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Abstract

We prove that for every n > 3 the sharp upper bound for the dimension of the symme-
try groups of homogeneous, 2-nondegenerate, (2n + 1)-dimensional CR manifolds of
hypersurface type with a 1-dimensional Levi kernel is equal to n% +7, and simultane-
ously establish the same result for a more general class of structures characterized by
weakening the homogeneity condition. This supports Beloshapka’s conjecture stat-
ing that hypersurface models with a maximal finite dimensional group of symmetries
for a given dimension of the underlying manifold are Levi nondegenerate.
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1 Introduction

A classical problem setting in differential geometry is to find homogeneous struc-
tures with the symmetry group of maximal dimension among all geometric structure
of a certain class. Homogeneity here means, as usual, that the symmetry group of
the structure acts transitively. In Cauchy-Riemann (CR) geometry this problem is
classically solved for the class of Levi nondegenerate CR structures of hypersurface
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type of arbitrary dimension ([5, 17]). The present paper solves this problem for 2-
nondegenerate CR structures of hypersurface type with a 1-dimensional Levi kernel.
This class can be seen as the next one in a hierarchy of nondegeneracies to the class
of Levi nondegenerate CR structures of hypersurface type. We furthermore obtain
this result for structures that are not necessarily homogeneous, but that rather sat-
isfy a weaker condition we term admitting a constant reduced modified CR symbol
(Definition 3.3 below). Previously the answer to this problem was given only in the
5-dimensional case [9, 11, 12], which is the case of the smallest possible dimension
in which 2-nondegenrate structures exist. We give the answer for arbitrary dimen-
sion (which a priori is odd) greater than 5 extending the previous result of [13] that
worked under additional restrictions of regularity of the CR symbol. The definition of
the CR symbol and its regularity was introduced in [13] and is discussed in Section 2
below. This result supports Beloshapka’s conjecture [9, Conjecture 5.6] stating that
the hypersurface models with maximal finite dimensional groups of symmetries for
a given dimension of the underlying manifold are Levi nondegenerate.

In more detail, let M be a (2n + 1)-dimensional CR manifold with CR structure
H of hypersurface type, meaning that H is an integrable, totally real, complex rank
n distribution contained in the complexified tangent bundle CT M of M, that is,

[HLHICH and HNH=0 (1.1)

where the overline in H denotes the natural complex conjugation in CT M.
Recall that the Levi form of the structure H is a field over M of Hermitian forms
defined on fibers of H by the formula

L(X,,Y,) = ’5 [X.Y] ~mod H, & H, VX, Yel(H)andx e M. (1.2)

Here we are using the notation I'(E) to denote sections of a fiber bundle E. The
kernel of the Levi form L is called the Levi kernel and will be denoted by K. CR
structures with K = 0 are called Levi-nondegenerate. It is classically known ([5,
17]) that for Levi-nondegenerate (2n + 1)-dimensional structures with the Levi form
of signature (p, q), where p + g = n, the algebra of infinitesimal symmetries of the
maximally symmetric model is isomorphic to su(p + 1, ¢ + 1), having dimension
n+2)>2—1.

In the present paper we assume that the fiber K, of the Levi kernel is 1-
dimensional at every point x € M, that is, K is a rank 1 distribution, and that the
following nondegeneracy condition holds: If for v € K, and y € H,/K,, we take
V e(K)and Y € I'(H) such that V(p) = vand Y(p) = y mod K, and define a
linear map ad, : H,/K — H;/K, by

ady(y) :=[V,Y]y mod K, ® H,, (1.3)

and similarly define a linear map ad, : H,/K, — H, /fx forv € K, (or simply
take complex conjugates), then there is no nonzero v € K, (equivalently, no nonzero
v e fx) such that ad, = 0. A CR structure is called 2-nondegenerate if this last
condition holds. The term 2-nondegeneracy comes from the more general notion of
k-nondegeneracy, see, for example, [3, 7, 10], [3, chapter XI] for the generalization of
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this definition to arbitrary k > 1 and arbitrary dimension of Levi kernels. The afore-
mentioned CR symbols (defined in Section 2) are basic local invariants of (M, H)
equivalent to the local invariants encoded in the Levi form and this family of ad,
operators.

The focus of the present paper is on finding the sharp upper bound for the dimen-
sion of the Lie group Aut(M, H) of symmetries of 2-nondegenerate CR structures
(M, H) of hypersurface type with a 1-dimensional Levi kernel admitting a constant
reduced modified symbol, which is a property with a rather technical definition given
in Section 3 (Definition 3.3). Until we give the exact definition of this property, it will
suffice to note that structures admitting constant reduced modified symbols are uni-
formly 2-nondegenerate and have constant CR symbols. In particular, if (M, H) is
homogeneous then it admits a constant reduced modified symbol. As shown in [9, 11,
12] for the lowest dimensional case, that is when dim M = 5, this sharp upper bound
is equal to 10, and for the maximally symmetric model the algebra of infinitesimal
symmetries is isomorphic to s0(3, 2). The main result here, see Theorem 2.3 below,
gives this sharp upper bound expressed as a function of dim M > 7 (equivalently,
n = $(dim M — 1) > 3), namely

1
dim Aut(M, H) < Z(dimM —1D24+7=n>+7. (1.4)

We also show that symmetries of (M, H) are all determined by their third weighted
jet. By the weighted jet we mean that the derivatives in various directions are
calculated according to the filtration

(K& K)NTMC(H®H)NTM CTM

of T M so that each derivative in a direction in (K @ K)NT M is assigned weight zero,
each derivative in a direction in ((H ®H)\ (K f)) N T M is assigned weight 1,
and each derivative in a direction in TM \ H @ H is assigned weight 2. These results
(even without assumption of homogeneity) were previously obtained in [13] for the
special class of CR structures whose symbols are known as regular, wherein it was
shown by example that the upper bound in (1.4) is achieved.

The essential technical bulk of this paper consists of showing that the dimension
of Aut(M, H) for structures with non-regular symbol is strictly less than the right
side of (1.4) (in fact it is shown in Theorem 3.7 below that it is strictly less than
(n—1)%>47) and that in the non-regular case symmetries of (M, H) are all determined
by their first weighted jet. The notion of CR symbols and their regularity is explained
in Section 2. Note that, for the considered case n > 3, the previously treated regular
symbols constitute only a finite subset in the space of all CR symbols for each =,
which itself depends on continuous parameters.

In the proof of the bound (1.4) we use two results from our previous papers [14]
and [15]: the classification of CR symbols [14] and the description of the upper bound
for the dimension of symmetry groups in terms of a Tanaka prolongation of the sym-
bol or its reduced version [15]. In the sequel, we calculate these prolongations and
their dimensions for each reduced modified symbol corresponding to a non-regular
CR symbol. In particular, we show (Theorem 3.7) that the first Tanaka prolonga-
tion of each reduced modified symbol corresponding to a non-regular CR symbol
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is equal to zero and we find the upper bound for the dimension of its Tanaka pro-
longation. Analogous analysis for regular CR symbols was previously obtained in
[13] with the help of the theory of bigraded Tanaka prolongation. The result on the
Jjth-jet determinacy follows from its equivalence to the vanishing of the jth Tanaka
prolongation. In Theorem 5.11 for each reduced modified symbol corresponding to
a non-regular CR symbol we give more precise upper bound for the dimension of its
Tanaka prolongation in terms of the parameters of this non-regular symbol.

Note that at this moment for structures with non-regular CR symbols (and there-
fore in the general case) we are not able to remove completely the assumption of
admitting a constant reduced modified symbol in our results, as this assumption
implies that the reduced modified symbols are Lie algebras, and we strongly use
the latter fact. So the question of whether or not there exist CR structures from the
considered class not admitting a constant reduced modified symbol (Definition 3.3)
and with symmetry group of dimension higher than the bound in (1.4) is still open,
although the positive answer to this question is highly unlikely.

In the very recent paper [4] it was shown that for dim M = 7, without the homo-
geneity assumption, the upper bound for the dimension of the group of symmetries
of 2-nondegenerate CR structures of hypersurface type with a 1-dimensional Levi
kernel is 17. Our sharp bound (1.4) for the homogeneous case is 16 and an exam-
ple of the structure from the considered class with 17-dimensional symmetry group
is unknown. The result of the present paper (communicated in a private correspon-
dence) was in fact used in [4] to reduce the bound from 18, obtained initially by the
methods of normal forms, to 17, see Proposition 16 there.

In contrast to the case of dim M = 5, in the case where M is of (odd) dimension
greater than or equal to 7, the infinitesimal symmetry algebras of the maximally
symmetric homogeneous models are not semisimple. These algebras were calculated
in some form in [13, Subsection 5.3]. A more visual description together with a
hypersurface realization of these models will feature in future joint work [6].

In the case where dim M = 7, the infinitesimal symmetry algebra of the max-
imally symmetric models is isomorphic to one of the real forms of the following
complex Lie algebra: Let s = C & sl(2, C) & sl(2, C). The complexification of
our algebra of interest is isomorphic to the natural semidirect sum of s and the 9-
dimensional abelian Lie algebra C° = C3 ® C? so that the first s[(2, C) component
in s acts irreducibly on the first factor C3in C3 ® C3, the second component s[(2, C)
in s acts irreducibly on the second factor of C3 in C3 ® C3, and the component C in 5
acts just by rescaling. The desired real Lie algebra is the natural semidirect sum of the
conformal Lorenzian algebra co(3, 1) and the 9-dimensional real abelian Lie algebra
R?, where co(3, 1) acts irreducibly on R?. This unique irreducible action is naturally
induced from the standard action of co(3, 1) on the Minkowski space, if one identifies
RR? with the space of the traceless symmetric bilinear forms on the Minkowski space.

Finally, for completeness, we offer without proof the (local) hypersurface realiza-
tions of the maximally symmetric homogeneous models in the considered class (the
details will be given in [6]). If, as before, n = %(dim M — 1), and the signature of the
form obtained by the reduction of the Levi form at each point x to the space H, /K
is equal to (p, g) with p + g = n — 1, then in coordinates (z, ..., Z,, w) for Ccntl
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these are the hypersurfaces are given by the equation
n—1
Im (w+zf2n) =Z122+Z112+Ze,~zi2i, (L5)
i=3
where ¢; € {—1, 1} and {¢; }?:_31 consists of p — 1 terms equal to 1 and ¢ — 1
terms equal to —1 (note that, for dim M = 7, the last sum in the right side of (1.5)
disappears).

