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Abstract. A vertex of a plane digraph is bimodal if all its incoming
edges (and hence all its outgoing edges) are consecutive in the cyclic
order around it. A plane digraph is bimodal if all its vertices are bimodal.
Bimodality is at the heart of many types of graph layouts, such as
upward drawings, level-planar drawings, and L-drawings. If the graph is
not bimodal, the Maximum Bimodal Subgraph (MBS) problem asks for
an embedding-preserving bimodal subgraph with the maximum number
of edges. We initiate the study of the MBS problem from the param-
eterized complexity perspective with two main results: (i) we describe
an FPT algorithm parameterized by the branchwidth (and hence by the
treewidth) of the graph; (ii) we establish that MBS parameterized by
the number of non-bimodal vertices admits a polynomial kernel. As the
byproduct of these results, we obtain a subexponential FPT algorithm
and an efficient polynomial-time approximation scheme for MBS.
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1 Introduction

Let G be a plane digraph, that is, a planar directed graph with a given planar
embedding. A vertex v of G is bimodal if all its incoming edges (and hence all
its outgoing edges) are consecutive in the cyclic order around v. In other words,
v is bimodal if the circular list of edges incident at v can be split into at most
two linear lists, where all edges in the same list are either all incoming or all
outgoing v. Graph G is bimodal if all its vertices are bimodal. Bimodality is a key
property at heart of many graph drawing styles. In particular, it is a necessary
condition for the existence of level-planar and, more generally, upward planar
drawings, where the edges are represented as curves monotonically increasing
in the upward direction according to their orientations [12–14,24]; see Fig. 1a.
Bimodality is also a sufficient condition for quasi-upward planar drawings, in
which edges are allowed to violate the upward monotonicity a finite number of
times at points called bends [5–7]; see Fig. 1b. It has been shown that bimodality
is also a sufficient condition for the existence of planar L-drawings of digraphs,
in which distinct L-shaped edges may overlap but not cross [1–3]; see Fig. 1c.
A generalization of bimodality is k-modality. Given a positive even integer k,
a plane digraph is k-modal if the edges at each vertex can be grouped into at
most k sets of consecutive edges with the same orientation [26]. In particular, it
is known that 4-modality is necessary for planar L-drawings [10].

Fig. 1. (a) An upward planar drawing. (b) A quasi-upward planar drawing, where edge
e makes two bends (the two horizontal tangent points). (c) A bimodal digraph (above)
and a corresponding planar L-drawing (below).

While testing if a digraph G admits a bimodal planar embedding can be done
in linear time [5], a natural problem that arises when G does not have such an
embedding is to extract from G a subgraph of maximum size (i.e., with the max-
imum number of edges) that fulfills this property. This problem is NP-hard, even
if G has a given planar embedding and we look for an embedding-preserving max-
imum bimodal subgraph [8]. We address exactly this fixed-embedding version of
the problem, and call it the Maximum Bimodal Subgraph (MBS) problem.
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Contribution. While a heuristic and a branch-and-bound algorithm are given
in [8] to solve MBS (and also to find a maximum upward-planar digraph), here
we study this problem from the parameterized complexity and approximability
perspectives (refer to [11,18] for an introduction to parameterized complexity).
More precisely, we consider the following more general version of the problem
with weighted edges; it coincides with MBS when we restrict to unit edge weights.

MWBS(G,w) (Maximum Weighted Bimodal Subgraph). Given a plane
digraph G and an edge-weight function w : E(G) → Q+, compute a bimodal
subgraph of G of maximum weight, i.e., whose sum of the edge weights is maxi-
mum over all bimodal subgraphs of G.
Our contribution can be summarized as follows.

− Structural Parameterization. We show that MWBS is FPT when parameter-
ized by the branchwidth of the input digraph G or, equivalently, by the treewidth
of G (Sect. 3). Our algorithm deviates from a standard dynamic approach for
graphs of bounded treewidth. The main difficulty here is that we have to incor-
porate the “topological” information about the given embedding in the dynamic
program. We accomplish this via the sphere-cut decomposition of Dorn et al. [16].

