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Abstract. We present a method for balancing between the Local and
Global Structures (LGS) in graph embedding, via a tunable parame-
ter. Some embedding methods aim to capture global structures, while
others attempt to preserve local neighborhoods. Few methods attemptto
do both, and it is not always possible to capture well both local and
global information in two dimensions, which is where most graph drawing
live. The choice of using a local or a global embedding for visualization
depends not only on the task but also on the structure of the underly-ing
data, which may not be known in advance. For a given graph, LGS aims
to find a good balance between the local and global structure to
preserve. We evaluate the performance of LGS with synthetic and real-
world datasets and our results indicate that it is competitive with the
state-of-the-art methods, using established quality metrics such as stress
and neighborhood preservation. We introduce a novel quality metric,
cluster distance preservation, to assess intermediate structure capture.
All source-code, datasets, experiments and analysis are available online.

Keywords: Graph embedding * Graph Visualization * Local and
global structures * Dimensionality Reduction * Multi-dimensional
Scaling

1 Introduction

Graphs and networks are a powerful tool to encode relationships between objects.
Graph embeddings, which map the vertices of a graph to a set of low dimensional
vectors (real valued coordinates), are often used in the context of data visual-
ization to produce node-link diagrams. While many layout methods exist [27],
dimension reduction (DR) techniques have had success in providing desirable lay-
outs, by capturing graph structure in reasonable computation times. DR meth-
ods are used to project high-dimensional data into low-dimensional space and
some of these methods only rely on the relationships between the datapoints,
rather than datapoint coordinates in higher dimension. These techniques are
applicable for both graph embeddings and visualization. Further, local DR algo-
rithms attempt to preserve the local neighborhoods, while global DR algorithms
attempt to retain all pairwise distances.
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Fig. 1. Embeddings of the connected_watts_1000 graph; see Sect. 4. The top row
shows LGS embeddings — from local to global — with varying neighborhood sizes (k).
The LGS(72) layout captures the correct underlying model. The bottom row shows
tsNET [15], UMAP [18], and MDS [30] embedding of the same graph.

Two popular techniques that are adapted in graph visualization are (met-
ric) Multi-Dimensional Scaling (MDS) [5,16] and t-distributed stochastic neigh-
bor embedding (t-SNE) [17]. The goals of these two algorithms are somewhat
orthogonal: MDS focuses on preserving all pairwise distances, while t-SNE aims
to preserve the likelihood of points being close in the embedding if they were
close in the original space. MDS is said to preserve global structure, while t-SNE
is said to preserve local neighborhoods [7]. These ideas are directly applicable
to graph visualization, where we can define the distances as the graph theoretic
distances, e.g., via all-pairs shortest paths (APSP) computation. In the graph
layout literature, MDS is often referred to as stress minimization [11,30], and t-
SNE has been adapted to graph layout in an algorithm known as tsNET [15] and
later DRGraph [31]. Choosing the “best” graph embedding algorithm depends
on the graph structure and the task. MDS is effective for structured/mesh-like
graphs, while t-SNE works better for clustered/dense graphs. This phenomenon
also applies to local and global force-directed layouts as well [15].

Automating the selection of the “best” embedding algorithm is challenging
due to its dependency on graph structure. We introduce the Local-to-Global
Structures (LGS) algorithm which provides a parameter-tuneable framework
that can produces embeddings that span the spectrum from local optimization to
global optimization.

Smaller values of the LGS parameter prioritize local structure, while larger
values emphasize global structure. LGS enables exploration of the trade-off,
revealing meaningful middle ground solutions. We introduce a new metric called
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cluster distance to measure how well this intermediate structure is preserved.
Everything described in this paper is available on Github: https://github.com/
Mickey253/L2G. We provide a video and additional layouts and analysis in [19].

2 Background

Dimensionality Reduction (DR) refers to a large family of algorithms that
map a set of high-dimensional datapoints in lower-dimensionsal space. Differ-
ent DR algorithms aim to preserve various properties of the dataset, such as
total variance, global distances, local distances, etc. In visualization contexts,
the dataset is typically projected onto 2D or 3D Euclidean space. DR algo-
rithms generally accept input of two types: sample or distance. Sample-based
algorithms, such as Principal Component Analysis (PCA) [8,13] project the high
dimensional data down to the embedding space. For distance-based inputs, the
algorithms directly work with distance metrics. In the case of graph embeddings,
the graph-theoretic distance is used, often all-pairs shortest path (APSP).

