound dipole (i), a ) . .
rarefaction pulse (ii), and a bounded dipole (iii) in GPE sim- vortex dipole necklaces dr.amatlcally expand ('il%rlng. TOF
ulations. Images in each box, from left to right, respectively, 32 due tf) much reduced healing length, clearly Vlslble.m (a).
show the density (top) and phase (bottom) profiles before 7 As dipoles propagate towards the boundary, their core
and after a defect hits the wall. The propagation direction s size further increases due to reduced background density.
of each defect is marked by an arrow. (c) Left: Occurrence s We have also observed | = 2 or 3 bounded dipoles (b) and
of azimuthal width versus radial position of detected defects, 33 rarefaction pulses (C)7 identified based on their widths
obtained from images taken after ¢ = 60ms. Right: Proba- . and connections with adjacent defects. Faster moving

bility distribution for detected widths at 7 > 9 um showing a RDSs can also be seen near the boundary of expanded
peak near the healing length (dashed line). superfluids
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s In summary, we observed very rich non-equilibrium

35 dynamics and self-patterning with RDSs that emerged
s in (ii), eventually breaking into a reflecting rarefaction s purely from a box quench. Both 180° (I = 2) and 120°
s0s pulse, and occasionally also two vortices pinned to the s ordered (ly.x = 3) vortex dipole necklaces have been ob-
ss boundary with opposite circulations. These rarefaction ss served in Figs. 4 and 5, respectively. Even higher-order
sor arcs are evidenced by defects marked with large green ss l,.x > 3 can be created with either a larger bulk chem-
ws circles in Fig. 4(a). Long after all vortex dipoles have o ical potential (for shorter-scale most unstable modes)
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s or larger initial short-scale density perturbations (Ap-
s> pendix C). Our quench experiment demonstrates a new
a3 tool to generate dark solitons in versatile forms as well
s as ordered quantum vortex matter in a uniform box trap
us [46]. By incorporating box quenches together with in-
us teraction tuning using a Fechbach resonance, multiple
s RDSs [58, 59] and vortex dipole necklaces may be gen-
us erated in one sample, thus creating complex vortex mat-
s ter. It may be possible to trap a stationary RDS [34]
30 and further control its stability by applying a radial po-
s tential when r. = rp, [52, 60]. By incorporating non-
destructive imaging [61], our work can be extended to
study inverted TI [33], persistent revivals and clusteri-
zation [35-38] of ordered vortex dipoles, and may open
new ways to explore spontaneous clustering [62-64] in 2D
vortex matter.
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Appendix A: Preparation of a 2D superfluid

364

The detailed experimental apparatus is detailed in
[65] with an updated objective lens (numerical aperture
~ 0.6). We begin the preparation of a Bose-Einstein
condensate (BEC) of cesium atoms confined in an opti-
cal dipole trap with horizontal (vertical) trap frequency
of ~ 12Hz (~ 70 Hz) through an evaporative cooling pro-
cedure. The s-wave scattering length is then gradually
decreased to a small value a =~ 12a¢ via a Fechbach res-
onance [66], where ag is the Bohr radius. The BEC is
then loaded into a 2D box potential. The vertical con-
finement of the box is provided by a single node of a
repulsive standing wave potential with 3 um periodic-
ity. The measured vertical trap frequency in the node
is w, = 2 x 1.8kHz (>> kgT/h, u/h) deeply in the 2D
regime, where kp is the Boltzmann constant, 7' < 10 nK
is the temperature, u is the chemical potential, and & the
reduced Plank constant. The atoms populate the vibra-
tional ground state in the vertical trap with a harmonic
oscillator length I, = /hA/(mw,) = 207nm, where m
s+ is the atomic mass. The horizontal confinement is arbi-
sss trarily configured via a blue-detuned light (780 nm) pat-
s terned with a digital mirror device and projected through
357 the objective lens. In this work we use a circular box with
s an inner radius of ~ 15 um and a width of ~ 5pm. We
9 obtain in situ density distribution of 2D gases by per-
a0 forming absorption imaging through the same objective
sa lens and recording the image on a CCD camera. The
302 image resolution is ~ 0.8 um. The atomic surface den-
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sity n is calibrated using a similar scheme discussed in
[67]. Typical initial density is n ~ 50 yum~=2 at a fixed
2D interaction strength g = v/8wa/l, ~ 0.017. Shortly
after the box potential height is quenched to the final
strength (= kg x 9 nK), the bulk density reduces to
n ~ 42 um~? and remains roughly constant throughout
the subsequent evolution, presumably due to initial finite
atom spilling over the box wall. The resulting healing
length is £ = 1/\/ng ~ 1.2 um, larger than our image
resolution. This allows us to resolve individual vortices
with spacing comparable to or smaller than the healing
length. Note that in situ imaging of vortices has been
demonstrated using a dark-field imaging technique [68]
and most recently using high-resolution absorption imag-
ing [9, 69].
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108 Appendix B: Wave function and radial dynamics of