− Kernelization. Let b be the number of non-bimodal vertices in an input
digraph G. We construct a polynomial kernel for the decision version of MWBS

parameterized by b (Sect. 4). Our kernelization algorithm performs in several
steps. First we show how to reduce the instance to an equivalent instance whose
branchwidth is O(

√
b). Second, by using specific gadgets, we compress the prob-

lem to an instance of another problem whose size is bounded by a polynomial
of b. In other words, we provide a polynomial compression for MWBS. Finally,
by the standard arguments, [18, Theorem 1.6], based on a polynomial reduction
between any NP-complete problems, we obtain a polynomial kernel for MWBS.

By pipelining the crucial step of the kernelization algorithm with the
branchwidth algorithm, we obtain a parameterized subexponential algorithm for

MWBS of running time 2O(
√

b) ·nO(1). Since b ≤ n, this also implies an algorithm
of running time 2O(

√
n). Note that our algorithms are asymptotically optimal up

to the Exponential Time Hypothesis (ETH) [21,22]. The NP-hardness result of
MBS (and hence of MWBS) given in [8] exploits a reduction from Planar-

3SAT. The number of non-bimodal vertices in the resulting instance of MBS is
linear in the size of the Planar-3SAT instance. Using the standard techniques
for computational lower bounds for problems on planar graphs [11], we obtain

that the existence of an 2o(
√

b) ·nO(1)-time algorithm for MBWS would contradict
ETH.

− Approximability. We provide an Efficient Polynomial-Time Approximation
Scheme (EPTAS) for MWBS, based on Baker’s (or shifting) technique [4].
Namely, using our algorithm for graphs of bounded branchwidth, we give an
(1 + ε)-approximation algorithm that runs in 2O(1/ε) · nO(1) time.

Full proofs of the results marked with an asterisk (*), as well as additional
definitions and technical details, are given in [15].
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2 Definitions and Terminology

Let G be a digraph. We denote by V (G) and E(G) the set of vertices and the
set of edges of G. Throughout the paper we assume that G is planar and that
it comes with a planar embedding; such an embedding fixes, for each vertex
v ∈ V (G), the clockwise order of the edges incident to v. We say that G is a
planar embedded digraph or simply that G is a plane digraph.

Fig. 2. A plane graph G and a sphere-cut decomposition of G; three nooses are high-
lighted on G for the arcs a, b, and c of the decomposition tree.

Branch Decomposition and Sphere-Cut Decomposition. A branch de-
composition of a graph G defines a hierarchical clustering of the edges of G,
represented by an unrooted proper binary tree, that is a tree with non-leaf
nodes of degree three, whose leaves are in one-to-one correspondence with the
edges of G. More precisely, a branch decomposition of G consists of a pair 〈T, ξ〉,
where T is an unrooted proper binary tree and ξ : L(T ) ↔ E(G) is a bijection
between the set L(T ) of the leaves of T and the set E(G) of the edges of G.
For each arc a of T , denote by T a

1 and T a
2 the two connected components of

T \ {a}, and, for i = 1, 2, let Ga
i be the subgraph of G that consists of the

edges corresponding to the leaves of T a
i . The middle set mid(a) ⊆ V (G) is the

intersection of the vertex sets of Ga
1 and Ga

2 , i.e., mid(a) := V (Ga
1)∩V (Ga

2). The
width β(〈T, ξ〉) of 〈T, ξ〉 is the maximum size of the middle sets over all arcs of
T , i.e., β(〈T, ξ〉) = max{|mid(a)| : a ∈ E(T )}. An optimal branch decomposition
of G is a branch decomposition with minimum width; this width is called the
branchwidth of G and is denoted by bw(G).

