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ABSTRACT: Conditional instability and the buoyancy of plumes drive moist convection but have a variety of representa-
tions in model convective schemes. Vertical thermodynamic structure information from Atmospheric Radiation Measure-
ment (ARM) sites and reanalysis (ERA5), satellite-derived precipitation (TRMM3b42), and diagnostics relevant for
plume buoyancy are used to assess climate models. Previous work has shown that CMIP6 models represent moist convec-
tive processes more accurately than their CMIP5 counterparts. However, certain biases in convective onset remain perva-
sive among generations of CMIP modeling efforts. We diagnose these biases in a cohort of nine CMIP6 models with
subdaily output, assessing conditional instability in profiles of equivalent potential temperature, ue, and saturation equiva-
lent potential temperature, ues, in comparison to a plume model with different mixing assumptions. Most models capture
qualitative aspects of the ues vertical structure, including a substantial decrease with height in the lower free troposphere as-
sociated with the entrainment of subsaturated air. We define a “pseudo-entrainment” diagnostic that combines subsatura-
tion and a ues measure of conditional instability similar to what entrainment would produce under the small-buoyancy
approximation. This captures the trade-off between larger ues lapse rates (entrainment of dry air) and small subsaturation
(permits positive buoyancy despite high entrainment). This pseudo-entrainment diagnostic is also a reasonable indicator of
the critical value of integrated buoyancy for precipitation onset. Models with poor ue/ues structure (those using variants of
the Tiedtke scheme) or low entrainment runs of CAM5, and models with low subsaturation, such as NASA-GISS, lie out-
side the observational range in this diagnostic.
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1. Introduction

a. Overview

Ill-constrained representations of deep clouds and precipi-
tation are major contributors to uncertainty in global climate
model (GCM) projections, including, but not limited to, pre-
cipitation extremes (Meehl et al. 2000; Allen and Ingram

2002; Trenberth et al. 2003; Pall et al. 2007; Schneider et al.
2010), the diurnal cycle of precipitation (Del Genio and Wu
2010; Rio et al. 2009; Hourdin et al. 2013; Covey et al. 2016;
Xie et al. 2019; Tang et al. 2021, 2022), and the Madden–
Julian oscillation (Del Genio 2012; Zhu and Hendon 2015;
Kim et al. 2012). Entraining plume models and their underly-
ing assumptions serve as the basis of most GCM convective
schemes (e.g., Arakawa and Schubert 1974; Kain and Fritsch
1990; Zhang and McFarlane 1995; Chikira and Sugiyama 2010;
Schiro et al. 2018), often relying on integrated measures of insta-
bility to initiate convective updraft and subsequent precipitation.
The environmental (grid-scale) response to this instability is
tethered to local convection (sub-grid-scale) through large-scale
governing equations that are typically consistent with quasi-
equilibrium assumptions}instability generated in the large
scale is removed by convective heating (e.g., Manabe et al.
1965; Arakawa and Schubert 1974).

Thermodynamic profiles from Atmospheric Radiation
Measurement (ARM) sites provide valuable information for
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processes relevant to tropical clouds and their interaction
with the large-scale environment. From the vertical structure
of temperature and humidity, the potential for moist convec-
tion is assessed through relations of the equivalent potential
temperature ue and equivalent saturation potential tempera-
ture ues. Being a conserved quantity under adiabatic lifting, ue
profiles provide theoretical buoyancy measures of environ-
ments}similar to traditional meteorological metrics such as
CAPE}with weighting of height levels emulating the en-
trainment process undergone by steady-state plumes (more
details provided in section 4). This plume formulation, accom-
panied by simple entrainment assumptions, provides a frame-
work for gauging model biases with respect to the onset of
convection. Working toward a process-oriented diagnostic of
convection}diagnostics that isolate a physical process, target
related parameters in GCMs, and relay actionable feedback
(Maloney et al. 2019)}we seek to condense these vertical
structures of moisture and temperature using key metrics of
entraining plume buoyancy. We are led to intermodel differ-
ences in the relationships among (i) the decrease with height
of ues in the lower free troposphere (LFT), referred to as the
ues lapse rate for brevity; (ii) the boundary layer ue; and
(iii) the subsaturation (as measured by ue 2 ues) of the LFT.
Building on prior theoretical work concerning quasi-equilibrium,
we present a “pseudo-entrainment” process-oriented diagnostic.
The pseudo-entrainment diagnostic is an estimation of entrain-
ment under the bulk plume formulation that explains tradeoffs
between tropical lapse rates (stability) and moisture. We term it
the pseudo-entrainment diagnostic because even when assump-
tions do not hold well, it is a useful large-scale indicator of pro-
cesses relevant to impacts of entrainment. Additionally, the
pseudo-entrainment diagnostic helps identify convective onset
biases}precipitation being initiated too early or late as repre-
sented by the “pickup” of precipitation.

b. Convective onset and the role of entrainment

The pickup in precipitation statistics, first identified on daily
(Bretherton et al. 2004) and subdaily (Peters and Neelin
2006) time scales in which the conditionally averaged precipi-
tation picks up sharply after a critical value of column relative
humidity (CRH) is reached, represents the occurrence of condi-
tional instability in the transition to deep convection (Holloway
and Neelin 2009; Schiro et al. 2016). The pickup is observed
over tropical land and ocean in observational records (Neelin
et al. 2009; Ahmed and Schumacher 2017; Schiro 2017) and
models (Kuo et al. 2020) and has been used in GCM evaluation
in CMIP5 (Rushley et al. 2018) and CMIP6 (Emmenegger et al.
2022) models. The precipitation–CRH relationship reflects the
effects of entrainment on the buoyancy of convective plumes
(Holloway and Neelin 2009). The importance of the lower-free
tropospheric (LFT) moisture in this regard is well established
and is reflected in the pickup (Kuo et al. 2018; Bretherton et al.
2004; Ahmed and Schumacher 2015; Neelin et al. 2009).

Considerations of entrainment/dilution of CAPE have led
to more realistic representations of convective processes in
models (Zhang 2009); lack of entrainment can render models
unable to reproduce convective variability across subdaily to

interannual time scales (Tokioka et al. 1988; Neale et al. 2008;
Del Genio and Wu 2010; Kim et al. 2012). More recently,
measures of LFT buoyancy have expanded on the relationship
between the entrainment process and precipitation (Ahmed and
Neelin 2018; Ahmed et al. 2020; Adames et al. 2021; Ahmed
and Neelin 2021a; Wolding et al. 2020, 2022). Specifically, ob-
served mass flux profiles and vertical velocities imply substantial
entrainment of environmental air through the lower free tropo-
sphere (Kumar et al. 2015; Giangrande et al. 2016; Schiro et al.
2018). Observational field campaigns (Yeo and Romps 2013)
and modeling studies (McGee and van den Heever 2014) point
to organized flow in mesoscale convective systems, with a sub-
stantial LFT inflow into the convective updraft. Signatures of
heavy entrainment inspired the deep-inflow formulation of mix-
ing in Holloway and Neelin (2009), which has proven useful in
estimating convective instability (similar to the GCM formula-
tion of entraining CAPE) and is used in this study.

Conditioning precipitation on a form of entraining CAPE
(theoretical buoyancy of an entraining plume) proves more
successful than the traditional measure of CAPE stemming
from the nonmixing assumption in predicting convection
[shown in section 5c herein and in Adames et al. (2021) and
Ahmed and Neelin (2021a)]. However, estimating the exact
degree of entrainment undergone by a convective plume from
observational products remains a complex problem. Attempts
at estimating entrainment rates often requires knowledge of
cloud-top height from observational snapshots (Luo et al.
2010; Jensen and Del Genio 2006) or additional assumptions
of the degree to which the plume is reflected in the environ-
mental profile.

c. Small buoyancy approximation

Such estimations of plume trajectories depend on the envi-
ronment, but also interact with it. The concept of convective
adjustment posits that convection acts to remove convective
instability by adjusting the nonconvecting large-scale environ-
ment (Manabe and Strickler 1964; Arakawa and Schubert
1974), assuming that gravity waves quickly homogenize temper-
ature anomalies in the free troposphere (Sobel and Bretherton
2000; Bretherton and Smolarkiewicz 1989) or that the large-
scale environment adjusts to anomalous temperature intro-
duced by the plume. Convective adjustment is employed as a
closure in several convective schemes (Manabe and Strickler
1964; Manabe et al. 1965; Betts 1986; Betts and Miller 1986;
Keil et al. 2014) and is generalized as convective quasi-equilibrium
(e.g., Arakawa and Schubert 1974; Emanuel et al. 1994). The ad-
justment process is assumed to happen instantaneously or with a
finite adjustment time scale (Moorthi and Suarez 1992; Zhang
and McFarlane 1995; Bechtold et al. 2008; Ahmed et al. 2020).
The exact measure of instability can vary among implementa-
tions, with CAPE and the cloud-work function being common
choices. A time scale separation between the slow buildup of in-
stability and fast adjustment by convection results in a state of
quasi-equilibrium (QE; Neelin et al. 2008; Yano and Plant 2012).