2 CR Symbols and the Main Results

Our analysis branches depending on properties of the CR structure’s local invariants.
A basic local invariant of a hypersurface-type CR structure called the CR symbol is
introduced in [13]. The CR symbol of H (at a point x in M) is a bigraded vector space

0’ =020 011D g-1.1Dg0—2D 500D go.2 2.1

with involution ~ whose bigraded components g; ; are defined as follows. Ultimately
our definitions of g; ; will not depend on the point x because going forward we
will consider only structures with constant CR symbols, but we still fix x to state
the initial definitions. We let £ denote the reduced Levi form, which is the field of
nondegenerate Hermitian forms defined on fibers of the quotient bundle H/K by

(X + Ky) = L(Xy).
We define the coset spaces
9-20:=CIM/Hy, g-1-1:=Hx/Ky, and g-11:= Hy/K..
The space
g-=020D09-1,-109-1.1 (2.2)

inherits a Heisenberg algebra structure with nontrivial Lie brackets defined in terms
of the reduced Levi form by

[v, w] :=il(v, w) Yveg_11, weEPg_1.

Note that £ formally takes values in g_5 . By identifying g_» ¢ and C, we regard ¢ as
a C-valued Hermitian form, but, since this identification is not naturally determined
by the CR structure, in the sequel we consider the real line R¢ of C-valued Hermitian
forms spanned by £. While the one C-valued form £ is not an invariant of the CR
structure, the line RZ is.

To define go,2, we consider special operators associated with vectors in K. For a
vector v in K, define the antilinear operator A, : g—1,;1 — g—1,1 by

Ay(x) :=ad, (x). 2.3)
The dependence of A, on v is linear, that is,

Akv = )\vAv V)\. € (C,
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so if the rank of K is equal to 1 then there exists an antilinear operator A such that
{Ay v e K} =CA.

The fact that H is 2-nondegenerate implies that A # 0.

The reduced Levi form ¢ naturally extends to define a symplectic form on the
space g—1 := g—1,—1 @ g—1,1 via a standard construction from the study of Heisen-
berg algebras. Hence g_ inherits a symplectic structure from the CR structure with
respect to which we obtain the conformal symplectic algebra csp(g—1) defined in the
standard way. We define go > to be the subspace of csp(g—;) given by the formula

varphi(v) =0 Vv eg_1and
902 := 3¢ :9g-1 — g_1 |thereexists A € C such that
o) =LA@M) Vv e g1

The natural complex conjugation on C7y M induces an antilinear involution v + v
on g_1, which in turn induces an antilinear involution on c¢sp(g_1) by the rule

) == p(V). (24

Using this involution, we define

g0,—2 = {919 € go,2}-
Lastly, using the standard Lie brackets of csp(g—;) we define

0.0 == {v € esp(g-1) |[v. go.i] Cgoi Vie{-2.2}}, (2.5)

which completes our definition of the CR symbol g° of H (at the point x). Note that
by construction

(Gir.j1> Bi o] C Bisin, i+ V{1, j), (2, j2)} #{(0,2), (0, =2)}.  (2.6)

Conversely a vector space g° as in (2.1) with g_ as in (2.2) being the Heisenberg
algebra is called an abstract CR symbol for 2-nondegenerate, hypersurface-type CR
structures if it satisfies (2.6), go,o is the maximal subalgebra of csp(g—) satisfying
(2.5), and it is endowed with an antilinear involution ~ satisfying (2.4).

Remark 2.1 The CR symbol g° of a CR structure with a I-dimensional kernel
encodes and is encoded by the pair (R¢, CA).

Note that an abstract CR symbol g is not necessarily a Lie algebra, as the bigrad-
ing conditions in (2.6) are only applied for {(i1, j1), (i2, j2)} # {(0, 2), (0, —2)}, so
that [go,—2. go,2] does not necessarily belong to go,0 and therefore does not neces-
sarily belong to g°. Following the terminology of [13], we say that a CR symbol is
regular if it is a subalgebra of g_ % c¢sp(g—) and non-regular otherwise. As shown
in [13, Lemma 4.2], the symbol go of a CR structure with a 1-dimensional kernel
corresponding to the pair (R¢, CA) is regular if and only if

A3 € CA. 2.7)

It is shown in [ 13] that, to any abstract regular CR symbol g°, there is a correspond-
ing special homogeneous CR structure fully characterized as the unique structure
with the given symbol at every point whose infinitesimal symmetry algebra attains
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a certain upper bound. This structure is called the flat CR structure with constant
CR symbol go. As a consequence of [13], see Theorems 3.2, 5.1, 5.3 and the last
paragraph of section 5 there, one gets the following theorem.

Theorem 2.2 (Porter and Zelenko [13]) If (M, H) is a 2-nondegenerate CR structure
of hypersurface type with a I-dimensional Levi kernel and constant regular symbol,
then

(1) the dimension of the algebra of infinitesimal symmetries of (M, H) is not
greater than ;lt(dimM — D247

(2) these symmetries are determined by their third weighted jet;

(3) the dimension of the algebra of infinitesimal symmetries of (M, H) is equal
to %(dimM — )2 + 7 if and only if (M, H) has the flat structure (defined in
[13]) with CR symbol such that the corresponding line of antilinear operators
consists of nilpotent ones of rank 1.

A natural question is whether or not the assumption of regularity of symbol can
be removed in the previous theorem. Addressing this question, the main result of the
present paper is the following.

Theorem 2.3 If (M, H) is a 2-nondegenerate CR structure of hypersurface type
with a I-dimensional Levi kernel admitting a constant reduced modified symbol as in
Definition 3.3 (and, in particular, if it is homogeneous), then

(1) statements (1) and (3) of Theorem 2.2 are valid;
(2) if the symbol is non-regular then the (infinitesimal) symmetries of (M, H) are
determined by their first weighted jet.

The proof of this theorem is given in Sections 3 through 6. In Section 3 we give
the scheme of the proof of this theorem, based on the constructions and results of
our previous paper [15], namely the construction of reduced modified symbols for
sufficiently symmetric CR structures and the application of Tanaka prolongation of
these reduced modified symbols to obtain an upper bound for the dimension of their
infinitesimal symmetry algebras (see Theorem 3.6 below). In this way Theorem 2.3
will be essentially reduced to Theorem 3.7. The latter theorem is proved in Section 6
with the help of the Section 5. In this proof we also use the classification of symbols
from our previous paper [14] and the system of matrix equations for the reduced
modified symbols derived in [15, section 5]. The latter two topics are briefly reviewed
in Section 4 below.

3 Reduced Modified Symbol and the Significance of Its Tanaka
Prolongation
Now we will discuss the scheme of the proof of Theorem 2.3, based on the construc-

tions and results of our previous paper [15]. In particular, there we introduced other
local invariants of sufficiently symmetric hypersurface-type CR structures encoded in
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objects called modified CR symbols and reduced modified CR symbols (see sections
4 and 6 of [15], respectively). Although modified and reduced modified CR sym-
bols are defined in [15], we outline their definitions here for completeness because
these objects (especially the latter one) are both nonstandard and fundamental for
the present study. Some technical details that are not essential for understanding the
principal concepts are omitted here and we refer to [15] for those gaps. Following
these definitions, we introduce Theorem 3.7, and describe how Theorem 2.3 essen-
tially follows from Theorem 3.7. The subsequent sections of this paper are dedicated
to the proof of Theorem 3.7.

Proceeding, we assume that (M, H) has a constant CR symbol. Let go be an
abstract CR symbol isomorphic to the CR symbol g%(x) of (M, H) at every point x
in M. And write g; ;(x) to denote the bigraded components of go (x).

There is a natural way to locally complexify M by working in local coordinates
and replacing real coordinates with complex ones, and, moreover, the CR structure
H, as well as the distributions H, K, and K, naturally extend to this complexified
manifold (see [15] for full details) yielding a so-called complexified CR manifold that
we denote by CM (a detail omitted here is that, since the construction is local, this
may only be well defined after replacing M with some neighborhood in M). Note
that dimg (CM) = 2 dim(M) and there is a submanifold in CM that can be naturally
identified with M. The distribution K + K on CM is involutive. We let \ be the leaf
space of the foliation of CM generated by K + K, sometimes called the Levi leaf
space, and let m : CM — N denote the natural projection. That is, points in A/ are
maximal integral submanifolds of K 4+ K in CM.

From the resulting construction, go (x) remains well defined (in terms of H) for
all x in CM. We define the fiber bundle pr : P® — CM whose fiber pr~! (x) over a
point x in CM is comprised of what we call adapted frames, that is,

(gij) =0i;(x) Y@ j)e{(=1,£D,(=2,0)},
¢ ' ogoa(x) o = go+2,and .G
oy, 2D = [e(1), 9(y2)] Vyi,y2 € 9-

pr(x) ={<ﬂ:g - g_(x)

We also consider a second fiber bundle 77 o pr : P — A/, a bundle with total
space P and base space .

For any ¥ € P%and y = 7 o pr(y), the tangent space of the fiber (Po)y =
(m opr)’1 (y) of the second bundle at i can be identified with a subspace of ¢sp(g_1)
by the map 6y : Ty (P), — csp(g—1) given by

6o (V' (0)) == (¥ (0) "'y (0) (3.2)

where ¢ : (—€,€) — (Po)y denotes an arbitrary curve in (PO),, with ¥ (0) = .
The notation 6y is used here to match the notation in [15]. Let

g0l () = 00(Ty (P%),). (3.3)

Definition 3.1 The space g*™(y) := g_ & g°4 () is called the modified CR
symbol of the CR structure H at the point € P°.
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Remark 3.2 Modified CR symbols depend on points in the bundle P° rather than
points in the original CR manifold. Accordingly, a modified CR symbol is not itself a
local invariant of the CR structure from which it arises, but rather, for x € M, the set
{g0mod () | pr(y) = x} is a local invariant at x. This invariant encodes more data
than is encoded in the corresponding CR symbol.

We consider the map ¥ — ¢o() sending each point in P° to a subspace
of csp(g-). If, for some subspace g0 C csp(g—), there is a maximal connected
submanifold PO of PY belonging to the level set

o (T <P0> — &
o(w MW) 90}

such thaLPr(;Z)) = CM, then we call 1;6 a reduction of PO. After, replacinﬂg{ PY and

6o with PO and the restriction of 6 to the vertical tangent vectors of w opr : PO — N,
we can repeat this reduction procedure by finding a maximal connected submanifold

{wePO

of PY that is in the level set of the new mapping ¥ > 6 (Tw (1;6) (W)) also
TTopr

covering C M under the projection pr, which we again call a reduction of P°. In gen-
eral this reduction procedure can be repeated many times, and eventually terminates
in the sense that iterating the reduction procedure again will not yield new reductions.
For a reduction P%™d of PO we label the corresponding space

gl (W) = 6o (Tw (Po’fed)ﬂ pw)) vy e PO (34

Definition 3.3 If PO™4 is a reduction of P° then the space g®™(y) = g_ @
g(r)ed(w), with g{)ed(l//) given by (3.4), is called a reduced modified CR symbol of the
CR structure H at . We say that H admits a constant reduced modified CR symbol
g*red if there exists a reduction P%™4 of PO together with gaed(w) given by (3.4) such
that

go,red — go,red(w) V‘l’ c PO,red.

