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Abstract
We prove that for every n ≥ 3 the sharp upper bound for the dimension of the symme-
try groups of homogeneous, 2-nondegenerate, (2n+1)-dimensional CR manifolds of
hypersurface type with a 1-dimensional Levi kernel is equal to n2+7, and simultane-
ously establish the same result for a more general class of structures characterized by
weakening the homogeneity condition. This supports Beloshapka’s conjecture stat-
ing that hypersurface models with a maximal finite dimensional group of symmetries
for a given dimension of the underlying manifold are Levi nondegenerate.

Keywords 2-nondegenerate CR structures · Homogeneous models ·
Infinitesimal symmetry algebra · Tanaka prolongation ·
Canonical forms in linear and multilinear algebra

1991 Mathematics Subject Classification 32V05 · 32V40 · 53C30 · 15A21

1 Introduction

A classical problem setting in differential geometry is to find homogeneous struc-
tures with the symmetry group of maximal dimension among all geometric structure
of a certain class. Homogeneity here means, as usual, that the symmetry group of
the structure acts transitively. In Cauchy-Riemann (CR) geometry this problem is
classically solved for the class of Levi nondegenerate CR structures of hypersurface
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type of arbitrary dimension ([5, 17]). The present paper solves this problem for 2-
nondegenerate CR structures of hypersurface type with a 1-dimensional Levi kernel.
This class can be seen as the next one in a hierarchy of nondegeneracies to the class
of Levi nondegenerate CR structures of hypersurface type. We furthermore obtain
this result for structures that are not necessarily homogeneous, but that rather sat-
isfy a weaker condition we term admitting a constant reduced modified CR symbol
(Definition 3.3 below). Previously the answer to this problem was given only in the
5-dimensional case [9, 11, 12], which is the case of the smallest possible dimension
in which 2-nondegenrate structures exist. We give the answer for arbitrary dimen-
sion (which a priori is odd) greater than 5 extending the previous result of [13] that
worked under additional restrictions of regularity of the CR symbol. The definition of
the CR symbol and its regularity was introduced in [13] and is discussed in Section 2
below. This result supports Beloshapka’s conjecture [9, Conjecture 5.6] stating that
the hypersurface models with maximal finite dimensional groups of symmetries for
a given dimension of the underlying manifold are Levi nondegenerate.

In more detail, let M be a (2n + 1)-dimensional CR manifold with CR structure
H of hypersurface type, meaning that H is an integrable, totally real, complex rank
n distribution contained in the complexified tangent bundle CT M of M , that is,

[H, H ] ⊂ H and H ∩ H = 0 (1.1)

where the overline in H denotes the natural complex conjugation in CT M .
Recall that the Levi form of the structure H is a field over M of Hermitian forms

defined on fibers of H by the formula

L(Xx, Yx) := i

2

[
X, Y

]
x

mod Hx ⊕ Hx ∀ X, Y ∈ �(H) and x ∈ M . (1.2)

Here we are using the notation �(E) to denote sections of a fiber bundle E. The
kernel of the Levi form L is called the Levi kernel and will be denoted by K . CR
structures with K = 0 are called Levi-nondegenerate. It is classically known ([5,
17]) that for Levi-nondegenerate (2n + 1)-dimensional structures with the Levi form
of signature (p, q), where p + q = n, the algebra of infinitesimal symmetries of the
maximally symmetric model is isomorphic to su(p + 1, q + 1), having dimension
(n + 2)2 − 1.

In the present paper we assume that the fiber Kx of the Levi kernel is 1-
dimensional at every point x ∈ M , that is, K is a rank 1 distribution, and that the
following nondegeneracy condition holds: If for v ∈ Kx and y ∈ Hx/Kx , we take
V ∈ �(K) and Y ∈ �(H) such that V (p) = v and Y (p) ≡ y mod K , and define a
linear map adv : Hx/Kx → Hx/Kx by

adv(y) := [V, Y ]x mod Kx ⊕ Hx, (1.3)

and similarly define a linear map adv : Hx/Kx → Hx/Kx for v ∈ Kx (or simply
take complex conjugates), then there is no nonzero v ∈ Kx (equivalently, no nonzero
v ∈ Kx) such that adv = 0. A CR structure is called 2-nondegenerate if this last
condition holds. The term 2-nondegeneracy comes from the more general notion of
k-nondegeneracy, see, for example, [3, 7, 10], [3, chapter XI] for the generalization of
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this definition to arbitrary k ≥ 1 and arbitrary dimension of Levi kernels. The afore-
mentioned CR symbols (defined in Section 2) are basic local invariants of (M, H)

equivalent to the local invariants encoded in the Levi form and this family of adv

operators.
The focus of the present paper is on finding the sharp upper bound for the dimen-

sion of the Lie group Aut(M, H) of symmetries of 2-nondegenerate CR structures
(M, H) of hypersurface type with a 1-dimensional Levi kernel admitting a constant
reduced modified symbol, which is a property with a rather technical definition given
in Section 3 (Definition 3.3). Until we give the exact definition of this property, it will
suffice to note that structures admitting constant reduced modified symbols are uni-
formly 2-nondegenerate and have constant CR symbols. In particular, if (M, H) is
homogeneous then it admits a constant reduced modified symbol. As shown in [9, 11,
12] for the lowest dimensional case, that is when dimM = 5, this sharp upper bound
is equal to 10, and for the maximally symmetric model the algebra of infinitesimal
symmetries is isomorphic to so(3, 2). The main result here, see Theorem 2.3 below,
gives this sharp upper bound expressed as a function of dimM ≥ 7 (equivalently,
n = 1

2 (dimM − 1) ≥ 3), namely

dimAut(M, H) ≤ 1

4
(dimM − 1)2 + 7 = n2 + 7. (1.4)

We also show that symmetries of (M, H) are all determined by their third weighted
jet. By the weighted jet we mean that the derivatives in various directions are
calculated according to the filtration

(K ⊕ K) ∩ T M ⊂ (H ⊕ H) ∩ T M ⊂ T M

of T M so that each derivative in a direction in (K⊕K)∩T M is assigned weight zero,
each derivative in a direction in

(
(H ⊕ H) \ (K ⊕ K)

) ∩ T M is assigned weight 1,
and each derivative in a direction in T M \H ⊕H is assigned weight 2. These results
(even without assumption of homogeneity) were previously obtained in [13] for the
special class of CR structures whose symbols are known as regular, wherein it was
shown by example that the upper bound in (1.4) is achieved.

The essential technical bulk of this paper consists of showing that the dimension
of Aut(M, H) for structures with non-regular symbol is strictly less than the right
side of (1.4) (in fact it is shown in Theorem 3.7 below that it is strictly less than
(n−1)2+7) and that in the non-regular case symmetries of (M, H) are all determined
by their first weighted jet. The notion of CR symbols and their regularity is explained
in Section 2. Note that, for the considered case n ≥ 3, the previously treated regular
symbols constitute only a finite subset in the space of all CR symbols for each n,
which itself depends on continuous parameters.

In the proof of the bound (1.4) we use two results from our previous papers [14]
and [15]: the classification of CR symbols [14] and the description of the upper bound
for the dimension of symmetry groups in terms of a Tanaka prolongation of the sym-
bol or its reduced version [15]. In the sequel, we calculate these prolongations and
their dimensions for each reduced modified symbol corresponding to a non-regular
CR symbol. In particular, we show (Theorem 3.7) that the first Tanaka prolonga-
tion of each reduced modified symbol corresponding to a non-regular CR symbol
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is equal to zero and we find the upper bound for the dimension of its Tanaka pro-
longation. Analogous analysis for regular CR symbols was previously obtained in
[13] with the help of the theory of bigraded Tanaka prolongation. The result on the
j th-jet determinacy follows from its equivalence to the vanishing of the j th Tanaka
prolongation. In Theorem 5.11 for each reduced modified symbol corresponding to
a non-regular CR symbol we give more precise upper bound for the dimension of its
Tanaka prolongation in terms of the parameters of this non-regular symbol.

Note that at this moment for structures with non-regular CR symbols (and there-
fore in the general case) we are not able to remove completely the assumption of
admitting a constant reduced modified symbol in our results, as this assumption
implies that the reduced modified symbols are Lie algebras, and we strongly use
the latter fact. So the question of whether or not there exist CR structures from the
considered class not admitting a constant reduced modified symbol (Definition 3.3)
and with symmetry group of dimension higher than the bound in (1.4) is still open,
although the positive answer to this question is highly unlikely.

In the very recent paper [4] it was shown that for dimM = 7, without the homo-
geneity assumption, the upper bound for the dimension of the group of symmetries
of 2-nondegenerate CR structures of hypersurface type with a 1-dimensional Levi
kernel is 17. Our sharp bound (1.4) for the homogeneous case is 16 and an exam-
ple of the structure from the considered class with 17-dimensional symmetry group
is unknown. The result of the present paper (communicated in a private correspon-
dence) was in fact used in [4] to reduce the bound from 18, obtained initially by the
methods of normal forms, to 17, see Proposition 16 there.

In contrast to the case of dimM = 5, in the case where M is of (odd) dimension
greater than or equal to 7, the infinitesimal symmetry algebras of the maximally
symmetric homogeneous models are not semisimple. These algebras were calculated
in some form in [13, Subsection 5.3]. A more visual description together with a
hypersurface realization of these models will feature in future joint work [6].