A sphere-cut decomposition is a special type of branch decomposition (see
Fig. 2). Let G be a connected planar graph, topologically drawn on a sphere
Σ. A noose O of G is a closed simple curve on Σ that intersects G only at
vertices and that traverses each face of G at most once. The length of O is the
number of vertices that O intersects. Note that, O bounds two closed discs Δ1

O
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and Δ2
O in Σ; we have Δ1

O ∩Δ2
O = O and Δ1

O ∪Δ2
O = Σ. Let 〈T, ξ〉 be a branch

decomposition of G. Suppose that for each arc a of T there exists a noose Oa that
traverses exactly the vertices of mid(a) and whose closed discs Δ1

Oa
and Δ2

Oa

enclose the drawings of Ga
1 and of Ga

2 , respectively. Denote by πa the circular
clockwise order of the vertices in mid(a) along Oa and let Π = {πa : a ∈ E(T )}
the set of all circular orders πa. The triple 〈T, ξ,Π〉 is a sphere-cut decomposition
of G. We assume that the vertices of mid(a) = V (Ga

1) ∩ V (Ga
2) are enumerated

according to πa. Since a noose Oa traverses each face of G at most once, both
graphs Ga

1 and Ga
2 are connected. Also, the nooses are pairwise non-crossing, i.e.,

for any pair of nooses Oa and Ob, we have that Ob lies entirely inside Δ1
Oa

or
entirely inside Δ2

Oa
. For a noose Oa, we define mid(Oa) = mid(a), or in general,

we define mid(φ) to be the vertices cut by φ. We rely on the following result on
the existence and computation of a sphere-cut decomposition [23] (see also [16]).

Proposition 1 ([23]). Let G be a connected graph embedded in the sphere with
n vertices and branchwidth 
 ≥ 2. Then there exists a sphere-cut decomposition
of G with width 
, and it can be computed in O(n3) time.

We remark that the branchwidth bw(G) and the treewidth tw(G) of a graph
G are within a constant factor: bw(G) − 1 ≤ tw(G) ≤ 
 3

2 bw(G)� − 1 (see [25]).

3 FPT Algorithms for MWBS by Branchwidth

In this section we describe an FPT algorithm parameterized by branchwidth.
We first introduce configurations, which encode on which side of a closed curve
and in what order in a bimodal subgraph for a vertex v the switches between
incoming to outgoing edges happen.

Definition 1 (Configuration). Let C = {(i), (o), (i, o), (o, i), (o, i, o), (i, o, i)}.
Let G be a graph embedded in the sphere Σ, φ be a noose in Σ with a prescribed
inside, v ∈ mid (φ), and X ∈ C. Let Ev,φ be the set of edges incident to v in φ.
We say v has configuration X in φ, if Ev,φ can be partitioned into sets such that:

1. For every x ∈ X, there is a (possibly empty) set Ex associated with it.
2. Every set associated with an i (o) contains only in- (/out-) edges of v.
3. For every set, the edges contained in it are successive around v.
4. The sets Ex appear clockwise (seen from v) in the same order in G inside φ

as the x appear in X.

For every v ∈ mid (φ), let Xv be a configuration of v in φ. We say Xφ = {Xv |
v ∈ mid (φ)} is a configuration set of φ.

If G is bimodal, then for every noose φ and every vertex v ∈ mid (φ), v
must have at least one configuration X ∈ C in φ. Note that configurations and
configuration sets are not unique, as seen in Fig. 3(a). A vertex can even have all
configurations if it has no incident edges in φ. The next definition is needed to
encode when configurations can be combined in order to obtain bimodal vertices.
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Definition 2 (Compatible configurations). Let X,X ′, X∗ ∈ C be configu-
rations. We say X,X ′ are compatible configurations or short compatible, if by
concatenating X,X ′ and deleting consecutive equal letters, the result is a sub-
string of (o, i, o) or (i, o, i). Note that it is not important in which order we
concatenate X,X ′. See Fig. 3(b). We say X and X ′ are compatible with respect
to X∗ if by concatenating X,X ′ (in this order) and deleting consecutive equal
letters, the result is a substring of X∗.