Lemma 3.4 If (M, H) is homogeneous then it admits a constant reduced modified
symbol, that is, there exists a reduction P%™4 of PV such that the map  +— gf)ed(w)
given by (3.4) is constant.

Proof Since (M, H) is homogeneous, so is PO, and hence each reduction 136 of PY
can be taken so that its fibers (PO) = {w e PO |n(y) = x} have the same image
X

under the mapping ¥ +— 6o (Tw ﬁ’) Therefore, if ¥ +— 6y (T,/, ﬁ)) is not already

constant on PY then we can repeat the reduction procedure to find a proper submani-
fold of PO that is also a reduction of P°. Eventually, this iterated procedure ends with
a reduction for which either the image of 6 applied to its tangent spaces is constant,
or its fibers are O-dimensional. Yet, by homogeneity, the map ¢ — 6y (Tv, Po*red)
would be constant in the latter case as well.
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For the remainder of this paper, we let g»™d denote a constant reduced modified
CR symbol of H. Like the CR symbol of H, g®™! is also a graded subspace of
g_ x csp(g_1). It has the decomposition g™ = g Lo @B g | 1D g_1.1 ® g{)ed
where the components whose first weight is negative coincide with those of the CR
symbol. Here we state some of the properties of gged. For this we consider weighted

components of ¢sp(g—1) defined by

(csp(g—1))o,i = {o € esp(g—1) |@(g-1,j) Ca—1.i+; ¥j € (-1, 1}}.
The space g{fd is a subspace of csp(g—;) with a decomposition

o5 = ofs @ ot @ of (3.5)

such that

(1) g C go.0;

(2) red __ _red .
g(),_l,_ - g()’_7
(3) the natural projection of c¢sp(g—1) onto (¢sp(g—1))o,2 defines an isomorphism
between gffi and go.2;
(4) The subspace ggej is invariant with respect to the involution on c¢sp(g_1)
e

(5) The subspace gy is a subalgebra of csp(g—1).

We stress that the decomposition gff¢ = g(rfg '@.g(rfd_. @ g{f‘i satisfying t.hese properties
is not unique, and, furthermore, no such splitting is naturally determined by the CR

structure.

Remark 3.5 The CR symbol of (M, H) is determined by any of its modified CR sym-
bols, which in turn are all determined by any constant reduced modified CR symbol
a%rd thar (M, H) admits.

The underlying theory that we will apply to treat structures with non-regular CR
symbols is developed in [15], wherein it is shown that the upper bounds that we wish
to compute can be found by computing the universal Tanaka prolongation [18] of
g®rd_ which is defined as follows. Starting with k = 1 and setting g_» = g_2.0, we
recursively define the vector spaces

—1
gled = {(pe @D Hom(gr. gi+0) gi[fl;:zel);[w(vl),vz]+[v1,<p(vz)] Vik>1, (3.6)
i=—2 ’ B
The universal Tanaka prolongation of g™ is the vector space
u(@™ =g- o P 3.7

k>0

Theorem 3.6 [follows immediately from [15, Corollary 2.8 and Theorem 6.2]] If
(M, H) is a 2-nondegenerate CR structure of hypersurface type with a 1-dimensional
Levi kernel and constant reduced modified symbol g*™9, then the dimension of the
algebra of infinitesimal symmetries of (M, H) is not greater than dim u (go'red).
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Hence, if we can explicitly calculate dim u(g®™%) for non-regular CR symbols,
then we can obtain an upper bound for the algebra of infinitesimal symmetries of
(M, H). This motivates the following theorem, proved in Section 6.

Theorem 3.7 If a constant reduced modified CR symbol g®**4 corresponds to a non-
regular CR symbol then the following statements hold:

(I) The first Tanaka prolongation grled of g*™ vanishes or, equivalently, the
universal Tanaka prolongation u(g®™%) of g% is equal to g®°d.

(2) dim g% and therefore the dimension of the algebra of infinitesimal symme-
tries of a (2n + 1)-dimensional 2-nondegenerate CR structure of hypersurface
type with rank 1 Levi kernel and non-regular CR symbol admitting a constant
reduced modified symbol is strictly less than (n — 1)> + 7.

(3) For (M, H) as in item (2), the bundle pr : R(P%) — M, consisting of frames in
PO that commute with complex conjugation on the CR symbols, is a principal
bundle over M whose structure group has the Lie algebra gff% and it is equipped
with an absolute parallelism invariant under the structure group’s action and
under the natural induced action of symmetries of (M, H).

Corollary 3.8 The dimension of the algebra of infinitesimal symmetries of a homo-
geneous (2n + 1)-dimensional 2-nondegenerate CR structure of hypersurface type
with rank 1 Levi kernel and non-regular CR symbol is strictly less than (n — 1)> +7.

Theorem 3.7 is proved in Section 6 with the help of preliminary results established
in Sections 4 and 5. In Section 4, we introduce a standardized matrix representation
of abstract reduced modified symbols, which is necessary for our study because there
is no previously developed structure theory for these Lie algebras. In Section 5, we
give explicit general formulas for matrix representations of elements in gffg, and we

use these formulas to calculate upper bounds for the dimension of g*"d, which are

necessary for item (2) of Theorem 3.7. Lastly, in Section 6, we apply the matrix
representation formulas derived in Section 5 to prove item (1) of Theorem 3.7 by
directly calculating grled =0.

Based on the well-known fact [18, Section 6] that an infinitesimal symmetry of a
filtered structure is determined by the jth weighted jet, where j is the minimal non-
negative integer for which the jth Tanaka prolongation is equal to zero, this theorem
immediately implies item (2) of Theorem 2.3. Item (1) of Theorem 2.3 will follow
from combining Theorems 3.7 and 3.6. In Theorem 5.11 below, for each reduced
modified symbol corresponding to a non-regular CR symbol, we give more precise
upper bounds (than the ones in item (2) of Theorem 3.7) for the dimension of its
(entire) Tanaka prolongation in terms of the parameters of this non-regular symbol.

Remark 3.9 7o establish Theorem 3.7, we appeal to Theorem 3.6 and the Tanaka-
theoretic prolongation procedures developed in [15] which constructs a tower
R(PY) - RPN - .. > RPY — M of fiber bundles (geometric prolon-
gations) and confers an absolute parallelism onto the largest prolongation R(P*).
The familiar reader will notice that item (1) in Theorem 3.7 implies that R(PY) is
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diffeomorphic to the largest prolongation, and may wonder if we can construct a par-
allelism on P° directly without invoking the full prolongation procedure theory. We
stress, however, that in general, for a Tanaka structure of depth u, where  is the
number of negatively graded components, if | is the maximal integer such that the lth
algebraic prolongation is not equal to zero, then the parallelism construction requires
constructing the (I + w)th geometric prolongation, and in our setting u = 2. Con-
trastingly, the classical prolongation theory for G-structures (whose depth is 1 = 1)
enjoys greater simplification whenever g1 = 0, so that in this case the construction
of the parallelism requires the first geometric prolongation only. See [1, 2, 15, 18,
19] for detailed exposition of the prolongation procedure.

4 Matrix Representations of CR and Reduced Modified CR Symbols

Throughout this section, we work with a fixed CR symbol given by the pair
(R¢, CA), where ¢ is an Hermitian form and A is a self-adjoint antilinear operator
on g_1.1. Let us fix a basis of g_;. This basis can be fixed such that the pair (£, A)
is represented with respect to it by matrices in a canonical form, which is shown in
[14]. We recall one such canonical form below in Theorem 4.1 (there are actually
two canonical forms given in [14]).

For A € C and a positive integer m, let J, ,, denote the m x m Jordan matrix with
a single eigenvalue A and this eigenvalue has geometric multiplicity 1; let T, = Jo 1,
and let S, be the m x m matrix whose (i, j) entry is 1 if j +i = m + 1 and zero
otherwise, that is

m columns
m m columns
. 0--- 0 1
0
SHom=: ol gmrows and S, =] " m rows.
0.
1 10 -0
0 .. ... 0 A

In the sequel, given square matrices D1, ... Dy we will denote by D1 @& ... @ Dy
the block diagonal matrix with diagonal blocks Dy, ..., Dy in the order from the top
left to the bottom right and all off-diagonal block equal to zero.

For A € C, we define the k x k or 2k x 2k matrix M, i by

Ik ifLeR
M)\,k = 0 J}LZ k .
<I 0 otherwise,

where 0 denotes a matrix of appropriate size with zero in all entries and / denotes
the identity matrix. We define corresponding matrices Nj i by

Sy ifreR

N k= .
Ak {Szk otherwise.
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For the ¢-self-adjoint antilinear operator A referred to in the following theorem, let
us enumerate the eigenvalues of A? (counting them with multiplicity) that are con-
tained in the upper-half plane {z € C|R(Z) > 0} of C, labeling them as A, ..., A72/.

Furthermore, we take each A; to be the principle square root of Al.z.

Theorem 4.1 (immediate consequence of the main result in [14]) Given a nondegen-
erate Hermitian form £ on a vector space V and an {-self-adjoint antilinear operator
A, there exists a basis of V with respect to which £ and A are respectively represented
by the matrices Hy and A given by

Y Y
Hy=EDeiNym and A=EPM,m,. (4.1)
i=1 i=1
for some sequence €1, ..., €, satisfying €, = =*1 and some sequence of positive
integers mp, ..., my.

Letting H, and A be matrices representing £ and A respectively in some basis of
g—1, we consider the Lie algebras of square matrices « satisfying

ozAH[l + AH[laT = r;AH,Z_1 for some n € C
and respectively
o HyA + HyAa = nH/A  for some 5 € C,

and define the algebra <7 to be their intersection, that is,

o = {a
red

Let us fix a splitting of g,y as given in (3.5). With respect to the basis of g fixed

above, there exists some (n — 1) x (n — 1) matrix  such that g{f‘}r and g{)e‘i have the
matrix representations

Q A —“H,'Q*H, 0
red __ red __ ¥4 4
90+ = spang {( 0 —H[' o H, )} and gy _ = spanc { < 0 all 4.3)

red

In [15], we show that g,
lemma.

4.2)

otAH[l + AH[laT = r;AH[land
ol HyA + HyAa = ' HA for some n,n' € C |

is a subalgebra of csp(g_1) and establish the following

Lemma 4.2 [[15, Proposition 5.4]] There exists a subalgebra <%y of </ invariant

. —_1
under the transformation o — H; o™ Hy such that

red o 0
= I
%o.0 {(0 —H[locTHe> e

o € ), andce(C}, 4.4)
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and there exist coefficients {ny}oc.o, C Cand p € C such that the system of relations

i) aAH " + AH o = noAH,!
i) o, Q2] —naQ €

iy QUTHA+ HAQ = nH/A 4.5)

vy [T Q|+ AR - 7@ - )H 0, €
holds for all « € <.

We will need the following basic lemma, whose proof (outlined in the extended
version of this text [16]) is a straightforward linear algebra exercise that we leave to
the reader.