With the QE framework in mind, the adjustment of the ver-
tical profile of environmental temperature to that of a bulk
convective plume places further emphasis on the entrainment
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process, mainly that the lapse rate of the environment during
raining times reflects the rate of dilution of a bulk plume. In
simple terms, whether the entrainment is turbulent or coher-
ent, the effects of entrainment rely on two factors, 1) the frac-
tion of environmental air incorporated into the plume
(entrainment rate) and 2) the saturation deficit of the environ-
mental air being entrained (the two factors can compensate to
achieve the same amount of dilution of a parcel such as high
entrainment of moist air or low entrainment of dry air). QE
predicts that the temperature and moisture profiles in the
tropics reflect this process of entrainment}not just in
strongly convective plumes but in the aggregate effect of the
ensemble of all tropical convection (Singh and O’Gorman
2013; Singh et al. 2019; Bao et al. 2021; Bao and Stevens 2021;
Singh and Neogi 2022).

The small buoyancy approximation}the approximation
that buoyancy is minimized as the environment adjusts to
anomalous temperatures introduced by the plume}applies if
the convective adjustment time scale is sufficiently fast. The
leading-order approximation has the large-scale temperature
and moisture profile adjusted to that of the convection (zero
buoyancy), while the precipitation and other convective effects
occur due to the small departures from this (e.g., Neelin and
Yu 1994; Neelin and Zeng 2000). The leading-order (small
buoyancy) approximation can be used to estimate radiative-
convective equilibrium temperature and moisture profiles
(Singh and O’Gorman 2013; Zhou and Xie 2019) and provides
a method for consistently treating departures from zero buoy-
ancy associated with raining events (e.g., Ahmed et al. 2020).
In section 7, we derive the pseudo-entrainment diagnostic, an
estimate of entrainment undergone by a bulk plume through
the LFT, by applying the small buoyancy approximation to
thermodynamic profiles of the environment.

d. Diagnostics from moist thermodynamic profiles

Due to this interaction, tropical atmospheric temperature
and moisture profiles reflect the processes contributing to
plume buoyancy: nonentraining aspects of conditional insta-
bility are captured by atmospheric boundary layer (ABL)
moist entropy relative to LFT temperature (measured by sat-
uration moist entropy) and dilution and entrainment are seen
in the dependence on moistening of the LFT. In convective
scheme formulations, the convective trigger requires a degree
of preconditioning}moistening and warming of ABL along
with moistening and cooling of LFT}and with it, an associated
magnitude of instability. For instance, the larger the effect of
entrainment, the greater the amount of preconditioning re-
quired for convection to initiate, and the larger the convective
onset threshold. We build on previous observational work,
framed in terms of deep convective inhibition (Raymond et al.
2003; Raymond 2017; Fuchs-Stone et al. 2020) and the instabil-
ity index (Raymond et al. 2011; Gjorgjievska and Raymond
2014) that finds relations between measures of LFT lapse rates
of saturation moist entropy, boundary layer entropy, and pre-
cipitation rates. In this study, we explore and quantify the exis-
tence of an intricate balance of lapse rates, entrainment, and
climatological moisture which coalesce to form the tropical

climatology to identify strengths and shortcomings in model
representations of these processes.

In section 3 we present a measure of LFT buoyancy based on
the equivalent potential temperature definition. In section 4 we
describe our plume model which allows us to calculate a scalar
quantity of the average LFT parcel buoyancy, BL, with inputs of
vertical profiles of moisture, temperature under various mixing
assumptions. The convective transition statistics conditioned on
BL are presented in section 5c. Biases identified here are then
further explored in an analysis of the vertical structures associ-
ated with different BL regimes in sections 5 and 6. In section 7,
we conclude with the derivation of the pseudo-entrainment di-
agnostic, a bulk estimation of the entrainment rate from the av-
erage raining profiles, and apply this diagnostic to both models
and observations.

2. Data and model descriptions

The thermodynamic structures associated with convection
and their representation in global climate models (GCMs) are
evaluated at the Nauru ARM site in the tropical western Pacific
(0831′S, 166854′E) for the period 1999–2009. Surface precipita-
tion rate and vertical profiles of humidity and temperature from
the ARM Best Estimate dataset (ARMBE; Xie et al. 2010), an
hourly integrated product assembled from various in situ ARM
measurements, provides an observational baseline for GCM
evaluation. The hourly fifth-generation European Center for
Medium-Range Weather Forecasts (ECMWF) reanalysis prod-
uct (ERA5; Hersbach et al. 2020) provides an additional baseline
for GCM evaluation. Satellite retrieval Tropical Rainfall Measur-
ing Mission (TRMM) 3b42 version 7 precipitation measurements
(Tropical Rainfall Measuring Mission 2011) provide an addi-
tional precipitation product to augment with column variables.
For the purpose of model evaluation, the TRMM 3B42 precipita-
tion is averaged spatially over 18 from its 0.2583 0.258 resolution,
centered on the latitude–longitude point nearest to the sites.

Output from nine ocean–atmosphere coupled GCMs’ his-
torical experiment of the CMIP6 are analyzed. A summary of
each model: its resolution and convective trigger/closure are
shown in Table 1. For each model, we extract 6-hourly vertical
profiles of temperature and moisture and 3-hourly averaged
surface precipitation rate at the nearest grid point to the Na-
uru site over the years 1995–2015 of the CMIP6 historical ex-
periment. Models were chosen by the availability of subdaily
humidity, temperature, and precipitation at the time of the
analysis. Precipitation data for NASA-GISS, MPI-ESM1-
2-LR, MIROC-E2SL, MIROC6, MRI-ESM2-0, NESM3, is
3-hourly averaged, while MPI-ESM1-2-HAM, NorESM2-LM,
and NorESM2-MM output is 6-hourly averaged. Vertical pro-
files for both observations and models are instantaneous snap-
shots. The start of the precipitation averaging window is
aligned with these snapshots so that profiles of temperature
and moisture lead precipitation. Vertical profiles will be used
to calculate measures of lower free tropospheric buoyancy
(a measure of instability similar to entraining CAPE) and are
considered causal to moist convection and precipitation.

To test the efficacy of the pseudo-entrainment diagnostic,
the CMIP6 models are supplemented with an additional set of
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perturbed-physics experiments using the Community Atmo-
spheric Model version 5 (CAM5; Neale et al. 2010). Two-year
atmosphere-only simulations with fixed sea surface tempera-
tures are run. The entrainment rates in the Zhang–McFarlane
cumulus parameterization scheme (Zhang and McFarlane
1995) are perturbed over a range of values: 0.25, 0.5, 0.75, 1
(control), and 1.25 km21. An additional case where the con-
vective parameterization is turned off is also included.

3. A measure of lower free tropospheric buoyancy BL

Buoyancy here is written as

B 5 g
dues
kues

1 0:61dqy 2 dqc

( )
, (1)

where ues is saturated equivalent potential temperature, d rep-
resents the difference between the plume and the environ-
ment, with up

es that of the parcel and ues without the
superscript is that of the environment; qy is the water vapor
mixing ratio, qc is the condensate mixing ratio, and g is the ac-
celeration due to gravity. The factor

k 5 1 1
L2qs

cpRyT0T
(2)

arises when converting from the temperature-based form of
buoyancy (Adames et al. 2021; Raymond 1994, and in the

online supplemental material). In Eq. (2), L is the latent heat
of vaporization, qs is the saturation specific humidity of the
environment, cp is the specific heat of dry air, Ry is the gas
constant of water vapor, and T0 is a constant reference
temperature.

The second and third terms represent the contributions
from 1) the water vapor effect on density (sometimes called
the virtual effect, incorporated in the definition of virtual tem-
perature) and 2) condensate loading.