Popular techniques in the local category include t-SNE [17], UMAP [18],
LLE [25], IsoMap [28], etc. For global structure, methods such as PCA [8] and
MDS [5,16] are used. MDS has variants, but here we mean metric MDS which
minimizes stress [26]. Few techniques attempt to capture both global and local
structure. Chen and Buja [3] adapt MDS to capture local structure by selectively
preserving distances between a subset of pairs using kKNN. The underlying idea is
similar to ours, but it does not provide a framework to cover the spectrum from
local to global as our method does. While t-SNE’s perplexity parameter aims to
imitate the size of neighborhood to be preserved, in general increasing its value
does not lead to a global structure preservation [29]. Anchor-t-SNE improves the
global structure preservation by anchoring a set of points to use as a skeleton for
the rest of the embedding [9], however, it does not provide a framework to cover
the spectrum from local to global. UMAP [12,18] also aims to preserve the local
structures of a dataset. While UMAP claims to preserve the global structures
better than t-SNE, we show that this is not universally true for graph data in
Sect. 5.

Graph Embedding is a problem to assign vectors to graph vertices, captur-
ing the graph structure. More formally, given a graph G = (V, E), find a d-
dimensional vector representation of V that optimally preserves properties [2]
(e.g., pairwise distances in MDS [5,16]). We restrict ourselves to 2D node-link
visualization with edges represented by straight-line segments, so the problem is
reduced to finding a 2D embedding for the vertices. Aesthetic criteria are often
used to evaluate the quality of a graph embedding: the number of edge cross-
ings, average edge length, overall symmetry, etc. [24]. Aesthetic criteria enhance
readability and task facilitation, but information faithfulness is equally impor-
tant. It ensures that the embedding accurately represents all underlying data,
regardless of the task [20,21] and graph embeddings provide a nice benefit by
directly optimizing graph structure preservation. Graph structure is a nebulous
term; referring to inherent properties of the underlying graph such as local/global
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distances. Global distance preservation methods capture the graph’s topological
structure by closely aligning embedded distances with graph-theoretic distances.
This approach is ideal for connectivity-based tasks and offers insights into the
global scale and shape of the data. Local structure preservation methods pre-
serve the immediate neighborhood of each vertex, effectively capturing clusters
or densely connected subgraphs. While nearby vertices in the embedding can be
considered similar, distant vertices may have irrelevant distances. This can be
observed in the presence of long edges in the local embedding column in Fig. 2.

Graph Embedding by Dimensionality Reduction: In a good embedding, the drawn
distance should closely match the graph-theoretic distance between vertices [14].
This observation led to the use of stress function, which MDS aims to optimize,
to obtain a graph embedding [11]. Stress can be minimized by majorization [11],
stochastic gradient descent (SGD) [30], etc. The MDS approach suffers from
an APSP computation, which usually relies on Floyd-Warshall’s O(|V |3), or
on Johnson’s O(|V |?log |V |+ |E||V |) algorithms. The maximum entropy model
(MaxEnt) [10] adds a negative entropy between vertices in the graph. The moti-
vation for MaxEnt is to improve the asymptotic complexity. The MaxEnt model
places neighbor nodes closer while maximizing the distance between all vertices.
This is conceptually similar to the LM DS of Chen and Buja [3]. Our approach
differs from the MaxEnt model in motivation: Our LGS captures local structure,
global structure, or balances between the two, whereas MaxEnt is primarily con-
cerned with speed. We cannot avoid an APSP computation, and make use of
SGD to optimize our objective function in lieu of majorization.

Optimizing stress creates effective layouts, but may neglect local structures;
see Fig.2. tsNET [15] captures local structure by also adding a repulsive force
between vertices to achieve cluster separation. tsNET has been sped up by mak-
ing use of negative sampling and sparse approximation to avoid the APSP com-
putation [31]. Nocaj et al. [22] achieve effects similar to tsNET by weighting
edges based on “edge embeddedness” and perform MDS on the weighted graph.