Lemma 4.3 ([15, Proposition 3.6]) The following are equivalent.

(1) go_is regular.
(2) AAA is a scalar multiple of A.

Moreover, if Q is in </ then g° is regular.

5 Matrix Representations of the Algebra o/ A

In this section we give a general formula for elements in the algebra 7 defined in
(4.2) together with an outline for how the formula can be verified. The complete
formula is presented in several parts in Lemmas 5.1, 5.4, and 5.8 and Corollaries 5.3,
5.5, and 5.9. We use this explicit formula to derive upper bounds for the dimension
of &/ given in Lemma 5.10, which is essential for proving item (2) in Theorem 3.7.
These upper bounds also lead to Theorem 5.11, which gives more precise bounds
than those in Theorem 3.7. Furthermore, the matrix representation formula presented
in this section plays a fundamental role in the proof of item (1) in Theorem 3.7 given
in Section 6.

Naturally, it is easier to verify the formula than to derive it, and, since the formula
is ancillary to this paper’s topic, we omit the analysis used to derive it. To keep this
text compact, we omit proofs of several lemmas in this section, and instead provide
their full proofs in the extended version of this text [16]. The formula depends on the
matrices H; and A representing the pair (¢, A).

In the sequel we assume that Hy; and A are in the canonical form prescribed by
Theorem 4.1, namely as given in (4.1). We will also use the notation of Section 4,
and, in particular, we let Ay, ..., Ay, m1, ..., My, €1, ..., €y, My, ;n, and N;, ,,; as
in Theorem 4.1. Recall that, in particular, this means the real and imaginary parts of
each A; are both nonnegative.

Define the bi-orthogonal subalgebra of <7 to be

%/’ :={B e |BAH; "'+ AH;'B" = B" H/A + H/AB = 0},
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where this name is reflecting the observation that <7 is analogous to an intersection
of two orthogonal algebras. In this section, we first obtain a formula describing the
elements in <7 and then obtain a formula for a subspace &/* C &/ complementary
to &7, that is, such that

o =D A°. 5.1

Such a space @77 is spanned by elements that we call conformal scaling elements of
o, referring to the observation that these are analogous to non-orthogonal elements
in an intersection of two conformally orthogonal algebras.

Let Bbean (n—1) x (n— 1) matrix in 7 and partition B into blocks {B(i’j)}Zj:I
where the number of rows in By; ;) is the same as in the matrix M, ,,; and the number
of columns in By, j) is the same as in the matrix My, ;. Similarly, we partition
H;/AB and BAH[1 into blocks {(HgZB)(i,j)}ijl and {(BAHe_l)(i,j)}ijl whose
sizes are the same as in the partition of B.

Let us now derive a relationship between the blocks By; jy and Byj. ;). To simplify
formulas, we assume €; = €;. To treat the more general case where possibly €; # ¢},
one can simply replace Ny, ; (or N)\j,mj) with €; Ny, ; (or ejN;\j,mj) in all of the
subsequent formulas.

We have

N;. and  (H¢AB). j) = Nojm; Mo, m; Bii. j)s

Jormj st A

~1
(BAH') = By M
@)
so, since B € &7,
T
(M3, m; Naim;) B(Tj,,-) = =BG, jyMy;,m; Nx;m;
and

T T \/ a7
B(j‘i) (N)»',m]‘M)uj,mJ') = _N)\,',m,'M)»,',m,' B(l,])

J

Since A is £-self-adjoint, each matrix N, u, M), m;, and M, s, Nay m, 1S Symmetric
(one can also verify this by directly using the canonical form), and hence

M)L,‘,m,'N)L,',m,' B(T;,[) - _B(i,j)Ml_/,ijA_/,mjv (52)
and
B(Tj’l')N)\j,m_/M)»j,mj = _N)L,',m,‘M)L,',m;B(i,j)' (53)

Multiplying both sides of (5.3) by My m; Ny m; from the right and then applying
(5.2) yields

B iyNojm; Mocym; Mosm; Nojm; = =Ny ni Mami B,y Mijm; Najm; (5.4)

= Nijomi M mi M m; N m; B(Tj,i)'

Multiplying (5.4) by Ny, m, from the left and by Ny ; », from the right yields

(N)»i,m,- B(],‘-’j)N)»j‘mj> M}n_,‘,mj M)Lj,m_,' = Mki,mi M)»,-,m,' (N)»i,mi B(Y[-,j) N)uj.lnj> . (55)
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Notice that (5.2) is also equivalent to
T
N m; M m; (Nkj,nsz(j,i)NAi,m,) = — (Naym; Bii,jyNaj.m; ) Najm; Moy m; - (5.6)

Equation (5.5) gives us all restrictions on the general form of By; ;) that are not
coming from the relationship between B; ) and other blocks in the matrix B. Equa-
tion (5.6), on the other hand, gives us the restrictions on the general form of By;
coming from its relationship with B; ;). Moreover, if (5.5) and (5.6) are satisfied for
i and j then B is in &7 because (5.2) and (5.3) hold. In other words, our present
goal is to solve the system of matrix equations in (5.5) and (5.6), and whenever
(Ai, Aj) # (0, 0), this exercise is equivalent to first solving the matrix equation

XMA.j,ij)\,j,mj = M}\,i,miM)\.i,n'liX7 (57)

and then, for the case where i = j, solving the system of equations consisting of
(5.7) and

T
Nyimi My mi X° = =X Nyj m; My m; -

The case where A; = A ; = 0 requires special treatment because, in this case, contrary
to the case where (A;, A;) # (0,0), evenif i # j solutions for B; ;) in (5.5) need
not satisfy (5.6) for any matrix By ;).

Equation (5.7) is of the form analyzed in [8, Chapter 8]. In fact, an explicit solution
to (5.7) is given in [8, Chapter 8], but the solution is expressed in terms of a basis
with respect to which M;, ,,, M3, »n; and My m; M m; have their Jordan normal
forms. On the other hand, the transition matrix from the initially considered basis to
a basis of the Jordan normal form is block diagonal with the blocks corresponding to
the Jordan blocks. Hence, the following lemma can be obtained from the solution in
[8, Chapter 8].

Lemma 5.1 IfA; # Aj then B j = 0.

Given Lemma 5.1, all that remains is to find the general formula for B(; ;) when
Ai = Aj, which is addressed by the following lemmas.

Lemma 5.2 Suppose A; = Aj and m; < m . The dimension of the space of solutions
of (5.7) is equal to

(1) m;ifk; >0;
(2) 2m;ifal ¢ R;
(3) 4m; if A2 <O0.

Corollary 5.3 If m; < mj, A\; = Aj = A and ) # 0 then the matrices B, jy and

B(j iy are described by one of three formulas, where the correct formula depends
wether » > 0, A2 & R or A*> < 0. Letting, as before, T, denote the m x m nilpotent
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Jordan block Jy , if A > O then B(; jy and B(; ;) respectively equal

mj — m;
columns
e mi—1
0---0 Z aan];i
: m;—1 k=0
> akT,ﬁi and — €€ 0---0
k=0 . . mj o — M
(') O : : rows,
0---0 (5.8)

for some coefficients {ay}.

Explicit formulas for the remaining two cases in Lemma 5.3 (i.e., A> ¢ R and
22 < 0) are given in the extended version of this text [16], but we omit them here
to save space, as they are essential only to additional analysis also appearing in the
extended version.

To simplify notation in the following lemma, for an integer ¢, we let [¢], denote
the residue of ¢ modulo 2, that is, [¢], = 0 if g is even and [¢g]>» = 1 if ¢ is odd.

Lemma 5.4 Ifm; <mjand A; = A; =0 then

columns
C] Cl ... PR C]
0---0 =2 mi
O CO CO e “ .. 0
. ) P i1
00 ¢ ¢ - Coi—2
Bij =1 : e 0 0 .
. . : . cl o cmii%
0---0 |, [W.li]Z
0 ... 0 o (5.9)
and
Cgmf+1]2 Cgﬂi+2]2 . o Cr[:%,mih
[mi+2l, [mi+3] [2mi]n
o A it ity
m; 2 mi 2 mi2
0 0 c ) T Gy
[m;+41> [2mi]n
cl e Cm,-—3
B(j.i) = —€i€j :
0 0 b
0 0
mj — m; rows
0 TP (5.10)

for some coefficients {c,l co}.
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Corollary 5.5 Foralli € {1,...,y},

i/2 i—2k .
( I[nil/ -IaanTi +1) Ialt,m,- lf)\i =0
m;—1
0 > axTy,
B = - k=0 lf)‘zz <0 (5.11)
kzo (ZI;:O ar) Tr]r; O
0 otherwise,

where Ly, denotes the m x m diagonal matrix with a I in its odd columns and a -1
in its even columns.

Proof This follows immediately from the formulas in Corollary 5.3 and Lemma 5.4
withi = j. O

The previous results provide a general formula for matrices in .<7°. We now focus
on obtaining a general formula of a subspace .<7* satisfying (5.1).

Lemma 5.6 Either dim(«?) — dim(«7?) = 1 or dim(&) — dim(=/°) = 2, and the
latter case occurs if and only if there exists a matrix X in <f satisfying
XAH '+ AH'XT =24H' X = DT HLA™' + HL AT (X - 1) =0,
X"HyA + H/AX = 0.

Lemma 5.7 If A = M, ; and ) # 0 then dim(<7) — dim(<7°) = 1.

With Lemmas 5.6 and 5.7 established one can obtain the general formula for a
subspace <7° of 7 satisfying (5.1).

Lemma 5.8 For a subspace <7° of o satisfying (5.1), dim(<7*) = 2 if and only if A
is nilpotent. In particular, if
A= JO,m| b...0 JO,my

then, to satisfy (5.1), we can take the subspace </° of </ spanned by the identity
matrix and the matrix y

Dow:

i=1

L
where, for an integer m, Dy, denotes the m x m diagonal matrix defined by

m
—1,...,——m+1). (5.12)

) m m
D, := Diag ( 2

22
As a direct consequence of the previous lemmas, since for non-nilpotent A we
have &7 = o7/° + CI, one gets immediately the following

Corollary 5.9 If A is not nilpotent then in (4.2) one can take 5’ = 1.