Rewriting (1) provides a convenient way of comparing a
slightly modified curve corresponding to ues from a plume cal-
culation to the ues of the environment, such that the distance
between these curves is proportional to buoyancy, including
the virtual effect and condensate loading:

B 5
g

kues
up
es 1 kues(0:61dqy 2 dqc)

︷����������︸︸����������︷virtual effect2condensate loading

︸�����������������︷︷�����������������︸
compare to ues

2 ues

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (3)

Note that virtual effect and condensate loading quantities are
not conserved under parcel motion. The measure of plume
buoyancy in (1) is similar to that used in Raymond (1994) and
Adames et al. (2021) and differs from the measure used in
Ahmed and Neelin (2018) in that the k factor is included in
the denominator. As noted in Adames et al. (2021), the inclu-
sion of k does not significantly affect the results of Ahmed
and Neelin (2018) and Adames et al. (2021) but serves to scale

TABLE 1. List of models analyzed in this study. This table is nearly identical to Table 1 of Emmenegger et al. (2022). The references
column gives the data source and the source for the convective trigger/closure.

Model name Institute
Resolution (lon 3 lat),

vertical levels Convective trigger/closure References

NASA-GISS Goddard Institute for
Space Studies, NASA

2.008 3 2.008, 40 Higher moist static energy of
an adiabat to environment
at level above/cloud-base
buoyancy

NASA Goddard Institute
for Space Studies (2018),
Del Genio and Yao
(1993), Schmidt et al.
(2014)

MPI-ESM-1-2-
HAM

Max Planck Institute for
Meteorology

1.858 3 1.888, 47 Net positive moisture
convergence/CAPE

Wieners et al. (2019),
Möbis and Stevens (2012)

MPI-ESM1-2-LR Max Planck Institute for
Meteorology

1.858 3 1.888, 47 Net positive moisture
convergence/CAPE

Wieners et al. (2019),
Möbis and Stevens (2012)

MIROC-E2SL Japan Agency for Marine-
Earth Science and
Technology

2.778 3 2.818, 40 CAPE/prognostic convective
kinetic energy

Hajima et al. (2019),
Ando et al. (2021)

MIROC6 Japan Agency for Marine-
Earth Science and
Technology

1.398 3 1.418, 81 CAPE/prognostic convective
kinetic energy

Tatebe and
Watanabe (2018),
Ando et al. (2021)

MRI-ESM2-0 Meteorological Research
Institute Japan
Meteorological Agency

1.118 3 1.138, 80 CAPE/CAPE Yukimoto et al.
(2019, 2011)

NorESM2-LM Norwegian Meteorological
Institute

1.898 3 2.508, 32 CAPE/CAPE Seland et al. (2019, 2020)

NorESM2-MM Norwegian Meteorological
Institute

0.948 3 1.258, 32 CAPE/CAPE Bentsen et al. (2019),
Seland et al. (2020)

NESM3 Nanjing University of
Information Science
and Technology

1.858 3 1.888, 47 Net positive moisture
convergence/CAPE

Cao and Wang (2019),
Cao et al. (2018)

CAM5 National Center for
Atmospheric Research

0.908 3 1.258, 27 CAPE/CAPE Neale et al. (2010)
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the numerator to values ;3 times smaller. Values of the con-
stants used in this study are displayed in Table 2. Equivalent
potential temperature ue is the temperature a parcel would at-
tain after a moist adiabatic expansion to a low pressure, fol-
lowed by an adiabatic compression to a reference pressure. It
is approximately conserved in both moist and dry adiabatic
reversible processes. Variables based on ue are more useful in
approximating the conservation properties of a plume than
moisture and temperature (Ahmed and Neelin 2018).

To interpret Eq. (1), we now express a typical parcel lifting
trajectory using ue-based variables. A near-surface unsatu-
rated parcel is lifted and conserves its potential temperature
u, up until it becomes saturated at its lifting condensation
level (LCL; where up

e 5 up
es). The parcel remains saturated in

its ascent above the LCL with up
e 5 up

es.
The level of free convection (LFC) is where up

e 5 up
es. The

lifting condensation level is below the LFC for a lifted parcel
with no mixing assumptions, assuming the lapse rate of the
environment is less than that of a dry adiabat. In a well-mixed
atmospheric boundary layer, there is typically some convec-
tive inhibition below the LFC, as noted in Raymond (1994).

4. Plume calculation description

In our plume calculations, we assume the bulk plume
undergoes reversible moist-adiabatic transitions allowing for
ice, conserving its equivalent potential temperature ue, calcu-
lated according to Eq. (2.67) in Stevens and Siebesma (2020),
throughout its ascent. Further technical details of mixing may
be found in Holloway and Neelin (2009); we provide a short
summary here.

The bulk plume model takes the environmental profiles of
temperature and moisture, and mixing coefficients as inputs.
Mixing coefficients are prescribed and thermodynamic pro-
files are spline interpolated to 5-hPa intervals. A parcel origi-
nating from (with same temperature and moisture content) a
near-surface level of the environment (in our calculations we
choose a parcel at 1000 hPa) is lifted and interacts with the en-
vironment according to the prescribed mixing scheme in its
ascent.

In the absence of mixing and precipitation, the total water
content is conserved and undergoes phase changes 1) when
the parcel reaches saturation below the freezing level (water
vapor condenses to liquid), 2) when the freezing level is
reached (liquid water is converted into ice)}during the freez-
ing process the temperature is held at the triple point, allow-
ing liquid and ice to coexist}and 3) when, above the freezing

level, ice is formed via deposition of water vapor (supercooled
water is not permitted in this equilibrium calculation). The to-
tal water content is conserved until the condensate reaches a
cap of 1 g kg21 and then is lost irreversibly as in Schiro et al.
(2018).

Plume calculations are carried out for two different mixing
assumptions: a nomixing case (NMX) and a heavy mixing case,
“Deep Inflow B” (DIB; Holloway and Neelin 2009), which cor-
responds to convective plumes that entrain approximately equal
amounts of air from each level in the lower troposphere. These
two mixing assumptions probe the two extreme possibilities for
entrainment behavior. The NMX case plume involves lifting a
parcel originating near the surface (in all calculations we assume
the plume starts at 1000 hPa) such that it conserves its ue
throughout its ascent.

The DIB case is calculated by assuming an approximately
linearly increasing updraft velocity at low levels which incor-
porates environmental air such that it can be approximated as
an average of the layers below (Holloway and Neelin 2009;
Schiro et al. 2016, 2018; Adames et al. 2021):

uDIB
e (p) ’ (ps 2 p)21

�p

ps

ue(p′)dp′: (4)

From these plume values, we calculate buoyancy as presented
in (5). To obtain a scalar value for statistical purposes, we av-
erage the lower tropospheric average buoyancy BL and define
it as

BL 5 (ps 2 pLFT)21
�pLFT

ps

Bdp, (5)

where the integrand B is determined for plume up
es from each

mixing scenario in (1).
The definition of BL in (5) is similar to that previously used

(Ahmed and Neelin 2018, 2021a; Adames et al. 2021; Wolding
et al. 2022) and contains both negative and positive contribu-
tions similar to the traditional measure of convective available
potential energy (CAPE) and convective inhibition (CIN).
Measures of lower tropospheric buoyancy below the freezing
level give the leading order behavior of a deep convection, as
a convective plume needs to reach the freezing level to initiate
deep convection (Stevens et al. 2017; Ahmed and Neelin
2018; Powell 2022). The average in (5) is taken from the sur-
face to the top of the lower free troposphere, 600 hPa (just be-
low the freezing level).

The primary difference between earlier uses of BL and the
one we present here is that we account for virtual effects and
condensate loading in B. Virtual effects are sometimes ne-
glected, but their contributions to buoyancy are not necessar-
ily small (e.g., Sarachik 1985; Emanuel 1994; Holloway and
Neelin 2009; Yang et al. 2022). From the arguments of the
plume model and the definition of buoyancy in Eq. (1), the vir-
tual contributions of vapor tend toward increasing buoyancy
as the plume is at saturation above the boundary layer. Con-
densate loading effects can likewise be substantial (Bacmeister
et al. 2012; Xu and Randall 2001), limited by entrainment and
by precipitation processes that remove condensate from the

TABLE 2. Values of constant used for the buoyancy calculation
in Eq. (1).

Variable Description Value Units

g Acceleration due to gravity 9.8 m s22

L Latent heat of vaporization 2.5 3106 J kg21

cp Specific heat capacity of dry air 1005 J kg21 K21

Ry Gas constant for water vapor 461 J kg21 K21

T0 Reference temperature 300 K
p0 Reference pressure 1000 hPa
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parcel. Here the microphysics of precipitation is simplified to a
prescribed condensate cap. This limits the condensate loading
to realistic values (Xu and Randall 2001; Neale et al. 2010).
The environment can be assumed to be condensate-free, so
dqc ’ qc of the plume. Its maximum contribution to B is gqc,
so that with a condensate cap of 1 g kg21, the condensate contri-
bution to B is approximately 21 3 1022 m s22. Increasing the
condensate cap can result in a significant drop in BL. The vapor
effect contribution remains relatively small;13 1022 m s22.

