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Abstract—Classification of hyperspectral images is an impor-
tant step of image interpretation from high spatial resolution
imagery. Different studies demonstrate that spatial features can
provide complementary information for increasing the accuracy
of hyperspectral image classification. In this study, we evaluate
different methods of spectral-spatial classification of hyperspec-
tral images that are based on denoising methods using convo-
lutional autoencoders. The resulting high-dimensional vectors of
spectral features are classified by supervised algorithms such as
support vector machine (SVM), maximum likelihood (ML), and
random forest (RF). The experiments are performed on several
widely known hyperspectral images that reveal a patch-based 3D
convolutional autoencoder is more effective in reducing noise in
the dataset and retaining spectral-spatial information. Random
Forest classifier provides the highest classification accuracy across
all the models.

Index Terms—Autoencoders, UNet, Convolution Neural Net-
works, Hyperspectral Imagery.

I. INTRODUCTION

YPERSPECTRAL imagery (HSI) is used across many

different fields including agriculture [1], biology [2],
and forestry [3]. Hyperspectral imaging is the application of
analyzing a wide spectrum of light rather than just assigning
primary colors to each individual pixel. The light in each of
these pixels is broken down into many individual spectral
bands. While more bands are able to provide information
pertaining to a wide array of objects, processing such a large
dataset is challenging. Neural Networks have greatly improved
the spectral spatial classification of hyperspectral images in
remote sensing for the betterment of knowledge discovery
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[4], [5]. However, with the growing complexity of these
networks, these solutions have necessitated the requirement of
sophisticated computational hardware, thereby limiting their
application. Traditional machine learning models are a suit-
able alternative, but different algorithms have limitations to
express non-linearity thereby increasing the need for human
intervention.

Imagery derived from hyperspectral satellites collects in-
formation in the form of very fine spectral bands covering
a wavelength range in the electromagnetic spectrum. This
is far more compared to multispectral images used for a
variety of factors in remote sensing like change detection [6]-
[8], crop analysis [9]-[11], and monitoring natural disasters
[12]. This provides a huge volume of data and the possibil-
ity of distinguishing materials spectrally making the above-
mentioned tasks far more accurate. Particularly, crop analysis
and vegetation identification amongst others can be classified
accurately. In traditional hyperspectral classification systems,
classifiers are only able to consider spectral signatures without
considering the correlations between the pixel of interest and
its neighboring pixels [13]. Numerous classification techniques
have been developed such as the K-nearest-neighbor classifier
[14], maximum-likelihood estimation [14], [15], artificial neu-
ral networks [16], and kernel-based techniques [16]. In par-
ticular, support vector machines [15], [16] have demonstrated
excellent performance for such classification. However, it is a
very challenging task due to the tiny distinction among spectral
signatures of various types in the same families, such as tillage
in the corn fields. There are some spectral-spatial classifiers
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developed for Features-level fusion. For example, Generalized
Composite Kernel (GCK) for a combination of both spectral
and spatial information were employed by multinomial logistic
regression, and support vector machine are introduced in [15],
[17]-[19]. In addition to the composite classifier framework,
much research focuses on spatial feature extraction.

Redundancy can be all throughout an HSI which can make
feature extraction less effective. Thus, reducing the redundancy
can be beneficial to do before extracting the features from
the image. Plotting images for exploring the average relative
brightness can be useful in selecting important bands from the
HSIs, but this does not solve the redundancy problem of the
HSI. The highest variant bands can be very similar to each
other or correlated to one another. This would be redundant
to choose bands that share very similar values or features. To
counteract this, getting rid of correlated bands by taking bands
that correlate a lot and getting rid of the least important one out
of the two is advisable. This can be continued until the desired
number of bands is reached or the specified correlation is met.
The way to determine if a pair of bands are correlated is to use
the correlation coefficient. The correlation coefficient gives a
value between 0 and 1 with O not being correlated at all and
1 being completely correlated. There are a couple of methods
for comparing the bands to one another and reducing the band
set. The first method is adjacent correlation comparison which
takes adjacent bands and compares them to get a correlation
coefficient. The second method is all correlation comparison.
This method compares one band with every other band minus
itself and produces a list of correlation coefficients.