We conclude this section with one more result.
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Lemma 5.10 If H; and A are in the canonical form prescribed by Theorem 4.1 and
A # 0 then

dim(«?) < n* —4n +6. (5.13)

Moreover, this bound is attained if and only if (£, A) can be represented by the pair
(Hy, A) in the canonical form of Theorem 4.1 with

n—3 copies
— —
A=Jo2® Jo1 DD Jo1- (5.14)
Proof Assume that
dim(<7) > n® —4n 46, (5.15)
and that (Hy, A) are in the canonical form of Theorem 4.1. We will still use the
notation of (4.1), in particular referring to the sequence (A1, ..., Ay).
Suppose that the A;s are not all the same. Without loss of generality, we can assume
that (A, ..., A,) is enumerated so that there exists an integer & such that
A=...=A and A; #X\ Vj > k. (5.16)
Define

k
s = Z [number of rows in Mj, , |
i=1

where k is as in (5.16). By Lemma 5.1, for every matrix B in dim(</° + span{[}),
the upper right (s) x (n — 1 —s) block and the lower left (n — 1 —s) x (s) block of B
is zero. Moreover, since the ;s are not all zero, there is at least one index i such that
B(; iy has zeros on its main diagonal. Accordingly, if the ;s are not all the same, then

dim(#°) + 1 = dim(«/° 4 span{I}) < (n — 1)> = 2s(n — 1 — s).
Since
m—4<2jn—1—j) V1i<j<n-—1,
it follows that
dim(«7) = dim(#%)+1 < (n—1)>=2s(n—1—s) < (n—1)>—2n+4 = n*>—4n+5,

where the identity dim(/) = dim(<7?)+1 follows from Lemma 5.8 and the assump-
tion that the A;s are not all the same. Clearly, this contradicts (5.15), so if (5.15) holds
then there exists a value A € C such that

A=A Vi. (5.17)

If (5.17) holds with A # 0 then Corollaries 5.3 and 5.5 imply that each matrix B in
<7° is fully determined by its entries above the main diagonal, and hence, applying
Lemma 5.8,

—D(n -2
dim(ﬂ)gm)z#+1<n2—4n+6, Vn > 2

Therefore, if (5.17) holds with A # 0 then our assumption (5.15) fails.

@ Springer



D. Sykes, I. Zelenko

In other words, — assuming for a moment that (5.15) can be satisfied, which we
will prove below by giving an explicit example — if dim(</) is maximized then we
can assume without loss of generality that

A=Jom @ ®Jom, with my>--->m,. (5.18)

For B in «7°, let us partition B as is done in Lemma 5.4. By Lemma 5.4, fori < j
the B(; j) and B; ;) blocks are together determined by 2m ; parameters, whereas, by
Corollary 5.5, the B(; ;) block is determined by (%1 parameters, where (%1 denotes
the ceiling function, i.e., the smallest integer not less than % Hence, by counting
the number of parameters determining B, Lemma 5.4 and Corollary 5.5 imply that if
(5.18) holds then

dim(/?) = Zy: ([%W 2%k — l)mk) . (5.19)

Letr € {1, ..., y} be an integer such that
m; =1 Vi>r,
and to compare with A, let us also consider the matrix
A'=Jom @ ®Jom_, ®Jo1 DD o1

In other words, A’ is obtained from A by replacing the last nonzero block on the diag-
onal of A with zeros. We will compute the dimension of &7 corresponding to the
case where A = A’, but, since are going to compare this to the sum in (5.19), for clar-
ity let &’ denote the algebra that we would otherwise denote by .7 corresponding
to this case where A = A’, and let <7 still denote the algebra referred to in (5.19).

Notice that the kth summand in (5.19) counts the number of parameters determin-
ing the blocks By; ;) of a matrix B in 27 for which max{i, j} = k. If we compare the
general formula for a matrix B in &7 to that of a matrix B in <7/, the only differ-
ence appears in the blocks B;, j) of B for which max{i, j} = r, and hence a formula
for dim(=") should match the formula in (5.19), except that the rth summand will
change. Using Lemma 5.4 and Corollary 5.5, it is however straightforward to work
out exactly how this rth summand of (5.19).

Specifically, in replacing the formula for B with the formula for B’, the By
block is replaced with the m, x m, matrix having m% independent parameters,
whereas, for all i < r, B(; ) (respectively B, ;)) is replaced with a matrix having m,
independent parameters in its first row (respectively column) and zeros elsewhere.
Accordingly,

dim(«7’) = dim(®) — (["H 2 — 1)m,) +m2 420 — Dm, = dim(4320)

Since equality holds in (5.20) if and only if m, = 1, the dimension of &/ is
maximized with A as in (5.18) if and only if

n—1—m; copies

—
A=Jom @Jo1@--® Jo1, (5.21)
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in which case, by (5.19),

n—mi

dim .7 = (%W + Y @k-1= (%W Fm—m)P—1. (522
k=2

Since A # 0, this last sum is maximized with A as in (5.21) if and only if A is
as in (5.14), in which case applying (5.22) with m; = 2 yields (5.13) because, by
Lemma 5.8, if A is as in (5.21) then dim .« = dim &/ + 2. O

Now, for completeness, given a non-regular CR symbol g° encoded by the pair
(£, A), represented by the pair of matrices (Hy, A) in the canonical basis as in The-
orem 4.1 we will give a more precise (i.e., in terms of integers my, ...m, and
numbers Ay, ..., A, ) upper bound for the dimension of the algebra of infinitesimal
symmetries of a 2-nondegenerate (2n + 1)-dimensional CR structure of hypersurface
type with 1-dimensional Levi kernel admitting a constant reduced modified symbol
corresponding to CR symbol go. For this, forevery 1 <i,j <y, let

0, (Ai #Aj)or (i = jand Al.z is not a nonpositive real number)
min{m;, m;} (i # jandA; =A; > 0)or (i = jand A} <0)
d(i, j) =1 2min{m;, m;} i # j,A; = Aj and (Al.z ¢Rori; =0)
dmin{m;, m;} i # j, A =X and}\i2 <0
[5] i=jand; =0

where [%] denotes the ceiling function, i.e., the smallest integer not less than ’%
Let

dioa ==Y _ d(i, j).

i<

Then the following theorem is the direct consequence of item (1) of Theorem 3.7
and Lemmas 5.2, 5.4, Corollary 5.5, and Lemma 5.8:

Theorem 5.11 Given a non-regular CR symbol g° encoded by the pair (£, A) in
the canonical basis as in Theorem 4.1, the dimension of the algebra of infinitesimal
symmetries of a 2-nondegenerate (2n + 1)-dimensional CR structure of hypersurface
type with 1-dimensional Levi kernel admitting a constant reduced modified symbol
corresponding to the CR symbol g° is not greater than diow +2n+3 if the operator A
is not nilpotent, and it is not greater than dota) +2n 44, if the operator A is nilpotent.

Note that the mentioned Lemmas and Corollaries from Section 5 together with
red

(4.4) imply that dim 90.0 is either not greater than diga) + 2 or dioral + 3 depending

whether or not A is nilpotent. The estimate for u(g*™%) = g% in Theorem 5.11
follows from this and the fact that dim(g— + go,—2 + go,2) = 2n + 1.
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6 Proof of Theorem 3.7

6.1 Preparatory Lemmas and Notations
Let 0 : g®rd — g0red denote the antilinear involution induced by the natural
complex conjugation of CT M. We introduce this ¢ notation to avoid confusion
because while working with matrix representations in coordinates we will use the
overline notation to denote the standard complex conjugation of coordinates, which
is a different involution. Let

(619 M €2n—2)

be a basis of g_; with respect to which we get the matrix representation of g{fd given

by (4.3) and (4.4). Notice in particular that (eq, ..., e,—1) spans g—1,; and

o(e) =epti-1 Vi<i<n-—1.

Note that o extends to an involution defined of grled by same formula (see (2.4)) that

we used to extend the natural conjugation from g_ to be defined on csp(g_1), that is

(),red red (6 1 )

o(p)(v) ;=0 0@oa(v) Yveg , @ Eg;

defines an involution of grled.
red red

An element ¢ in Hom(g—2, g—1) ® Hom(g_1, gy°) belongs to g™ if and only if
o(leirej]) = (p(e)) (ej) — (plej)) (&) Vije{l,....2n =2} (62)

Note, here ¢ (¢;) € gf)ed C csp(g—1).
Given any element v € g_; let v_ and v be the canonical projections of v to
g—1,—1 and g_ 1, respectively, with respect to the splitting g_1 = g—1,—1 ® g—1.1.
As a direct consequence of (6.2) and (4.3),ifn < j <2n—2and1 <i <n —1,
then

((p(ej))ei)+ € span{Aej_n41} — (o(ler, ej]))+ C span{de;_n11, (9(1))4},  (6.3)
((p(ei)) ej)— € span{o (Ae)} — (¢([ei, ;1)) _ C span{Ae;, (p(1))_)

In particular, the upper left (n — 1) x (n — 1) block in the matrix ¢(e;) and the
lower right (n — 1) x (n — 1) block in the matrix ¢(e;) both have rank at most 2.

Also from (6.2) and the fact that [e;,e;] = 0 forn < i,j < 2n — 2, we
immediately have that

ple)ej =wlejlei, n<=<i, j=<2n-2 (6.4)

Lemma 6.1 If the antilinear operator A (or, equivalently the matrix A) has rank

greater than I and i > n then ¢(e;) € gffg &) gf)ei, or, equivalently,

) 0 o
w(e) = (f% CHeTH, ) for some ¢ € C and a; € o#) + C(Hy ]Q*Hg). 6.5)
¢ Y%
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Proof By (4.3), there exists ¢ € C such that foreveryn < j <2n —2
((¢(€i))€j)+ =cAej_pt1 and  ((¢(e))) €i)+ € span{Ae;_ny1}.
By (6.4),foralln < j <2n —2,
cAej_pi1 € span{Ae; 11}

This implies that ¢ = 0, because otherwise rank A < 1, contradicting our assumption.
Therefore, (¢(e;)v), = 0forall v € g_; _1, which is equivalent to the statement of
the lemma. O]

Similarly, we have the following Lemma.

Lemma 6.2 If the antilinear operator A (or, equivalently the matrix A) has rank

greater than I and i < n then ¢(e;) € gf)eg &) gf)eﬂlr or, equivalently,

N o cA ]
p(e) = < 0 —Hgla,-THe> for some c € Cand a; € o+ CQL. (6.6)

Lemma 6.3 If A has rank greater than 1 and «; is the matrix defined by (6.5) and
(6.6) then, fori < n, we have

(HZZai)T + HyAa; = nHy A for some n € C 6.7)

and, forn < i, we have

T
ozl-AH[1 + (aiAH[I) = 17AH[1f0r some n € C. (6.8)

Proof If «; is as in (6.6) then «; € &7 + CK, so the definition of .7 and item (iii) of
(4.5) imply (6.7). If, on the other hand, ¢; is as in (6.5) then «; € %+C(E71 Q*Hy),
so the definition of .2 and item (iii) of (4.5) imply (6.8). O]

Corollary 6.4 If the CR symbol is not regular (and hence with rank A > 1) and the
matrix o; given in (6.5) or (6.6) is zero, then ¢(e;) = 0.