3 The Local-to-Global Structures (LGS) Algorithm

Local methods (e.g., t-SNE) preserve local neighborhoods, while global methods
(e.g., MDS) capture all pair-wise distances. We propose the Local-to-Global
Structures (LGS) algorithm that achieves the following 3 goals:

G1 A single parameter controlling local-global embedding balance
G2 When this parameter is small, the embedding preserves local neighborhoods
G3 When this parameter is large, the embedding preserves the global structure

By “local neighborhood” of a vertex we refer to the immediate neighbors of the
vertex being considered. If the nearest neighbors of each vertex in an embedding
match well with the nearest neighbors in the actual graph, then the embedding
accurately preserves the local structures. By “global structure” we refer to the
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<embedding=
tsNET (local)|[LGS (balanced)|MDS (global)

block_2000
(local)

< structure =
sierpinksi_3d
(intermediate)

dwt_1005
(global)

Fig. 2. Local embedding methods perform well on graphs with distinct local structure
(block_2000), but they can distort the global shape of the graph (dwt_1005). Global
methods capture the overall shape (e.g., dwt_1005), but may miss important local
structures (block_2000). LGS(100) performs well for graphs with both local and global
structure, such as sierpinski_3d, allowing us to see its fractal nature.

preservation of all pairwise graph distances (including long ones) in the embed-
ding. Finally, “intermediate structure” refers to capturing both local neighbors
and global structure. Figure 2 shows graphs exemplifying local, intermediate, and
global structures and Sect. 3.2 defines formal embedding measures: neighborhood
error, cluster distance, and stress. In Sect. 3.1 we explain the selection process
for the balance parameter k and the objective function to ensure that the solu-
tion aligns with the stated goals. For G1, we modify MDS to preserve distancesin
a neighborhood defined by a parameter k). Thus, preserving distances for large
neighborhoods satisfies G3. This leaves a question for G2: Does applying
distance preservation to a subset of pairs result in locally faithful embeddings?

3.1 Adapting Stress Minimization for Local Preservation

We define a parameter, k, that represents the size of a neighborhood surround-
ing each vertex. A straightforward approach would involve simply selecting the k-
nearest vertices for every given vertex (as in [3]). However, the graph-theoretic
distance in an undirected graph is a discrete measure, which can create com-
plications. For example, consider the local structure graph (top row) in Fig. 2.
Although the within-cluster density is high, there are many edges between differ-
ent clusters. Unfortunately, there is no simple way to test if an edge is within clus-
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Fig. 3. An example of how we may skip over immediate neighbors when selecting
neighborhoods to preserve. In this case, c= 2. There is only one unique walk of length <
2 from v, to v, Vg, Ve, V¢, but there are 4 such walks from v, to vp. In this case, vy, would
be the first vertex added to v,’s most connected neighborhood.

ter or out-of-cluster. In order to produce tsNET-like embeddings, which should
pay more attention to local structures, we must avoid preserving out-of-cluster
edges.

Instead of considering distances directly, we find the top k most connected
vertices for each vertex based on the hypothesis that more possible walks between
vertices indicate greater similarity; see Fig. 3. Despite va and vg not sharing an
edge, they have the same set of neighbors. When v, and vg are both neighbors to
a set of vertices, we can confidently state their similarity, confirmed by their
shared proximity to vc, vg, etc. [6]. The c-th power of an adjacency matrix (A€
)],jG encodes the number of c-length walks from vertex i to vertex j. To find
the top k “most connected” vertices for each vertex, follow this procedure: Given
an adjacency matrix of an undirected graph, Ag, raise it to the c-th power, take the
sum of all powers A? = cicc A'G to obtain a matrix whose (i, j)-th
element shows the number of walks from i toj of length less or equal than c.
Since each row in A? corresponds to a vertex, we find the k largest values in row

i (by sorting). We define these top k vertices to be the “most connected”
nelghborhood Nk (va) of vertex v,; see Fig. 3. We further weight the power of the
matrix with a decaying weight factor, s,0 < s < 1, such that A? = 1< s'A'G .
We investigate a range of values for s, and set s = 0.1; see [19]. We propose a
procedure to reduce the number of matrix multiplications which we used in our
experiments; see [19].