In the case where dimM = 7, the infinitesimal symmetry algebra of the max-
imally symmetric models is isomorphic to one of the real forms of the following
complex Lie algebra: Let s = C ⊕ sl(2,C) ⊕ sl(2,C). The complexification of
our algebra of interest is isomorphic to the natural semidirect sum of s and the 9-
dimensional abelian Lie algebra C9 ∼= C

3 ⊗ C
3 so that the first sl(2,C) component

in s acts irreducibly on the first factor C3 in C3 ⊗C
3, the second component sl(2,C)

in s acts irreducibly on the second factor of C3 in C3⊗C
3, and the component C in s

acts just by rescaling. The desired real Lie algebra is the natural semidirect sum of the
conformal Lorenzian algebra co(3, 1) and the 9-dimensional real abelian Lie algebra
R
9, where co(3, 1) acts irreducibly on R9. This unique irreducible action is naturally

induced from the standard action of co(3, 1) on the Minkowski space, if one identifies
R
9 with the space of the traceless symmetric bilinear forms on the Minkowski space.
Finally, for completeness, we offer without proof the (local) hypersurface realiza-

tions of the maximally symmetric homogeneous models in the considered class (the
details will be given in [6]). If, as before, n = 1

2 (dimM −1), and the signature of the
form obtained by the reduction of the Levi form at each point x to the space Hx/Kx

is equal to (p, q) with p + q = n − 1, then in coordinates (z1, . . . , zn, w) for Cn+1
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these are the hypersurfaces are given by the equation

Im
(
w + z21z̄n

)
= z1z̄2 + z̄1z2 +

n−1∑

i=3

εizi z̄i , (1.5)

where εi ∈ {−1, 1} and {εi}n−1
i=3 consists of p − 1 terms equal to 1 and q − 1

terms equal to −1 (note that, for dimM = 7, the last sum in the right side of (1.5)
disappears).

2 CR Symbols and theMain Results

Our analysis branches depending on properties of the CR structure’s local invariants.
A basic local invariant of a hypersurface-type CR structure called the CR symbol is
introduced in [13]. The CR symbol ofH (at a point x inM) is a bigraded vector space

g0 := g−2,0 ⊕ g−1,−1 ⊕ g−1,1 ⊕ g0,−2 ⊕ g0,0 ⊕ g0,2 (2.1)

with involution ¯ whose bigraded components gi,j are defined as follows. Ultimately
our definitions of gi,j will not depend on the point x because going forward we
will consider only structures with constant CR symbols, but we still fix x to state
the initial definitions. We let � denote the reduced Levi form, which is the field of
nondegenerate Hermitian forms defined on fibers of the quotient bundle H/K by

�(Xx + Kx) := L(Xx).

We define the coset spaces

g−2,0 := CTxM/Hx, g−1,−1 := Hx/Kx, and g−1,1 := Hx/Kx .

The space

g− := g−2,0 ⊕ g−1,−1 ⊕ g−1,1 (2.2)

inherits a Heisenberg algebra structure with nontrivial Lie brackets defined in terms
of the reduced Levi form by

[v, w] := i�(v, w) ∀v ∈ g−1,1, w ∈ g−1,−1.

Note that � formally takes values in g−2,0. By identifying g−2,0 and C, we regard � as
a C-valued Hermitian form, but, since this identification is not naturally determined
by the CR structure, in the sequel we consider the real line R� of C-valued Hermitian
forms spanned by �. While the one C-valued form � is not an invariant of the CR
structure, the line R� is.

To define g0,2, we consider special operators associated with vectors in Kx . For a
vector v in Kx , define the antilinear operator Av : g−1,1 → g−1,1 by

Av(x) := adv(x). (2.3)

The dependence of Av on v is linear, that is,

Aλv = λAv ∀λ ∈ C,
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so if the rank of K is equal to 1 then there exists an antilinear operator A such that

{Av | v ∈ Kx} = CA.

The fact that H is 2-nondegenerate implies that A 
= 0.
The reduced Levi form � naturally extends to define a symplectic form on the

space g−1 := g−1,−1 ⊕ g−1,1 via a standard construction from the study of Heisen-
berg algebras. Hence g−1 inherits a symplectic structure from the CR structure with
respect to which we obtain the conformal symplectic algebra csp(g−1) defined in the
standard way. We define g0,2 to be the subspace of csp(g−1) given by the formula

g0,2 :=
⎧
⎨

⎩
ϕ : g−1 → g−1

∣∣
∣
∣∣
∣

varphi(v) = 0 ∀v ∈ g−1,1 and
there exists λ ∈ C such that
ϕ(v) = λA(v) ∀v ∈ g−1,−1

⎫
⎬

⎭
.

The natural complex conjugation on CTxM induces an antilinear involution v �→ v

on g−1, which in turn induces an antilinear involution on csp(g−1) by the rule

ϕ(v) := ϕ(v). (2.4)

Using this involution, we define

g0,−2 := {ϕ | ϕ ∈ g0,2}.
Lastly, using the standard Lie brackets of csp(g−1) we define

g0,0 := {
v ∈ csp(g−1)

∣
∣ [v, g0,i] ⊂ g0,i ∀ i ∈ {−2, 2}} , (2.5)

which completes our definition of the CR symbol g0 of H (at the point x). Note that
by construction

[gi1,j1 , gi2,j2] ⊂ gi1+i2,j1+j2 , ∀ {(i1, j1), (i2, j2)} 
= {(0, 2), (0, −2)}. (2.6)

Conversely a vector space g0 as in (2.1) with g− as in (2.2) being the Heisenberg
algebra is called an abstract CR symbol for 2-nondegenerate, hypersurface-type CR
structures if it satisfies (2.6), g0,0 is the maximal subalgebra of csp(g−) satisfying
(2.5), and it is endowed with an antilinear involution ¯ satisfying (2.4).

Remark 2.1 The CR symbol g0 of a CR structure with a 1-dimensional kernel
encodes and is encoded by the pair (R�,CA).

Note that an abstract CR symbol g0 is not necessarily a Lie algebra, as the bigrad-
ing conditions in (2.6) are only applied for {(i1, j1), (i2, j2)} 
= {(0, 2), (0, −2)}, so
that [g0,−2, g0,2] does not necessarily belong to g0,0 and therefore does not neces-
sarily belong to g0. Following the terminology of [13], we say that a CR symbol is
regular if it is a subalgebra of g− � csp(g−) and non-regular otherwise. As shown
in [13, Lemma 4.2], the symbol g0 of a CR structure with a 1-dimensional kernel
corresponding to the pair (R�,CA) is regular if and only if

A3 ∈ CA. (2.7)

It is shown in [13] that, to any abstract regular CR symbol g0, there is a correspond-
ing special homogeneous CR structure fully characterized as the unique structure
with the given symbol at every point whose infinitesimal symmetry algebra attains
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a certain upper bound. This structure is called the flat CR structure with constant
CR symbol g0. As a consequence of [13], see Theorems 3.2, 5.1, 5.3 and the last
paragraph of section 5 there, one gets the following theorem.

Theorem 2.2 (Porter and Zelenko [13]) If (M, H) is a 2-nondegenerate CR structure
of hypersurface type with a 1-dimensional Levi kernel and constant regular symbol,
then

(1) the dimension of the algebra of infinitesimal symmetries of (M, H) is not
greater than 1

4 (dimM − 1)2 + 7;
(2) these symmetries are determined by their third weighted jet;
(3) the dimension of the algebra of infinitesimal symmetries of (M, H) is equal

to 1
4 (dimM − 1)2 + 7 if and only if (M, H) has the flat structure (defined in

[13]) with CR symbol such that the corresponding line of antilinear operators
consists of nilpotent ones of rank 1.

A natural question is whether or not the assumption of regularity of symbol can
be removed in the previous theorem. Addressing this question, the main result of the
present paper is the following.

Theorem 2.3 If (M, H) is a 2-nondegenerate CR structure of hypersurface type
with a 1-dimensional Levi kernel admitting a constant reduced modified symbol as in
Definition 3.3 (and, in particular, if it is homogeneous), then

(1) statements (1) and (3) of Theorem 2.2 are valid;
(2) if the symbol is non-regular then the (infinitesimal) symmetries of (M, H) are

determined by their first weighted jet.

The proof of this theorem is given in Sections 3 through 6. In Section 3 we give
the scheme of the proof of this theorem, based on the constructions and results of
our previous paper [15], namely the construction of reduced modified symbols for
sufficiently symmetric CR structures and the application of Tanaka prolongation of
these reduced modified symbols to obtain an upper bound for the dimension of their
infinitesimal symmetry algebras (see Theorem 3.6 below). In this way Theorem 2.3
will be essentially reduced to Theorem 3.7. The latter theorem is proved in Section 6
with the help of the Section 5. In this proof we also use the classification of symbols
from our previous paper [14] and the system of matrix equations for the reduced
modified symbols derived in [15, section 5]. The latter two topics are briefly reviewed
in Section 4 below.

3 ReducedModified Symbol and the Significance of Its Tanaka
Prolongation

Now we will discuss the scheme of the proof of Theorem 2.3, based on the construc-
tions and results of our previous paper [15]. In particular, there we introduced other
local invariants of sufficiently symmetric hypersurface-type CR structures encoded in
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objects called modified CR symbols and reduced modified CR symbols (see sections
4 and 6 of [15], respectively). Although modified and reduced modified CR sym-
bols are defined in [15], we outline their definitions here for completeness because
these objects (especially the latter one) are both nonstandard and fundamental for
the present study. Some technical details that are not essential for understanding the
principal concepts are omitted here and we refer to [15] for those gaps. Following
these definitions, we introduce Theorem 3.7, and describe how Theorem 2.3 essen-
tially follows from Theorem 3.7. The subsequent sections of this paper are dedicated
to the proof of Theorem 3.7.

Proceeding, we assume that (M, H) has a constant CR symbol. Let g0 be an
abstract CR symbol isomorphic to the CR symbol g0(x) of (M, H) at every point x

in M . And write gi,j (x) to denote the bigraded components of g0(x).
There is a natural way to locally complexify M by working in local coordinates

and replacing real coordinates with complex ones, and, moreover, the CR structure
H , as well as the distributions H , K , and K , naturally extend to this complexified
manifold (see [15] for full details) yielding a so-called complexified CR manifold that
we denote by CM (a detail omitted here is that, since the construction is local, this
may only be well defined after replacing M with some neighborhood in M). Note
that dimR(CM) = 2 dim(M) and there is a submanifold in CM that can be naturally
identified with M . The distribution K +K on CM is involutive. We letN be the leaf
space of the foliation of CM generated by K + K , sometimes called the Levi leaf
space, and let π : CM → N denote the natural projection. That is, points in N are
maximal integral submanifolds of K + K in CM .