Proof Suppose «; = 0. By (4.3), (4.4), and Lemmas 6.1 and 6.2, if p(e;) # O then
either Q € & or F[] Q*H, € <. The conditions 2 € < and F[I Q*H; € o are,

however, equivalent, so either ¢(e;) # 0 or Q € &7. If the CR symbol is not regular
then, by Lemma 4.3, Q2 ¢ o7, and hence ¢(¢;) = 0. ]
Lemma 6.5 If an element ¢ in grfd satisfies (1) = 0 and

p(e;)) =0 Yi>n (6.9)
then ¢ = 0.

Proof Since ¢(1) = 0, the left side of (6.2) is zero for all i and j. Accordingly, for
anyi € {l,...,n—1}and j € {n,...,2n — 2}, (6.2) and (6.9) imply that the j
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column of ¢(e;) is zero. Hence, for alli € {1, ..., n — 1}, the latter n — 1 columns of
¢(e;) are all zero. From this and Lemma 6.2 (and specifically (6.6)), it follows that
H[l(xiT H; = 0. Hence «; = 0, which, again noting (6.6), shows that the initial n — 1
columns of ¢(e;) are also zero. Therefore p(e;) = O for any i. O]

The general strategy of our proof of item (1) of Theorem 3.7 is, for a given
arbitrary ¢ € gﬁed, first to prove that ¢ (1) = 0 and then to prove (6.9).
We will also need the following equations and notation. In the sequel every

(n — 1) x (n — 1) matrix X will be also regarded as an operator having the matrix

representation X with respect to the basis (e, ..., e,—1). Let {go;}fifz C C denote
the coefficients satisfying
2n—2
p() =Y giei.
i=1
By (6.5), it follows that
((p(e,-)ej)i = — (H[loz,-THg> €jn+1, Yn<=<i,j=<2n-2

This together with (6.4) yields
(H[lal-THg) Cjnsl = (H[loejTHg> Ciinit, Vn<ij<21—2. (6.10)

Condition (6.10) is crucial in the subsequent analysis, namely in the proof of Lem-

mas 6.6 and 6.11. Therefore, we need to describe the matrix H[lar Hy, which we

begin by first describing the matrix o ;. By (6.5), it follows that, forn < j < 2n — 2
and1 <i<n-—1,

(qp(ej)ei)+ =aje;.

From this and (6.3), taking into account that the matrix A represents the antilinear
operator A, we have that there exists the unique tuple (K,-)f;f such that

aje; = kiAej_py1 — (He)i j—n+1 (@(1))+ (6.11)

foralll <i <n—1andn < j < 2n — 2. The uniqueness of (Kl');l:_ll follows from
the assumption that A # 0 and that «; in (6.11) is independent of ;.

6.2 Branching Analysis: the First Two Cases

There are three separate cases determined by properties of (¢, A) that require separate
analysis. First is the special case wherein, for some integer m satisfying 2 < m <
n — 1, we have

Hy=S,®H, (6.12)
where H; is an arbitrary nondegenerate Hermitian matrix, and

A=Ln®A for some A > 0, 6.13)
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where A’ is such that (£, A) is represented by (Hy, A). Second is the case where we
have some integer 1 < m < n — 1 such that

Som 0)
H = —’— :
‘ <0 H, (6.14)

where Hj is an arbitrary nondegenerate Hermitian matrix, and

2m columns

r—

Jm,k 0
0

9]
i

}2mr0ws’ for some A € C\ {x € R|x > 0},

(6.15)

where A’ is a matrix such that (¢, A) is represented by (Hy, A). Third is the case
where (Hg, A) corresponds to a non-regular CR structure and A is diagonal. By The-
orem 4.1, we can indeed always take the matrices representing (¢, A) in the form of
one of these three special cases.

In the present section, Section 6.2, only the first of these three cases is analyzed,
and analysis of the third is deferred to Section 6.3. The additional analysis required
for the second case is very similar to that of the first, so we omit it from the present
text; full detailed analysis for all three cases is, however, presented in the extended
version of this text [16].

Let us assume now that (Hy, A) is in the canonical form of Theorem 4.1, satisfying
(6.12) in particular, which implies

Ae; = ley, Ae; = Mlej +ei_q V2 <i<m, (6.16)
and
Hpei = ept1—-i V1<i<m. (6.17)
Using (6.11), (6.12), and (6.16) we obtain
ape; = kirep —6im(e(1)+ Vie{l,...,n—1}, (6.18)

and, for0 < p < m,
Qnypei =kiep +kilepr1 —Sim—ple(1))y Viell,...,n—1}. (6.19)
Now from (6.18), we get
n—1
a,{61=2xjk6j—golem and otnTeiz—(p,'em V2<i<n-—1.
j=1
Using this together with (6.17) we can get
(H; 'alHp)ei = —pmii—ier  Yie(l,...,m—1}, (6.20)

m
(H[lanTHg)em = —¢je; + AZK,,,H_jej (mod span{e,+1, €m+2, - - -, en—1}), (6.21)
j=1

and
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n—1 n—1-m

(H, '] Hpe; = —( > (He)j,isﬂj) el = —( > (Hé)_,;,-msa,,-m) et Yi>m, (622)

Jj=m+1 Jj=1

where Hp is as in (6.12).
Similarly, for 0 < p < m, from (6.19) we have

—Qiem—p, ie{l,....n—1}\{p,p+1}
n—1
T —@plm—p+ D Kkjej, i=p
Ypipli = j=1
n—1
—@ptriem—p +A)Y Kkjej i =p+1,
j=l1

(H; 'al, JHoei = —gmir—iepp1 Vie(l,.... mi\{m—p,m—p+1}, (6.23)

m

(H[loznTerHg)em_p = —@priepil + A ka+1_jej (mod span{ey+1, ..., en—1}), (6.24)
j=1

and

m
1T _
(H@ Ol,,+pHe> en—pt1 = —QPpepi1 + ZKerlfjej (mod spanfey 11, ..., en—1}).
=1

For p > m,

(H;‘a,{wm) ¢; € Span{emait, ..., en_1). (6.25)

Lemma 6.6 Under the assumptions (6.12) and (6.13), ifrank A > 1 then
¢(1) =0. (6.26)

Proof We will begin by showing that
(p(1)4 =0. (6.27)

The proof consists of analysis of (6.10) in three cases:
1. (6.10) fori =nand j =n+ pwith0 < p <m — 1. By (6.20)

(H[lanTHg) epit =@m_per  YO<p<m—1, (6.28)
and, by (6.23),
(H[locherHg) 1 =meps1  VO<p<m-—1. (6.29)

Applying (6.28) and (6.29) to (6.10) withi = n and j = n 4 p we get

Om—pel = Pmep+1 VO<p<m-—1.
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Therefore, using the last equation for 1 < p < m — 1 (as for p=0 this equation is a
tautology), we get
= =¢p-1=0,
and also that ¢,, = 0 for m > 2 (we will give another way to prove the latter identity
including the case m = 2 in item 3 of the proof below).
2.(6.10) fori =nand j =n + p with p > m. By (6.22) we get that

n—1—m

(H7 ol He) eprr = (HY) ) orom @iem | 1. (6.30)

j=1

Using (6.10), from (6.30) and (6.25) it follows that (H[loenTHg> epy1 = 0 or,

equivalently,
n—1—-m

Z (Hé)j_i¢j+m=07 I<i<n—1-—m.
j=1 '
Since the matrix H; is nonsingular, this yields

Om1 = =¢@a—1 =0.
3.(6.10)fori =nand j=n+m—1.Ifv=»7 ZT:I Km+1—jej, then, by (6.21),
(H[loznT Hg) em = —pie1 +v  (mod span{e; /=) ), (6.31)
and, by (6.24),
(H[fla,{m,] Hg) 1= —gmem+v  (mod spanfe}'=) ). (632)

Using (6.10) again and the fact that m > 2, from (6.31) and (6.32) it follows that
¢1 = 0 and ¢, = 0. This completes the proof of (6.27).

Since (6.1) defines an involution of grled, o (¢) also belongs to gﬁed, so, since ¢

was an arbitrary element in grled, the exact same arguments applied above show that

(0(p)(1))y =0.Since o (1) =1,

o ((e())-) = (@ op(); = (6(p)(1); =0,
and hence (¢(1))_ = 0, which, together with (6.27) implies (6.26). O
Lemma 6.7 Under the assumptions (6.12) and (6.13), if rank A > 2 then
k1, ..., kn)A =0.

Proof Consider now the equation in (6.8) with i = n. The matrix on the right side
of (6.8) is either zero or it has rank equal to rank A, which is at least 3 under this
lemma’s hypothesis. On the other hand, applying (6.16), (6.17), (6.18) and Lemma
6.6, we get

(anAH[1> e espanfer)  Vie(l,...,m—1), (6.33)
and, applying (6.19) additionally, if » = 0 then
(a,,+1AH[1> e; e spanfer)  Yiell,...,m—1). (6.34)
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Hence, by (6.33),
rank (@, AH; ') <1 (6.35)

T
and rank (a,,AH[l + (anAH[1> ) < 2 because oznAH[1 has at most one

nonzero row. Similarly, if A = 0 then (6.34) implies

rank (anHAH[l) <1 (6.36)

T
and rank (o:nJrlAHg1 + (anHAH[]) < 2. Since the matrix on the left side of

(6.8) has rank at most 2 whenever i = n or (A,i) = (0,n + 1), the matrix on the
right side of (6.8) is zero whenever i = n or (A,i) = (0,n + 1). Thus by (6.8) the
matrix anAHgl is skew symmetric, and the matrix oz,,+1AH[1 is skew symmetric
whenever A = 0. This together with (6.35) implies that

aAH, ' =0, (6.37)

whereas applying (6.36) yields
ans1AH, ' =0, (6.38)
whenever A = 0. By (6.37) and (6.18) for A # 0, or by (6.38) and (6.19) for A = 0,
we get that the vector (k1, ..., Kn)AH[] = 0, which completes this proof. O

In the next four lemmas, 6.8-6.11, we prove item (1) of Theorem 3.7 in four special
cases that together cover all non-regular CR symbols not treated in the final section,
6.3.

Lemma 6.8 Under the assumptions (6.12) and (6.13), ifrank A > 2 and (A, m) &
{(0,2), (0, 3)} then grled =0.

Proof Let ¢ € grled and let (Kl')?:_ll be as in (6.11). It will suffice to show that k; = 0
for every 1 < i < n — 1. Indeed, first plugging this condition and the conclusion
(6.26) of Lemma 6.6 into relation (6.11) we obtain thato; = Oforalln < j <2n-2.
This and Corollary 6.4 imply (6.9). Thus, the conclusion of the present lemma will
follow from (6.26) and Lemma 6.5.

Notice that since (k1, ..., k;)A = 0, we have that k; = 0for 1 <i <m if A # 0,
andk; =0forl <i <m—1if . =0.In particular,asm > 2 we have k] =k =0
always, and, since it is assumed that m > 3 when A = 0, if A = 0 then k3 = 0 as well.