Objective Function. We remark, that only preserving distances of a subset of
pairs will result in poor embeddings: e.g., two vertices that cannot “see” each
other can be placed arbitrarily close with no penalty. A second term is needed
in the objective function to prevent this, and we add an entropy repulsion term
as in [3,10], to force pairs of vertices away from each other. For a given pairwise
distance matrix [d.,] we define the following generalized stress function as
an objective functlon

o(X) = (BX; - X;8 - dij)? - « logBX; - X;0, (1)
(i,j)BN (i,J)BNk

=1
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where X; is the embedded point in RY, a is a fixed constant parameter that con-
trols the weight of the logarithmic term, and N corresponds to the neighborhood
that we aim to preserve in the embedded space. This objective function ensures
that distances are preserved between the most-connected neighborhoods, while
maximizing entropy. We use the negative logarithm of the distance between
points, so that the repulsive force is relatively strong at small distances, but
quickly decays (so that distant points are not forced to be too distant from each
other). While similar to LM DS [3] and MaxEnt [10], the proposed objective func-
tion in Eq. 1 differs in (1) how the set Ny is selected (LMDS uses a kNN search

tsNET LGS k=16 LGS k=32 UMAP LGS k=64 LGS k=100 MDS

lesmis

block_500

football

dwt_419

qh882

netscience

EVA

Fig. 4. Example embeddings. The first and last columns show the two extremes tsNET
(local) and MDS (global); the middle column shows UMAP. The remaining columns
show a gradual increase of LGS’s k parameter, moving from local to global distance
preservation (left to right). Note LGS outputs are vertically higher in each row.
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and MaxEnt preserves distances between two vertices if and only if they sharean
edge) and (2) LM DS and MaxEnt cannot be easily parameterized to balance local
and global structure preservation. We minimize the objective function by SGD
which works well for stress minimization [1,30]. The parameter space of the
algorithm is discussed in the supplemental material [19].

tsNET UMAP MDS

Fig. 5. The grid_cluster graph is generated so that each cluster has many out-of-cluster
edges to its neighbors in a 3 x3 lattice, providing a recognizable intermediate structure.
tsNET and UMAP do not place clusters on a grid, MDS mixes the clusters; LGS(100)
captures the 3 x 3 grid and shows distinct clusters.

3.2 Evaluation Metrics

We discuss the evaluation metrics for embedding algorithms: local neighborhood
error (NE) score, intermediate structure (CD), and global distances (Stress).

N E Metric: Neighborhood hits (NH) measures how well an embedding pre-
serves local structures [3,7]. NH is the average Jaccard similarity of the neigh-
bors in the high-dimensional and low-dimensional embedding. Let Y be an nxd
dimensional dataset, X be its n x 2-dimensional embedding, and a radius r
defines the size of the neighborhood one intends to measure. NH is defined as:

1" [Ny (pi, r) N Nx(pi, r)| n
NH(Y, X, r) = - ., INy {pi, r)BNx{pi, )] (2)
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where Ny (p;, r) denotes the r nearest points to point p; in Y and Nx(p;, r) the
r nearest points to point p; in X. For graph embeddings, this notion is called
neighborhood preservation (NP) [10,15,31], with the main difference being that
the radius r now refers to graph-theoretic distance: all vertices with shortest
path distance < r from vertex v;. Specifically, NP measures the average Jaccard
similarity of a vertex’s graph-theoretic neighborhood of radius r and an equally
sized neighborhood of that vertex’s closest embedded neighbors. Since NH and
NP measure accuracy, it is desirable to maximize these values. To facilitate com-
parison with the other two metrics (where lower scores mean better embeddings),
we use Jaccard dissimilarity instead and refer to it as Neighborhood Error (NE).

Cluster Distance Metric: We introduce a new metric to measure how well
intermediate structures are captured in an embedding. Since the distances
between clusters in t-SNE cannot be interpreted as actual distances [29], while
clusters in MDS embeddings are often poorly separated, we measure how faithful
the relative distances between cluster centers are represented in the embedding.
When cluster labels are given as part of the input (e.g., labels, classes), we can
use them to define distances between the clusters. When cluster information is
not given, we use k-means clustering in the high-dimensional data case, and
modularity clustering in the graph case. The distances between clusters in the
high-dimensional case is given by the Euclidean distance between the cluster
centers. For graphs, we measure the distance between clusters by first taking the
normalized count of edges between them, then subtracting the normalized count
to convert similarity into dissimilarity. This produces a cluster-distance matrix, 6.
Let Cq, ..., Cy, be the set of vertices belonging to cluster 1,...,n, then

1
6i,j= 1- 1(U,VE)

|E| UCi,VCj

where 1 is the indicator function (1 if (u, v) is an edge and 0 otherwise). Once §
is computed, we compute the geometric center of each embedded cluster and
compute the cluster-level stress between the graph-level-cluster and realized-
cluster distances. This measure is small when similar clusters are placed closer
and dissimilar clusters are placed far apart. The cluster distance (CD) is:
6ij = llxi— x| 2