From the resulting construction, g0(x) remains well defined (in terms of H ) for
all x in CM . We define the fiber bundle pr : P 0 → CM whose fiber pr−1(x) over a
point x in CM is comprised of what we call adapted frames, that is,

pr−1(x) =
⎧
⎨

⎩
ϕ : g− → g−(x)

∣∣∣
∣∣∣

ϕ(gi,j ) = gi,j (x) ∀ (i, j) ∈ {(−1, ±1), (−2, 0)},
ϕ−1 ◦ g0,±2(x) ◦ ϕ = g0,±2, and
ϕ([y1, y2]) = [ϕ(y1), ϕ(y2)] ∀ y1, y2 ∈ g−

⎫
⎬

⎭
. (3.1)

We also consider a second fiber bundle π ◦ pr : P 0 → N , a bundle with total
space P 0 and base space N .

For any ψ ∈ P 0 and γ = π ◦ pr(ψ), the tangent space of the fiber (P 0)γ =
(π ◦pr)−1(γ ) of the second bundle atψ can be identified with a subspace of csp(g−1)

by the map θ0 : Tψ(P 0)γ → csp(g−1) given by

θ0
(
ψ ′(0)

) := (ψ(0))−1ψ ′(0) (3.2)

where ψ : (−ε, ε) → (P 0)γ denotes an arbitrary curve in (P 0)γ with ψ(0) = ψ .
The notation θ0 is used here to match the notation in [15]. Let

gmod
0 (ψ) := θ0(Tψ(P 0)γ ). (3.3)

Definition 3.1 The space g0,mod(ψ) := g− ⊕ gmod
0 (ψ) is called the modified CR

symbol of the CR structure H at the point ψ ∈ P 0.
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Remark 3.2 Modified CR symbols depend on points in the bundle P 0 rather than
points in the original CR manifold. Accordingly, a modified CR symbol is not itself a
local invariant of the CR structure from which it arises, but rather, for x ∈ M , the set
{g0,mod(ψ) | pr(ψ) = x} is a local invariant at x. This invariant encodes more data
than is encoded in the corresponding CR symbol.

We consider the map ψ �→ ϕ0(ψ) sending each point in P 0 to a subspace
of csp(g−). If, for some subspace g̃0 ⊂ csp(g−), there is a maximal connected
submanifold P̃ 0 of P 0 belonging to the level set

{
ψ ∈ P 0

∣∣
∣
∣ θ0

(
Tψ

(
P 0

)

π◦pr(ψ)

)
= g̃0

}

such that pr(P̃ 0) = CM , then we call P̃ 0 a reduction of P 0. After, replacing P 0 and
θ0 with P̃ 0 and the restriction of θ0 to the vertical tangent vectors of π◦pr : P̃ 0 → N ,
we can repeat this reduction procedure by finding a maximal connected submanifold

of P 0 that is in the level set of the new mapping ψ �→ θ0

(
Tψ

(
P̃ 0

)

π◦pr(ψ)

)
also

covering CM under the projection pr, which we again call a reduction of P 0. In gen-
eral this reduction procedure can be repeated many times, and eventually terminates
in the sense that iterating the reduction procedure again will not yield new reductions.
For a reduction P 0,red of P 0 we label the corresponding space

gred0 (ψ) := θ0

(
Tψ

(
P 0,red

)

π◦pr(ψ)

)
∀ ψ ∈ P 0,red. (3.4)

Definition 3.3 If P 0,red is a reduction of P 0 then the space g0,red(ψ) := g− ⊕
gred0 (ψ), with gred0 (ψ) given by (3.4), is called a reduced modified CR symbol of the
CR structure H at ψ . We say that H admits a constant reduced modified CR symbol
g0,red if there exists a reduction P 0,red of P 0 together with gred0 (ψ) given by (3.4) such
that

g0,red = g0,red(ψ) ∀ ψ ∈ P 0,red.

Lemma 3.4 If (M, H) is homogeneous then it admits a constant reduced modified
symbol, that is, there exists a reduction P 0,red of P 0 such that the map ψ �→ gred0 (ψ)

given by (3.4) is constant.

Proof Since (M, H) is homogeneous, so is P 0, and hence each reduction P̃ 0 of P 0

can be taken so that its fibers
(
P̃ 0

)

x
:=

{
ψ ∈ P̃ 0 | π(ψ) = x

}
have the same image

under the mapping ψ �→ θ0

(
TψP̃ 0

)
. Therefore, if ψ �→ θ0

(
TψP̃ 0

)
is not already

constant on P̃ 0 then we can repeat the reduction procedure to find a proper submani-
fold of P̃ 0 that is also a reduction of P 0. Eventually, this iterated procedure ends with
a reduction for which either the image of θ0 applied to its tangent spaces is constant,
or its fibers are 0-dimensional. Yet, by homogeneity, the map ψ �→ θ0

(
TψP 0,red

)

would be constant in the latter case as well.
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For the remainder of this paper, we let g0,red denote a constant reduced modified
CR symbol of H . Like the CR symbol of H , g0,red is also a graded subspace of
g− � csp(g−1). It has the decomposition g0,red = g−2,0 ⊕ g−1,−1 ⊕ g−1,1 ⊕ gred0
where the components whose first weight is negative coincide with those of the CR
symbol. Here we state some of the properties of gred0 . For this we consider weighted
components of csp(g−1) defined by

(csp(g−1))0,i = {
ϕ ∈ csp(g−1)

∣
∣ϕ(g−1,j ) ⊂ g−1,i+j ∀j ∈ {−1, 1}} .

The space gred0 is a subspace of csp(g−1) with a decomposition

gred0 = gred0,0 ⊕ gred0,− ⊕ gred0,+ (3.5)

such that

(1) gred0,0 ⊂ g0,0;

(2) gred0,+ = gred0,−;
(3) the natural projection of csp(g−1) onto (csp(g−1))0,2 defines an isomorphism

between gred0,+ and g0,2;

(4) The subspace gred0 is invariant with respect to the involution on csp(g−1)

(5) The subspace gred0 is a subalgebra of csp(g−1).

We stress that the decomposition gred0 = gred0,0⊕gred0,−⊕gred0,+ satisfying these properties
is not unique, and, furthermore, no such splitting is naturally determined by the CR
structure.

Remark 3.5 The CR symbol of (M, H) is determined by any of its modified CR sym-
bols, which in turn are all determined by any constant reduced modified CR symbol
g0,red that (M, H) admits.

The underlying theory that we will apply to treat structures with non-regular CR
symbols is developed in [15], wherein it is shown that the upper bounds that we wish
to compute can be found by computing the universal Tanaka prolongation [18] of
g0,red, which is defined as follows. Starting with k = 1 and setting g−2 = g−2,0, we
recursively define the vector spaces

gred
k :=

⎧
⎨

⎩
ϕ∈

−1⊕

i=−2

Hom(gi ,gi+k)

∣∣∣∣
ϕ([v1, v2])=[ϕ(v1), v2] + [v1, ϕ(v2)]
∀ v1, v2 ∈ g−

⎫
⎬

⎭
∀ k≥1, (3.6)

The universal Tanaka prolongation of g0,red is the vector space

u(g0,red) := g− ⊕
⊕

k≥0

gredk . (3.7)

Theorem 3.6 [follows immediately from [15, Corollary 2.8 and Theorem 6.2]] If
(M, H) is a 2-nondegenerate CR structure of hypersurface type with a 1-dimensional
Levi kernel and constant reduced modified symbol g0,red, then the dimension of the
algebra of infinitesimal symmetries of (M, H) is not greater than dim u

(
g0,red

)
.
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Hence, if we can explicitly calculate dim u(g0,red) for non-regular CR symbols,
then we can obtain an upper bound for the algebra of infinitesimal symmetries of
(M, H). This motivates the following theorem, proved in Section 6.

Theorem 3.7 If a constant reduced modified CR symbol g0,red corresponds to a non-
regular CR symbol then the following statements hold:

(1) The first Tanaka prolongation gred1 of g0,red vanishes or, equivalently, the
universal Tanaka prolongation u(g0,red) of g0,red is equal to g0,red.

(2) dim g0,red and therefore the dimension of the algebra of infinitesimal symme-
tries of a (2n + 1)-dimensional 2-nondegenerate CR structure of hypersurface
type with rank 1 Levi kernel and non-regular CR symbol admitting a constant
reduced modified symbol is strictly less than (n − 1)2 + 7.

(3) For (M, H) as in item (2), the bundle pr : �(P 0) → M , consisting of frames in
P 0 that commute with complex conjugation on the CR symbols, is a principal
bundle overM whose structure group has the Lie algebra gred0,0 and it is equipped
with an absolute parallelism invariant under the structure group’s action and
under the natural induced action of symmetries of (M, H).

Corollary 3.8 The dimension of the algebra of infinitesimal symmetries of a homo-
geneous (2n + 1)-dimensional 2-nondegenerate CR structure of hypersurface type
with rank 1 Levi kernel and non-regular CR symbol is strictly less than (n − 1)2 + 7.

Theorem 3.7 is proved in Section 6 with the help of preliminary results established
in Sections 4 and 5. In Section 4, we introduce a standardized matrix representation
of abstract reduced modified symbols, which is necessary for our study because there
is no previously developed structure theory for these Lie algebras. In Section 5, we
give explicit general formulas for matrix representations of elements in gred0,0, and we

use these formulas to calculate upper bounds for the dimension of g0,red, which are
necessary for item (2) of Theorem 3.7. Lastly, in Section 6, we apply the matrix
representation formulas derived in Section 5 to prove item (1) of Theorem 3.7 by
directly calculating gred1 = 0.

