
ar
X

iv
:2

30
2.

11
95

2v
4

[c
s.

D
M

]
28

 F
eb

 2
02

4

Simultaneous Drawing of Layered Trees

Julia Katheder1[0000−0002−7545−0730],
Stephen G. Kobourov2[0000−0002−0477−2724],

Axel Kuckuk1 [0000−0002−5070−3412],
Maximilian Pfister1[0000−0002−7203−0669], and

Johannes Zink3 [0000−0002−7398−718X]

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Tübingen,
Germany

firstname.lastname@uni-tuebingen.de
2 Department of Computer Science, University of Arizona, Tucson, USA

lastname@cs.arizona.edu
3 Institut für Informatik, Universität Würzburg, Würzburg, Germany

lastname@informatik.uni-wuerzburg.de

Abstract . We study the crossing-minimization problem in a layered
graph drawing of planar-embedded rooted trees whose leaves have a given
total order on the first layer, which adheres to the embedding of each
individual tree. The task is then to permute the vertices on the other
layers (respecting the given tree embeddings) in order to minimize the
number of crossings. While this problem is known to be NP-hard for
multiple trees even on just two layers, we describe a dynamic program
running in polynomial time for the restricted case of two trees. If there
are more than two trees, we restrict the number of layers to three, which
allows for a reduction to a shortest-path problem. This way, we achieve
XP-time in the number of trees.

Keywords: layered drawing · tree drawing · crossing-minimization · dy-
namic program · XP-algorithm

1 Introduction

Visualizing hierarchical structures as directed trees is essential for many appli-
cations, from software engineering [2] to medical ontologies [1] and phylogenetics
in biology [12]. Phylogenetic trees in particular can serve as an example to illus-
trate the challenges of working with hierarchical structures, as they are inferred
from large amounts of data using various computational methods [19] and need to
be analyzed and checked for plausibility using domain knowledge [9]. From a
human perspective, visual representations are needed for this purpose. Most
available techniques focus on the visualization of a single tree [7]. However, cer-
tain tasks may require working with multiple, possible interrelated trees, such as
the comparison of trees [9,11] or analyzing ambiguous lineages [13]. Graham and
Kennedy [7] provide a survey for drawing multiple trees in this context.

2 J. Katheder, S.G. Kobourov, A. Kuckuk, M. Pfister, and J . Zink

While there are many different visualization styles for trees (see an overview
by Schulz [15]), directed node-link diagrams are the standard. The most com-
mon approach to visualize a directed graph as a node-link diagram is the layered
drawing approach due to Sugiyama et al. [17]. After assigning vertices to layers,
the next step is to permute the vertices on each layer such that the number of
crossings is minimized, as crossings negatively affect the readability of a graph
drawing [14,18]. However, this problem turns out to be hard even when restrict-
ing the number of layers or the type of graphs. For example, if the number
of layers is restricted to two, crossing minimization remains NP-hard for gen-
eral graphs [6], even if the permutation on one layer is fixed [5], known as the
one sided crossing minimization (OSCM) problem. However, it is known that
OSCM is fixed-parameter tractable in the number of crossings, which has first
been shown by Dujmovic and Whitesides [4]. For the special case of a single tree
on two layers, OSCM can be solved in polynomial time [8] and in the case that
both layers are variable, the problem can be reduced to the minimum linear ar-
rangement problem [16], which is polynomial-time solvable [3]. For an arbitrary
number of layers, the problem is still NP-hard even for trees [8], however, the
obtained trees in the reduction [8] are not drawn upward in the direction from
the leaves to a root vertex (and we do not see an obvious way to adjust their
construction). With respect to forests, the general case where k � O(n) is known
to be NP-hard [10] even for ℓ = 2 layers and trees of maximum degree 4.

Our Contributions. We consider the crossing-minimization problem for an n-
vertex forest of k trees whose vertices are assigned to ℓ layers such that all leaves
are on the first layer in a fixed total order and the vertices on each of the other
layers need to be permuted. In other words, the task is to draw k layered rooted
trees whose leaves may interleave simultaneously, while minimizing the number
of crossings.

We show that the case of k = 2 trees is polynomial-time solvable for ar-
bitrary ℓ using a dynamic program (see Sec. 3). Furthermore, we describe an
XP-algorithm4 in the number k of trees modeling the solution space by a k-
dimensional grid graph for ℓ = 3 layers. Our result generalizes to planar graphs
under certain conditions (see Sec. 4). We conclude with the open case of k ≥ 3
and ℓ ≥ 4 (see Sec. 5).

2 Preliminaries

Let F be a given forest of k disjoint rooted trees T1, . . . , Tk directed towards the
roots such that all vertices except for the roots have out-degree 1. For an integer
ℓ ≥ 2, let an assignment of the vertices to ℓ layers be given, such that each tree
Ti is drawn upward, i.e., for any directed edge (u, v) � Ti , we have that the layer
of u, denoted by L(u), is strictly less than L(v). This implies that

4 X P is a parameterized running-time class and an XP-algorithm has a running time in
O(|I |f (k)), where |I| is the size of the instance, f a computable function, and k the
parameter. Note that every FPT-algorithm is an XP-algorithm but not vice versa.

j

j j

Simultaneous Drawing of Layered Trees 3

T1 T2 . . . Tk −1 Tk
ℓ

.
3

T1

2

. . .
1

(a) (b)

Fig. 1: (a) Upward drawing of k disjoint directed rooted trees T1, . . . Tk on ℓ
layers. As indicated by the filled vertices, the total order < 1 of layer 1 is given,
while the total orders <2 , . . . , <ℓ need to be determined. In the following figures,
we drop the arrowheads and assume an upward direction. (b) Illustration of
positions (gray boxes) with respect to T1 and their respective ideal positions
indicated by a directed gray arrow from each position p to its ideal position p�.

if L (u) = 1, u is a leaf of Ti . The other way around, we also require that for
any leaf v, L (v) = 1. Note that the roots of the trees can be placed on different
layers, while layer ℓ hosts the root of every tree with height exactly ℓ. We refer to
the set of vertices of Ti on layer j as Vj (Ti) and we define the set of all vertices on
layer j as V j (F) = Vj (T1) � · · · � Vj (Tk).