CD(6,x) = (3)

] 6"’
where §;j is the dissimilarity measure between cluster i and cluster j and x; is
the geometric center of cluster i in the embedding. Although there are several
existing metrics to measure cluster accuracy, such as silhouette distance and
between/within-cluster sum of squares, they are not well suited to measure the
quality of intermediate embeddings. Ideally, we would need a measure that checks
how well the clusters are preserved and also verifies that the relative placement of
the clusters is meaningful. The CD metric verifies meaningful cluster placements
by measuring all pairwise distances between cluster centers. We remark that the
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CD metric works best when the clusters have convex shapes (or shapes similar to
spheres). For arbitrary non-convex shapes, such as half-moons or donuts, the CD
metric might not provide meaningful insights.

Stress Metric: Stress has been used in many graph embedding evaluations.

e - X _ X
stress(d, X) = dij = %= X1l 2 (4)

i a4
where d is the given distance matrix and X is the embedding. Embeddings are
scaled to ensure fair comparisons in computing stress [10,15,31].

4 LGS Embedding of Graphs

We start with a visual analysis and discussion of layouts produced by LGS.
Following the convention, several embeddings of the same graph are displayed
side-by-side with increasing the value of k from left to right, going from local to
global. Underneath the LGS embeddings, we place t-SNE, UMAP, and MDS
embeddings of the same graph. For all graph embeddings provided in this paper,
we use the jet color scheme to encode edge length. An edge length of 1 (ideal for
unweighted graphs) is drawn in green, while red indicates that edge has been
compressed (length < 1) and blue indicates the edge is stretched (length > 1).
This makes clusters easy to spot as bundles of red edges, and global structure
preservation apparent when most edges are green. Similar to tsNET, low values of
k capture local neighborhoods well, by allowing some longer edges. As a result,
clusters tend to be well separated. Note that tsNET allows even longer edgesin
an embedding, occasionally breaking the topology; see Fig. 1. Higher k values
make LGS similar to MDS, with more uniform edge lengths. This reveals global
structures (e.g., mesh, grid, lattice) but may overlook clusters.

Grid cluster is a synthetic example with 900 vertices (9 clusters of size 100
each) and 10108 edges, created by stochastic block model (SBM) to illustrate
the notion of cluster distance preservation. Within cluster edges are created with
probability 0.8. We distinguish between two types of out-of-cluster edges. Clus-
ters are first placed on a lattice. Out-of-cluster edges are created with probability
0.01 if they are adjacent in the lattice (no diagonals) and 0.001 otherwise. The
layouts of this graph are in Fig.5. Note the visual similarities between LGS(32)
and tsNET; both seperate each cluster into dense sub-regions and place them
seemingly randomly in the plane. Also note the similarities between LGS(200)
and MDS, where both methods tend to miss the clusters. UMAP also fails to
capture the intermediate structure built into this network: while there is a single
cluster placed in the middle of the other eight, the surrounding shape is not a
square. LGS(100) accurately places each cluster in the appropriate position,
making it the only one that clearly shows the 3 x 3 underlying lattice. Although
less dense and separable the clusters are more faithful in terms of placement.
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Fig. 6. Behavior of NE and stress: as k increases NE gets worse and stress gets better
(LGS transitions from preserving local to global structure); tsNET, UMAP, and MDS
values are shown as dotted lines for comparison. Note that in general, we expect to seean
upward trend in NE, a downward trend for stress, and a parabola shape for CD.
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Fig. 7. (a—b) CD metric on the grid _cluster and sierpinkski3d graphs. Note that in these
examples there are values of k which outperform competing algorithms. (d) Running
time of each tested algorithm.

Connected watts 1000 is a Watts-Strogatz random graph on a 1000 vertices
and 11000 edges. It first assigns the vertices evenly spaced around a cycle with
the nearest (7) vertices connected by an edge. Then, with low probability, some
random ‘chords’ of the cycle are added by rewiring some of the local edges to
other random vertices. This type of graph models the small-world phenomenon
seen in real-world examples, such as social networks. The embeddings of con-
nected watts 1000, obtained by LGS, tsNET, UMAP, and MDS are in Fig. 1. We
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observe that tsNET and UMAP embeddings accurately capture the existence of a
one-dimensional structure, but twist and break the circle to varying degrees.
Meanwhile, MDS overcrowds the space, forming a classic ‘hairball’ where there is
no discernible structure. For intermediate values of k in LGS, the circular struc-
ture in the data and the numerous chord connections become clearly visible.