Fig. 3. (a) A vertex with configurations (o, i), (o, i, o) and (i, o, i) in φ. The most
restricted and thus minimal configuration is (o, i). (b) A vertex with configuration
(o, i, o) in φ and (o) outside of φ. Concatenating (o, i, o) with (o) and deleting consec-
utive equal letters results in (o, i, o), the result is a substring of (o, i, o), thus (o, i, o)
and (o) are compatible. (c) Note that φ3 is composed of φ1 and φ2; the inside of φ1,
the inside of φ2 and the outside of φ3 are clockwise in this order around v with config-
uration (i, o) in φ1 and (o) in φ2. They can be concatenated to configuration (i, o) in
φ3, while (i, o) and (o) are compatible w.r.t. (i, o), but not (o, i).

A configuration X can have several compatible configurations, for example
(i, o) ∈ C is compatible with (o), (i) and (o, i). From these (o, i) is in some sense
maximal, meaning that configurations (o) and (i) are substrings of (o, i). Given a
configuration X, a maximal compatible configuration X ′ of X is a configuration
that is compatible with X, and all other compatible configurations of X are sub-
strings of X ′. Observe that every configuration has a unique maximal compatible
configuration, they are pairwise: (i) − (i, o, i), (o) − (o, i, o) and (o, i) − (i, o).

We say a noose φ3 is composed of the nooses φ1 and φ2, if the edges of G
in φ3 are partitioned by φ1 and φ2. If a noose φ3 is composed of nooses φ1 and
φ2, and there exists a vertex v ∈ mid(φ1) ∩ mid(φ2) ∩ mid(φ3), such that in φ3

around v, all adjacent edges of v in φ1 are clockwise before all adjacent edges of
v in φ2. If X,X ′ and X∗ are nooses and X and X ′ are compatible with respect
to X∗, and v has configuration X in φ1 and configuration X ′ in φ2, then it has
configuration X∗ in φ3. See Fig. 3(c).

If a curve φ contains only one edge on its inside, finding maximal subgraphs
for a configuration inside φ is easy.
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Lemma 1 (*). Let G be a graph embedded in the sphere Σ, let e = {u, v} be an
edge and let φ be a noose that cuts G only in u and v, such that e is in φ and
all other edges are on the outside of φ. Let Xu, Xv be prescribed configurations.
Then we can compute in O(1) time the maximum subgraph G′ of G such that
u, v have configuration Xu respectively Xv in φ in G′.

We will now see how we can compute optimal subgraphs bottom-up.

Lemma 2 (*). Let G be a graph embedded in the sphere Σ, let φ1, φ2, φ3 be
nooses with length at most 
 each, and let Eφ1

, Eφ2
, Eφ3

be the sets of edges
contained inside the respective noose with Eφ1

, Eφ2
being a partition of Eφ3

. Let
Xφ3

be a configuration set for φ3. Let further for every configuration set Xφ1

(Xφ2
) of φ1 (φ2), the maximum subgraph that has configuration set Xφ1

(Xφ2
)

and is bimodal in φ1 (φ2) be known. Then a maximum subgraph G′ of G that has
configuration set Xφ3

and is bimodal in φ3 can be computed in O(62�)·nO(1) time.

If a noose φ contains only e ∈ E, we have only two options in φ: delete e
or do not. Testing which is optimal can be done in constant time, this leads to
Lemma 1. Now let φ3 be a noose that contains more than one edge, let φ1, φ2 be
two nooses that partition the inside of φ3, and let Xφ3

be a given configuration
set. If we already know optimal solutions for any given configuration set in φ1

(φ2) (which we already computed when traversing the sphere-cut decomposition
bottom up), we can guess for some optimal solution for φ3 for every v ∈ mid(φ1)∩
mid(φ2) the configuration it has in φ1 and in φ2. This gives us configuration sets
Xφ1

and Xφ2
for φ1 and φ2, respectively (for every v ∈ mid(φ1)\mid(φ2) we take

its configuration in Xφ3
). We obtain the corresponding solution G′ that coincides

with the optimal solution for φ1 (φ2) in φ1 (φ2) respecting Xφ1
(Xφ2

) and that
coincides with G outside of φ3. Since |mid(φ1) ∩ mid(φ2)| ≤ 
, we achieve the
same by enumerating all possible configurations for mid(φ1)∩mid(φ2), compute
the corresponding solutions and take the maximum in O(62�)·nO(1) time, leading
to Lemma 2. We now obtain the following theorem.