We further require that the total order < 1 of layer 1 (i.e., the order of all
leaves) is given as part of the input, with the additional restriction that < 1
induces a planar embedding Ei with respect to each individual tree Ti , that is,
there exists an ordering of the (non-leaf) vertices of Ti such that no two edges of
Ti cross, see Fig. 1a for an illustration. Since the leaves of each Ti are all on
layer 1, the embedding Ei is unique and implies a total ordering < i of the
vertices of Ti on every layer j � {2, . . . , ℓ}. Therefore, we henceforth assume that
Vj (Ti) appears in the corresponding vertex order < i , and if we combine all < i for
i � {1, . . . , k}, we obtain a partial order, which we call �j .

The task is to find a total order < j of V j (F) extending the partial order �j

for each j � {2, . . . , ℓ} such that the total number of pairwise edge crossings
implied by a corresponding straight-line realization of F is minimized.

We restrict the notion of an upward drawing even further since we require
that for any directed edge (u, v) � Ti , we have that L (u) + 1 = L(v). If our input
does not fulfill this requirement, this can be achieved by subdividing edges which
span several layers (as commonly done, e.g., in the Sugiyama framework). In the
following, we assume that n is the number of vertices after subdivision and let
n1, . . . , nk be the number of vertices of T1, . . . , Tk, respectively. Furthermore, we
denote the number of vertices of tree Ti on layer j by ni|j = |Vj (Ti)|.

X
i j − 1

x

4 J . Katheder, S.G. Kobourov, A. Kuckuk, M. Pfister, and J . Zink

3 Two Trees on Arbitrar i ly Many Layers

In this section, we assume that we are given a forest F = {T1, T2} with embed-
dings E1 and E2. We fix the drawing of T1 according to E1 and the only remaining
task is to add the non-leaf vertices of T2 in the order prescribed by E2 such that
the number of crossings is minimized. To this end, we describe a dynamic pro-
gramming approach, which leads to the following theorem.

Theorem 1. Let F be an n-vertex layered forest of two rooted trees, where all
leaves are assigned to layer 1 and have a fixed order, which prescribe a planar
embedding of each tree individually. We can compute a drawing of F where each
tree is drawn in the prescribed planar embedding with the minimum number of
crossings in O(n3) time.

Proof. As stated before, we fix the drawing of T1 according to E1. Hence it
remains to prove that our dynamic program embeds T2 according to E2, which we
do in Lemma 1. In Lemma 2, we show that the resulting drawing has the
minimum number of crossings. This proves the correct behavior of our algorithm.
In Lemma 3, we also show the runtime bound of O(n3).

Description of the Dynamic Program. Consider some layer j � {2, . . . , ℓ} and
index the vertices in Vj (T1) according E1 from left to right by 1, . . . , n1|j . In a
complete drawing, we define, for a vertex v of T2, its position p on layer j with
respect to the index of the closest vertex of T1 to the left of v. If there is no
such vertex, we set p = 0. Let C v = {c1, c2, . . . , cindeg(v) } be the ordered set of
children of v in T2, which lie on layer j − 1, where indeg(v) is the in-degree of v.

For our dynamic program, we define a function o, which has as first parameter
a vertex v of T2 and as second parameter a position p on layer L(v). The value of
o shall describe the number of crossings in an optimal partial solution for the
drawing of the subtree of T2 rooted at v and placed at position p. As usual in a
dynamic program, we compute a function value once and then save it in a
lookup table. Additionally, we save the recursive dependencies that led to a
value to reconstruct a drawing in the end. If j ≥ 3, we define o as follows.

|Cv |

o[v, p] = min o[c , q] + χ (q, p)
i = 1

q�{ 0 , . . . , n 1 | j − 1 }

where χ (y, z) is a crossing function describing the number of crossings an edge
between layers x and x + 1 admits if its source is arranged at position y (of
layer x) and its target is arranged at position z (of layer x + 1). If for some ci ,
there is more than one position for q resulting in a minimum value of o[v, p], we
choose the position q that maximizes χ j −1 (q , p).

For the recursive function o, we add a terminating formulation for the vertices
on layer j = 2. Recall that for the leaves on layer 1, there is a total order < 1

given. Hence, for a vertex v � V2(T2), the position of each child of v is fixed,

i

X

2

j − 1

j

�

� � �

j − 1

Simultaneous Drawing of Layered Trees 5

leading to the following simplified formulation of o, where pc is the given position
of leaf ci .

|Cv |

o[v, p] = χ1 (pc i , p)
i = 1

To compute the value o� of the dynamic program as a whole, we take the
minimum of all values of o for the root r2 of T2:

o� = min o[r , p].
p�{ 0 , . . . , n 1 | L (r 2) }

We return a drawing corresponding to o�, i.e., we specify for each vertex v of T2 its
position with respect to T1 when computing o�. Finally, for vertices of T2 having
the same position, we arrange them in the order given by E2.