LGS(100)

MDS

Fig. 8. Sierpinksi3d graph is a fractal with regular local and global structure. LGS
manages to capture the recursive nature of the underlying structure. tsNET, UMAP
miss the global placement of pyramids and MDS stretches them.

Sierpinksi_3d models the Sierpinski pyramid with 2050 vertices and 6144 edges
— a finite fractal object with recursively smaller recurring patterns (the pyramid
itself is built out of smaller pyramids). These fractal properties are ideal for
showcasing the LGS algorithm at work, as small local structures build upon
each other to create a global shape; see Fig. 8. We observe that tsNET captures
the smallest structures well but places them arbitrarily in the embedding space.
UMAP does better at placing the local structures in context but still creates
long edges and twists not present in the data. While MDS visually captures the
fractal motifs, it ‘squishes’ local structures. LGS can be used to balance these
extremes.

We demonstrate more examples in Table 4, with additional embeddings avail-
able in the supplemental material [19]. Note that for lower values of k the embed-
ding obtained by LGS visually resembles the output of tsNET, while for larger
values of k the obtained embedding is more similar to the outputs of MDS. We
see this reflected numerically in many graphs; see Fig.6 and Table 1. For
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intermediate values of k, LGS often outperforms tsNET, UMap and MDS with
respect to the intermediate structure preservation, measured by cluster distance
(CD).

5 Evaluation

We test LGS on a selection of real-world and synthetic graphs from [4,15,31]; A
full list can be found in [19].

Table 1. NE scores on LGS for varying values of k (left) and on competing algorithms
(right). The colormap is normalized by row with dark orange representing the lowest
score (best) and dark purple representing the highest (worst). Bold text indicates the
lowest score in that row.

low middle high

k=32 | k=64 | k=85 | k=100 | k=150 | k=200 | tsnet [ umap [ mds
lesmis 0.3761 | 0.3169| 0.3126 | 0.3174 | 0.3166 [ 0.3125 0.3141
can_96 0.4393 | 0.3980 DI3523]
football - 0.4390 [ 0.4469 | 0.4452 0.4636
rajatll 0.3868 | 0.3641 [ 0.3615 0.3942 0.3608
mesh3el 0.1415| 0.0933| 0.0971| 0.1444 0.1210| 0.1241
connected_watts_300 | 0.1995 [ 0.3990
block_model_300 0.6474 0.5675
powerlaw300 0.3849
netscience 0.4556 | 0.4597 | 0.4751 0.4319
dwt_419 0.3016 | 0.3151 0.2666 | 0.3203 0.2796 | 0.2892
powerlaw500 0.5630 [ 0.5433 0.5593 | 0.5432 0.4683 | 0.5604
block_model_500 0.5396 | 0.6551
connected_watts_500 0.5788 0.5852 | 0.6547 [ 0.6513 0.5789 | 0.5764
grid_cluster 0.3767 | 0.3831| 0.3767 0.3863 0.4742
price_1000 0.7103 | 0.7108| 0.7228 | 0.7313 | 0.7400 [ 0.7468 0.6015
connected_watts_1000 0.6712| 0.7870 : 0.6283
powerlaw1000
block_model_1000 0.5753 | 0.5552 | 0.5593 | 0.6179
dwt_1005 0.4517 | 0.4417 | 0.4586 | 0.4499 0.4372
btree9 0.7337 | 0.8082 | 0.8321 | 0.8625 0.6960
CSphd 0.5816 | 0.5797| 0.5711| 0.5783 | 0.6015 [ 0.6128 0.6051
fpga 0.5199 | 0.5875| 0.6043 | 0.6521 0.5179
sierpinski3d 0.5729| 0.5313| 0.5439| 0.5192 0.4504 | 0.4554 | 0.4600
EVA 0.4544 | 0.4690 [ 0.4822 0.4797[ 0.5070 0.5123 0.5629

We compare LGS against state-of-the-art techniques for local and global
embeddings: tsNET from the repository linked in [15], UMAP from the umap
python library written by the authors of [18], and MDS via the python bind-
ings from [30] with default parameters. Our implementation of LGS is available
online. The experiments were performed on an Intel@) Core™ i7-3770 machine
(CPU @ 3.40GHz x 8 with 32 GB of RAM) running Ubuntu 20.04.3 LTS.