Based on the well-known fact [18, Section 6] that an infinitesimal symmetry of a
filtered structure is determined by the j th weighted jet, where j is the minimal non-
negative integer for which the j th Tanaka prolongation is equal to zero, this theorem
immediately implies item (2) of Theorem 2.3. Item (1) of Theorem 2.3 will follow
from combining Theorems 3.7 and 3.6. In Theorem 5.11 below, for each reduced
modified symbol corresponding to a non-regular CR symbol, we give more precise
upper bounds (than the ones in item (2) of Theorem 3.7) for the dimension of its
(entire) Tanaka prolongation in terms of the parameters of this non-regular symbol.

Remark 3.9 To establish Theorem 3.7, we appeal to Theorem 3.6 and the Tanaka-
theoretic prolongation procedures developed in [15] which constructs a tower
�(P s) → �(P s−1) → · · · → �(P 0) → M of fiber bundles (geometric prolon-
gations) and confers an absolute parallelism onto the largest prolongation �(P s).
The familiar reader will notice that item (1) in Theorem 3.7 implies that �(P 0) is
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diffeomorphic to the largest prolongation, and may wonder if we can construct a par-
allelism on P 0 directly without invoking the full prolongation procedure theory. We
stress, however, that in general, for a Tanaka structure of depth μ, where μ is the
number of negatively graded components, if l is the maximal integer such that the lth
algebraic prolongation is not equal to zero, then the parallelism construction requires
constructing the (l + μ)th geometric prolongation, and in our setting μ = 2. Con-
trastingly, the classical prolongation theory for G-structures (whose depth is μ = 1)
enjoys greater simplification whenever g1 = 0, so that in this case the construction
of the parallelism requires the first geometric prolongation only. See [1, 2, 15, 18,
19] for detailed exposition of the prolongation procedure.

4 Matrix Representations of CR and ReducedModified CR Symbols

Throughout this section, we work with a fixed CR symbol given by the pair
(R�,CA), where � is an Hermitian form and A is a self-adjoint antilinear operator
on g−1,1. Let us fix a basis of g−1. This basis can be fixed such that the pair (�, A)

is represented with respect to it by matrices in a canonical form, which is shown in
[14]. We recall one such canonical form below in Theorem 4.1 (there are actually
two canonical forms given in [14]).

For λ ∈ C and a positive integer m, let Jλ,m denote the m × m Jordan matrix with
a single eigenvalue λ and this eigenvalue has geometric multiplicity 1; let Tm = J0,m,
and let Sm be the m × m matrix whose (i, j) entry is 1 if j + i = m + 1 and zero
otherwise, that is

In the sequel, given square matrices D1, . . . DN we will denote by D1 ⊕ . . . ⊕ DN

the block diagonal matrix with diagonal blocks D1, . . . , DN in the order from the top
left to the bottom right and all off-diagonal block equal to zero.

For λ ∈ C, we define the k × k or 2k × 2k matrix Mλ,k by

Mλ,k :=
⎧
⎨

⎩

Jλ,k if λ ∈ R
(
0 Jλ2,k

I 0

)
otherwise,

where 0 denotes a matrix of appropriate size with zero in all entries and I denotes
the identity matrix. We define corresponding matrices Nλ,k by

Nλ,k :=
{

Sk if λ ∈ R

S2k otherwise.
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For the �-self-adjoint antilinear operator A referred to in the following theorem, let
us enumerate the eigenvalues of A2 (counting them with multiplicity) that are con-
tained in the upper-half plane {z ∈ C | �(Z) ≥ 0} of C, labeling them as λ21, . . . , λ

2
γ .

Furthermore, we take each λi to be the principle square root of λ2i .

Theorem 4.1 (immediate consequence of the main result in [14]) Given a nondegen-
erate Hermitian form � on a vector space V and an �-self-adjoint antilinear operator
A, there exists a basis of V with respect to which � andA are respectively represented
by the matrices H� and A given by

H� =
γ⊕

i=1

εiNλi,mi
and A =

γ⊕

i=1

Mλi,mi
, (4.1)

for some sequence ε1, . . . , εγ satisfying εi = ±1 and some sequence of positive
integers m1, . . . , mγ .

Letting H� and A be matrices representing � and A respectively in some basis of
g−1, we consider the Lie algebras of square matrices α satisfying

αAH−1
� + AH−1

� αT = ηAH−1
� for some η ∈ C

and respectively

αT H�A + H�Aα = ηH�A for some η ∈ C,

and define the algebra A to be their intersection, that is,

A :=
{
α

∣∣
∣
∣

αAH−1
� + AH−1

� αT = ηAH−1
� and

αT H�A + H�Aα = η′H�A for some η, η′ ∈ C

}
. (4.2)

Let us fix a splitting of gred0 as given in (3.5). With respect to the basis of g−1 fixed
above, there exists some (n− 1)× (n− 1) matrix � such that gred0,+ and gred0,− have the
matrix representations

gred0,+ = spanC

{(
� A

0 −H−1
� �T H�

)}
and gred0,− = spanC

{(
−H�

−1
�∗H� 0

A �

)}

. (4.3)

In [15], we show that gred0 is a subalgebra of csp(g−1) and establish the following
lemma.

Lemma 4.2 [[15, Proposition 5.4]] There exists a subalgebra A0 of A invariant

under the transformation α �→ H�
−1

α∗H� such that

gred0,0 =
{(

α 0
0 −H−1

� αT H�

)
+ cI

∣∣
∣
∣ α ∈ A0, and c ∈ C

}
, (4.4)
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and there exist coefficients {ηα}α∈A0 ⊂ C andμ ∈ C such that the system of relations

i) αAH−1
� + AH−1

� αT = ηαAH−1
�

ii) [α, �] − ηα� ∈ A0

iii) �T H�A + H�A� = μH�A

iv)
[
H�

−1
�∗H�, �

]
+ AA − μ� − μH�

−1
�∗H� ∈ A0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.5)

holds for all α ∈ A0.

We will need the following basic lemma, whose proof (outlined in the extended
version of this text [16]) is a straightforward linear algebra exercise that we leave to
the reader.

Lemma 4.3 ([15, Proposition 3.6]) The following are equivalent.

(1) g0 is regular.
(2) AAA is a scalar multiple of A.

Moreover, if � is in A then g0 is regular.

5 Matrix Representations of the AlgebraA A

In this section we give a general formula for elements in the algebra A defined in
(4.2) together with an outline for how the formula can be verified. The complete
formula is presented in several parts in Lemmas 5.1, 5.4, and 5.8 and Corollaries 5.3,
5.5, and 5.9. We use this explicit formula to derive upper bounds for the dimension
of A given in Lemma 5.10, which is essential for proving item (2) in Theorem 3.7.
These upper bounds also lead to Theorem 5.11, which gives more precise bounds
than those in Theorem 3.7. Furthermore, the matrix representation formula presented
in this section plays a fundamental role in the proof of item (1) in Theorem 3.7 given
in Section 6.

Naturally, it is easier to verify the formula than to derive it, and, since the formula
is ancillary to this paper’s topic, we omit the analysis used to derive it. To keep this
text compact, we omit proofs of several lemmas in this section, and instead provide
their full proofs in the extended version of this text [16]. The formula depends on the
matrices H� and A representing the pair (�, A).

In the sequel we assume that H� and A are in the canonical form prescribed by
Theorem 4.1, namely as given in (4.1). We will also use the notation of Section 4,
and, in particular, we let λ1, . . . , λγ , m1, . . . , mγ , ε1, . . . , εγ , Mλi,mi

and Nλi,mi
as

in Theorem 4.1. Recall that, in particular, this means the real and imaginary parts of
each λi are both nonnegative.

Define the bi-orthogonal subalgebra of A to be

A o := {B ∈ A | BAH−1
� + AH−1

� BT = BT H�A + H�AB = 0},
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where this name is reflecting the observation that A o is analogous to an intersection
of two orthogonal algebras. In this section, we first obtain a formula describing the
elements in A o and then obtain a formula for a subspace A s ⊂ A complementary
to A o, that is, such that

A = A o ⊕ A s . (5.1)

Such a space A s is spanned by elements that we call conformal scaling elements of
A , referring to the observation that these are analogous to non-orthogonal elements
in an intersection of two conformally orthogonal algebras.

Let B be an (n−1)×(n−1) matrix in A o and partition B into blocks {B(i,j)}γi,j=1
where the number of rows inB(i,j) is the same as in the matrixMλi,mi

and the number
of columns in B(i,j) is the same as in the matrix Mλj ,mj

. Similarly, we partition

H�AB and BAH−1
� into blocks {(H�AB)(i,j)}γi,j=1 and {(BAH−1

� )(i,j)}γi,j=1 whose
sizes are the same as in the partition of B.

Let us now derive a relationship between the blocks B(i,j) and B(j,i). To simplify
formulas, we assume εi = εj . To treat the more general case where possibly εi 
= εj ,
one can simply replace Nλi,mi

(or Nλj ,mj
) with εiNλi,mi

(or εjNλj ,mj
) in all of the

subsequent formulas.
We have

(
BAH−1

�

)

(i,j)
= B(i,j)Mλj ,mj

Nλj ,mj
and (H�AB)(i,j) = Nλi,mi

Mλi,mi
B(i,j),

so, since B ∈ A ,
(
Mλi,mi

Nλi,mi

)T
BT

(j,i) = −B(i,j)Mλj ,mj
Nλj ,mj

and

BT
(j,i)

(
Nλj ,mj

Mλj ,mj

)T = −Nλi,mi
Mλi,mi

B(i,j).

Since A is �-self-adjoint, each matrix Nλk,mk
Mλk,mk

and Mλk,mk
Nλk,mk

is symmetric
(one can also verify this by directly using the canonical form), and hence

Mλi,mi
Nλi,mi

BT
(j,i) = −B(i,j)Mλj ,mj

Nλj ,mj
, (5.2)

and

BT
(j,i)Nλj ,mj

Mλj ,mj
= −Nλi,mi

Mλi,mi
B(i,j). (5.3)

Multiplying both sides of (5.3) by Mλj ,mj
Nλj ,mj

from the right and then applying
(5.2) yields

BT
(j,i)Nλj ,mj

Mλj ,mj
Mλj ,mj

Nλj ,mj
= −Nλi,mi

Mλi,mi
B(i,j)Mλj ,mj

Nλj ,mj
(5.4)

= Nλi,mi
Mλi,mi

Mλi,mi
Nλi,mi

BT
(j,i).