Correctness. Next, we prove the correct behavior of our dynamic program by
showing that T2 is embedded according to E2 (Lemma 1) and by showing that
the resulting drawing has the minimum number of crossings (Lemma 2). Mainly
because Lemma 1 is rather intricate to prove, we next introduce some more
notation and concepts, for which we show four claims that lead to the proofs of
these lemmas.

A key observation is that for a position p on layer j , there is precisely one
ideal position p� on layer j − 1 such that χ (p�, p) = 0 and for two positions
p, q with p < q on layer j , the ideal positions p�, q� on layer j − 1 appear in the
same order, i.e., p� < q�. (Imagine going down the gap of E1 where p is located
as illustrated in Fig. 1b.) In Claim 1, we formalize another observation regarding
ideal positions. Essentially, the claim says that the further the endpoints of an
edge are away from a pair of position and ideal position, the more crossings
occur. For simplicity, we assume henceforth that each of the functions o and χ
returns ∞ for parameters outside of its domain.

Claim 1. On a layer j � {2, . . . , L(r1)}, let p � {0, . . . , n1|j } be a position and let
p � {0, . . . , n1|j−1 } be the ideal position of p on layer j − 1. For any x � N0, it holds
that χ j − 1 (p ± x, p) = x and χ j − 1 (p , p ± (x + 1)) > χ j − 1 (p , p ± x)) ≥ x .

Proof. Consider an edge (u, v) of T2 with its endpoints being placed at p� and p.
We know that χ (p�, p) = 0. Now, for every position that we move u (v, resp.) to
the left or right of p� (of p), we change sides with a vertex w of T1. Because w has
exactly (at least) one incident edge going upwards (downwards) to its parent (a
child) that we have not crossed before, the number of crossings increases by
exactly (at least) 1.

For a vertex v � Vj (T2) on a layer j , we define Popt (v) as the set of every
position p where o[v, p] is minimum. We analyze the properties of Popt in Claim 2.

1
(p

c 1
 ;

p)

1
(p

c 2
 ;

p)

1
(p

c 3
 ;

p)

o[
v;

p]

6 J . Katheder, S.G. Kobourov, A. Kuckuk, M. Pfister, and J . Zink

0 1 2 3 0 1 2 3

c1 c2

5
4

2 2
1

0

p

1

p

(a) Crossings of the edge (c1 , v) depen-
dent on the position p of v.

(b) Crossings of the edge (c2 , v) depen-
dent on the position p of v.

0 1 2 3 11

c3
7

4
3

4

2 2
1

p

(c) Crossings of the edge (c3 , v) depen-
dent on the position p of v.

p

(d) Sum of the three crossing functions
gives o[v, p].

Fig. 2: Example of a vertex v of V2(T2) having three children c1, c2, c3, where the
position pc of a child c and the position p of v determine the value of o[v, p].
Here, we perceive χ and o as functions dependent on p.

2 | j

2 | j 2 | j

P
i = 1 1 i

2 | j

j − 1

j − 1

j − 1

j − 1

2 | j

�
�

��

Simultaneous Drawing of Layered Trees 7

Claim 2. For every layer j � {2, . . . , L(r2)}, let v1, v2, . . . , vn be the vertices
in Vj (T2) in the order of E2. It holds that min Popt(v1) ≤ min Popt(v2) ≤ . . . ≤
min Popt(vn) and max Popt(v1) ≤ . . . ≤ max Popt(vn).

Further, for every v � Vj (T2), Popt (v) is an interval of natural numbers and,
for any x � N0, o[v, min Popt(v) − (x + 1)] > o[v, min Popt(v) − x] ≥ x and
o[v, max Popt(v) + (x + 1)] > o[v, max Popt(v) + x] ≥ x .

Proof. We show this claim by induction over the layers j = 2, 3, . . .
For j = 2 and every v � Vj (T2), the children of v have fixed positions and,

therefore, o[v, p] only depends on the number of crossings induced by the posi-
tion p � {0, . . . , n1|j }; see Fig. 2 for an example. We next show that Popt (v) is an
interval. Observe that o[v, p] = |Cv | χ (pc , p) is a sum of discrete functions
(with variable p) where each admits its minimum value for one or two neighboring
values of p and apart from at most two values at or around this minimum, all of
these functions increase or decrease by the same amount if we add or subtract 1
to p, which follows by the argument presented in the proof of Claim 1. (These
functions here are weakly unimodal, i.e., they have a global minimum and they
increase monotonously when moving away from that minimum.) Now to find
the positions where that sum is minimum, we traverse the values of its domain:
we start with p = 0. If we increase p by one, then all functions that have not yet
reached its minimum decrease, while the functions that had already reached their
minimum increase by the same amount. Hence, this sum is minimum in the
interval of the domain that has the minima of the single crossing functions
equally distributed on the left and on the right side. Furthermore, for each posi-
tion further to the left or right, the sum increases by at least one. It remains to
show that the minima and maxima of Popt(v1), Popt(v2), . . . , Popt(vn) increase
monotonously. Since the children of the vertices on layer 2 (i.e., the leaves) are
ordered, the minima and maxima of all crossing functions are ordered and so are
the minima and maxima of the sums.