To produce a contradiction, assume that there exists an index r such that x, # 0
and let r be the minimal such index. By (6.18),

ane; =8 rkire; Vi<, (6.39)
and, by (6.19), for 0 < p < m,
Qnipei = 0;r(kiep +iidepyr1) Vi Zr. (6.40)

Note that, by Lemma 6.1, span{«,, &,+1} is a 2-dimensional subspace in &/ +
(C(ﬁ;l Q*Hy). Since 7 is a subspace in %+C(ﬁ;1 Q*H ) of codimension at most
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1, the subspaces span{w,, o,+1} and & have a nontrivial intersection. That is, there
exist by, by € C such that (by, by) # (0, 0) and

bioy, + broyyy € . (6.41)

By (6.39) and (6.40) again the first » — 1 columns of the matrix b, + b, vanish
and

(b1 + baanser = & (b1 + ba)er + Abaes ) (6.42)

By applying formulas from Section 5, we can derive a contradiction from the
assumption A # 0 as follows. Let bio, + bray4+1 be partitioned as a block matrix
whose diagonal blocks have the same size as the diagonal blocks of A (referring to
the block diagonal partition of A given in (4.1)).

By (6.41), if & > 0 then each (i, j) block of bja, + brayy 41 1s either characterized
by Lemma 5.1 or Corollary 5.5 and identically zero or it is characterized by Corollary
5.3 and more specifically characterized by (5.8). In particular, if the (1, j) block
of by, + b1 is nonzero (and therefore characterized by (5.8)) and contains
part of the r column of by, + by, 41, then (5.8) implies that the (j, 1) block of
bioy, + bray 41 18 nonzero and contained in the first » — 1 columns of b1oy, + brovy 41,
which contradicts our definition of r. Accordingly, if A > 0 then the (1, j) block of
bia,, + by, 41 containing part of the r column of by« 4+ bro, 41 is identically zero,
which implies Ab; + by = 0 and Aby = 0 by (6.42). So, if A > 0, then we obtain the
contradiction (b1, by) = (0, 0).

On the other hand, if » = 0 then, by Lemma 6.1, span{o; 42, o, 43} is a 2-
dimensional subspace in &7 + (C(ﬁe_l Q*H ). Similarly to the previous case, .7 and
span{a;, 12, @, 43} have a nontrivial intersection, that is, there exist by, b, € C such
that (b1, by) # (0, 0) and

biopi2 + brotyy3 € . (6.43)

Note that we are now redefining b; and b, because the previous definition is no
longer needed, and that the b;s in (6.43) are not related to the b;s in (6.41). By (6.39)
and (6.40) the first » — 1 columns of the matrix bjo;, 42 + bra, 43 vanish and

b1tz + bransade, = (bres + baes). (6.44)

By applying formulas from Section 5 again, we can derive a contradiction now
from the assumption A = 0. For this, let by, 42 + baoey 43 in (6.43) be partitioned as
a block matrix whose diagonal blocks have the same size as the diagonal blocks of
A. By (6.43), if A = 0 then each (i, j) block of b1, + by, 41 s either characterized
by Lemma 5.1 and identically zero or it is characterized by Lemmas 5.4 and 5.8 and
Corollary 5.5 and more specifically characterized by (5.9), (5.10), (5.11), and (5.12).
In particular, if A = 0 and the (1, j) block of b, +2 + bro,+3 contains part of the
r column of by, 42 + byo, 43, and, furthermore, we assume that the (1, j) block is
not identically zero, then this (1, j) block is either characterized by (5.11) and (5.12)
or by (5.9) and (5.10).

Considering the first possibility where the (1, j) block containing part of the r
column of byo,42 + bray, 43 is characterized by (5.11) and (5.12) (i.e., j = 1), by
(6.44), the first m entries of byey + brez form the r column of the (1, 1) block of
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bioy2+bray, 3. Since we are assuming that this (1, 1) block is a linear combination
of matrices (5.11) and (5.12) with the latter being a diagonal matrix, noting that
r > 3, it follows that the first entry in the r — 1 column of this (1, 1) block is —b
and the second entry in the r — 1 column of this (1, 1) block is —b;. Yet the r — 1
column of the (1, 1) block of byot,42 + bray+3 is zero by the definition of 7, so we
have obtained the contradiction that (b, b2) = (0, 0).

Considering the remaining possibility, which is where the (1, j) block containing
part of the r column of by, 2 + bra,43 is characterized by (5.9) or (5.10), if this
(1, j) block is nonzero then (5.9) and (5.10) imply that the (j, 1) block is nonzero
and contained in the first » — 1 columns of bjo, 42 + brar, 13, which contradicts the
definition of r.

Hence, the (1, j) block containing part of the r column of bia,42 + broy43
must be identically zero because all other possibilities yield contradictions, and yet,
by (6.44), setting this (1, j) block equal to zero again implies the contradiction
(b1, by) = (0, 0). Therefore, there is no index r such that «, # 0. O]

Lemma 6.9 Under the assumptions (6.12) and (6.13), if there is a basis with respect
to which A is represented by the matrix

A=Jy3®J1.®A" forsomec >0 (6.45)
or
A=Jo2® 1c® 1o DA forsomec,c > 0. (6.46)

then gred

Proof Let ¢ € gred and let (K,) be as in (6.11). By the same arguments as in the
beginning of the proof of Lemma 6.8 , it will suffice to show that k; = O for every
1 <i < n—1.Note that, by Lemma 6.6, in the considered cases ¢(1) = 0. It is more
convenient to work with matrices

~

A=J1®J3® A" (6.47)
or
A=J 1@ ®Jo,®A" (6.48)

instead of A in (6.45) and (6.46), respectively. This can be done by an obvious per-
mutation of the basis. Also, in the considered cases the rank assumptions of Lemma
6.7 with A replaced by A holds. Therefore, using (6.11) with A replaced by Awe get

K1 = Kp) = K3 = 0. (6.49)

Note that if we would not replace A by A we could conclude that K1 =kp =k4 =0
in the case of (6.45) and that k1 = k3 = k4 = 0 in the case of (6.40), so that is why
we make this permutation of the blocks.

Assume for a proof by contradiction that there exists » such that x, # 0 and
moreover that this is the minimal such irgiex, that is, x; = O for alli < r. By (6.49),
r > 3. From (6.11) with A replaced by A it follows that in both cases the first r — 1
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columns of the matrices «; withn < i < n + 3 vanish,
aner = krce1, and  opy3e = Kres. (6.50)
Further,
Aptoer = Kren (6.51)
if A satisfies (6.47), and
apiier =kCey (6.52)

if A satisfies (6.48). Note that, by Lemma 6.1, each ¢; in these equations belongs to
o +C(H '@ H).

Hence, using similar arguments as in the proof of Lemma 6.8 we get
that the 3-dimensional subspace span{o,,®,12,®,+3} in the first case and
span{ay,, oy +1, otp43} in the second case has at least a two dimensional intersection
with 7. Notice further that in either case, the rth columns of matrices in these inter-
sections must have a two-dimensional span because the natural map from the space
span{a,, ay12, apy3} (or span{ay, oni1, @y13})) to C'~! sending a matrix to its r
column in this space is injective. _

Let us now first assume that A satisfies (6.47). Let B(D and B® be matrices
belonging to the intersection of span{w,,, a,42, @,+3} and &7 such that the » column
of BW is linearly independent from the r column of B® . Foran (n — 1) x (n — 1)
matrix B, let (B(;, ;) be a partition of B into a block matrix whose diagonal blocks
have the same size as the diagonal blocks of A. Let j be the index such that B(j_
contains part of the r column of B. By Lemma 5.1, since ¢ # O there exists i € {1, 2}
such that B j) = 0 for all B € &/, because otherwise Lemma 5.1 implies that the
(1, 1) and (2, 2) blocks of AA have the same eigenvalues. In particular, at most one
of the (1, j) and (2, j) blocks of any linear combination of B and B® is nonzero.
It follows that, for each k € {1, 2}, B((f) = 0 and Bg) 7 # 0 because otherwise the
r column of each B® belongs to span{e; }, which contradicts our choice of B M and
B® . Moreover, by (6.50) and (6.51), the first nonzero column of each block B((lzc)j)
has zero in all but its first two entries. ’

Each B(? . is either characterized by Lemma 5.1 and is identically zero or char-
acterized b); Lemma 5.4 and Corollary 5.5 and more specifically characterized by

(5.9), (5.10), or (5.11) (with &; = 0). If By, is characterized by (5.11) then j = 2
and, by (5.11), the second entry of the first nonzero column of B((g,)z) is zero. If, on
the other hand, B((g!)j) is characterized by (5.9) (or (5.10)) and the second entry of the
first nonzero column of B((lzc) i is nonzero, then, by (5.10) (or respectively (5.9)), the
B((f,)z) block of B® is nonzero and contained in the first 7 — 1 columns of B®), which
contradicts our choice of r. Therefore if B((g’)j) is nonzero then the second entry of
the first nonzero column of Bg) 0 is zero. Yet this contradicts our choice of B(") and

B because it means that the only nonzero entry in the r column of B! and B® is
the second entry.
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Let us now address the remaining case, that is, assume that A satisfies (6.48).
Again, let j be the index such that B(; j) contains part of the r column a given
(n—1) x (n — 1) matrix B. Let B(Y) and B® be matrices belonging to the inter-
section of span{ay,, ®,+1, ®y+3} and &7 such that the r column of BWM ig linearly
independent from the 7 column of B®. From this independence condition and the
fact that nonzero entries of these respective rth columns of B and of B® appear
within their first three entries (the latter is a consequence of (6.50) and (6.52)), it fol-
lows that there exists a matrix B in span{B", B®} such that there exists i € {1, 2}
with B(; j) # 0 (because otherwise, the third entry is the only nonzero entry of rth
columns of BV and B®, which contradicts the independence of these columns).
Since r > 3 it follows that j > 2. Thus, it follows from Lemma 5.1 and Corollary 5.3
that this nonzero B(; j) withi € {1, 2} is characterized by (5.8). Yet (5.8) implies that
the B(; ;) is a nonzero block contained in the first » — 1 rows of B, which contradicts
our choice of r. O

Lemma 6.10 Under the assumptions (6.12) and (6.13), if
k copies
—
A=Jo2® - B J2BJc1 B 01D D Jo.1,

. red __
for some integer k and some ¢ > 0 then g™" = 0.

Proof Let ¢ € gﬁed and let (K,’):l;ll be as in (6.11). By the same arguments as in the
beginning of the proof of Lemma 6.8 , it will suffice to show that x; = 0 for every
1 <i <n— 1. We work with (Hy, A) in the canonical form of Theorem 4.1, so Hy
is asin (4.1), that is

Hy =€ Nop @ D €kNo2 D €r1Ne,1 @+ D€y Noi

for some coefficients ¢; = +1.