Multiplying (5.4) by Nλi,mi
from the left and by Nλj ,mi

from the right yields

(
Nλi,mi

BT
(i,j)Nλj ,mj

)
Mλj ,mj

Mλj ,mj
= Mλi,mi

Mλi ,mi

(
Nλi,mi

BT
(i,j)Nλj ,mj

)
. (5.5)
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Notice that (5.2) is also equivalent to

Nλi,mi
Mλi ,mi

(
Nλj ,mj

B(j,i)Nλi ,mi

)T = − (
Nλi,mi

B(i,j)Nλj ,mj

)
Nλj ,mj

Mλj ,mj
. (5.6)

Equation (5.5) gives us all restrictions on the general form of B(i,j) that are not
coming from the relationship between B(i,j) and other blocks in the matrix B. Equa-
tion (5.6), on the other hand, gives us the restrictions on the general form of B(i,j)

coming from its relationship with B(j,i). Moreover, if (5.5) and (5.6) are satisfied for
i and j then B is in A o because (5.2) and (5.3) hold. In other words, our present
goal is to solve the system of matrix equations in (5.5) and (5.6), and whenever
(λi, λj ) 
= (0, 0), this exercise is equivalent to first solving the matrix equation

XMλj ,mj
Mλj ,mj

= Mλi,mi
Mλi,mi

X, (5.7)

and then, for the case where i = j , solving the system of equations consisting of
(5.7) and

Nλi,mi
Mλi,mi

XT = −XNλi,mi
Mλi,mi

.

The case where λi = λj = 0 requires special treatment because, in this case, contrary
to the case where (λi, λj ) 
= (0, 0), even if i 
= j solutions for B(i,j) in (5.5) need
not satisfy (5.6) for any matrix B(j,i).

Equation (5.7) is of the form analyzed in [8, Chapter 8]. In fact, an explicit solution
to (5.7) is given in [8, Chapter 8], but the solution is expressed in terms of a basis
with respect to which Mλi,mi

Mλi,mi
and Mλj ,mj

Mλj ,mj
have their Jordan normal

forms. On the other hand, the transition matrix from the initially considered basis to
a basis of the Jordan normal form is block diagonal with the blocks corresponding to
the Jordan blocks. Hence, the following lemma can be obtained from the solution in
[8, Chapter 8].

Lemma 5.1 If λi 
= λj then B(i,j) = 0.

Given Lemma 5.1, all that remains is to find the general formula for B(i,j) when
λi = λj , which is addressed by the following lemmas.

Lemma 5.2 Suppose λi = λj and mi ≤ mj . The dimension of the space of solutions
of (5.7) is equal to

(1) mi if λi > 0;
(2) 2mi if λ2i 
∈ R;
(3) 4mi if λ2i < 0.

Corollary 5.3 If mi ≤ mj , λi = λj = λ and λ 
= 0 then the matrices B(i,j) and
B(j,i) are described by one of three formulas, where the correct formula depends
wether λ > 0, λ2 
∈ R or λ2 < 0. Letting, as before, Tm denote the m × m nilpotent
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Jordan block J0,m, if λ > 0 then B(i,j) and B(j,i) respectively equal

(5.8)

for some coefficients {ak}.

Explicit formulas for the remaining two cases in Lemma 5.3 (i.e., λ2 
∈ R and
λ2 < 0) are given in the extended version of this text [16], but we omit them here
to save space, as they are essential only to additional analysis also appearing in the
extended version.

To simplify notation in the following lemma, for an integer q, we let [q]2 denote
the residue of q modulo 2, that is, [q]2 = 0 if q is even and [q]2 = 1 if q is odd.

Lemma 5.4 If mi ≤ mj and λi = λj = 0 then

(5.9)

and

(5.10)

for some coefficients
{
c1k, c

0
k

}
.
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Corollary 5.5 For all i ∈ {1, . . . , γ },

B(i,i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∑�mi/2�
k=1 akT

mi−2k+1
mi

)
Ialt,mi

if λi = 0
⎛

⎜
⎜
⎜
⎝

0
mi−1∑

k=0
akT

k
mi

mi−1∑

k=0

(∑k
r=0 ar

)
T k

mi
0

⎞

⎟
⎟
⎟
⎠

if λ2i < 0

0 otherwise,

(5.11)

where Ialt,m denotes the m × m diagonal matrix with a 1 in its odd columns and a -1
in its even columns.

Proof This follows immediately from the formulas in Corollary 5.3 and Lemma 5.4
with i = j .

The previous results provide a general formula for matrices in A o. We now focus
on obtaining a general formula of a subspace A s satisfying (5.1).

Lemma 5.6 Either dim(A ) − dim(A o) = 1 or dim(A ) − dim(A o) = 2, and the
latter case occurs if and only if there exists a matrix X in A satisfying

XAH−1
� + AH−1

� XT = 2AH−1
� ⇔ (X − I )T H�A

−1 + H�A
−1 (X − I ) = 0,

XT H�A + H�AX = 0.

Lemma 5.7 If A = Mm,λ and λ 
= 0 then dim(A ) − dim(A o) = 1.

With Lemmas 5.6 and 5.7 established one can obtain the general formula for a
subspace A s of A satisfying (5.1).

Lemma 5.8 For a subspace A s of A satisfying (5.1), dim(A s) = 2 if and only if A
is nilpotent. In particular, if

A = J0,m1 ⊕ . . . ⊕ J0,mγ

then, to satisfy (5.1), we can take the subspace A s of A spanned by the identity
matrix and the matrix

γ⊕

i=1

Dmi
,

where, for an integer m, Dm denotes the m × m diagonal matrix defined by

Dm := Diag
(m

2
,
m

2
− 1, . . . ,

m

2
− m + 1

)
. (5.12)

As a direct consequence of the previous lemmas, since for non-nilpotent A we
have A = A o + CI , one gets immediately the following

Corollary 5.9 If A is not nilpotent then in (4.2) one can take η′ = η.

We conclude this section with one more result.
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Lemma 5.10 If H� and A are in the canonical form prescribed by Theorem 4.1 and
A 
= 0 then

dim(A ) ≤ n2 − 4n + 6. (5.13)

Moreover, this bound is attained if and only if (�, A) can be represented by the pair
(H�, A) in the canonical form of Theorem 4.1 with

A = J0,2 ⊕
n−3 copies

︷ ︸︸ ︷
J0,1 ⊕ · · · ⊕ J0,1 . (5.14)

Proof Assume that

dim(A ) ≥ n2 − 4n + 6, (5.15)

and that (H�, A) are in the canonical form of Theorem 4.1. We will still use the
notation of (4.1), in particular referring to the sequence (λ1, . . . , λγ ).

Suppose that the λis are not all the same.Without loss of generality, we can assume
that (λ1, . . . , λγ ) is enumerated so that there exists an integer k such that

λ1 = . . . = λk and λj 
= λ1 ∀j > k. (5.16)

Define

s =
k∑

i=1

[
number of rows in Mλi,mi

]

where k is as in (5.16). By Lemma 5.1, for every matrix B in dim(A o + span{I }),
the upper right (s)× (n−1− s) block and the lower left (n−1− s)× (s) block of B

is zero. Moreover, since the λis are not all zero, there is at least one index i such that
B(i,i) has zeros on its main diagonal. Accordingly, if the λis are not all the same, then

dim(A o) + 1 = dim(A o + span{I }) ≤ (n − 1)2 − 2s(n − 1 − s).

Since
2n − 4 ≤ 2j (n − 1 − j) ∀ 1 ≤ j < n − 1,

it follows that

dim(A ) = dim(A o)+1 ≤ (n−1)2−2s(n−1−s) ≤ (n−1)2−2n+4 = n2−4n+5,

where the identity dim(A ) = dim(A o)+1 follows from Lemma 5.8 and the assump-
tion that the λis are not all the same. Clearly, this contradicts (5.15), so if (5.15) holds
then there exists a value λ ∈ C such that

λ = λi ∀ i. (5.17)

If (5.17) holds with λ 
= 0 then Corollaries 5.3 and 5.5 imply that each matrix B in
A o is fully determined by its entries above the main diagonal, and hence, applying
Lemma 5.8,

dim(A ) ≤ (n − 1)(n − 2)

2
+ 1 < n2 − 4n + 6, ∀n ≥ 2

Therefore, if (5.17) holds with λ 
= 0 then our assumption (5.15) fails.
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In other words, — assuming for a moment that (5.15) can be satisfied, which we
will prove below by giving an explicit example — if dim(A ) is maximized then we
can assume without loss of generality that

A = J0,m1 ⊕ · · · ⊕ J0,mγ with m1 ≥ · · · ≥ mγ . (5.18)

For B in A o, let us partition B as is done in Lemma 5.4. By Lemma 5.4, for i < j

the B(i,j) and B(j,i) blocks are together determined by 2mj parameters, whereas, by
Corollary 5.5, the B(i,i) block is determined by �mi

2 � parameters, where �mi

2 � denotes
the ceiling function, i.e., the smallest integer not less than mi

2 . Hence, by counting
the number of parameters determining B, Lemma 5.4 and Corollary 5.5 imply that if
(5.18) holds then

dim(A o) =
γ∑

k=1

(⌈mk

2

⌉
+ 2(k − 1)mk

)
. (5.19)

Let r ∈ {1, . . . , γ } be an integer such that

mi = 1 ∀ i > r,

and to compare with A, let us also consider the matrix

A′ = J0,m1 ⊕ · · · ⊕ J0,mr−1 ⊕ J0,1 ⊕ · · · ⊕ J0,1.