409 a ring dark soliton

An RDS is a quasi-stationary solution of the time-
dependent 2D Gross-Pitaevskii equation (GPE),
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Assuming rotational symmetry, the wave function of a
perfect RDS only has radial dependence. To good ap-
proximation, it can be written as
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P(r,t) =+v/n [i\/l —d+ Vdtanh(r — TC)/w} e mt/n

(B2)
where r.(t) is the radial position of the density defect,
d =1— (v/vs)? < 1 its depth, v = 7 its radial veloc-
ity, and w = &/+/d its characteristic width. Here, the
background density n, the healing length { = 1/,/ng,
the sound speed vy = h/¢m, and the chemical poten-
tial 4 = mo? are the bulk properties of the superfluid.
Whereas, the radial motion v, width w and depth d are
all related to each other; fixing one parameter completely
determines the other two. A faster-(slower-)moving soli-
ton would have a shallower (deeper) depth and a broader
(narrower) density profile.

This radial wave function is essentially the dark soli-
ton solution in 1D, except that it is perturbed by the
r~19/0r Laplace term in the 2D GPE. A consequence of
this perturbation is that (d,w,v) slowly evolves as the
radius of an RDS changes [30]. The dynamics of an RDS
differs from that of a 1D dark soliton. In particular, the
soliton depth follows the relation
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33 where d(t;) and r.(¢;) are the initial depth and radius of
s¢ the RDS, determined at time ¢;. This additional equa-
a3 tion further relates (d, w, v) with .. The depth increases
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FIG. 6. Single-shot in-situ images of RDSs. The red shaded area represents the radius 7. of produced RDSs from the averaged
image. Even though RDSs fragment into multiple pieces for a longer time, their locations are efficiently captured.

(decreases) as an RDS shrinks (expands), and the width
and radial velocity change accordingly.

An explanation for this radius-dependent dynamics is
from energy conservation. As discussed in [70], the en-
ergy of a 1D dark soliton is € = (4/3)hwvsnd?/?. For a dark
soliton stripe in 2D, € is the linear energy density. In a
uniform medium, the total energy of an RDS is 27r.e.
For an adiabatic evolution with conserved RDS total en-
ergy, one must have r.(t;)d(t;)%/? = r.d*'?, thus leading
to the same result obtained from the perturbation theory
[30].
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47 Appendix C: Time-dependent GPE simulation

We perform 2D GPE simulations [71, 72] to obtain
numerical evidence of RDS emission in our quench pro-
tocol. The initial ground state wave function is confined
in a repulsive wall potential of the form

{U0€2(TR)2/02 r<R

448

44

©°

450

U(r)

(C1)

Uy r>R

where Uy is the trap strength, R the box radius, and o
the experimentally calibrated 1/e? width of the wall. In
the time-dependent GPE, the trap strength is quenched
from Uy = kp x 60 nK to the final value Uy = kp x 9 nK,
and we evaluate the subsequent dynamics of the wave
function. We note that in the experiment the wall has a
radial Gaussian profile of finite width instead of a semi-
infinite form taken in the GPE simulation. The former
is responsible for finite atom spilling after the potential
is quenched down. The results shown in Fig. 1 are calcu-
lated using atom number N = 2.2 x 10* matching that
a3 of the initial experimental condition. While we have ob-
s tained qualitative one-to-one agreement of RDS emission
w5 and its subsequent evolution, the exact timing cannot be
a6 fully matched. The emitted RDS tends to move faster
w7 in GPE simulation, and we have increased Uy by ~ 70%
w8 to increase the quench contrast, which slows down the
w0 RDS velocity. The slower RDS dynamics observed in the
a0 experiment may be due to finite atom-spilling right after
an the quench, which leads to a lower sound speed and thus
a2 a lower RDS velocity.