For a matrix B in <7, let (B j)) be a partition of B into a block matrix whose
diagonal blocks have the same size as the diagonal blocks of A. By Lemma 5.4 and
Corollary 5.5, we have

bc be .
B(i’j):q(()d) and B(j’i):_ej(()d) Vi,j <k

and
a . .
B(,',j)=<0> and B(J",')Z(Ob) Vl§k<]
for some b, ¢, d, e € C that depend on (i, j). By Corollary 5.5 and Lemma 5.8,

Bi1 =By ="+ = Boiy1,2+1, (6.53)

where here B; ; denotes the (i, j) entry of B rather than the (i, j) block By ;). By
Lemma 5.1 and Corollary 5.5,

Bik+1y =0 and Bgy1,;,) =0 Vi #k. (6.54)
Since, by Lemma 6.7, (k1, ..., kn—1)A = 0, we have
ki =0 whenever i isodd andi < 2k + 1. (6.55)
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From (6.11) and Lemma 6.6 it follows that, for 0 < p < n — 1, the i column of the
matrix o, is equal to «; times the p + 1 column of A. In particular, the (i, j) entry
of o421 18

(otn42k);,j = KjC8i2k+1- (6.56)

Since, by Lemma 6.1, each o4, belongs to .« 4+ C (E_lﬂ*m) and a,,42; does

not belong to <% \ {0}, which can be seen by contrasting (6.54) and (6.56), it follows
that |
either a2k =0 or Hy Q¥Hy € o+ spangfoy, o).

But 40 = Oifand only if k] = --- = k,—1 = 0, which is equivalent to what we
want to show, so let us proceed assuming

— —

Hy Q"Hy € o + spanc{a,42ok}

in order to produce a contradiction. Accordingly, let 2o € 2% and s € C be such that

Hy '@ H, = Hy  QH; + sansax, (6.57)
or, equivalently,
Q=Q)+5H, o, H. (6.58)

Here we will apply another result from Section 5, namely Corollary 5.9, which
states that for B € 7, since A is not nilpotent, if (H(ZB)T + H/AB =
(HyA then BAH; ' + AH;'BT = pAH;". Noting that, by (6.55) and (6.56),

AHg_l(x;zk+2ng = 0, item (iii) in (4.5) and (6.58) imply that
(HKZQ())T + HZZQO = ,quZ, (6.59)
and hence Corollary 5.9 implies that

nQy = K,

where this notation 7q, refers to the coefficient with that label in items (i) and (ii) or
(4.5).
Since the matrix equation (HyAX )T + H/AX = Hy A is equivalent to

_ _ S _\T
(e xH) Al + Al (A XH,) =RAH],

(6.59) implies
o = . (6.60)
By (6.60), items (i) and (ii) in (4.5) imply
[Q, E‘lszgm] F Q€ A, (6.61)

and applying the transformation X +— ﬁ[l X*Hy to the matrix in (6.60) yields

[He @ e 0| - wHe ' Q5H, € b, (6.62)
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Now we analyze item (iv) of (4.5). Using (6.57), (6.58), and lastly (6.61), we have

S Y —1 —
[H@ Q*H@,Q} :[Hg QSHZ,Q]+[sa,l+2k,§20]+|3|2 [an+zk,Hz Ot;f+2kHz]

_ —1 —
= 712 + [satnsar, Q0] + I [ansa B0,y He | (mod ).

Substituting the last equation into item (iv) of (4.5) we get, after the obvious
cancellation, that

1 — _ ]
[sctsat Qo] + 1512 [esan He o He | +AA - pHy ' H; € . (6.63)
Similarly, (6.57), (6.58), and then (6.62) yields

N S R S N S — — — 1 —
I:Hl Q*Hy, Q] = I:H[ Q*Hy, QO:| + |:Hg QSH{, sHy Ol;:JrzkHz] + \S|2 [an+2k, Hy 0{2+2ng]

— 1 e [l e 1 — —1 —
= (@ + [ QL oy e |+ 15 [ e a0 e

where the equivalence is modulo .«%. Substituting the last equation into item (iv) of
(4.5) we get

JR — — 1 — —
|:Hg QiH,.5H, a;+2kH4+|s|2[a,,+2k,Hg a;:HkH[]JrAA—uQe%. (6.64)

On the other hand, again from (6.57) , (6.58), and using that [E_IQZ‘)E, QO] €
27, wWe can write

S SN — — —
[Hz Q*He,Q]E[Wsz,Qo]-i-[Hz Q4He, 5Hy af{ﬁkHe]HSIz[anHk,Hz aZ+2kHe],

where here again the equivalence is modulo 2. By subtracting the matrix in item (iv)
of (4.5) from the sum of the matrices in (6.63) and (6.64) and using the last relation,
we get

— __1 JR—
AA+ |s|2 I:an+2k, Hy Ot;lk+2ng] € A,
or, equivalently,

(AA + |S|2an+2kHZ Ol:;+2kH(Z) - |S|2HZ Ol;;+2kH£an+2k € . (6.65)

Notice that the first two terms in (6.65), grouped together by parentheses, are matrices
whose only potentially nonzero entry is the (2k + 1, 2k 4 1) entry, whereas the other
term has the same value in the first 2k 41 entries of its main diagonal. By (6.53), each
matrix in 2% also has the same values in the first 2k + 1 entries of its main diagonal.
Moreover, the (2k 4 1, 2k + 1) entry of AA is nonzero. Therefore, by (6.65),

— —1 —
AA = —|sPapHe o) o He. (6.66)
Defining

__1 J—
o= |s|1"Hy oo Heotn 1k
(6.65) and (6.66) imply that « is in o).
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It is straightforward to check that, with this definition for «, 1, = 0 in the notation
of item (i) of (4.5) (by calculating, for example, the (1, 1) entries of the terms in
item (i)), and hence items (i) and (ii) of (4.5) yield [2, «] € . Or, equivalently, by
(6.58), noting that [, @] € 2,

5[H e o] € o (6.67)

2
H() = 0, and hence (6.67)

. —1 — —1
Notice that Hy a:Hnga = 0 because (H/g a;‘+2k

implies

R — —1 —

S|S|2Hg a;‘;+2ng <O{n+2ng (x;k+2ng> € . (6.68)
Applying (6.66), we get

§|s|2771 * I 1 % I S — * T (AT
BRTE He oy o He (“n+2kHe ‘¥n+2kH€> ZWHK ok He (AA)  (6.69)

— —
=5Hy o o Hy,

where this last equality follows easily from (6.56).

By (6.58), (6.68), and (6.69), we get that Q is in .27, but this contradicts Lemma
4.3. Therefore, the assumption that o, 421 7 0 must be false, which in turn implies
thata; = --- = a,—1 = 0, completing this proof. O

Establishing the following lemma requires analysis of the second special case (i.e.,
wherein (6.14) and (6.15) hold) analogous to the analysis of the first case carried out
above. Although we omit the analysis for the second case, it is fully presented in the
extended version of this text [16].

Lemma 6.11 Under the assumptions (6.14) and (6.15), if A corresponds to a non-
regular CR structure then grled =0.

6.3 Branching Analysis: the Final Case:

In this subsection, 6.3, we consider the special case where (Hy, A) corresponds to a
non-regular CR structure and A is diagonal. Working in the normal form of Theorem
4.1, Hy is diagonal too. Since A corresponds to a non-regular CR structure, the matrix
AA has at least two distinct nonzero eigenvalues, so we can assume without loss of

generality that there are numbers Aq, ..., A,—1, € Candey, ..., €,-1 € {1, —1} such
that [A1| # [A2], A1 # 0, A2 # 0, and
A =diag (A1, ..., Ay—1) and Hy =diag (e, ..., €—-1).
Accordingly, by (6.11),
tngpei = Kikprieprt —Siprio(l) YO <p <n, (6.70)
anAH, e = higiki (hier — 819(1)) 6.71)
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H_la,lT+pHel =tgpiepy YO < p <n, (6.72)
and
HfloznTHepH =Z@ptie YO < p <n. (6.73)

By (6.10), we can equate H_lanTHe,,H, and hence (6.72) and (6.73) yields
pr=¢pr=-=¢y-1=0. (6.74)

Formula in (6.71) now simplifies giving that oznAH[1 is a matrix with at most 1
nonzero row, and hence the left side of (6.8) (when setting i = n) cannot be a diagonal
matrix of rank greater than one. Yet the right side of (6.8) is a diagonal matrix that
is either zero or of rank greater than 1, so the right side of (6.8) must be zero for the
equation to hold. Since the left side of (6.8) is zero, (6.71) and (6.74) imply that

AK] = Agkp =+ =Ay_1kp—1 =0
because A1 # 0. In particular,
K| =Ky = 0 (6.75)

because A; and A, are both nonzero.

Lemma 6.12 If (Hy, A) corresponds to a non-regular CR structure and A is
diagonal then grled =0.

Proof Let ¢ € grled and let (Ki)?:_ll be as in (6.11). Recall that (¢(1)), = 0 implies
¢(1) = 0, by the same argument applied at the end of the proof of Lemma 6.6, and
hence ¢ (1) = 0 by (6.74). Accordingly, by the same arguments as in the beginning of
the proof of Lemma 6.8, it will suffice to show that x; = 0 forevery 1 <i <n — 1.

Assume that there exists r such that x, # 0 and r is the minimal index with this
property. By (6.75) we have that » > 2. Noting (6.70), by Lemma 6.1, «, # 0 implies
span{ay, &, 11} is a 2-dimensional subspace in ./ + C(ﬁ;lﬂ*ﬁg). Accordingly,
kr # 0 yields that span{w,, o,+1} and o/ have at least a 1-dimensional intersec-
tion. By (6.75) and(6.70), nonzero entries in the matrices in span{w;,, &, +1} can only
appear in their first two rows and moreover they do not appear in their first two
columns. Yet, in the Section 5, we describe the matrices in .27 explicitly. In particu-
lar, given that Hy; and A are diagonal, the description of <7 in Section 5 implies that
every matrix in .# with nonzero entries in its first two rows also has nonzero entries
in its first two columns, which implies that span{ay,, o, +1} and &/ have a trivial
intersection, a clear contradiction. O

By combining the results of Lemmas 6.8, 6.9, 6.10, 6.11, and 6.12, we finish the
proof of item (1) of Theorem 3.7, because these lemmas account for all non-regular
symbols. To prove item (2) of Theorem 3.7 note that by (4.4) and Lemma 3.7, for the
reduced modified CR symbol corresponding to a non-regular symbol,

dimgffgzdimefz{—i—l <n®—4n+7.
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Therefore, from item (1) of the theorem under consideration and the fact that

red red

dim g5° = dim gy + 2 and dim g = 2n — 1, it follows that

dim u <g°’fed) —dim g™ < Q- D+ 2 —dnt+ T 42 = — D>+,

which together with Theorem 3.6 completes the proof of item (2) of Theorem 3.7.
Item (3) of Theorem 3.7 follows from item (1) of Theorem 3.7 and the parallelism
construction referred to in [15, Theorem 6.2].
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