In other words, A′ is obtained fromA by replacing the last nonzero block on the diag-
onal of A with zeros. We will compute the dimension of A o corresponding to the
case where A = A′, but, since are going to compare this to the sum in (5.19), for clar-
ity let A ′ denote the algebra that we would otherwise denote by A o corresponding
to this case where A = A′, and let A o still denote the algebra referred to in (5.19).

Notice that the kth summand in (5.19) counts the number of parameters determin-
ing the blocks B(i,j) of a matrix B in A o for which max{i, j} = k. If we compare the
general formula for a matrix B in A o to that of a matrix B ′ in A ′, the only differ-
ence appears in the blocks B(i,j) of B for which max{i, j} = r , and hence a formula
for dim(A ′) should match the formula in (5.19), except that the rth summand will
change. Using Lemma 5.4 and Corollary 5.5, it is however straightforward to work
out exactly how this rth summand of (5.19).

Specifically, in replacing the formula for B with the formula for B ′, the B(r,r)

block is replaced with the mr × mr matrix having m2
r independent parameters,

whereas, for all i < r , B(i,r) (respectively B(r,i)) is replaced with a matrix having mr

independent parameters in its first row (respectively column) and zeros elsewhere.
Accordingly,

dim(A ′) = dim(A o) −
(⌈mr

2

⌉
+ 2(r − 1)mr

)
+ m2

r + 2(r − 1)mr ≥ dim(A o).(5.20)

Since equality holds in (5.20) if and only if mr = 1, the dimension of A o is
maximized with A as in (5.18) if and only if

A = J0,m1 ⊕
n−1−m1 copies

︷ ︸︸ ︷
J0,1 ⊕ · · · ⊕ J0,1, (5.21)
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in which case, by (5.19),

dimA o =
⌈m1

2

⌉
+

n−m1∑

k=2

(2k − 1) =
⌈m1

2

⌉
+ (n − m1)

2 − 1. (5.22)

Since A 
= 0, this last sum is maximized with A as in (5.21) if and only if A is
as in (5.14), in which case applying (5.22) with m1 = 2 yields (5.13) because, by
Lemma 5.8, if A is as in (5.21) then dimA = dimA o + 2.

Now, for completeness, given a non-regular CR symbol g0 encoded by the pair
(�, A), represented by the pair of matrices (H�, A) in the canonical basis as in The-
orem 4.1 we will give a more precise (i.e., in terms of integers m1, . . . mγ and
numbers λ1, . . . , λγ ) upper bound for the dimension of the algebra of infinitesimal
symmetries of a 2-nondegenerate (2n+1)-dimensional CR structure of hypersurface
type with 1-dimensional Levi kernel admitting a constant reduced modified symbol
corresponding to CR symbol g0. For this, for every 1 ≤ i, j ≤ γ , let

d(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, (λi 
= λj ) or (i = j and λ2i is not a nonpositive real number)

min{mi,mj } (i 
= j and λi = λj > 0) or (i = j and λ2i < 0)

2min{mi,mj } i 
= j, λi = λj and (λ2i /∈ R or λi = 0)

4min{mi,mj } i 
= j, λi = λj and λ2i < 0
⌈

mi

2

⌉
i = j and λi = 0

where
⌈

m
2

⌉
denotes the ceiling function, i.e., the smallest integer not less than mi

2 .
Let

dtotal :=
∑

i≤j

d(i, j).

Then the following theorem is the direct consequence of item (1) of Theorem 3.7
and Lemmas 5.2, 5.4, Corollary 5.5, and Lemma 5.8:

Theorem 5.11 Given a non-regular CR symbol g0 encoded by the pair (�, A) in
the canonical basis as in Theorem 4.1, the dimension of the algebra of infinitesimal
symmetries of a 2-nondegenerate (2n+1)-dimensional CR structure of hypersurface
type with 1-dimensional Levi kernel admitting a constant reduced modified symbol
corresponding to the CR symbol g0 is not greater than dtotal+2n+3 if the operatorA

is not nilpotent, and it is not greater than dtotal+2n+4, if the operator A is nilpotent.

Note that the mentioned Lemmas and Corollaries from Section 5 together with
(4.4) imply that dim gred0,0 is either not greater than dtotal + 2 or dtotal + 3 depending

whether or not A is nilpotent. The estimate for u(g0,red) = g0,red in Theorem 5.11
follows from this and the fact that dim(g− + g0,−2 + g0,2) = 2n + 1.
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6 Proof of Theorem 3.7

6.1 Preparatory Lemmas and Notations

Let σ : g0,red → g0,red denote the antilinear involution induced by the natural
complex conjugation of CT M . We introduce this σ notation to avoid confusion
because while working with matrix representations in coordinates we will use the
overline notation to denote the standard complex conjugation of coordinates, which
is a different involution. Let

(e1, . . . , e2n−2)

be a basis of g−1 with respect to which we get the matrix representation of gred0 given
by (4.3) and (4.4). Notice in particular that (e1, . . . , en−1) spans g−1,1 and

σ(ei) = en+i−1 ∀ 1 ≤ i ≤ n − 1.

Note that σ extends to an involution defined of gred1 by same formula (see (2.4)) that
we used to extend the natural conjugation from g− to be defined on csp(g−1), that is

σ(ϕ)(v) := σ ◦ ϕ ◦ σ(v) ∀ v ∈ g0,red, ϕ ∈ gred1 (6.1)

defines an involution of gred1 .
An element ϕ in Hom(g−2, g−1) ⊕ Hom(g−1, g

red
0 ) belongs to gred1 if and only if

ϕ([ei, ej ]) = (ϕ(ei)) (ej ) − (
ϕ(ej )

)
(ei) ∀ i, j ∈ {1, . . . , 2n − 2}. (6.2)

Note, here φ(ei) ∈ gred0 ⊂ csp(g−1).
Given any element v ∈ g−1 let v− and v+ be the canonical projections of v to

g−1,−1 and g−1,1, respectively, with respect to the splitting g−1 = g−1,−1 ⊕ g−1,1.
As a direct consequence of (6.2) and (4.3), if n ≤ j ≤ 2n − 2 and 1 ≤ i ≤ n − 1,

then

((ϕ(ej ))ei)+ ∈ span{Aej−n+1} − (
ϕ([ei , ej ])

)
+ ⊂ span{Aej−n+1, (ϕ(1))+}, (6.3)

((ϕ(ei)) ej )− ∈ span {σ (Aei)} − (
ϕ([ei , ej ])

)
− ⊂ span{Aei , (ϕ(1))−}

In particular, the upper left (n − 1) × (n − 1) block in the matrix ϕ(ej ) and the
lower right (n − 1) × (n − 1) block in the matrix ϕ(ei) both have rank at most 2.

Also from (6.2) and the fact that [ei, ej ] = 0 for n ≤ i, j ≤ 2n − 2, we
immediately have that

ϕ(ei)ej = ϕ(ej )ei, n ≤ i, j ≤ 2n − 2. (6.4)

Lemma 6.1 If the antilinear operator A (or, equivalently the matrix A) has rank
greater than 1 and i ≥ n then ϕ(ei) ∈ gred0,0 ⊕ gred0,−, or, equivalently,

ϕ(ei) =
(

αi 0
cA −H−1

� αT
i H�

)
for some c ∈ C and αi ∈ A0 + C(H�

−1
�∗H�). (6.5)
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Proof By (4.3), there exists c ∈ C such that for every n ≤ j ≤ 2n − 2
(
(ϕ(ei)) ej

)
+ = cAej−n+1 and

((
ϕ(ej )

)
ei

)
+ ∈ span{Aei−n+1}.

By (6.4), for all n ≤ j ≤ 2n − 2,

cAej−n+1 ∈ span{Aei−n+1}.
This implies that c = 0, because otherwise rankA ≤ 1, contradicting our assumption.
Therefore, (ϕ(ei)v)+ = 0 for all v ∈ g−1,−1, which is equivalent to the statement of
the lemma.

Similarly, we have the following Lemma.

Lemma 6.2 If the antilinear operator A (or, equivalently the matrix A) has rank
greater than 1 and i < n then ϕ(ei) ∈ gred0,0 ⊕ gred0,+ or, equivalently,

ϕ(ei) =
(

αi cA

0 −H−1
� αT

i H�

)
for some c ∈ C and αi ∈ A0 + C�. (6.6)

Lemma 6.3 If A has rank greater than 1 and αi is the matrix defined by (6.5) and
(6.6) then, for i < n, we have

(
H�Aαi

)T + H�Aαi = ηH�A for some η ∈ C (6.7)

and, for n ≤ i, we have

αiAH−1
� +

(
αiAH−1

�

)T = ηAH−1
� for some η ∈ C. (6.8)

Proof If αi is as in (6.6) then αi ∈ A + C�, so the definition of A and item (iii) of

(4.5) imply (6.7). If, on the other hand, αi is as in (6.5) then αi ∈ A +C(H�
−1

�∗H�),
so the definition of A and item (iii) of (4.5) imply (6.8).

Corollary 6.4 If the CR symbol is not regular (and hence with rankA > 1) and the
matrix αi given in (6.5) or (6.6) is zero, then ϕ(ei) = 0.

Proof Suppose αi = 0. By (4.3), (4.4), and Lemmas 6.1 and 6.2, if ϕ(ei) 
= 0 then

either � ∈ A or H�
−1

�∗H� ∈ A . The conditions � ∈ A and H�
−1

�∗H� ∈ A are,
however, equivalent, so either ϕ(ei) 
= 0 or � ∈ A . If the CR symbol is not regular
then, by Lemma 4.3, � 
∈ A , and hence ϕ(ei) = 0.

Lemma 6.5 If an element ϕ in gred1 satisfies ϕ(1) = 0 and

ϕ(ei) = 0 ∀ i ≥ n (6.9)

then ϕ = 0.