While single-band comparisons can reveal significant pat-
terns, they are not able to depict non-linearity as extensively
as neural networks. In this research, we explore how different
variations of neural networks perform on the classification of
HSI. Neural networks have been used as an autoencoder to
reduce noise in the dataset followed by the application of
machine learning for classification.

II. PREVIOUS WORK
A. Denoising methods used in HSI

HSI is often processed to reduced dimensionality and re-
searchers have explored different pathways to address this
issue. The following are examples of denoising without ap-
plication of deep learning. These are mostly specific to the
dataset making transfer learning challenging. The authors in
[20] proposed a HSI denoising method based on obvious
redundancy and correlation. This is a noise reduction method
based on joint spectral-spatially distributed sparse represen-
tation. According to the experimental results and analysis,
this method can greatly improve the denoising performance.
The highest Overall Accuracy (OA) and kappa coefficient
values rose by 12.24% and 0.1433 respectively after the
application of this method. The method exploits the intra-
band structure and inter-band correlation during joint sparse
representation and joint dictionary learning. In joint spectral-
spatial sparse coding, inter-band correlations are exploited to
capture similar structures and preserve spectral continuity. The

authors in [21] proposed a multi-linear algebra approach to
jointly achieve denoising and dimensionality reduction. This
method is mainly based on spatial low-rank approximation
and spectral dimensionality reduction. From the definition of
matrix rank, we know that if the image is regarded as a
matrix, the less the number of its bases, the less the number
of linearly independent vectors corresponding to the bases,
and the smaller the rank of the matrix. We can usually use
low rank for image denoising. Principal Component Analysis
(PCA) is the most popular dimensionality reduction method.
According to the experimental results, the OA nearly increased
5% by using this method. Zhang et. al. [22] proposed a new
HSI Restoration method using Low-Rank Matrix Restoration
(LRMR). An HSI denoising method was proposed by jointly
exploiting local/global redundancy and correlation (RAC) of
HSI in spatial and spectral domains. This method removes
noise by modeling RAC and by learning a sparse approxi-
mation of the dictionary data. But using only the local RAC
in the spectral domain might cause spectral distortion so a
low-rank constraint was used to deal with global RAC in the
spectral domain. The experimental results had no noise and
visually clearer than the traditional method of video denoising
by sparse 3D(VBM3D). The OA was over 85% [23]. In
[24] the authors proposed a low-rank tensor recovery (LRTR)
method to remove mixed noise in HSI data. Comparing to
the traditional low-rank tensor decomposition methods, the
LRTR method can preserve the global structure of HSI while
removing Gaussian noise and sparse noise. The experimental
results also show that the proposed LRTR method can achieve
promising performance only in removing Gaussian noise.
However, LRTR still could make high OA and Class-Specific
Accuracy (CA) which were most over 80%.

Fig. 1: Indian Pines dataset (a) Output from a single band and
,(b) classes in the dataset

III. METHODOLOGY
A. Dataset

For this research, public access datasets of Indian Pines,
Pavia Center, and Pavia University were used. Indian Pines
dataset has a size of (145 x 145) and has 199 useful bands
ranging from a wavelength of 400nm to 2500nm. The dataset
consists of two-thirds agriculture and one-third forest land
and other natural vegetation. There are some but minimal
manmade structures present in the dataset’s scene. The 16



Fig. 2: Pavia University dataset (a) Output from a single band
and (b) classes in the dataset. Pavia Center dataset (¢) Output
from a single band and (d) classes in the dataset

classes of the ground truth consist of crops such as corn,
alfalfa, soybean, wheat, etc. Most of the crops listed in the
ground truth classes include variations of how the crops were
planted or tended to. Figure 1a shows the Indian Pines dataset
and Figure 1b shows its corresponding classes.