Now consider j > 2. Again o[v, p] is a sum, but now we add, for every
child c of v and a position q, o[c, q] and χ (q, p). The sum of minima is again
a sum of unimodal functions with similar properties as before: the χ (q, p)
summands increase and decrease around their minimum as before, while the
o[c, q] summands increase and decrease before and after their minimum at least
as much as a χ (q, p) summand due to the induction hypothesis. (They behave
like a weighted χ (q, p) summand.) Hence, if we sum them up, we apply a
weighted version of the previous argument to obtain the properties stated in the
claim. In particular, the minima and maxima of Popt(v1), Popt(v2), . . . , Popt(vn)
increase monotonously since the minima and maxima of Popt of the children on
layer j − 1 are ordered by the induction hypothesis.

For a vertex u on a layer j − 1, we define the natural position pnat(u, p) of u
with respect to the position p of its parent vertex on layer j as

�p�, if p� � Popt (u)
pnat(u, p) = max Popt(u), if p� > max Popt(u)

min Popt(u), if p� < min Popt(u).

v

P
v|C |

v

P
i = 1 j − 1

1 | j − 1j − 1 j − 1

j − 1 j − 1

�
j − 1 j − 1

�

j − 1 j − 1

j − 1 j − 1

j − 1 j − 1

j − 1

j − 1 j − 1

j − 1

j − 1 j − 1

v

j − 1

8 J. Katheder, S.G. Kobourov, A. Kuckuk, M. Pfister, and J . Zink

In Claim 3, we describe, for a vertex v, the behavior of the natural positions of
v’s children and their relationship to o[v, p].

Claim 3. For a vertex v � Vj (T2) on a layer j , let c1, . . . , c|C | be the chil-
dren of v. For any position p � {0, . . . , n1|j }, it holds that pnat(c1, p) ≤ . . . ≤

pnat(c|Cv |, p) and o[v, p] = i = 1 (o[ci, pnat(ci, p)] + χ j−1 (pnat (ci , p), p)).

Proof. We partition the children of v into three groups: if for a child ci (where i �
{1, . . . , |Cv |}), p� � Popt (ci), we set qi = p�. If for a child ci , p� > max Popt(ci), we
set qi = max Popt(ci), and, symmetrically, if p� < min Popt(ci), we set qi =
min Popt(ci). By Claim 2, we observe that q1 ≤ . . . ≤ q|C |. Since qi = pnat(ci, p),
this proves the first part of the claim.

Now for the second part, if o[v, p] = |Cv |(o[ci , qi] + χ (qi , p)), then for
some i, o[ci, qi] + χ (qi , p) > minq ′�{0,. . . ,n } (o[ci , q ′] + χ (q ′ , p)). Let q̂ �
{0, . . . , n1|j−1 } be a position such that o[ci , qi] + χ (qi , p) > o[ci , q̂] + χ (q̂, p).
Since we know o[ci , qi] ≤ o[ci, q̂], it follows that χ j −1 (q i , p) > χ j −1 (q̂ , p).

First note that p �/ Popt (ci) because otherwise χ (qi , p) < χ (q̂, p). It
follows that qi is the minimum or maximum position of Popt (ci) – assume w.l.o.g.
that qi = max Popt (ci). Then, qi < q̂ (and hence q̂ �/ Popt (ci)) because otherwise
again χ j −1 (q i , p) < χ j −1 (q̂ , p).

We distinguish two cases. The first case is qi < q̂ ≤ p . By Claim 1, we know
that χ (q i , p)−χ (q̂, p) = q̂−qi . By Claim 2, we know that o[ci , q̂]−o[ci , qi] ≥
q̂ − qi . Hence, we have o[ci, q̂] − o[ci, qi] ≥ χ (qi , p) − χ (q̂, p), which we can
reformulate as o[ci , qi] + χ (qi , p) ≤ o[ci , q̂] + χ (q̂, p), which contradicts our
initial assumption.

The second case is qi < p� < q̂. Now we have χ (qi , p) = p� − qi and
χ (q̂, p) = q̂ − p�. If we add up these two equations, we get χ (qi , p) +
χ (q̂, p) = q̂ − qi . As we still have o[ci, q̂] − o[ci, qi] ≥ q̂ − qi , we get o[ci, qi] +
χ (qi , p) ≤ o[ci, q̂] − χ (q̂, p), which, of course, also contradicts our initial
assumption.

Now in the last claim, which is Claim 4, we directly investigate the positions
that are chosen by our dynamic program as the positions of the children of a
vertex – they turn out to be the natural positions.

Claim 4. For a vertex v � Vj (T2) on a layer j and a position p � {0, . . . , n1|j }, the
dynamic program selects pnat(c1, p), . . . , pnat(c|C |, p) as the positions of v’s
children c1, . . . , c|Cv | on layer j − 1.

Proof. Recall that, for any i � {1, . . . , |Cv |}, if there is more than one position for
ci resulting in a minimum value of o[v, p], the position of q with the maximum value
of χ (q, p) is used as a tie-breaker rule. If pnat(ci, p) = p�, then p� is the
only position of ci that can lead to a minimum value of o[v, p] and our claim is
true.