Theorem 1 (*). There is an algorithm that solves MWBS(G,w) in 2O(bw(G)) ·
nO(1) time. In particular, MWBS is FPT when parameterized by branchwidth.

Proof (Sketch). Assume that G is connected (otherwise process every connected
component independently). If bw(G) = 1, G is a star and we can compute an
optimal solution in polynomial time. Otherwise, according to Proposition 1 we
can compute a sphere-cut decomposition 〈T, ξ,Π〉 for G with optimal width 
.
We pick any leaf of T to be the root r of T . For every noose O corresponding to
an arc of T let XO be a configuration set for O. Then we define E(O,XO) to be
edge set of minimum weight, such that G \ E(O,XO) is bimodal inside of O and
has configuration set XO in O. We now compute the E(O,XO) bottom-up. For a
noose O corresponding to a leaf-arc in T , Lemma 1 shows that we can compute
all possible values of E(O,XO) in linear time. For a noose O corresponding to a
non-leaf arc in T , Lemma 2 shows that we can compute EO,XO

for a given XO

in O(62�) ·nO(1) time, and thus all entries for O in O(63�) ·nO(1) time. Let e ∈ E
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be the edge associated with r. We have only two options left, delete e or do not.
In both cases we obtain the optimal solution for the rest of G from the values
E(O,XO). The overall running time is 2O(�) · nO(1). ��

Since our input graphs are planar, we immediately obtain a subexponential
algorithm for MWBS because for a planar graph G, bw(G) = O(

√
n) [19].

Theorem 2. MWBS(G = (V,E), w) can be solved in 2O(
√

n) time.

4 Compression for MWBS by b

Throughout this section we assume that (i) the weights are rational, that is, for
(G,w), w : V (G) → Q+ and (ii) we consider the decision version of MWBS, that
is, additionally to (G,w), we are given a target value W ∈ Q+ and the task is
to decide whether G has a bimodal subgraph G∗ with w(E(G∗)) ≥ W .

Further Definitions. For simplicity, we say that a bimodal vertex of G is a
good vertex, and that a non-bimodal vertex is a bad vertex. We denote by G(G)
and B(G) the sets of good and bad vertices of G, respectively. Given a vertex
v ∈ V (G), an in-wedge (resp. out-wedge) of v is a maximal circular sequence of
consecutive incoming (resp. outgoing) edges of v. Clearly, if v is bimodal it has
at most one in-wedge and at most one out-wedge. Given a vertex v ∈ B(G), a
good edge-section of v is a maximal consecutive sequence of in- and out- wedges
of v, such that no edge is incident to another bad vertex.

Observation 1. Let (G,w) be an instance of MWBS with b bad vertices, and let
v ∈ B(G). Then v can have at most b − 1 good edge-sections.

We introduce a generalization of MWBS called Cut-MWBS(G,w, E) (max-
imum weighted bimodal subgraph with prescribed cuts). Given a plane digraph G,
an edge-weight function w : E(G) → Q+, and a partition E of E(G), compute
a bimodal subgraph G′ of G of maximum weight, i.e., whose sum of the edge
weights is maximum over all bimodal subgraphs of G, under the condition that
for every set Ei ∈ E , either all e ∈ Ei are still present in G′ or none of them are.
We can see that every instance (G,w) of MWBS is equivalent to the instance
(G,w, {{e} | e ∈ E(G)}) of Cut-MWBS, and thus Cut-MWBS is NP-hard. Also,
the decision variant of the problem is NP-complete.

We now give reduction rules for the MWBS to Cut-MWBS compression, and
prove that each of them is sound, i.e., it can be performed in polynomial time and
the reduced instance is solvable if and only if the starting instance is solvable.