Classes Indian Pines Pavia University = Pavia Center
0 Alfalfa Asphalt Water
1 Corn-notill Meadows Trees
2 Corn-mintill Gravel Asphalt
3 Corn Trees Self-Blocking

Bricks
4 Grass-pasture Painted metal Bitumen
sheets
5 Grass-trees Bare Soil Tiles
6 Grass-pasture- Bitumen Shadows
mowed
7 Hay-windrowed Self]—BB.l ocking Meadows
ricks
8 Oats Shadows Bare Soil
9 Soybean-notill
10 Soybean-mintill
11 Soybean-clean
12 Wheat
13 Woods
14 Buildings-Grass-
Trees-Drives
15 Stone-Steel-Towers

TABLE I: Classes in the three datasets

Pavia Center and Pavia University, located in northern Italy,

both have a groundtruth of nine classes such as asphalt, trees,
painted metal sheets, etc. Pavia Center dataset has a size of
1096 x 715 with 102 bands ranging from a wavelength of 430
to 860 nm. Pavia University has a dataset size of 610 x 340
with 103 bands that range from a wavelength of 430 to 860
nm. Similar to Pavia Center, Pavia University has a ground
truth size of nine classes. Figure 2a and 2c shows both Pavia
University and Pavia Center datasets. Figure 2b and 2d show
their corresponding classes. Table I shows all the classes in
these three datasets.

Figure 3 shows the wavelength of these bands after the
removal of noisy data. Information about classes can be found
in this repository [25]. To produce this image each pixel is
split into different classification categories. Each pixel has its
own set of brightness values for each band or channel, so
the brightness value can be averaged among all of the pixels
in a given classification category. This is done to each band
until getting a set of average relative brightness values for each
classification category is. The graphs in Fig 1 can show which
bands are the most variant.
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7000

6000

5000

4000

3000

Average Relative Brightness

2000

1000

360 500 70 e0 100 1300 1500 1700 180 2100 2300 2500
Wavelength (nm)

Pavia Center Hyperspectral Signal

4000

3500

3000

2500

2000

1500

1000

Average Relative Brightness

500

4000

3000

2000

Average Relative Brightness

1000

0 EQ &80
Wavelength (nm)

Fig. 3: Wavelength distribution of HSI bands (a) Indian Pines
(b) Pavia Center and (c¢) Pavia University

B. Convolutional Neural Networks

Convolutional Neural Network (CNN) is an important part
of deep learning focusing on visual images [26], [27]. It takes



an input image and then analyzes, or more explicitly segments,
the image according to the whole image or parts of the image’s
features, then gives an output that classifies the whole image or
each part of the image into a specific category. CNN includes
three layers: the convolutional layer, the pooling layer, and
the fully connected layer. The convolutional layer is the layer
that can extract local features from images. Networks with
more layers can iteratively extract more complex features from
lower-layer features [28].

CNNs can be used as Autoencoders (AE) which are unsu-
pervised artificial neural network (ANN) that takes an input
vector and reduces it to a lower dimensional space then
reconstructs it back to the original input vector. An image
can be processed by AE by taking the image and passing it
through layers of downsampling then upsampling to regenerate
the same image. This can be useful for extracting features from
HSI. The features that are most important about the HSI would
hopefully be preserved by the AE, and then can be used for
classification. It would reduce the noise in the HSI. For this
research, a special type of CNN called UNet [29] was used as
the AE.

C. Machine learning

1) Maximum Likelihood: Maximum likelihood estimation
is a mathematical method to determine the parameter values
for a certain mathematical model so that the model can
produce results that are closer to the collected and observed
data, or in other words, the model can be as accurate as
possible. Suppose we have collected some data points which
obey the Gaussian (normal) distribution, the way to calculate
the maximum likelihood estimates is given in the equation
below.

1 (z=)?
. — o
P(x; u, o) 0\/%6 (1)

Here ‘x’ is the data points we have observed. The semicolon
after ‘x’ is used to denote that ‘x’ is the data points we have
collected and the p and o are the parameters we need to
determine. The goal is to find the value of i and o so that the
expression above can produce its maximum value [30].

2) Support Vector Machines: A support vector machine is a
supervised machine learning model that comes with the asso-
ciated learning algorithms that analyze data for classification
and regression analysis. The objective of the support vector
machine algorithm is to find a hyperplane in N-dimensional
space (where N is the number of features) that has the
maximum margin between data points and both classes so that
it can distinctly classify the data points [31].

3) Random Forest: In machine learning, a random forest
is a classifier that contains multiple decision trees, and its
output class is determined by the mode of the class output
by individual trees. The Random Forest algorithm has three
main hyperparameters that need to be set before training.
These include node size, number of trees, and number of
features sampled. Random Forest classifiers can be used to
solve regression or classification problems in remote sensing

[32]-[34]. Each decision tree is constructed in a random forest
using a random subset of the training data and a random subset
of the input features. This randomization helps to reduce
overfitting and increase the accuracy of the model. When
making a prediction, the random forest algorithm aggregates
the predictions of all the decision trees in the forest, either
by majority vote (for classification problems) or by averaging
(for regression problems).