Proof Since ϕ(1) = 0, the left side of (6.2) is zero for all i and j . Accordingly, for
any i ∈ {1, . . . , n − 1} and j ∈ {n, . . . , 2n − 2}, (6.2) and (6.9) imply that the j
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column of ϕ(ei) is zero. Hence, for all i ∈ {1, . . . , n− 1}, the latter n− 1 columns of
ϕ(ei) are all zero. From this and Lemma 6.2 (and specifically (6.6)), it follows that
H−1

� αT
i H� = 0. Hence αi = 0, which, again noting (6.6), shows that the initial n− 1

columns of ϕ(ei) are also zero. Therefore ϕ(ei) = 0 for any i.

The general strategy of our proof of item (1) of Theorem 3.7 is, for a given
arbitrary ϕ ∈ gred1 , first to prove that ϕ(1) = 0 and then to prove (6.9).

We will also need the following equations and notation. In the sequel every
(n − 1) × (n − 1) matrix X will be also regarded as an operator having the matrix
representation X with respect to the basis (e1, . . . , en−1). Let {ϕi}2n−2

i=1 ⊂ C denote
the coefficients satisfying

ϕ(1) =
2n−2∑

i=1

ϕiei .

By (6.5), it follows that

(
ϕ(ei)ej

)
− = −

(
H−1

� αT
i H�

)
ej−n+1, ∀ n ≤ i, j ≤ 2n − 2.

This together with (6.4) yields
(
H−1

� αT
i H�

)
ej−n+1 =

(
H−1

� αT
j H�

)
ei−n+1, ∀ n ≤ i, j ≤ 2n − 2. (6.10)

Condition (6.10) is crucial in the subsequent analysis, namely in the proof of Lem-
mas 6.6 and 6.11. Therefore, we need to describe the matrix H−1

� αT
j H�, which we

begin by first describing the matrix αj . By (6.5), it follows that, for n ≤ j ≤ 2n − 2
and 1 ≤ i ≤ n − 1,

(
ϕ(ej )ei

)
+ = αj ei .

From this and (6.3), taking into account that the matrix A represents the antilinear
operator A, we have that there exists the unique tuple (κi)

n−1
i=1 such that

αj ei = κiAej−n+1 − (H�)i,j−n+1 (ϕ(1))+ (6.11)

for all 1 ≤ i ≤ n − 1 and n ≤ j ≤ 2n − 2. The uniqueness of (κi)
n−1
i=1 follows from

the assumption that A 
= 0 and that κi in (6.11) is independent of j .

6.2 Branching Analysis: the First Two Cases

There are three separate cases determined by properties of (�, A) that require separate
analysis. First is the special case wherein, for some integer m satisfying 2 ≤ m ≤
n − 1, we have

H� = Sm ⊕ H ′
� (6.12)

where H ′
� is an arbitrary nondegenerate Hermitian matrix, and

A = Jλ,m ⊕ A′ for some λ ≥ 0, (6.13)
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where A′ is such that (�, A) is represented by (H�, A). Second is the case where we
have some integer 1 ≤ m ≤ n − 1 such that

(6.14)

where H ′
� is an arbitrary nondegenerate Hermitian matrix, and

(6.15)

where A′ is a matrix such that (�, A) is represented by (H�, A). Third is the case
where (H�, A) corresponds to a non-regular CR structure and A is diagonal. By The-
orem 4.1, we can indeed always take the matrices representing (�, A) in the form of
one of these three special cases.

In the present section, Section 6.2, only the first of these three cases is analyzed,
and analysis of the third is deferred to Section 6.3. The additional analysis required
for the second case is very similar to that of the first, so we omit it from the present
text; full detailed analysis for all three cases is, however, presented in the extended
version of this text [16].

Let us assume now that (H�, A) is in the canonical form of Theorem 4.1, satisfying
(6.12) in particular, which implies

Ae1 = λe1, Aei = λei + ei−1 ∀ 2 ≤ i ≤ m, (6.16)

and
H�ei = em+1−i ∀ 1 ≤ i ≤ m. (6.17)

Using (6.11), (6.12), and (6.16) we obtain

αnei = κiλe1 − δi,m(ϕ(1))+ ∀ i ∈ {1, . . . , n − 1}, (6.18)

and, for 0 < p < m,

αn+pei = κiep + κiλep+1 − δi,m−p(ϕ(1))+ ∀ i ∈ {1, . . . , n − 1}. (6.19)

Now from (6.18), we get

αT
n e1 =

n−1∑

j=1

κjλej − ϕ1em and αT
n ei = −ϕiem ∀ 2 ≤ i ≤ n − 1.

Using this together with (6.17) we can get

(H−1
� αT

n H�)ei = −ϕm+1−ie1 ∀ i ∈ {1, . . . , m − 1}, (6.20)

(H−1
� αT

n H�)em ≡ −ϕ1e1 + λ

m∑

j=1

κm+1−j ej (mod span{em+1, em+2, . . . , en−1}), (6.21)

and
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(H−1
� αT

n H�)ei = −
⎛

⎝
n−1∑

j=m+1

(H�)j,iϕj

⎞

⎠ e1 = −
⎛

⎝
n−1−m∑

j=1

(H ′
�)j,i−mϕj+m

⎞

⎠ e1 ∀ i > m, (6.22)

where H� is as in (6.12).
Similarly, for 0 < p < m, from (6.19) we have

αT
n+pei =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−ϕiem−p, i ∈ {1, . . . , n − 1} \ {p, p + 1}
−ϕpem−p +

n−1∑

j=1
κj ej , i = p

−ϕp+1em−p + λ
n−1∑

j=1
κj ej i = p + 1,

(H−1
� αT

n+pH�)ei = −ϕm+1−i ep+1 ∀ i ∈ {1, . . . , m} \ {m − p,m − p + 1}, (6.23)

(H−1
� αT

n+pH�)em−p ≡ −ϕp+1ep+1 + λ

m∑

j=1

κm+1−j ej (mod span{em+1, . . . , en−1}), (6.24)

and

(
H−1

� αT
n+pH�

)
em−p+1 ≡ −ϕpep+1 +

m∑

j=1

κm+1−j ej (mod span{em+1, . . . , en−1}).

For p ≥ m,
(
H−1

� αT
n+pH�

)
ei ∈ span{em+1, . . . , en−1}. (6.25)

Lemma 6.6 Under the assumptions (6.12) and (6.13), if rankA > 1 then

ϕ(1) = 0. (6.26)

Proof We will begin by showing that

(ϕ(1))+ = 0. (6.27)

The proof consists of analysis of (6.10) in three cases:
1. (6.10) for i = n and j = n + p with 0 ≤ p < m − 1. By (6.20)

(
H−1

� αT
n H�

)
ep+1 = ϕm−pe1 ∀ 0 ≤ p < m − 1, (6.28)

and, by (6.23),
(
H−1

� αT
n+pH�

)
e1 = ϕmep+1 ∀ 0 ≤ p < m − 1. (6.29)

Applying (6.28) and (6.29) to (6.10) with i = n and j = n + p we get

ϕm−pe1 = ϕmep+1 ∀ 0 ≤ p < m − 1.
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Therefore, using the last equation for 1 ≤ p < m − 1 (as for p=0 this equation is a
tautology), we get

ϕ2 = · · · = ϕm−1 = 0,

and also that ϕm = 0 for m > 2 (we will give another way to prove the latter identity
including the case m = 2 in item 3 of the proof below).

2. (6.10) for i = n and j = n + p with p ≥ m. By (6.22) we get that

(
H−1

� αT
n H�

)
ep+1 =

⎛

⎝
n−1−m∑

j=1

(
H ′

�

)
j,p+1−m

ϕj+m

⎞

⎠ e1. (6.30)

Using (6.10), from (6.30) and (6.25) it follows that
(
H−1

� αT
n H�

)
ep+1 = 0 or,

equivalently,
n−1−m∑

j=1

(
H ′

�

)
j,i

ϕj+m = 0, 1 ≤ i ≤ n − 1 − m.

Since the matrix H ′
� is nonsingular, this yields

ϕm+1 = · · · = ϕn−1 = 0.

3. (6.10) for i = n and j = n + m − 1. If v = λ
∑m

j=1 κm+1−j ej , then, by (6.21),
(
H−1

� αT
n H�

)
em ≡ −ϕ1e1 + v (mod span{ei}n−1

i=m+1), (6.31)

and, by (6.24),
(
H−1

� αT
n+m−1H�

)
e1 ≡ −ϕmem + v (mod span{ei}n−1

i=m+1). (6.32)

Using (6.10) again and the fact that m ≥ 2, from (6.31) and (6.32) it follows that
ϕ1 = 0 and ϕm = 0. This completes the proof of (6.27).

Since (6.1) defines an involution of gred1 , σ(ϕ) also belongs to gred1 , so, since ϕ

was an arbitrary element in gred1 , the exact same arguments applied above show that
(σ (ϕ)(1))+ = 0. Since σ(1) = 1,

σ
(
(ϕ(1))−

) = (σ ◦ ϕ(1))+ = (σ (ϕ)(1))+ = 0,

and hence (ϕ(1))− = 0, which, together with (6.27) implies (6.26).

Lemma 6.7 Under the assumptions (6.12) and (6.13), if rankA > 2 then
(κ1, . . . , κn)A = 0.