5. Key profile properties and buoyancy estimation

a. Example profile

Plume calculations are applied to all environmental snap-
shots of temperature and moisture. An example of the plume
calculations and the environmental values of equivalent po-
tential temperature is shown in Fig. 1. The freezing of plume
liquid water may be identified by the kink in the trajectory of
the plume ue (dashed lines) around 500 hPa (more pro-
nounced in the NMX case (orange dashed) in Fig. 1 in both
panels. The gradual increase of ue with height in the NMX
case in Fig. 1 occurs due to the loss of condensate (after reach-
ing the 1 g kg21 cap slightly above the LCL). The shedding of
condensate lends the parcel a decreased heat capacity, and
continued freezing via vapor deposition and latent heat of fu-
sion heat the parcel. The ues of the plumes [used to calculate
buoyancy as in Eq. (1)] has the virtual and condensate loading
contributions of buoyancy added in Fig. 1 according to the
RHS of (3). The contributions are net positive for most of the
lower troposphere (as seen by the difference between the par-
cel solid and dashed curves), albeit small (;1 K) and mostly
reflect the shape of the ue profile of the environment}that is,
the effect is greatest in those layers where the ue is low.

b. Profiles averaged for raining events

Figure 2 shows the plume and environmental profiles averaged
over raining events (when precipitation rate $ 0.5 mm h21). In
ARMBE and ERA5 the average DIB profile (Figs. 2a,b; red
line) exhibits negative buoyancy throughout the LFT. This is also
the case for the MPI models (Figs. 2d,e), In some models, during
a raining event, the DIB profile shows positive buoyancy at a low
level (;900–800 hPa) due to peak in ues (Figs. 2f–j) Only in the
NASA-GISS model (Fig. 2c) does the DIB plume have positive
buoyancy throughout the entire LFT. Nonentraining CAPE can
be compared among models by the difference between the
NMX plume (Fig. 2, orange line) and the ues (black). This differ-
ence compares the boundary layer ue and the lapse rate of ues.
The MPI models and NESM3 exhibit small differences between
their NMX plume and their ues profile, while NASA-GISS,
MRI-ESM2-0, and the NorESM2 models show stark differences.

Figure 2 shows that the NMX and DIB profiles bound the
model environmental ues profiles. At the leading order, the
plume ues is expected to set the environmental ues profile based
on convective adjustment arguments (small-buoyancy and
WTG as outlined in section 1c; see also Singh and O’Gorman
2013; Zhou and Xie 2019). Models with strongly entraining
convective schemes are expected to have ues profiles closer to

DIB, while models with weak entrainment are expected to be
closer to NMX. Based on this argument, we deduce that the
MPI models (Figs. 2d,e) have weakly entraining convection,
while NASA-GISS (Fig. 2c) and MRI-ESM2-0 (Fig. 2h) have
strongly entraining convection. These patterns are also consis-
tent with Ahmed and Neelin (2021a), who noted that the MPI
models}in contrast to most CMIP6 models}are inade-
quately sensitive to LFT moisture. Figures 2a and 2b imply
substantial entrainment rates for the observational baseline
(but smaller than NASA-GISS and MRI-ESM2-0). If the dif-
ference between boundary layer ue and the LFT ues is taken as
a measure of convective instability (Ahmed et al. 2020), it would
appear that the MPI models are highly stable to convection
when compared to NASA-GISS and MRI-ESM2-0. However,
this measure is relevant for non-entraining convection}instead

FIG. 1. Examples of the plume model calculations in the
ARMBE dataset. Dashed lines represent the ue of the environment
(black), the DIB-mixing plume (red), and the nonmixing plume
(orange) with a condensate cap of 1 g kg21. The black solid line
represents the ues of the environment, while the solid lines for the
plume calculations give up

es 1 kues(0:61dqy 2 dqc). Parcel buoyancy
(including virtual effects and condensate loading) is positive when
this exceeds environmental ues per (3). Gray contours are lines of
constant potential temperature. (top) An example of an individual
sounding for a precipitating case, and (bottom) an example for a
nonraining case. Note that equivalent potential temperature on the
x axis is defined for reversible processes.
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FIG. 2. Average profiles during raining times (precipitation rate $ 0.5 mm h21) for environmental ue (black
dashed), ues (black solid), and plume trajectories, Deep-Inflow B (DIB; red) and nonmixing (NMX; orange). For the
plume trajectories, solid lines show ues 1 kues(0.61dqy 2 dqc) to evaluate buoyancy with condensate loading and wa-
ter vapor effects included following (3), such that comparison to environmental ues is proportional to buoyancy, as in
Fig. 1. Shading corresponds to 25th–75th percentiles. Contours are lines of constant potential temperature. Note that
the nonmixing case ue profile is not constant in the vertical due to loss of condensate, since the x axis is reversible
equivalent potential temperature.
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these results imply a trade-off between model entrainment and
model ues profiles, previously noted in Singh and O’Gorman
(2013) and Ahmed et al. (2020). This trade-off motivates con-
struction of the pseudo-entrainment metric in section 7.

c. Convective transition statistics stratified by lower
tropospheric buoyancy BL

The convective transition statistics over tropical oceans for
a number of CMIP6 models in BL were presented in Ahmed
and Neelin (2021a), including a baseline of ERA5 BL matched
with TRMM-3B42 precipitation. Similar statistics conditioned
on column water vapor (CWV) and column relative humidity
(CRH) for the models considered here were presented in
Emmenegger et al. (2022), including ARMBE data as an addi-
tional measure of an observational baseline. Similar to the
conditional-average precipitation rate hPi in CRH and CWV,
the precipitation conditioned on BL presented here in Fig. 3a,
is sharp, or rapidly increases past some critical value of
BL}this rapid increase in hPi is referred to as the pickup. The
critical value BLc is fit to each pickup as in Emmenegger et al.
(2022), through finding the BL value in which a linear fit of
monotonically increasing hPi crosses 0.25 mm h21. The choice
of 0.25 mm h21 instead of 0 mm h21 was chosen to exclude non-
zero rates of precipitation at low BL stemming from the persis-
tent “model drizzle” problem, where models precipitate at low
rates too often (Rushley et al. 2018; Stephens et al. 2010; Jing
et al. 2017; Chen and Dai 2019) and other spurious deviations
at low BL (nonzero rates observed in the ARMBE data
;20.075 m s22). The BLc is listed in the legend of Fig. 3.

Results of the convective-onset statistics conditioned on BL

are similar to those reported in Emmenegger et al. (2022):
most models pick up at slightly higher BL than the baselines

(the baselines are ARMBE and ERA5; Fig. 3a) and increase
their probability of raining too quickly (Fig. 3c). In particular,
the MPI models pick up early while NASA-GISS picks up no-
ticeably late. Additionally, model pickups are driven primarily
by an increasing probability of precipitation; that is, model
precipitation rates in the raining state are not sufficiently sen-
sitive to BL.

It is important to note that differences are observed between
the statistics of ERA5 and ARMBE. These arise from the same
biases reported in Emmenegger et al. (2022)}ERA5 exhibits a
cold bias in temperature with slightly lower humidity in the
LFT, leading ERA5 to have a BL PDF shifted toward higher
values. The biases in ERA5 can be seen in the mean profiles of
ues and ue (see Figs. 5l and 6l, respectively).