IV. EXPERIMENTS

For processing the Indian Pines data set with 199 hyper-
spectral bands, a UNet-based autoencoder was used with three
convolution blocks each having two convolution layers. Batch
normalization along with Relu as an activation function was
used. Dropout was selected at 7% with a kernel size of (3 3).
Since the UNet is being used to reduce noise in the data
set, mean squared error was used as the loss function. A
similar approach was used for both the Pavia center and Pavia
university datasets. Since the image size was significantly
larger, the number of kernels used was larger. For example, the
Indian Pines used 64. 128, and 256 kernels in three convolution
blocks while the Pavia Center and University utilized 256, 512,
and 1024 kernels respectively. Details about training time as
well as other parameters are shown in Table II. All three UNet
models were trained for 100 epochs.

TABLE II: Training Parameters of UNet Autoencoders

Indian Pines Pavia Center Pavia University
Type 2D | 3D 2D 3D 2D 3D
Patch (136, (136,
Applied No No 1 gg 104y | No | gg 104
Parameters | - 50| 300 | 3705 | 1328 | 13716 | 13.28
(millions)
Training | 53> | 261.04 | 272.86 | 4898 82.6 | 1230.19
Time(s)
Optimizer Adam
Loss Mean Squared Error
Epoch 100
Dropout 0.07
GPU Nvidia Tesla V100S (32 GB)

Figure 4 shows the difference between convolution opera-
tion for 2D and 3D variants. For the 3D approach, kernels of
size (3 x 3 x 3) were used. The number of filters in the Indian
Pines dataset was set to 64 like the 2D counterpart with the
same number of convolution blocks. The number of training
parameters was higher considering that the 3D approach uses
both spectral and spatial features from HSI. It was also trained
for 100 epochs. The HSI was preprocessed to convert its
dimension from (145 x 145 x 199) to (144 x 144 x 200).
This ensured that the image was divisible by a 3D convolution
kernel. For the Pavia Center and Pavia University datasets, a
different approach was taken due to their size. For example,
Pavia Center had a resolution of (1096 x 715 x 102) which
was too large for a 3D-UNet model. The Pavia Center was
resampled to (1088 x704x104). This was followed by creating
3D patches with a resolution of (136 x 88 x 104). A total of
64 patches were generated. Pavia University was resampled
from (610 x 340 x 103) to (544 x 352 x 104). 16 different 3D



patches of (136 x 88 x 104) were then used to train the UNet
model. Since the patch sizes were quite similar to the Pavia
Center, the number of kernels used for each downsampling
layer was 64, 128, and 256. After the training process, these
patches were stitched back and resampled to generate Pavia
Center and Pavia University with the original dimensions.

Kernel size=(3,3,3)

Kernel size=(3,3)

2D CNN
Input shape=3D
1 E

Height=5

Width=7

Feature maps/Channel Input shape=4D
Height=6

Width= 6

Depth=3

Feature maps/Channel=1

Fig. 4: Example 2D vs 3D convolution with a kernel of
size 3. For Pavia Center and Pavia University, 3D patches
were generated prior to AE application. Feature maps/Channel
varied based on UNet layers.

TABLE III: Accuracy and Kappa values of the Machine
Learning models after application of CNN Autoencoders

%:)12 Accuracy Kappa
Pavia Center
ML RF SVM | ML RF SVM
2D 799 % 97.34  96.26 | 0.73 096  0.95
3D 84.18 98.1 97.34 | 0.78 097  0.96
Pavia University
2D 51.74 82.83 77.39 | 042 0.77  0.68
3D 55.65 87.76  77.11 | 044 0.84  0.68
Indian Pines
2D 41.81 66.32 47.14 | 035 0.61 0.35
3D 54.18 84.6 66.01 | 048 082 0.5

Three machine learning algorithms were used to test the
efficacy of the proposed approach. These algorithms reported
significant differences as well. A total of 10% random samples
were used as a training dataset to build these classification
models. Results of the algorithms on the remaining 90% of the
test data are shown in Table III. Our first observation is that the
3D approach to image denoising performed significantly well
compared to the 2D approach across all algorithms. It was
also observed that the Random Forest algorithm performed
best when compared to Maximum Likelihood and Support
Vector Machines using Radial Basis Kernel. The Random
Forest model was built using 100 trees.