Reduction Rule 1. Let (G,w) be an instance of MWBS, and v ∈ V (G) be an
isolated vertex. Then, let (G′, w) be the new instance, where V (G′) = V (G)\{v}.

Reduction Rule 2. Let (G,w) be an instance of MWBS with the target value W ,
and u, v ∈ G(G) be such that (u, v) is an edge. Then, the resulting instance is
(G′, w), where G′ = G − (u, v), and the new target value is W ′ = W − w(u, v).
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Reduction Rule 3. Let (G,w) be an instance of MWBS and v ∈ G(G) of degree
≥ 2. Let (G′, w) be the new instance, where in G′ we replace each edge e = (u, v)
(resp. e = (v, u)) where u ∈ G(G) with another edge e′ = (u, xuv) (resp. e′ =
(xuv, u)), where xuv’s are distinct vertices created for each such edge, and each
e′ is embedded within the embedding of e, where w(e′) = w(e) (see Fig. 4).

Claim 1 (*). Reduction rules 1, 2 and 3 are sound.

Fig. 4. A bimodal vertex (a) before and (b) after Reduction rule 3 is applied.

By applying Reductions 1, 2 and 3 exhaustively, we get Lemma 3, which is
already enough to give a subexponential FPT algorithm by b (Theorem 3).

Lemma 3 (*). Given an instance (G,w) of MWBS, there exists a polynomial-
time algorithm to obtain an equivalent instance (G′, w) with G′ being a subgraph
of G, such that (i) |B(G′)| ≤ |B(G)|, (ii) G(G′) is an independent set in G′, and
(iii) for all v ∈ G(G′), deg(v) = 1 in the underlying graph of G′.

Theorem 3. There exists an algorithm that solves MWBS(G,w) with b bad

vertices in 2O(
√

b) · nO(1) time.

Proof. By Lemma 3, (G,w) is equivalent to (G′, w) with at most b vertices of
degree > 1, which we can compute in polynomial time. This implies bw(G′) =
O(tw(G′)) = O(

√
b), and we can apply Theorem 1 to obtain an algorithm that

computes a solution for (G′, w) in 2O(bw(G′))|V (G′)|O(1) time. ��

We now describe how we can partition, for a given input, all good-edge
sections into edge sets in such a way that there exists an optimal solution in
which every set is either contained or deleted completely, and the total number
of sets is bounded in a function of b. We will then show how we can replace the
sets with edge sets of size at most two. The main difficulty will be to ensure that
sets that exclude each other continue to do so in the reduced instance.

Lemma 4 (*). Let (G,w) be an instance of MWBS with n vertices and b bad
vertices, such that G(G) is an independent set in G and deg(v) = 1 for all
v ∈ G(G). Let further v ∈ B(G), and let S be a good edge-section of v. Then S
can be partitioned into at most 26 sets S1, . . . , S26, such that for every optimal
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solution G′ ⊆ G of MWBS(G,w), there exists an optimal solution G∗ ⊆ G of
MWBS(G,w), such that G′ and G∗ coincides on G \ S, and for every i, Si is
either contained or removed completely in G∗.

Further, there exists a partition P1, . . . , Pj of {S1, . . . , S26}, such that for all
Pi: (1) |Pi| ≤ 2, (2) the edges in Pi are consecutive in S and (3) if Pi = {S1,S2},
then S1 consists of outgoing edges of v iff S1 consists of incoming edges of v,
and at least one of S1,S2 does not form a set of consecutive edges in S.

Fig. 5. (a) Illustration for Lemmas 4 and 5. The gray dashed lines correspond to a
set of switches between the optimal solution we will choose; they impose the partition
P1, . . . , P13. S1 (S2) are the incoming (outgoing) edges of P1, respectively. (b) The
same vertex after transition to Cut-MWBS by Lemma 5, and after Reduction Rule 4
(5) got applied to P2 (P1), respectively.