NE, CD and Stress Values and Trends. To evaluate how well LGS preserves
local neighborhoods, we compare the average NE scores over several runs and
present our results in Table1l. We can see a general trend: although, tsNET
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performs better with respect to NE values, LGS has consistently lower NE values
than MDS. Additionally, as we increase the size of the neighborhood parameter,
the NE values tend to increase by bringing the layouts closer to those of MDS.
Interestingly, UMAP also tends to fall somewhere between tsNET and MDS on
this metric. As expected, in many cases, LGS ‘transitions’ from tsNET to UMAP
then finally to MDS as one goes from left to right, increasing k.

Next, we report the average CD scores for the graphs in our benchmark in
Table 2. Unlike the NE values which increase as we increase k and the stress
values which decrease as we increase k, the best CD values are obtained for
intermediate values of k. This confirms that a balance between local and global
optimization is needed to capture intermediate structures.

Table 2. CD scores following the same scheme as Table 1. NA indicates no clusters
present in the data.

low middle high

k=32 k=64 k=85 | k=100 | k=150 | k=200 | tsnet [ umap mds
lesmis 0.7116 | 0.7210 0.7135 0.6949 | 0.6904 | 0.7195
can_96 0.6701 | 0.6669 | 0.6666 | 0.6666 | 0.6666 0.6747 | 0.6666
football 0.7747 | 0.7580 0.7804
rajatll 0.4092 [ 0.4045 0.3862 | 0.4083 | 0.4075 0.4607 0.4080
mesh3el 0.3951 | 0.3824 | 0.3879 | 0.3865 0.3948 | 0.3739
connected_watts_300 0.2445 | 0.2098 0.2853
block_model_300 0.7454 | 0.7726 0.7646 | 0.7727 0.7767
powerlaw300
netscience 0.2716 | 0.2720] 0.2717 | 0.2698 | 0.2649 [ 0.2689 0.3222
dwt_419 0.1938 | 0.1899( 0.1898| 0.1962 | 0.1925| 0.1943 0.1880
powerlaw500 0.4332] 0.4174 | 0.4336 | 0.4066 [ 0.4249 0.4261 | 0.4271
block_model_500 0.7065 | 0.6626 [ 0.6837 [ 0.6819 [ 0.6855 0.6551 0.6975
connected_watts_500 0.2268 | 0.2321 | 0.2378 | 0.2235 [ 0.2191 0.2417 | 0.2294
grid_cluster 0.7905 | 0.8347 [ 0.8040 | 0.7488 0.7786
price_1000
connected_watts_1000 0.2734 | 0.2304 | 0.2946 | 0.2802 0.2894 0.2333 | 0.2323
powerlaw1000 0.3917 | 0.3671| 0.3754 | O 0.3775 0.4210 ( 0.3683
block_model_1000 0.5447 | 0.5435| 0.5853 0.5632 | 0.5977 [ 0.5991
dwt_1005 0.1414 | 0.1413| 0.1466 | 0.1414 | 0.1415 0.1438 | 0.1456
btree9
CSphd
fpga 0.1692 [ 0.1511 | 0.1493| 0.1601 | 0.1497 | 0.1506 0.1770
sierpinski3d 0.1252 | 0.1156| 0.1050 | 0.1038 | 0.1021 | 0.1016 0.1244
EVA

We compute and report the averaged stress scores in Table3. MDS is con-
sistently good at minimizing the stress, but we see a salient trade-off between
the stress scores of LGS’s tsNET-like embeddings with low k values and LGS’s
MDS-like embeddings with high k values. When we look at small neighborhoods
such as k = 16, we tend to see high stress values, however, the values decrease as we
expand the neighborhoods. UMAP does not seem to capture global structure well
for these graphs, often having the highest stress values.
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Table 3. Stress scores following the same scheme as Table 1