The PDFs of BL (Fig. 3b) exhibit features similar to their
counterparts in CRH and CWV [not shown; see Figs. 1–4 of
Emmenegger et al. (2022)], in that the gradual slope of proba-
bility on left side of the PDF is limited by dry regime dynam-
ics while sharp decrease in probability on right side of the
PDF, or “drop-off,” is limited by precipitation; that is, past
the critical value of the pickup, precipitation becomes an
effective moisture (hence BL) sink. Ahmed et al. (2020) and
Wolding et al. (2022) interpret the BL PDFs from a QE per-
spective}convection relaxes a perturbed thermodynamic
profile to an adjusted state}remarking that the peak of the
PDF at BLc implies that BLc is the adjusted QE state. Excur-
sions above BLc are consumed rapidly by convection while ex-
cursions below are consumed at a slower rate, as indicated by
the slopes of the drop-off. More specifically}in the QE
sense}the adjusted state represented by BLc represents a
near-zero buoyancy state by which buoyancy generation via
large-scale forcing is balanced by the convective consumption
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Nauru CMIP6 BL Convective Onset Statistics

BL (m/s2) BL (m/s2)

BL (m/s2)

MIROC-E2SL: -0.036
MPI-ESM-1-2-HAM: -0.031
MPI-ESM1-2-LR: -0.03
ARMBE: -0.011
ERA5 + TRMM 3B42: -0.006
NorESM2-LM: -0.001
NorESM2-MM: 0.003
NESM3: 0.006
MRI-ESM2-0: 0.007
MIROC6: 0.008
NASA-GISS: 0.023

FIG. 3. The convective onset statistics for the observational and reanalysis products [black; ARMBE (solid) and ERA5 (dotted)] and
the CMIP6 model cohort (colors) conditioned on a measure of lower tropospheric buoyancy BL for the DIB-mixing plume model.
(a) The conditional average precipitation with the legend in ascending order of a linear fit estimation of the critical BL value of the pickup,
error bars represent the standard error. (b) The conditional probability of precipitation (for precipitation rate $ 0.5 mm h21); error bars
are the Wilson score interval for 95% confidence. (c) The PDFs of BL, with 95%Wald interval error bars.
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of buoyancy (Arakawa 2004; Peters and Neelin 2006; Neelin
et al. 2008; Ahmed et al. 2020; Wolding et al. 2022). Relation-
ships between the QE state and adjustment process and con-
vective instability as seen in vertical thermodynamic structures in
observations and models are expanded on in sections 5d and 6.
Building on Ahmed et al. (2020), we further explore the QE-
state and its trade-offs between moisture and temperature in-
duced by the variety of representations of entrainment in GCMs
in section 7.

d. Vertical profiles across the convective transition

Figure 4 shows profiles conditioned on BL for ERA5 and
ARMBE. Figures 4a and 4e show the profiles of buoyancy B
according to Eq. (1). The BL binning is performed according
to the average of these profiles from the surface to 600 hPa.
Buoyancy remains close to zero through the boundary layer.
At low (high) BL, the B profiles decrease (stay relatively
constant) throughout an intermediate layer from 900 to
700 hPa and flatten out until reaching the upper troposphere
around 500 hPa. A kink in the profiles is apparent at high
BL bins due to contribution in temperature of freezing in
the plume model.

Equivalent potential temperature ue increases throughout
the column as BL increases (Figs. 4a,e). At lower BL bins, the
ue profile decreases rapidly just above the boundary layer up
to a minimum near the 850-hPa level before increasing up
through the rest of the column. As BL increases, ue begins to
flatten out, the decrease of ue from the boundary layer lessens.
The ue profile is more closely related to variations in the mois-
ture content of the column as opposed to temperature (Ahmed
and Neelin 2018). This can also be inferred from the ues struc-
ture (Figs. 4b,f), which is solely a measure of temperature in
that higher BL values are associated with a cooler column but
exhibit a higher ue.

For both ARMBE and ERA5, higher buoyancy is achieved
through a noticeable cooling and moistening in the LFT. At
lower BL, the ues (Figs. 4b,f) profile shows a decrease from the
surface roughly along a line of constant potential temperature
up until just below the 900-hPa level from where ues increases
until reaching a maximum in the LFT at around the 800-hPa
level in ARMBE and just below the 800-hPa level in ERA5,
then gradually decreases with height. Higher BL profiles con-
tinue to decrease their ues throughout the LFT, and are cooler
through the LFT than lower BL profiles. Both tendencies of
moisture and temperature in increasing BL contribute to large

(m
/

s2
)

FIG. 4. Conditional-average profiles of (a),(e) ue on BL, (b),(f) ues, (c),(g) subsaturation, and (d),(h) buoyancy for (top) ARMBE
and (bottom) ERA5. Contours for ues are lines of constant potential temperature. The average over raining times (precipitation
rate $ 0.5 mm h21) is represented by solid black lines; the average over nonraining times is represented by dotted black lines
(precipitation rate , 0.5 mm h21).
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differences in the subsaturation of the column in different BL

regimes as observed in Figs. 4c and 4g.
HigherBL profiles associated with higher rates of conditionally

averaged precipitation reflect parcels that are less diluted (less
mixing) due to higher ue environments, as shown in Figs. 4a
and 4e. The raining (solid; precipitation rate $ 0.50 mm h21)
and nonraining cases (dashed) in Fig. 4 follow the trends of ue
(Figs. 4a,e) and ues (Figs. 4b,f) noted above with increasing
BL}cooling and moistening of the LFT. In the case of precipita-
tion in ARMBE, the boundary layer is cooler than the highest
BL bin and follows the trend of higher BL through the rest of the
column. The raining case in ERA5 does not display significant
differences from the higher BL bins across the environmental
variables in Fig. 4.

The convective boundary layer lapse rate can be inferred
from Fig. 4, where a parcel travels along a line of constant po-
tential temperature up to its LCL; departures from a line of
constant potential temperature are analogous to departures
from a dry adiabatic lapse rate. In the ARMBE ues case
(Fig. 4b) the binned profiles follow the trajectory of a dry
adiabat (contours) through the boundary layer, regardless of
their BL value. Only in the raining case (solid black) does the
boundary layer lapse rate deviate, starting from a cooler sur-
face value with a shallower lapse rate than that predicted
from a dry adiabat. The boundary layer follows a dry adiabat
across all BL and nonraining and raining regimes for ERA5
(Fig. 4f). Below the LCL, in the raining regime, the tempera-
ture is set by convective downdrafts associated with evapora-
tive cooling. Just above the LCL, the temperature profiles for
both ARMBE and ERA5 show an inversion at low-BL bins.
The inversion is eroded away as BL transitions into higher val-
ues, and the lapse rate becomes steeper.

An additional note should be made on the virtual effect,
and its contribution across different BL regimes. With suffi-
ciently unsaturated LFT, water vapor differences between the
boundary layer and the LFT are large, leading to an increased
virtual effect on buoyancy in low-BL regimes. Vapor virtual
effect contributions are found to be larger on average during
nonraining times than raining times as the LFT is moister dur-
ing raining times, permitting less dilution of ascending convec-
tive elements. Additionally, from Eq. (5), the buoyancy effects
from the condensate in the plume model nearly cancels out the
contribution from water vapor. In the case in which the conden-
sate cap is set greater than 1 g kg21, the condensate contribu-
tion to buoyancy is greater than the vapor. Similar findings
pointing to nonnegligible effects of condensate loading were ex-
plored in Xu and Randall (2001) and Bacmeister et al. (2012).

6. Intermodel differences in vertical
thermodynamic structure

a. ue and ues vertical structures

Figure 5 displays the BL-binned ues for the model cohort.
With the exception of NASA-GISS, LFT ues decreases as BL

increases. A notable feature of Fig. 5 are the peaks in the ver-
tical structures of ues of the models. The peaks of the MIROC
models are described in Chikira and Sugiyama (2010) and

attributed to thermodynamic variations associated with differ-
ent cumulus convection regimes: 850, 650, and 350 hPa corre-
sponding to three major regimes of cumulus convection}trade
cumulus, cumulus congestus, and cumulonimbus. The peaks of
the ues profiles of some models (especially MIROC-E2SL and
MIROC6; Figs. 5f,g) in Fig. 5l}which lie close to the corre-
sponding ue profile in Fig. 6l}could represent large-scale clouds
in the domain as described by Chikira and Sugiyama (2010).
Another complication these peaks introduce is biases in our cal-
culation of BL. These peaks are not visible in observations and
reanalysis products, nor is it a robust feature across models.

The behavior of the NASA-GISS model’s ues in transitioning
from low to high BL indicates the model as an outlier among
the cohort}observations and the majority of models exhibit
LFT cooling while NASA-GISS shows warming (Fig. 5c).

Figure 6 shows the ue profiles binned by BL, similar to Fig. 5.
Observations and models show a similar trend in increasing BL

with respect to moistening: a lower tropospheric minimum be-
tween 900 and 800 hPa that begins to flatten and shift toward
higher ue as BL increases. An inversion is observed in ues profiles
in the layer just above the ABL in Figs. 4b and 4f. This inversion
has been previously observed using dropsondes from the eastern
Pacific in Raymond et al. (2003) and the authors note the inver-
sion most likely arises from large-scale subsidence.