Now, due to symmetry, we assume w.l.o.g. that pnat(ci, p) = max Popt (ci).
Let p′ = pnat(ci, p) be a position of ci yielding a minimum value of o[v, p]. The
position p′ cannot lie within Popt (ci) by Claim 1 since this would result in a larger

j − 1

j − 1 j − 1

j

j

2 | j + 1

i

j

i
�
i

i i ′

v v

Simultaneous Drawing of Layered Trees 9

number of crossings, while o[ci, p′] = o[ci, pnat(ci, p)]. Hence, pnat(ci, p) < p′. By
Claim 2, o[ci, p′] − o[ci, pnat(ci, p)] ≥ p′ − pnat(ci, p). This means, that, for each
position further to the right of pnat(ci, p), the value of the dynamic program
for ci increases by at least one, while the number of crossings according to the
function χ increases by exactly one (see Claim 1). Thus, pnat(ci, p) is one
(of possibly several) position(s) of ci admitting a minimum value of o[v, p]. If p′

also admits a minimum value of o[v, p], but o[ci, p′] > o[ci, pnat(ci, p)], it follows
that χ (p′ , p) < χ (pnat(ci , p), p). Hence, due to the tie-breaker rule, our
algorithm would have selected pnat(ci, p) instead of p′.

Now we have gathered everything to establish the key lemma of this section.

Lemma 1. The drawing of T2 is embedded according to E2.

Proof. We prove that the vertices of T2 are ordered according to < 2 by induction on
layer j , starting with the layer of the root r of T2. On layer j = L(r2), there is only
r, which, of course, cannot contradict <2 .

Let j < L (r 2) and v1, v2, . . . vn be the vertices on layer j + 1. Then, by
Claims 3 and 4, the children C v on layer j have increasing positions respect-ing
< 2 for every i � {1, . . . , n2|j +1 } and the edges to these children do not cross. It
remains to show that no pair of edges between layers j and j + 1 without a
common endpoint cross. By our induction hypothesis, for two vertices vi , vi ′ on
layer j + 1 with i < i ′ , the position pi of vi is not greater than the position pi ′ of
vi ′ . By Claim 1, it follows for the ideal positions of pi and pi ′ that p� ≤ p ′ . By
Claim 2, the min and max values of Popt of the vertices on layer j are mono-
tonically increasing. Hence, by Claim 4 and the definition of pnat, there are no
crossings between edges with target vi and edges with target vi ′ , as this would
contradict p� ≤ p� . Hence, the edges between layer j and j + 1 are planar, which
concludes the induction step.

After we have now shown that the dynamic program yields a valid solution,
i.e., a drawing where both trees are internally crossing-free, it remains to prove
that the number of crossings between T1 and T2 is minimum.

Lemma 2. The number of crossings in the computed drawing is minimum.

Proof. We show by induction over the layers j = 2, 3, . . . that for a vertex v and a
position p, o[v, p] is the minimum number of crossings induced by (T1 and) the
subtree of T2 rooted at v, which we call Tv , across all drawings of Tv when we
place v at position p. For j = 2, this is clear as we just sum up the number of
crossings induced by the edges to the leaves.

Let j ≥ 3. By Claim 4, we know that the dynamic program has selected the
positions pnat(c1, p) ≤ . . . ≤ pnat(c|C |, p) for the children c1, . . . , c|C | of v. By our
induction hypothesis, we know that, for each c � Cv , o[c, pnat(c, p)] corresponds to a
drawing of Tc at position pnat(c, p) with the minimum number of crossings. We add
up the number of crossings between layer j − 1 and j , and by the formulation of the
dynamic program, we know that this is again minimum across all positions of c.

2

j − 1

j

1

1

i

i

i

10 J . Katheder, S.G. Kobourov, A. Kuckuk, M. Pfister, and J . Zink

Running Time. It remains to analyze the running time of our dynamic program.

Lemma 3. The running time of our algorithm is in O(n1 · n2) � O(n3).

Proof. For a vertex v of Vj (T2) and a position p � {0, . . . , n1|j }, we can com-
pute o[v, p] by finding, for each child c � C v and a position q in a subset of
{0, . . . , n1|j−1}, the minimum of o[c, q] + χ (q, p).

The number of children over all steps is in O(n2) as T2 is a tree and the
number of positions is in O(n1). We can pre-compute and store all values χ (q, p)
in O(n2) time. We have O(n1n2) entries of o[v, p], which we can compute in
overall O(n2n2) � O(n3) time. The optimal root placement can be found in
linear time. For the backtracking when constructing the final drawing, we simply
store for each entry o[v, p] a pointer to the entries it is based on.

4 Multiple Trees on Three Layers

In this section, we consider the case that we are given a forest F = {T1, . . . , Tk }
of k trees spanning (at most) three layers each, and we show the following result.

Theorem 2. Let F be an n-vertex layered forest of k rooted trees on three layers,
where all leaves are assigned to layer 1 and have a fixed order, which prescribes
a planar embedding of each tree individually. We can compute a drawing of F
where each tree is drawn in the prescribed planar embedding with the minimum
number of crossings in O(nk) time.

The first property we use to prove Theorem 2 is that the order of roots on
layer 3 is fixed, similar to the order of the leaves on layer 1. We can assume this
because there are only up to k roots on layer 3, with at most k! ways to arrange
them. We simply consider each permutation of the roots on layer 3 individually,
and henceforth assume that both total orders < 1 and < 3 are given, fixing the
roots and leaves, and the only remaining task is to compute < 2 of the vertices on
layer 2 while maintaining their partial order �2. Note that if any tree has its root
on layer 2, we treat this root like the other vertices of layer 2.