To show this, we enclose S in a curve φ, and then compute for every given
configuration X the maximal subgraph G′ such that v has configuration X in φ.
This yields a set of at most 12 possible locations for switches between incoming
and outgoing edges in S, which gives a partition of S into at most 13 sets (cor-
responding to P1, . . . , Pj) that do not contain a switch, and thus at most 26 sets
that will not be separated by an optimal solution, corresponding to S1, . . . , S26.
We now describe a parameter-preserving reduction from MWBS to Cut-MWBS.

Lemma 5 (*). Given an instance (G,w) of MWBS with b bad vertices, we can
find in polynomial time an instance (G′, w, E) of Cut-MWBS, so that: (i) For
every Ei ⊆ E with |Ei| ≥ 2, there exists a bad vertex v ∈ G′ and a good edge-
section S of v, so that Ei is a subset of S and Ei contains only outgoing or only
incoming edges of v. (ii) |B(G′)| ≤ b, (iii) |E| = O(b2), (iv) (G,w) and (G′, w, E)
have the same optimal cost, (v) there exists a partition P1, . . . , Pj of E, such that
|Pi| ≤ 2 for all Pi, (vi) if |Pi| = 1, then the edges-set contained in Pi is either
an edge between two bad vertices, or there exists a bad vertex v ∈ G′ and good
edge-section S of v, such that the edges contained in Pi are all consecutive in S,
and, (vii) if |Pi| = 2 with Pi = {E1, E2}, there exists some v ∈ B(G′) and a good
edge-section S of v, such that the edges in Pi are all consecutive in S; and E1

consists of outgoing edges of v if and only if E1 consists of incoming edges of v,
and at least one of E1, E2 does not form a set of consecutive edges in S.
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See Fig. 5(a) for a visualization. We obtain this transformation by applying
Lemma 3 in order to get a simplified equivalent instance G′. Let Erest be all
edges incident to two bad vertices. For every bad vertex v and every good edges
section S of v, let Sv,S be the partition of S obtained from Lemma 4. We define
E = {e | e ∈ Erest} ∪ ⋃

v,S Sv,S . This defines the instance (G′, w, E) of Cut-
MWBS. We will now further reduce the size of (G,w, E).

Reduction Rule 4. Let (G,w, E) be an instance of Cut-MWBS with properties
(i) to (vii) of Lemma 5. Let v ∈ B(G), let S be a good edge-section of v, and let
Ei ∈ E such that Ei ⊆ S is a consecutive set of edges in S. Then let (G′, w′, E ′) be
the new instance that is obtained from (G,w, E) by deleting all edges (and their
incident good vertices) but one edge e out of Ei, and assigning w′(e) = w(Ei).

Reduction Rule 5. Let (G,w, E) be an instance of Cut-MWBS with the proper-
ties (i) to (vii) of Lemma 5. Let further v ∈ B(G), let S be a good edge-section
of v, and let Ein, Eout ∈ E such that Ein, Eout ⊆ S, Ein are all incoming to v,
Eout are all outgoing of v, Ein ∪ Eout is a consecutive set of edges in S, and at
least one of Ein or Eout does not form a consecutive set of edges in S. We con-
struct a new edge-set e1, e2, e3, e4 as follows: e1, e3 are incoming for v, e2, e4 are
outgoing of v, and all of e1, e2, e3, e4 are incident to a newly inserted (good)
vertex vek

for k ∈ {1, . . . , 4}. We set w′(e1) = w′(e4) = 0, w′(e2) = w(Eout) and
w′(e3) = w(Ein). Further we assign e1, e3 ∈ Ein and e2, e4 ∈ Eout. Let (G′, w′, E)
be the new instance that is obtained from (G,w, E) by replacing the edges in
Ei ∪ Ej with the consecutive sequence e1, e2, e3, e4.

Claim 2 (*). Reductions 4 and 5 are sound.

Lemma 6 (*). Let (G,w, E) be an instance of Cut-MWBS with b bad vertices
and properties (i) till (vii) of Lemma 5. Then we can compute in polynomial
time an equivalent instance (G′, w′, E ′) such that V (G′) = O(b2).