Spatial resolution considerations and their effect on the
precipitation pickup for this model cohort were explored in
Emmenegger et al. (2022) concluding that the convective tran-
sition statistics remain insensitive to spatial averaging. This in-
sensitivity stems from the large spatial autocorrelation of
moisture and temperature (Holloway and Neelin 2010; Abbott
et al. 2016; Kuo et al. 2018).

b. Preconditioning of the convective environment

The trend in the ue profiles in Fig. 6 where the LFT mois-
tens as BL increases is possibly a result of detrainment from
shallow cumulus. The deepening of cumulus congestus in the
LFT and its detrainment of moisture preconditions the free
troposphere for convection, as entrainment of moister air in a
rising plume does not dilute buoyancy as much (Waite and
Khouider 2010). Sensitivity tests in a cloud-resolving numeri-
cal experiment by Waite and Khouider (2010) found the
moistening of the LFT to be the leading factor to the transi-
tion to deep convection, while the cooling of the troposphere
and moistening of the ABL to be less important. An analysis
by Hohenegger and Stevens (2013) found preconditioning by
cumulus congestus to not be a dominant factor in the transi-
tion to deep cumulonimbus}the slow time scale of moisten-
ing by congestus is not consistent with the observed rapid
transition to deep convection. Moreover, their results suggest
moisture convergence to be the driving factor forced through
mechanisms such as large-scale disturbances, waves, etc.

If the event is preceded by stratocumulus clouds, the cool-
ing of the drizzle below the cloud base can lead to localized
cooling and moistening below, destabilizing and moistening
the subcloud layer, setting the environment to more favorable
conditions for moist convection (Zuidema et al. 2017). In a scale
analysis of contributions to plume buoyancy, Adames et al. (2021)
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FIG. 5. (a)–(k) Binned profiles of ues according to BL similar to Figs. 4b and 4f. The solid black line represents the average
profile over raining times, while the dotted black line represents the average dry profile. (l) Average ues over raining events of
the cohort (black solid lines in each panel) and the average ue of the boundary layer during raining events (dots) with 25th–
75th confidence intervals.
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FIG. 6. As in Fig. 5, but for ue profiles.
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found the largest source to be adiabatic moistening and cooling in
the LFT.

Subsaturation, ue 2 ues, is perhaps the most important fac-
tor in the trajectory of a mixing plume, particularly the subsa-
turation of the LFT. This measure represents the additional
moist entropy needed to bring the environment to saturation
and determines the dilution of the rising plume (Ahmed and
Neelin 2018). The convective transition statistics compiled
in subsaturation are displayed in Fig. S1. The conditional-
average precipitation rate also exhibits a sharp pickup when
conditioned on subsaturation of the environment (Fig. S1).
This illustrates the importance of this component of BL, cap-
turing the effect of entraining relatively moist versus relatively
dry LFT air. Note that the subsaturation of the LFT takes two
preconditioning effects (Zhang and Klein 2010) into ac-
count}in addition to moisture, the variations in temperature
measured by ues can contribute.

Adames et al. (2021) found the fast time scale on which the
cooling and moistening of the LFT occurs is consistent with
inertio-gravity waves. With this in mind, a sufficiently moist
column may be driven to saturation and convection. As noted
in Raymond (1995), a marginally subsaturated column within
a few kelvins to zero are convective, as a transient gravity
wave can lower the ues of the environment. Another large
contribution to buoyancy generation and destabilization is
vertical advection of moisture. Convection moistens the LFT
if moistening from updraft detrainment exceeds drying from
downdraft detrainment (Adames et al. 2021).

7. The pseudo-entrainment diagnostic

Examination of observed and model ue and ues profiles in
Fig. 2 suggested a decrease in ues through the lower free tro-
posphere that is likely associated with entrainment interacting
with the lower free tropospheric humidity. We now construct
a pseudo-entrainment metric, in which bulk entrainment is es-
timated using ue and ues profiles.

a. Derivation

Assuming that the plume entrains environmental air from
some combination of levels below, or that there exists some
influence function (Ahmed and Neelin 2018; Schiro et al.
2018), the relationship of the estimated updraft ue has the
form

up
e 5

�ps

p
I( p, p′)ue(p′)dp′, (6)

where

I(p, p′) 5 1
M(p)

dM(p′)
dp′

is the influence function with M is the upward mass flux. Dif-
ferentiating (6) with respect to p gives the simple plume
equation

dup
e

dp
5 e(ue 2 up

e ), (7)

where

e 5
1

M(p)
dM(p)
dp

5 I( p, p)

is the entrainment coefficient and detrainment is neglected.
To a first approximation using the zero buoyancy assump-

tion (Singh and O’Gorman 2013) and taking ues 5 up
e in (7)

gives

dup
e

dp
5 e(ue 2 ues): (8)

The right-hand side of (8) is the environmental subsaturation,
a measure of environmental dryness. Assuming now that the
entrainment is constant through the LFT and integrating (8)
from the top of the boundary layer (900 hPa) to 600 hPa gives

e ’ ẽ 5
u600es 2 uBLe

hu2e i
, (9)

where ẽ is termed the pseudo-entrainment, a bulk measure of
entrainment in the LFT, and hu2e i is the vertically integrated
subsaturation from 900 to 600 hPa. In deriving (9), we have as-
sumed that the plume leaves the boundary layer with the aver-
age ue of the boundary layer, uBLe . At 600 hPa, the plume ue is
assumed equal to the environmental saturated ue (5u600es ). The
upper limit of the integral in (9) is restricted to 600 hPa for the
following reasons: (i) the plume properties below the freezing
layer are found to have the strongest relationship to precipita-
tion (Holloway and Neelin 2009; Schiro et al. 2018; Ahmed
and Neelin 2021b) and (ii) 600 hPa lies below the tropical
freezing layer, so ice transformation effects can be neglected
when formulating (9). The pseudo-entrainment diagnostic is a
function of the environmental stability [the numerator in (9)]
and subsaturation [the denominator in (9)].

A similar derivation for a zero-buoyancy entraining plume
model was used in Singh and O’Gorman (2013); in their
model, the entrainment rate is prescribed as the e(z)5 ê/z
case (the same scheme used in our Deep-Inflow B calcula-
tions) where ê is a constant. Deep-Inflow B considerations
can be applied to Eq. (9), by substituting e 5 ê(p2 p0)21

which applies weighting to the isobaric layers of integrated
subsaturation profile over the entraining layer. The main re-
sults remain unchanged. For simplicity, we stick to our formu-
lation in (9).

We wish to emphasize that pseudo-entrainment and en-
trainment in a model convective scheme are not interchange-
able. First, the pseudo-entrainment similarity to entrainment
in (8) applies in the limit of small buoyancy, which is often
violated at short time scales, hence the choice to diagnose the
pseudo-entrainment from the average conditions over raining
events. Second, models often produce some deep convection at
the grid scale (e.g., Norris et al. 2021). The pseudo-entrainment
includes effects of such events, for which entrainment is by the
flow into the grid cell from neighboring nonconvecting grid
cells, as elaborated below. Overall, the large-scale pseudo-
entrainment measure aims to capture the aggregate effect of an
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ensemble of convective entities originating at any level in the
LFT (below 600 hPa), not the entrainment rate that would ap-
ply during a particular convective event or in a specific parame-
terization. In the following section, we will be applying the
pseudo-entrainment estimation to the environmental profiles at
the Nauru site.

b. Model diagnosis

The pseudo-entrainment diagnostic is now applied to con-
strain climate model entrainment-stability tradeoffs. For this
we use nine CMIP6 models along with six CAM5 parameter
perturbation runs. Note that (9) is only applicable during con-
vecting times since it is derived from an entraining plume
equation (6). We therefore estimate all the environmental
ue-based variables (uBLe , u600es , and hu2e i) as averages during
times in which the precipitation rate exceeds 0.5 mm h21.
Figure 7 shows uBLe and the u600es of each model computed this
way, along with comparisons to ARMBE and ERA5 data.
Confidence ellipses are computed from 1000 bootstrap real-
izations of the average raining profile (sampled with replace-
ment from the raining events in each dataset), using the
covariance matrix to fit an ellipse that would contain 95% of
the samples if the distribution were Gaussian. For models and
ERA5, the ellipses are smaller than the symbols due to large
number of soundings, but may be seen for ARMBE and the
CAM5 runs due to smaller sample size. A related measure for
regional representativeness is discussed below.

Under QE assumptions, the instability measure, uBLe 2 u600es ,
may be regarded as a “plume lapse rate” relative to that of a
nonentraining parcel through the LFT if uBLe ; ues at the top
of the boundary layer (i.e., the level of free convection is near
900 hPa). We use this term for brevity, noting that it would be
zero for an environmental profile neutral to nonentraining, re-
versible plumes. The DIB plume in Fig. 2 (uDIB

e ; red curve) is
approximated by the average of levels below; its ue at the top
of the boundary layer (900 hPa) is equivalent to the uBLe value
displayed in Fig. 7. At the top of the boundary layer, the DIB
plume lies close to its environmental ues for NASA-GISS, the
MIROC models, MRI-ESM2-0, and the NorESM2 models
(comparison of red to solid black curves in Figs. 2c,f–j).
ARMBE, ERA5, the MPI models, and NESM3 environmental
ues are more similar to the NMX plume at the top of the boundary
layer (comparison of orange to black curve in Figs. 2a,b,d,e,k).
The estimation of the boundary layer ue depends on boundary
layer mixing assumptions, which may be different among
model convective schemes (and varying in observations). Sur-
face boundary layer values for those models which appear to
experience less mixing out of the boundary are included in
Fig. 7 (open circles) for reference.