As in Sec. 3, we use the notion of positions and crossing functions, however,
we slightly adjust their definitions to better suit the setting of this section.
Let σ be a permutation of V2 (F) indexed by 1, 2, . . . and respecting the partial
order �2. For i � {1, . . . , k} and some vertex v � V2 (F) \ V2(Ti), we denote
the position (starting at 0) of v within the subsequence of σ consisting of the
vertices V2 (Ti)�{v} by pv.5 Note that, in a drawing using σ as <2 , we can charge
every crossing to precisely two vertices of V2 (F) as any crossing occurs between
two edges that have two distinct endpoints on layer 2. Now observe that for a
vertex v � V2(Tj), where j � {1, . . . , k}, the number of crossings charged to v
with respect to σ depends only on pv for each i � {1, . . . , k} \ {j }. Therefore, we
introduce the crossing function χv (p) returning the resulting number of crossings

5 This is a generalization of the positions introduced in Sec. 3 where all positions were
relative to (the given embedding of) T1 .

σP v v
P

i

i

i i

2 2

P
i

Simultaneous Drawing of Layered Trees 11

when we insert v at a position p � {0, . . . , ni|2} into the planar embedding of Ti.
The number χ (v) of crossings charged to v when using permutation σ is then
χσ (v) = i�{ 1 , . . . , k } \ { j } χ i (pi) and the total number χ(σ) of crossings when
using permutation σ is then χ(σ) = v�V 2 (F) χσ (v)/2.

Lemma 4. For all combinations of i � {1, . . . , k}, v � V2 (F) \ V2(Ti), and
p � {0, . . . , ni|2}, we can compute every value χv (p) in a total of O(n2) time.

Proof. First save, for every v � V2 (F), the star S v induced by v and v’s neighbors in
total O(n) time. Now for a fixed i � {1, . . . , k}, consider the given planar
embedding Ei of Ti . Also fix v � V2 (F) \ V2(Ti) and compute χv (0) by checking, for
every pair of edges of S v and Ti , if there is a crossing if v is the leftmost vertex on
layer 2. Then for p = 1, . . . , ni|2, update χv (p − 1) to χv (p) by checking each pair
of edges from S v and the star around the p-th vertex of V2(Ti). Over all of these
steps, all vertices, and all trees, every pair of edges is considered at most four
times, which yields a running time in O(n2).

Reduction to a Shortest-Path Problem. We now construct a weighted directed
acyclic st-graph H (see Fig. 3c) whose st-paths represent precisely all total
orders of V2 (F) that respect the vertex orders <1 , . . . , <k given for each tree
by its prescribed planar embedding (see Fig. 3a). Moreover, for an st-path π
representing a total order σ of V2 (F), the weight of π is twice the number of
crossings induced by σ. We let H be the k-dimensional grid graph of side lengths
n1|2 × · · ·×nk|2 directed from one corner to an opposite corner. More precisely, H
has the node set {(x1 , . . . , xk) | x1 � {0, . . . , n1|2}, . . . , xk � {0, . . . , nk|2}} and
there is a directed edge from (x1, . . . , xk) to (y1, . . . , yk) if x j + 1 = yj for exactly
one j � {0, . . . , k} and x i = yi otherwise. Observe that, within H , (0, . . . , 0) is the
unique source and (n1|2, . . . , nk|2) is the unique sink, which we denote by s and
t, respectively. We let an edge e from (x1, . . . , xk) to (y1, . . . , yk) where x j + 1
= yj represent (i) taking the yj -th vertex of V2(Tj), to which we refer as v next, (ii)
after having taken x i vertices of V2(Ti) for each i � {1, . . . , k}. Thus, we let the
weight we of e in H be the number of crossings charged to v in this situation,
that is, we = i�{ 1 , . . . , k } \ { j } χ v (x i) .

Clearly, any st-path π in H has (unweighted) length n2. If we traverse π, we
can think of layer 2 as being empty when we start at s, and then, for each edge
of π, we take the corresponding vertex of V2 and add it to layer 2. Since edge
weights equal the number of crossings the corresponding vertices would induce in
this situation, finding a lightest st-path in H means finding a crossing-minimal
total order of layer 2 (see Fig. 3). By constructing H (using Lemma 4 to compute
the edge weights) and searching for an st-path of minimum weight, we obtain an
XP-algorithm in k; see Theorem 2, which we formally prove next.

Proof (of Theorem 2). For F , we fix each order of layer 3 once and compute
the corresponding k-dimensional grid graph H . We first argue that the st-paths
of H represent precisely the possible total orders of V2 (F) and their weights are

2 2

σ

12 J. Katheder, S.G. Kobourov, A. Kuckuk, M. Pfister, and J . Zink

t
1 2 3 10 4

x1 x2 y1

z1 z2

11 5 8 2 10 0

7 6

9 6 4
1 5 7 3 4 6 2 8 7 2

(a) We are given three embedded trees on
three layers together with a total order of
the leaves and the roots (numbers on the
top and the bottom side).

7 6 4 5 6 5

4 4

4 3 3

6 2

1 2 3

x1 z1 x2 z2

y1

1 2 3 4 5 6 7 8

(b) Drawing of the trees from (a) with the
minimum number of crossings (six pair-
wise crossings) where the orders of the
leaves and the roots are given. The total
order of the vertices on layer 2, the middle
layer, corresponds to the shortest st-path
highlighted in orange in (c).