To take into account density fluctuations in a super-
ana fluid, we imprint phase noise in the initial GPE wave
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a5 function to simulate phonon excitations. Given an initial
as temperature (T' ~ 3 — 7 nK), we calculate the phonon
a7 populations according to the Bose-Einstein distribution
ais plus zero-point fluctuations,

1 1 1

ny(k) = BRI EeT 1 + 5= icoth

E(k)
2%pT’

(C2)

where E(k) is the Bogoliubov phonon dispersion relation.
We populate random Bogoliubov phonon excitations in
the ground state wavefunction, with statistical amplitude
variance in each mode matching n,(k). We then evolve
the wave function in the time-dependent GPE. We have
also taken into account total atom number fluctuations
in the experiment, and performed a series of GPE cal-
culations with N = (2.2 £ 0.4) x 10%. Given the range
of temperature and atom number fluctuations, we ob-
serve numerically RDS fragmentation into necklaces of
weakly bound vortex dipoles, tightly bound dipoles, or
rarefaction pulses. Representative results are plotted in
Fig. 4(b). Most of the necklaces consist of a chain of
I = 2 vortex dipoles or rarefaction pulses. Increasing the
atom number or interaction strength g, I > 3 necklaces
can be observed.

47!

©

480

48

2

48

o

48

@

48:

=

48!

o

486

487

488

489

491

S

49

2

492

49,

@

Appendix D: Soliton detection algorithm

495

To obtain the position and size of a ring dark soli-
ton (RDS), we measure mean density linecuts a(x, yo)
typically averaged over > 5 realizations. By convolving
the linecuts with a Gaussian Kernel of a width ~ the
healing length £, we obtain a scale-space representation
that suppresses features smaller than £. A Laplacian of
this convolution generates positive features for intensity
minima, which correspond to the mean locations of dark
stripes. These procedures are applied to the density line-
cuts obtained at different times ¢ to visualize the evolu-
tion of dark stripe locations, as shown in the right panel
of Fig.2(a). We then extract the stripe speed and loca-
tion. We perform the same analysis to averaged density
linecuts along the y axis, n(zo, y). With those informa-
tion obtained from the mean linecuts along the two axes,
we predict the time-dependent center rg and radius r.
of RDSs in single-shot images, see red areas in Fig. 6.
si3 For the analysis of instability in RDSs [see Fig.3] we use
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FIG. 7. In-situ vortex detection in a box-trapped 2D superfluid. (a) Mean density profile i averaged over > 300 experimental
realizations at > 60 ms. (b) Examples of single-shot in-situ density images n. Detected defects are marked by red circles. (c)

Residual from the mean density, on =n — n.

single-shot density profiles averaged in the radial interval
|r —re| < 0.9 pm.

Appendix E: Vortex detection algorithm

At later times (¢ 2 60ms) after the box quench, an
RDS breaks into vortices. They are detected using a
scheme similar to a vortex image processing algorithm
[73]. For each single-shot in situ image [Fig. 7(b)], we
calculate the residual [Fig. 7(c)] from the mean density
profile [Fig. 7(a)] averaged over many experimental shots.
We then apply a Laplacian of Gaussian filter to enhance
those defect structures having characteristic length scales
of ~ £. From these we obtain defect positions marked by
circles in Fig. 6(b). We note that the analysis is restricted
to defects having nearly zero local density (< 4 ym=2)
to avoid spurious detections. Detected defects have a
large variation in the azimuthal width, while the radial
spread is comparable with ~ £. The azimuthal width and
position of each detected defect are analyzed as shown in
Fig.4(c).