See Fig. 5(b) for an illustration. We compute (G′, w′, E ′) by applying Reductions
4 and 5 exhaustively. To bound the size of the weights w, we use the approach of
Etscheid et al. [17] and the well-known Theorem 4. This yields the compression
of MWBS (Theorem 5) and a kernel for MWBS (Theorem 6).

Theorem 4 ([20]). There is an algorithm that, given a vector ω ∈ Qr and an

integer N , in polynomial time finds a vector ω̄ such that ||ω̄||∞ = 2O(r3) and
sign(ω · b) = sign(ω̄ · b) for all vectors b ∈ Zr with ||b||1 ≤ N − 1.

Theorem 5 (*). There exists a polynomial-time algorithm that, given an
instance (G,w) of MWBS with b bad vertices and a target value W , computes
an instance (G′, w′, E) of Cut-MWBS with size O(b8), and a new target value
W ′ with size O(b6), such that there exists a solution for (G,w) of cost W if and
only if there exists a solution for (G′, w′, E) of cost W ′.

Theorem 6 (*). The decision version of MWBS parameterized by the number
of bad vertices b admits a polynomial kernel.
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5 Efficient PTAS for MWBS and Final Remarks

We sketch our Efficient Polynomial-Time Approximation Scheme (EPTAS) for
MWBS, i.e., a (1 − ε)-approximation that runs in 2O(1/ε) · nO(1) time. We use
Baker’s technique [4] to design our EPTAS. Our goal is to reduce the problem to
(multiple instances of) the problem, where the treewidth (hence, branchwidth)
of the graph is bounded by O(1/ε), at the expense of an ε-factor loss in cost.
Then, we can use our single-exponential algorithm in the branchwidth to solve
each such instance exactly, which implies a (1 − ε)-approximation.

We sketch the details of this reduction. W.l.o.g. assume that the graph is
connected. We perform a breadth-first search starting from an arbitrary vertex
v ∈ V (G), and partition the vertex-set into layers L0, L1, . . ., where Li is the set
of vertices at distance exactly i from v in the undirected version of G. It is known
that the treewidth of the subgraph induced by any d consecutive layers is upper
bounded by O(d) – this follows from a result of Bodlaender [9], which states that
the treewidth of a planar graph with diameter D is O(D). Let t = 1/ε, and for
each 0 ≤ i ≤ t, let E(i,i+1) denote edges uv such that u ∈ Lj , v ∈ Lj+1 with j
mod t = i. By an averaging argument, there exists an index 0 ≤ i ≤ t, such that
the total contribution of all the edges from an optimal solution (i.e., the set of
edges inducing a maximum-weight bimodal subgraph) that belong to E(i,i+1), is
at most 1/t = ε times the weight of the optimal solution. Since we do not know
this index i, we consider all values of i, and consider the subproblems obtained
by deleting the edges. Then, the graph breaks down into multiple connected
components, and the treewidth of each component is O(1/ε). We solve each such
subproblem optimally in time 2O(1/ε) · nO(1) using Theorem 1, and combine the
solutions for the subproblems to obtain a solution for the original instance. Note
that the graph obtained by combining the optimal solutions for the subproblems
is bimodal, and for the correct value of i, the weight of the graph is at least 1− ε
times the optimal cost. That is, the combined solution is a (1−ε)-approximation.

Theorem 7 (*). There exists an algorithm that runs in time 2O(1/ε) ·nO(1) and
returns a (1− ε)-approximate solution for the given instance of MWBS. That is,
MWBS admits an EPTAS.

We note that Baker’s technique can also be used to obtain an EPTAS with the
similar running for the minimization variant of MWBS. Although the high level
idea is similar, the details are more cumbersome.

Final Remarks. We conclude by suggesting some open questions. One natural
problem is to ask for a maximum k-modal subgraph for any given even integer
k ≥ 2; we believe that our ideas can be extended to this more general setting.
Another natural variant of MBS is to limit the number of edges that we can
delete to get a bimodal subgraph by an integer h; in this setting, h becomes
another parameter in addition to those we have considered. Finally, studying
MBS in the variable embedding setting is an interesting future direction.
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