9 6 8

s 3 4 z y

x

(c) Grid graph H with edge weights
whose st-paths represent precisely the
(allowed) total orders of the vertices on
layer 2 of the forest shown in (a). The
width in x-dimension is two and repre-
sents first choosing vertex x 1 and then
vertex x 2 of the first tree. Similarly, the
y- and z-dimension represent the vertices
of the second and third tree, respectively.
The st-path highlighted in orange is the
lightest path with weight 12.

Fig. 3: Reducing the problem of finding a layered drawing of k trees on three
layers with the minimum number of crossings, where the leaves and the roots
are fixed, to a shortest-path problem in a weighted k-dimensional grid graph.

twice the number of crossings in the corresponding drawing of F . Thereafter, we
argue about the running time.

Since we have a k-dimensional grid graph, any st-path in H traverses n1|2
edges in the first dimension, n2|2 edges in the second dimension, etc. We can
interleave the edges of different dimensions arbitrarily to obtain different paths.
Hence, each path is equivalent to exactly one total order σ extending the partial
order �2, which is given by <1 , . . . , <k . The number of crossings of a drawing
only depends on σ. Every crossing occurs between two edges being incident
to precisely two distinct vertices of V2 (F). We charge the crossing to these two
vertices. Hence, we can add up the numbers of crossings charged to each vertex v
(i.e., χ (v)) and divide the sum by two. These numbers of crossings charged to
the vertices are by definition the edge weights of H . Therefore, each minimum-

k

k

k
i

Simultaneous Drawing of Layered Trees 13

weight st-path in H is equivalent to a minimum-crossing drawing of F for the
given order of leaves and roots.

It remains to argue about the running time. The number of directed edges
of H is upper-bounded by

E (H) = X n j | 2
Y

ni|2 + 1
j = 1 i�{ 1 , . . . , k } \ { j }

≤ k Y

ni|2 + 1

≤ k

n k
. i = 1

To compute the weight of each such edge, we sum up k − 1 values of χv (p),
which we have pre-computed in O(n2) time using Lemma 4. Therefore, we can
construct H including the assignment of edge weights in O(k2(n/k)k) time and
we can find a minimum-weight path in H in O(k(n/k)k) time using topological
sorting. Recall that we construct a graph H for at most k! permutations of the
roots on layer 3. For the final minimum-crossing drawing, we use the permutation
of V2 (F) and the permutation of V3 (F) that correspond to the lightest minimum-
weight path in any H . Hence, the total running time is in O(k!k2(n/k)k) �
O(k3 · (k − 1) · . . . · 2 · 1/kk · nk) � O(nk).

Finally, we remark that our XP-algorithm from Theorem 2 can be generalized
in two ways.

Remark 1. By definition, �2 has only constraints between vertices of the same
tree. We can extend �2 by (arbitrarily many) constraints between vertices of
different trees and Theorem 2 still holds. This is because we can easily adjust
our reduction: say x is the i-th vertex on layer 2 of the first tree, y is the j -th
vertex on layer 2 of the second tree, and let the constraint x �2 y be given.
Then, in H , we set the weight of every edge representing x and lying in the y-
dimension at a position ≥ j to ∞. Symmetrically, we set the weight of every edge
representing y and lying in the x-dimension at a position < i to ∞. This way, we
prevent that a lightest path chooses an edge representing y before it chooses an
edge representing x. If and only if there is an st-path with non-infinity weight
in H , there is a valid arrangement of the vertices on layer 2.

Remark 2. Requiring trees on the three layers is a stronger restriction than actu-
ally needed. For our reduction, we only use the property that the vertex order on
layer 3 is fixed, which we achieve by trying all permutations. For this approach, it
sufices if layer 3 is sparse. Hence, our result also holds for k planar-embedded
graphs provided that on layer 3, there are O(k) vertices. Moreover, for planar-
embedded graphs and an arbitrary number of vertices on layer 3, Theorem 2
holds as well if the total order of vertices on layer 3 is prescribed.

5 Conclusion and Open Problems

In this work, we approach the problem of crossing minimization of layered rooted
trees from two directions. First, by describing a cubic-time dynamic program in

14 J. Katheder, S.G. Kobourov, A. Kuckuk, M. Pfister, and J . Zink

Theorem 1, keeping the number of trees k small, namely k = 2, while allowing
an arbitrary number of layers. Inversely, our second result stated in Theorem 2
is an XP-time algorithm for an arbitrary number of trees, restricted to only
three layers. Hence, there is a gap between these two results, which has not yet
been explored and naturally raises the following open problem. Going one step
further, is the case k = 3 trees and ℓ = 4 layers polynomial-time solvable, and
if so, for which k and ℓ does it become hard? Moreover, we pose the question of
improving the complexity class for the case of ℓ = 3 and k > 2, namely, can we
solve the case of three layers in FPT-time in the number k of trees? Alternatively
this may be proved to be W[1]-hard. Lastly, note that in our setting, we require
that every tree preserves its given planar embedding (imposed by the order of its
leaves). It is not clear, whether there exists a solution with less crossings without
this restriction, although our current believe is that, in any minimum-crossing
solution, all of them are drawn planar.

Acknowledgments. We thank the organizers of the workshop GNV 2022 in
Heiligkreuztal for the fruitful atmosphere where some of the ideas of this paper
arose. We also thank the anonymous reviewers for their helpful feedback.

References

1. Olivier Bodenreider. The unified medical language system (UMLS): Integrating
biomedical terminology. Nucleic Acids Research, 32(suppl_1):267–270, 2004. d o i :
10.1093/nar/gkh061.

2. Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. Change detection in hierarchically structured information. AC M SIGMOD
Record, 25(2):493–504, 1996. doi:10.1145/235968.233366.

3. Fan R. K . Chung. On optimal linear arrangements of trees. Computers and
Mathematics with Applications, 10(1):43–60, 1984. doi:10.1016/0898- 1221(84)
90085-3.

4. Vida Dujmovic and Sue Whitesides. An eficient fixed parameter tractable algo-
rithm for 1-sided crossing minimization. Algorithmica, 40(1):15–31, 2004. d o i :
10.1007/S00453-004-1093-2.

5. Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite
graphs. Algorithmica, 11(4):379–403, 1994. doi:10.1007/bf01187020.

6. Michael R . Garey and David S. Johnson. Crossing number is NP-complete. S IAM
Journal on Algebraic Discrete Methods, 4(3):312–316, 1983. doi:10.1137/0604033.

7. Martin Graham and Jessie Kennedy. A survey of multiple tree visualisation. In-
formation Visualization, 9(4):235–252, 2010. doi:10.1057/ivs.2009.29.

8. Martin Harrigan and Patrick Healy. k-level crossing minimization is NP-hard for
trees. In Naoki Katoh and Amit Kumar, editors, Proc. 5th International
Workshop on Algorithms and Computation (WALCOM ’11), volume 6552 of Lec-
ture Notes in Computer Science, pages 70–76. Springer, 2011. doi:10.1007/
978-3-642-19094-0_9.

9. Zipeng Liu, Shing Hei Zhan, and Tamara Munzner. Aggregated dendrograms for
visual comparison between many phylogenetic trees. I E E E transactions on
visualization and computer graphics, 26(9):2732–2747, 2019. doi:10.1109/tvcg.
2019.2898186.

https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1145/235968.233366
https://doi.org/10.1016/0898-1221(84)90085-3
https://doi.org/10.1016/0898-1221(84)90085-3
https://doi.org/10.1007/S00453-004-1093-2
https://doi.org/10.1007/S00453-004-1093-2
https://doi.org/10.1007/bf01187020
https://doi.org/10.1137/0604033
https://doi.org/10.1057/ivs.2009.29
https://doi.org/10.1007/978-3-642-19094-0_9
https://doi.org/10.1007/978-3-642-19094-0_9
https://doi.org/10.1109/tvcg.2019.2898186
https://doi.org/10.1109/tvcg.2019.2898186

Simultaneous Drawing of Layered Trees 15

10. Xavier Muñoz, Walter Unger, and Imrich Vrto. One sided crossing minimization is
NP-hard for sparse graphs. In Petra Mutzel, Michael Jünger, and Sebastian
Leipert, editors, Proc. 9th International Symposium on Graph Drawing (GD’01),
volume 2265 of Lecture Notes in Computer Science, pages 115–123. Springer, 2001.
doi:10.1007/3-540-45848-4_10.

11. Tamara Munzner, François Guimbretiere, Serdar Tasiran, L i Zhang, and Yun-
hong Zhou. Treejuxtaposer: scalable tree comparison using Focus+Context with
guaranteed visibility. AC M Transactions on Graphics, 22(3):453–462, 2003. d o i :
10.1145/1201775.882291.

12. Georgios A Pavlopoulos, Theodoros G Soldatos, Adriano Barbosa-Silva, and Rein-
hard Schneider. A reference guide for tree analysis and visualization. BioData
mining, 3(1):1–24, 2010. doi:10.1186/1756- 0381- 3- 1.

13. Pere Puigbò, Yuri I Wolf, and Eugene V Koonin. Search for a ’tree of life’ in
the thicket of the phylogenetic forest. Journal of Biology, 8(6):1–17, 2009. d o i :
10.1186/jbiol159.

14. Helen C. Purchase, David A. Carrington, and Jo-Anne Allder. Empirical evaluation of
aesthetics-based graph layout. Empirical Software Engineering, 7(3):233–255,
2002. doi:10.1023/A:1016344215610.

15. Hans-Jörg Schulz. Treevis.net: A tree visualization reference. I E E E Computer
Graphics and Applications, 31(6):11–15, 2011. doi:10.1109/mcg.2011.103.

16. Farhad Shahrokhi, Ondrej Sýkora, László A. Székely, and Imrich Vrto. On bipar-
tite drawings and the linear arrangement problem. S IAM Journal on Computing,
30(6):1773–1789, 2000. doi:10.1137/S0097539797331671.

17. Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual under-
standing of hierarchical system structures. I E E E Transactions on Systems, Man,
and Cybernetics, 11(2):109–125, 1981. doi:10.1109/TSMC.1981.4308636.

18. Colin Ware, Helen C. Purchase, Linda Colpoys, and Matthew McGill. Cognitive
measurements of graph aesthetics. Information Visualization, 1(2):103–110, 2002.
doi:10.1057/palgrave.ivs.9500013.

19. Ziheng Yang and Bruce Rannala. Molecular phylogenetics: principles and practice.
Nature reviews genetics, 13(5):303–314, 2012. doi:10.1038/nrg3186.

https://doi.org/10.1007/3-540-45848-4_10
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1186/1756-0381-3-1
https://doi.org/10.1186/jbiol159
https://doi.org/10.1186/jbiol159
https://doi.org/10.1023/A:1016344215610
https://doi.org/10.1109/mcg.2011.103
https://doi.org/10.1137/S0097539797331671
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1038/nrg3186