As an indicator of how well values at Nauru represent the
region, we also include an ellipse, similar to a 95% confidence
ellipse, for the for the ERA5 western Pacific (58S–58N, 1008E–
1808) averaged profiles over raining times in 2006. This ellipse
is fit such that it contains 95% of the samples from the distri-
bution over this region. In addition to sampling error (rela-
tively small) it includes variations due to point to point
differences within the region. For the ERA5 western Pacific,

this ellipse is elongated in a direction corresponding to cons-
tant lapse rate, i.e., uBLe increases are aligned with u600es in-
creases, parallel to the one-to-one line in Fig. 7.

Models which use the Tiedtke-type convective parameterization}
which use moisture convergence in the convective trigger}the
MPI models and NESM3, are more stable than observations,
while other models in the cohort}the majority of which use a
CAPE-based triggers and closures}look to exhibit less stabil-
ity (convective parameterization assumptions are listed in
Table 1).

The total dilution of the bulk plume is characterized by
uBLe 2 u600es , often discussed as an instability measure since pos-
itive values would yield convective instability for nonentrain-
ing plume}noting that here the interpretation is as a profile

−

FIG. 7. (a) Average atmospheric boundary layer (ABL; defined
as 1000–900 hPa; closed markers) with surface ue values (open
markers) plotted against the ues at the 600-hPa level of the average
raining profiles, with the one-to-one line plotted as a reference
(gray dashed) and (b) the average LFT subsaturation (900–600 hPa)
during raining times plotted against the theoretical plume lapse rate
[u600es 2 uBLe ; subtracting the two quantities plotted in (a)] of the aver-
age raining profile. Quantities are calculated from the profiles dis-
played in Fig. 2. Shaded regions are 95% confidence ellipses (in most
cases these are smaller than the marker) which contain 95% of the
samples from the underlying Gaussian distribution. The dotted re-
gion indicates the western Pacific regional spread in ERA5 (see text).
CAM5 perturbed-physics experiments are included with varying
entrainment rates (dmpdz) of 0.25, 0.50, 0.75, 1.0 (control), and
1.25 km21, and a case where the subgrid convective parameterization
is turned off (zm_off) as colored x markers.
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that is typically only marginally unstable to entraining plumes.
This measure is similar to the deep convective inhibition
quantity introduced in Raymond et al. (2003) where the au-
thors showed a correlation between larger differences be-
tween boundary layer moist entropy and an intermediate
layer (810–830 hPa) and deep convection.

The environmental subsaturation in the intermediate layer
plays a defining role and acts with entrainment in determining
the degree to which the bulk plume is diluted in its ascent.
Consider the scenario where the entrainment among a model
cohort is fixed. In our formulation, if the stability differs, the
conclusion is that the subsaturation of the environments
differ}larger (smaller) lapse rates are the result of a more
(less) subsaturated environment due to the incorporation of
drier (moister) air into the plume. Figure 7b shows the average
subsaturation of the intermediate layer (900–600 hPa) to the
lapse rate of the environment. The subsaturation–instability
relationship of the model cohort is much more complicated
than this as observed in Fig. 7b; models exhibit varying degrees
of subsaturation and lapse rates. We can tie these two environ-
mental factors together and derive a single quantitative diag-
nostic, the pseudo-entrainment diagnostic, as an estimator of
the bulk entrainment rate. The pseudo-entrainment diagnostic
is, more succinctly, the ratio of the instability to the subsatura-
tion of a raining column.

The pseudo-entrainment formulation illustrates the trade-
off between the subsaturation and the lapse rate; in order for
a model with a high (low) bias prescribed entrainment to rep-
licate the observed lapse rate, it must compensate with higher
(lower) subsaturation. This trade-off has been explored in
previous studies: (Mapes and Neale 2011; Kim et al. 2013,
2012; Ahmed et al. 2020), increasing entrainment increases
the influence of the ambient subsaturation at the expense of
the LFT stratification. Buoyancy-based cumulus parameter-
izations (those with considerations of CAPE or cloud-work)
adjust precipitating environments to near-zero buoyancy
measures; the quasi-equilibrium (QE) state in models with

low entrainment is characterized by neutral lapse rates while
the QE state of models with high-entrainment is LFT satura-
tion (Ahmed et al. 2020).

We calculate ẽ with the average profile over raining times
for each model. Figure 8 shows the results of the pseudo-
entrainment rate, plotted against the critical value of the pre-
cipitation pickup BLc, the BL value where the precipitation
pickup begins to increase rapidly.

A near linear relationship is observed between BLc and ẽ,
models with a higher pseudo-entrainment tend to exhibit a
pickup at higher BL. The pseudo-entrainment estimation is
able to discern between those environments resulting from
an increasing entrainment parameter within a convective
scheme; increasing the entrainment rate in the CAM5 model
leads to a higher ẽ and a higher BL pickup (colored x markers
in Fig. 8). As a model entrainment parameter is decreased,
the threshold for the convective trigger (such as CAPE) is
met in drier environments, and models with lower entrain-
ment have drier and warmer columns during convection. We
underline that the pseudo-entrainment estimator is for an
overall effect of entrainment. This could include contributions
from more than one entrainment scheme if present; more im-
portantly, when grid-scale convection occurs in the model,
which is not infrequent, the overall entrainment includes grid-
scale inflow with neighboring cells serving as the environment.
This may be seen with the ZM-OFF experiment, for which
deep convection happens entirely at the grid scale and which
thus has a high pseudo-entrainment.

The pseudo-entrainment diagnostic, being a function of
temperature lapse rate and subsaturation, presents a con-
straint on model behavior if entrainment is not correctly
represented. For instance, if a model’s convective scheme en-
trains too heavily, the bulk plume dilutes quickly, and this is
reflected in the environmental ues as a steeper lapse rate and a
higher measure of instability. In this high (low) entrainment
case, to counter the production of large and too unstable
(small and too stable) lapse rates, the bulk plume would need

CMIP6 Multimodel Pseudo-entrainment Rate ( ) at Nauru
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FIG. 8. The pseudo-entrainment rate ẽ plotted against the critical value of the BL pickup.
Vertical bars show the 5th–95th confidence interval, but are only visible for CAM-ZM-OFF.
The dotted area shows 5th–95th range from the western Pacific, similar to Fig. 7, i.e., a measure
of regional variations in the pseudo-entrainment.
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to mix with less (more) subsaturated air, or the column would
need to moisten to a sufficient degree.

Model moisture biases are often framed with the consider-
ation of the convective trigger (e.g., models with lower en-
trainment may reach their threshold for convection in drier
environments; Ahmed and Neelin 2021a). The components of
the pseudo-entrainment diagnostic}the instability and subsa-
turation}provide another, perhaps more consequential, view
of how entrainment biases affect environmental behavior dur-
ing convective events. Models with pseudo-entrainment rates
that are too large must produce a higher moisture bias to ac-
curately represent the stability of the environment.

This is shown in Fig. 9, which displays the pseudo-entrainment
against the instability of the observations and model cohort.
The reference line (black-dotted) shows the values of pseudo-
entrainment and the instability needed to replicate the subsa-
turation of the ARMBE data}higher ẽ implies a higher
stability if the subsaturation is constant. Models that lie to the
right (left) of the reference line have a high (low) moisture
bias. Most notably in Fig. 9, the NASA-GISS model must
have a high moisture bias, given that its pseudo-entrainment is
so large. A major implication of Fig. 9 is that if NASA-GISS
moisture were not compensating for its high ẽ, its instability
would be too large compared to observations (215 K).

8. Conclusions

A simple plume model based on the conservation of equiv-
alent potential temperature ue allows for estimations of insta-
bility similar to measures of CAPE from snapshots of vertical
thermodynamic structures. The ue definition of buoyancy pro-
vides a favorable framework for tropical climatologies that

are shaped by moist convection driven by the onset of condi-
tional instability. The presence of a rapid increase in precipi-
tation conditioned on heavily entraining plume buoyancy hPi
across the cohort of CMIP6 models indicates a high degree of
correlation between heavy lower-free tropospheric (LFT)
mixing and the onset of convection in model convective
schemes. Binning the thermodynamic environments by a the-
oretical value of LFT buoyancy BL shows the environment
generates buoyancy through the combination of LFT cooling
and moistening. Most models qualitatively capture this cool-
ing and moistening behavior, the exception being the NASA-
GISS model which warms in addition to moistening. Contrary
to previous work which points to insufficient sensitivity of the
prior (CMIP5) generation of GCMs to LFT moisture (Rushley
et al. 2018), the proximity of the critical values of hPi between
CMIP6 models and observations suggests the majority of
CMIP6 models perform fairly well in their sensitivity to envi-
ronmental moisture through the mixing process.