k=32 k=64 k=85 | k=100 | k=150 | k=200 [ tsnet
lesmis 0.1988| 0.1702| 0.1673 | 0.1670 | 0.1665 | 0.1656
can_96 0.1782 | 0.1526 | 0.1400|0.1390 | 0.1391 | 0.1391
football 0.2719| 0.2622| 0.2578 | 0.2549 | 0.2544 | 0.2544
rajatll 0.1636 | 0.1685| 0.1774 | 0.1474 | 0.1250 | 0.1246
mesh3el 0.0655 | 0.0328 | 0.0482 | 0.0613 | 0.0050
connected_watts_300 0.2359 | 0.2353 | 0.2267 [ 0.2008 | 0.2081
block_model_300 0.3592 | 0.3132| 0.3087 | 0.3051 | 0.3052 | 0.2929
powerlaw300 0.1975( 0.1848| 0.1741| 0.1668 | 0.1644 [ 0.1532
netscience 0.1914 | 0.1539| 0.1604 | 0.1627 | 0.1493 | 0.1472
dwt_419 0.0688 | 0.0638 | 0.0360 | 0.1206 | 0.0521 | 0.0759
powerlaw500 0.2172| 0.2023 | 0.2133 [ 0.2022 | 0.1893
block_model_500 0.3360 | 0.3224 | 0.3160 | 0.3108 | 0.3047 | 0.3016
connected_watts_500 0.3380| 0.3367 | 0.3279 [ 0.3055 | 0.3019
grid_cluster 0.5335 0.3049 | 0.2553 | 0.2478
price_1000 0.3543 | 0.2428 | 0.2320 | 0.2347 | 0.2127 | 0.2011
connected_watts_1000 | 0.5578 | 0.3867| 1.0963 | 0.9221 [[116998)| 0.8549
powerlaw1000 0.3012 | 0.2418| 0.2344 | 0.2410| 0.2129 | 0.2196
block_model_1000 0.3456 | 0.3444 | 0.3409 [ 0.3292 | 0.3212
dwt_1005 0.1858 | 0.1206 | 0.0939 | 0.1165| 0.0891 | 0.1355
btree9 0.3090| 0.3510 | 0.2740  0.2818 | 0.2563
CSphd 0.2642 | 0.2483| 0.2218 | 0.1925| 0.2051 | 0.1883
fpga 0.4414 | 0.3139| 0.2888 | 0.2498 | 0.2157 | 0.2113
sierpinski3d 0.3015| 0.2097 | 0.2304 [ 0.1769 | 0.1298
EVA 0.6843 0.7862 | 0.6387 | 0.4662 | 0.6394

Effect of k on Evaluation Metrics: To visually explain LGS behavior, we
plot examples NE, CD, and stress with respect to k. In Fig. 6, we demonstrate
two separate plots for each graph. It can be seen that we often fall in between the
values of NE and stress that tsNET and MDS reach. These plots show what we
expect to see: as k increases NE increases and stress decreases. In Fig. 7(a-b), we
plot the CD values of our layout with tsNET, UMAP, MDS for comparison. In
many layouts LGS indeed has the lowest CD score. Values of k were chosen to be
representative of the local-global tradeoff.

6 Discussion and Limitations

We described LGS: an adaptable algorithmic framework for embeddings that can
prioritize local neighborhoods, global structure, or a balance between the two.
LGS provides flexible structure preservation choices with comparable embedding
quality to previous single-purpose methods (local or global), while also outper-
forming state-of-the-art methods in preserving intermediate structures.

There are several limitations: Our results are based on a small number of
graphs. Additional systematic experimentation would further support the use-
fulness of LGS Some experiments for high-dimensional datasets are in [19]. LGS
modifies MDS’s objective function to accommodate varying neighborhood sizes,
similarly, one could adapt the KL divergence cost function of t-SNE. Note that
t-SNE’s perplexity parameter ostensibly controls the size of a neighborhood, but
high perplexity values do not result in global structure preservation [29].

LGS algorithm has several hyperparameters, including ¢, a, and k. We pro-
vide default values for ¢ and a based on experiments, and leave k as a true
hyperparameter. Our intention is for a visualization designer to adjust k as
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needed; to generate a spectrum of embeddings to get a sense of both local and
global properties of a dataset. An interactive LGS version is not yet available.
While LGS runs in seconds for graphs with a few thousand vertices, the running
time can become untenable for larger instances, due to the O(|V |?) optimization
per epoch, and pre-processing with APSP. While LGS’s runtime is comparable
with those of tsNET and MDS (see Fig. 7(c)) both can be sped up through the
use of approximations [9,23,31], Speeding up LGS is a potential future work.
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