Tables IV, V, and VI display per-class precision, recall,
and F1-score for all the three algorithms corresponding to the
Random Forest output. Using the 3D approach significantly
increased the per-class performance. For example, Corn-notill,
Corn-mintill, and Corn almost doubled their precision metrics
in the Indian Pines dataset. This shows that the Random
Forest approach coupled with 3D spectral-spatial denoising
is able to identify subtle differences in agriculture signature.
Performance improvements were also observed for urban areas
in Pavia University. For example, the precision for classifying

Bitumen increased from 0.69 to 0.85. Pavia Center reported
minimal improvements as well. The precision of Asphalt
increased from 0.83 to 0.91. This shows that the patch-based
approach has a great potential to extract information from HSI.

TABLE IV: Metrics from Random Forest output on Indian
Pines dataset

Classes Precision Recall F1-Score Support
2D 3D 2D 3D 2D 3D
0 0.58 1 045 0.7 | 0.51 0.82 40
1 057 0.78 | 0.55 0.83 | 0.56 0.8 1285
2 047 077 | 044 0.66 | 046 0.71 738
3 048 0.84 | 0.29 0.66 | 036  0.74 207
4 085 092 | 07 0.86 | 077 0.89 429
5 074 09 | 0.89 09 | 081 0.9 663
6 058 094 | 046 0.71 | 0.51 0.81 24
7 092 097 | 0.96 1 0.94 098 423
8 1 09 | 028 05 | 043 0.64 18
9 058 084 | 05 0.8 | 054 0.82 873
10 0.61 0.8 0.77 0.87 | 0.68 0.84 2228
11 042 078 | 0.26 0.65 | 0.32 0.71 535
12 0.82 0091 0.8 094 | 081 0.92 186
13 089 093 | 093 0.99 | 091 0.96 1141
14 071 092 | 046 0.85 | 0.56 0.88 350
15 092 098 | 0.27 098 | 042 0098 85
Total 9225

TABLE V: Metrics
University dataset

from Random Forest output on Pavia

Classes Precision Recall F1-Score Support
2D 3D 2D 3D 2D 3D
0 0.8 0.89 | 0.85 0.85 | 0.82 0.87 6015
1 0.86 0.89 | 0.94 097 0.9 0.93 16778
2 074 0.83 | 044 0.71 | 0.55 0.77 1882
3 096 095 | 0.84 0.82 | 0.89 0.88 2759
4 099 099 | 099 0.99 | 0.99 0.99 1197
5 0.69 0.85 | 0.53 0.67 0.6 0.75 4530
6 0.87 0.81 | 0.83 0.82 | 0.85 0.82 1196
7 0.67 0.74 | 0.72 0.84 | 0.69 0.78 3301
8 1 1 0.99 0.99 | 0.99 1 841
Total 38499

TABLE VI: Metrics from Random Forest output on Pavia
Center dataset

Classes Precision Recall F1-Score Support
2D 3D 2D 3D 2D 3D
0 1 1 1 1 1 1 59415
1 094 096 | 093 096 | 0.94 096 6824
2 0.83 091 | 0.85 0.9 0.84 0.9 2781
3 0.76  0.79 0.8 0.78 | 0.78 0.78 2397
4 092 093 | 0.87 0.96 0.9 0.94 5915
5 091 093 | 097 096 | 094 094 8350
6 096 095 | 0.87 0.9 0.91 0.93 6607
7 0.99 1 099 099 | 0.99 1 38465
8 1 1 0.99 1 0.99 1 2583
Total 133337

V. CONCLUSION

The preliminary findings in this research support that a
patch-based 3D convolution is both scalable and reduces noise
in HSI. Random Forest has superior classification accuracy
when compared to other machine-learning models. Future
work will look into feature selection methods coupled with



the impact of kernel dimensions on classification performance.
Feature selection may further reduce training data prior to
the application of deep learning thereby reducing resources
hopefully without impacting classification accuracy.
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