Emmenegger et al. (2022) showed that a cohort of CMIP6mod-
els perform relatively well in replicating the statistics of column-
integrated measures such as column relative humidity (CRH) and
column water vapor and precipitation. The analysis presented
here dissects the vertical thermodynamic structures of the model
cohort, concluding that models perform well with respect to CRH
but at the expense of their climatological stability due to the con-
straint presented by inaccurate representation of the entrainment
process. A few models in this cohort, NASA-GISS and MRI-
ESM2-0, are shown to exhibit environments consistent with too
much entrainment in their convective schemes and must compen-
sate with a wetter column during convection in order to keep their
column at a realistic level of stability (as determined by the differ-
ence between ues of the LFT and ue of the boundary layer).

FIG. 9. The pseudo-entrainment ẽ plotted against the theoretical plume lapse rate (calculated
from the average profiles during raining times). The reference line refers to the ARMBE LFT
subsaturation; models which lie to the right (left) of this line have a moist (dry) bias for their
given lapse rate. The dotted region shows western Pacific regional variations in ERA5 as in
Figs. 7 and 8.
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These conclusions are reached through the derivation of
the pseudo-entrainment diagnostic, an estimation of an entrain-
ment rate undergone by a bulk plume between the boundary
layer and the freezing level. The pseudo-entrainment is the ratio
of the bulk plume lapse rate (the expected change a parcel
undergoes in its ascent, estimated by difference of the freezing
level ues and boundary layer ue) and the integrated subsatura-
tion (the expected properties of the air the parcel mixes with)
of the average raining environment. It is shown in Fig. 8 that
the pseudo-entrainment serves as a reasonable indicator of the
critical value of the pickup, with a higher pseudo-entrainment
diagnostic predicting pickup at a higher BL value. These results
are consistent with our postulate that larger measures of appar-
ent convective instability on average during raining events are a
consequence of too heavy entrainment. In section 7, the conse-
quences of the incorrect treatment of the entrainment process
in the climatological structures of humidity and instability are
assessed. Figure 9 displays the constraint in which CWV and
CRH statistics may be accurately represented by models with
incorrect entrainment, but only so at the expense of climatologi-
cal instability}models with higher (lower) entrainment must
accommodate with higher (lower) climatological instability to
accurately represent environmental moisture. In the case that
entrainment is too high, models must sufficiently saturate to
keep climatological instability at some reasonable range to that
of observations. Such is the case for the NASA-GISS model; it
shows a significantly higher measure of pseudo-entrainment,
and to keep its stability within a reasonable range of observa-
tions, it compensates with higher climatological moisture. The
pseudo-entrainment diagnostic shows models that use variants
of the Tiedtke convective scheme and low entrainment runs of
CAM5 display environments consistent with small entrainment,
with small plume lapse rates and larger subsaturation that lead
to early pickups in BL. Furthermore, some models that behave
reasonably in terms of bulk entrainment effects exhibit varia-
tions in vertical structure even for averages over raining events
that do not correspond to observations. We postulate that the
factors of the pseudo-entrainment diagnostic analyzed here
likely shape features of CMIP6 warming scenario experiments,
given the delicate balance between lapse rate (instability) and
water vapor (subsaturation) feedbacks, which shape the struc-
ture of warming (Bao et al. 2021).
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1. Equivalent Potential Temperature Definition of
Buoyancy

The following derivation closely resembles that of
Adames et al. (2021) Appendix A, but uses a constant ref-
erence in it 𝜃𝑒𝑠 approximation. A more detailed derivation
of Equivalent Potential Temperature and parcel buoyancy
may be found in Raymond (1994) Section 2 - 2.1.

We begin with the approximation to virtual temperature,
𝑇𝑣 ,

𝑇𝑣 ≈ (1+0.61𝑞𝑣 − 𝑞𝑐)𝑇

where𝑇 is the temperature, and 𝑞𝑣 and 𝑞𝑐 are the vapor and
condensate mixing ratios respectively. We write a small
change in 𝑇𝑣 as

𝛿𝑇𝑣 ≈ (1+0.61𝑞𝑣 − 𝑞𝑐)𝛿𝑇 + (0.61𝛿𝑞𝑣 − 𝛿𝑞𝑐)𝑇 (1)

We can rewrite the virtual temperature definition of
buoyancy,

𝐵 = 𝑔

[
𝛿𝑇𝑣

𝑇𝑣

]
using 1 as

𝐵 = 𝑔

[
𝛿𝑇

𝑇
+ 0.61𝛿𝑞𝑣 − 𝛿𝑞𝑐

1+0.61𝑞𝑣 − 𝑞𝑐

]
(2)

With 0.61𝑞𝑣 − 𝑞𝑐 << 1, (1 + 0.61𝑞𝑣 − 𝑞𝑐)−1 ≈ 1 −
0.61𝑞𝑣 + 𝑞𝑐, the expression for buoyancy is simplified to

𝐵 = 𝑔

[
𝛿𝑇

𝑇
+0.61𝛿𝑞𝑣 − 𝛿𝑞𝑐

]
(3)

where second-order terms have been dropped.
We will rewrite the fractional temperature difference of

𝐵 in terms of a equivalent saturation potential temperature,

Corresponding author: Todd Emmenegger, tem-
men@atmos.ucla.edu

𝜃𝑒𝑠 , a variable conserved in a saturated parcel with respect
to moist adiabatic motions. Consider the approximate def-
inition of equivalent potential temperature, 𝜃𝑒𝑠:

𝜃𝑒𝑠 = 𝜃 exp
[
𝐿𝑞𝑠

𝑐𝑝𝑇0

]
where 𝜃 is the potential temperature, 𝐿 is the latent heat

of vaporization, 𝑞𝑠 is the saturation mixing ratio, 𝑐𝑝 is
the specific heat capacity of dry air, and 𝑇0 is a reference
temperature.

For simplicity, define 𝜃𝑒𝑠 as functional:

𝜃𝑒𝑠 ≡ 𝜃𝑒𝑠 [𝜃 (𝑝,𝑇), 𝜉 (𝑞𝑠 (𝑇);𝑇0)] = 𝜃𝜉

where
𝜉 = exp

[
𝐿𝑞𝑠

𝑐𝑝𝑇0

]
.

Differentiating,

𝛿𝜃𝑒𝑠 =
𝜕𝜃𝑒𝑠

𝜕𝜃

𝜕𝜃

𝜕𝑇
𝛿𝑇 + 𝜕𝜃𝑒𝑠

𝜕𝜉

𝑑𝜉

𝑑𝑞𝑠

𝑑𝑞𝑠

𝑑𝑇
𝛿𝑇

=
𝜉𝜃

𝑇
𝛿𝑇 + 𝜃𝜉 𝐿

𝑐𝑝𝑇0

𝐿𝑞𝑠

𝑅𝑣𝑇
2 𝛿𝑇

then,

𝛿𝜃𝑒𝑠

𝜃𝑒𝑠
=
𝛿𝑇

𝑇

(
1+ 𝐿2𝑞𝑠

𝑐𝑝𝑅𝑣𝑇0𝑇

)
𝛿𝜃𝑒𝑠

𝜅𝜃𝑒𝑠
=
𝛿𝑇

𝑇
(4)

Using (4) in the virtual temperature definition of buoy-
ancy, (3) gives the final form of buoyancy used in the

1



2

Fig. S1. Similar to Figure 3 of the main text but statistics are conditioned on average LFT subsaturation, 𝜃𝑒 − 𝜃𝑒𝑠
averaged over 900 - 750 hPa.

manuscript,

𝐵 = 𝑔

[
𝛿𝜃𝑒𝑠

𝜅𝜃𝑒𝑠
+0.61𝛿𝑞𝑣 − 𝛿𝑞𝑐

]
2. Convective onset statistics as a function of LFT sub-

saturation

Figure S1 is provided for comparison to Fig. 3 in the
main text which shows convective onset statistics as a func-
tion of 𝐵𝐿 . Similarities between these figures illustrate the
importance of lower free troposphere (LFT) subsaturation
to the convective onset.
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