Appendix F: Pattern formation dynamics in GPE
simulation

A series of GPE simulations with initially seeded ran-
dom fluctuations are analyzed according to the presented
data in Fig. 3 for further understanding the pattern for-
mation by snaking instability in RDSs. We first deter-
mine the mean radius 7, of generated RDSs and its mo-
tion 7. from an radial density profile [Fig. 8(a)], averaged
over multiple runs. We then analyze the angular density-
density correlation function Cage (C(p, Ag)) ¢>
((ngngsag) — (ng) (Ng1ap))y where () ({)4) repre-
sents sample (azimuthal) average and n, is the azimuthal
density at r = 7.. As shown in Fig. 8(b), the simulated
Chag is well consistent with the observation [Fig.3(a) in
the main text]. The RDSs have no significant modula-
tion in their azimuthal density at early time < 20ms.
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However, at a later time when 7. approaches to its min-
imal value, Cay exhibits strong angular correlation at
A¢ =~ 120° and 240°, corresponding | = 3 necklace for-
mation. At even later time, the angular correlation at
A¢ =~ 180° (I = 2 mode) becomes comparable to the
ones at A¢p = 120° and 240°, resulting in the competi-
tion among those unstable modes.

In Fig. 8(c). we plot the dynamics of the Fourier
spectrum, defined as A; = <’ZA¢ C(o, A(i))eilA¢">¢. It

marks the rise of modulation amplitude only for lower an-
gular frequency modes due to the finite instability band
Il < lmax; | = 3 mode dominates at ¢ ~ 40ms, while
Imax approaches to rmin/€ ~ 3 as the RDS shrinks. At
t ~ 60ms, [ = 2 and [ = 3 modes eventually display com-
parable amplitudes. This dynamics naturally appears in
shrinking RDSs, supporting our experimental observa-
tion of mode competition dynamics in Fig. 3 (b,c). The
detailed dynamics of A; is plotted in Fig. 8(d). We find
that the amplifications in the prohibited band [ > I ax
are incompletely terminated at [ > 4. We attribute this
potentially to the contribution from adjacent RDSs (see
(a)) or the evolution of phonon fluctuations that may
not be sensitively detected in the experiment. Also, in
the simulation one can see a continuous reduction in A;
at the early stage ¢t < 20 ms during which the wavefunc-
tion expands while solitary waves develop. A; starts to
grow once RDSs form.

Figure 8(e, f) compare the experimental data -, as
shown in Fig. 3(d), with the early-time growth rate
71(51m)’ obtained from exponential fits as in Fig. 8(d). In
Fig. 8(e), the observed exponential growth within I < 6 is
well reproduced by the simulation, except for an overall
scaling constant o /= 0.17 adjusted to match the data, in-
dicating that the observed rate is roughly six times lower
than that in the simulation. We believe the slower rate
observed in the experiment is due to the systematic effect
of finite resolution of our imaging system and image noise
for example, photon shot-noise, which adds to each mea-
sured Fourier amplitude A; an offset ~ O(1). We find
that the offset can effectively reduce the fitted growth
rates. To see those systematic effects, we convolute the
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FIG. 8. Pattern-forming instability in the simulation. (a) Radial density averaged over nine runs. Dashed line represents
detected radius 7. of generated RDSs. (b) Azimuthal density-density correlation function Cae. (¢) Fourier spectra A;. Dashed
line shows the maximal unstable mode lmax, expected from 7. and 7. (d) Dynamics of A; in the logarithmic scale. Solid lines

are exponential fits to determine the initial growth rates 'yl(Sim). Shaded area shows a regime where the mode amplification is

expected to be halted I > lmax. (e) Experimental rates ; (dots), compared with 'yl(Sim) scaled by an overall factor a ~ 0.17
(shaded area). Error bars and vertical width in oa’yl(‘“m) represent fitting uncertainty. (f) Same as (e), except that ’yl(sun) is from

the simulations including systematic effects. The simulated rates well reproduce the data with no free parameters.

GPE data with finite resolution and add the measured s well with experimentally determined values as shown in
offsets to the GPE simulated amplitudes A;. We refit s Fig. 8(f).

the growth rate vl(Sim) and indeed find that they agree
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