Proof Consider now the equation in (6.8) with i = n. The matrix on the right side
of (6.8) is either zero or it has rank equal to rankA, which is at least 3 under this
lemma’s hypothesis. On the other hand, applying (6.16), (6.17), (6.18) and Lemma
6.6, we get

(
αnAH−1

�

)
ei ∈ span{e1} ∀ i ∈ {1, . . . , m − 1}, (6.33)

and, applying (6.19) additionally, if λ = 0 then
(
αn+1AH−1

�

)
ei ∈ span{e1} ∀ i ∈ {1, . . . , m − 1}. (6.34)
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Hence, by (6.33),

rank
(
αnAH−1

�

)
≤ 1 (6.35)

and rank

(
αnAH−1

� +
(
αnAH−1

�

)T
)

≤ 2 because αnAH−1
� has at most one

nonzero row. Similarly, if λ = 0 then (6.34) implies

rank
(
αn+1AH−1

�

)
≤ 1 (6.36)

and rank

(
αn+1AH−1

� +
(
αn+1AH−1

�

)T
)

≤ 2. Since the matrix on the left side of

(6.8) has rank at most 2 whenever i = n or (λ, i) = (0, n + 1), the matrix on the
right side of (6.8) is zero whenever i = n or (λ, i) = (0, n + 1). Thus by (6.8) the
matrix αnAH−1

� is skew symmetric, and the matrix αn+1AH−1
� is skew symmetric

whenever λ = 0. This together with (6.35) implies that

αnAH−1
� = 0, (6.37)

whereas applying (6.36) yields

αn+1AH−1
� = 0, (6.38)

whenever λ = 0. By (6.37) and (6.18) for λ 
= 0, or by (6.38) and (6.19) for λ = 0,
we get that the vector (κ1, . . . , κn)AH−1

� = 0, which completes this proof.

In the next four lemmas, 6.8-6.11, we prove item (1) of Theorem 3.7 in four special
cases that together cover all non-regular CR symbols not treated in the final section,
6.3.

Lemma 6.8 Under the assumptions (6.12) and (6.13), if rankA > 2 and (λ, m) 
∈
{(0, 2), (0, 3)} then gred1 = 0.

Proof Let ϕ ∈ gred1 and let (κi)
n−1
i=1 be as in (6.11). It will suffice to show that κi = 0

for every 1 ≤ i ≤ n − 1. Indeed, first plugging this condition and the conclusion
(6.26) of Lemma 6.6 into relation (6.11) we obtain that αj = 0 for all n ≤ j ≤ 2n−2.
This and Corollary 6.4 imply (6.9). Thus, the conclusion of the present lemma will
follow from (6.26) and Lemma 6.5.

Notice that since (κ1, . . . , κn)A = 0, we have that κi = 0 for 1 ≤ i ≤ m if λ 
= 0,
and κi = 0 for 1 ≤ i ≤ m− 1 if λ = 0 . In particular, as m ≥ 2 we have κ1 = κ2 = 0
always, and, since it is assumed thatm > 3 when λ = 0, if λ = 0 then κ3 = 0 as well.

To produce a contradiction, assume that there exists an index r such that κr 
= 0
and let r be the minimal such index. By (6.18),

αnei = δi,rκiλe1 ∀ i ≤ r, (6.39)

and, by (6.19), for 0 < p < m,

αn+pei = δi,r (κiep + κiλep+1) ∀ i ≤ r . (6.40)

Note that, by Lemma 6.1, span{αn, αn+1} is a 2-dimensional subspace in A +
C(H

−1
� �∗H�). Since A is a subspace in A +C(H

−1
� �∗H�) of codimension at most
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1, the subspaces span{αn, αn+1} and A have a nontrivial intersection. That is, there
exist b1, b2 ∈ C such that (b1, b2) 
= (0, 0) and

b1αn + b2αn+1 ∈ A . (6.41)

By (6.39) and (6.40) again the first r − 1 columns of the matrix b1αn + b2αn vanish
and

(b1αn + b2αn+1)er = κr

(
(λb1 + b2)e1 + λb2e2

)
(6.42)

By applying formulas from Section 5, we can derive a contradiction from the
assumption λ 
= 0 as follows. Let b1αn + b2αn+1 be partitioned as a block matrix
whose diagonal blocks have the same size as the diagonal blocks of A (referring to
the block diagonal partition of A given in (4.1)).

By (6.41), if λ > 0 then each (i, j) block of b1αn + b2αn+1 is either characterized
by Lemma 5.1 or Corollary 5.5 and identically zero or it is characterized by Corollary
5.3 and more specifically characterized by (5.8). In particular, if the (1, j) block
of b1αn + b2αn+1 is nonzero (and therefore characterized by (5.8)) and contains
part of the r column of b1αn + b2αn+1, then (5.8) implies that the (j, 1) block of
b1αn +b2αn+1 is nonzero and contained in the first r −1 columns of b1αn +b2αn+1,
which contradicts our definition of r . Accordingly, if λ > 0 then the (1, j) block of
b1αn + b2αn+1 containing part of the r column of b1αn + b2αn+1 is identically zero,
which implies λb1 + b2 = 0 and λb2 = 0 by (6.42). So, if λ > 0, then we obtain the
contradiction (b1, b2) = (0, 0).

On the other hand, if λ = 0 then, by Lemma 6.1, span{αn+2, αn+3} is a 2-

dimensional subspace in A +C(H
−1
� �∗H�). Similarly to the previous case, A and

span{αn+2, αn+3} have a nontrivial intersection, that is, there exist b1, b2 ∈ C such
that (b1, b2) 
= (0, 0) and

b1αn+2 + b2αn+3 ∈ A . (6.43)

Note that we are now redefining b1 and b2 because the previous definition is no
longer needed, and that the bis in (6.43) are not related to the bis in (6.41). By (6.39)
and (6.40) the first r − 1 columns of the matrix b1αn+2 + b2αn+3 vanish and

(b1αn+2 + b2αn+3)er = κr

(
b1e2 + b2e3

)
. (6.44)

By applying formulas from Section 5 again, we can derive a contradiction now
from the assumption λ = 0. For this, let b1αn+2 + b2αn+3 in (6.43) be partitioned as
a block matrix whose diagonal blocks have the same size as the diagonal blocks of
A. By (6.43), if λ = 0 then each (i, j) block of b1αn +b2αn+1 is either characterized
by Lemma 5.1 and identically zero or it is characterized by Lemmas 5.4 and 5.8 and
Corollary 5.5 and more specifically characterized by (5.9), (5.10), (5.11), and (5.12).
In particular, if λ = 0 and the (1, j) block of b1αn+2 + b2αn+3 contains part of the
r column of b1αn+2 + b2αn+3, and, furthermore, we assume that the (1, j) block is
not identically zero, then this (1, j) block is either characterized by (5.11) and (5.12)
or by (5.9) and (5.10).

Considering the first possibility where the (1, j) block containing part of the r

column of b1αn+2 + b2αn+3 is characterized by (5.11) and (5.12) (i.e., j = 1), by
(6.44), the first m entries of b1e2 + b2e3 form the r column of the (1, 1) block of
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b1αn+2+b2αn+3. Since we are assuming that this (1, 1) block is a linear combination
of matrices (5.11) and (5.12) with the latter being a diagonal matrix, noting that
r > 3, it follows that the first entry in the r − 1 column of this (1, 1) block is −b1
and the second entry in the r − 1 column of this (1, 1) block is −b2. Yet the r − 1
column of the (1, 1) block of b1αn+2 + b2αn+3 is zero by the definition of r , so we
have obtained the contradiction that (b1, b2) = (0, 0).

Considering the remaining possibility, which is where the (1, j) block containing
part of the r column of b1αn+2 + b2αn+3 is characterized by (5.9) or (5.10), if this
(1, j) block is nonzero then (5.9) and (5.10) imply that the (j, 1) block is nonzero
and contained in the first r − 1 columns of b1αn+2 + b2αn+3, which contradicts the
definition of r .

Hence, the (1, j) block containing part of the r column of b1αn+2 + b2αn+3
must be identically zero because all other possibilities yield contradictions, and yet,
by (6.44), setting this (1, j) block equal to zero again implies the contradiction
(b1, b2) = (0, 0). Therefore, there is no index r such that κr 
= 0.

Lemma 6.9 Under the assumptions (6.12) and (6.13), if there is a basis with respect
to which A is represented by the matrix

A = J0,3 ⊕ J1,c ⊕ A′′ for some c > 0 (6.45)

or

A = J0,2 ⊕ J1,c ⊕ J1,c′ ⊕ A′′ for some c, c′ > 0. (6.46)

then gred1 = 0.

Proof Let ϕ ∈ gred1 and let (κi)
n−1
i=1 be as in (6.11). By the same arguments as in the

beginning of the proof of Lemma 6.8 , it will suffice to show that κi = 0 for every
1 ≤ i ≤ n−1. Note that, by Lemma 6.6, in the considered cases ϕ(1) = 0. It is more
convenient to work with matrices

Ã = Jc,1 ⊕ J0,3 ⊕ A′′ (6.47)

or

Ã = Jc,1 ⊕ Jc′,1 ⊕ J0,2 ⊕ A′′ (6.48)

instead of A in (6.45) and (6.46), respectively. This can be done by an obvious per-
mutation of the basis. Also, in the considered cases the rank assumptions of Lemma
6.7 with A replaced by Ã holds. Therefore, using (6.11) with A replaced by Ã we get

κ1 = κ2 = κ3 = 0. (6.49)

Note that if we would not replace A by Ã we could conclude that κ1 = κ2 = κ4 = 0
in the case of (6.45) and that κ1 = κ3 = κ4 = 0 in the case of (6.46), so that is why
we make this permutation of the blocks.

Assume for a proof by contradiction that there exists r such that κr 
= 0 and
moreover that this is the minimal such index, that is, κi = 0 for all i < r . By (6.49),
r > 3. From (6.11) with A replaced by Ã it follows that in both cases the first r − 1
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columns of the matrices αi with n ≤ i ≤ n + 3 vanish,

αner = κrce1, and αn+3er = κre3. (6.50)

Further,

αn+2er = κre2 (6.51)

if Ã satisfies (6.47), and

αn+1er = κrc
′e2 (6.52)

if Ã satisfies (6.48). Note that, by Lemma 6.1, each αi in these equations belongs to

A + C

(
H�

−1
�∗H�

)
.

Hence, using similar arguments as in the proof of Lemma 6.8 we get
that the 3-dimensional subspace span{αn, αn+2, αn+3} in the first case and
span{αn, αn+1, αn+3} in the second case has at least a two dimensional intersection
with A . Notice further that in either case, the rth columns of matrices in these inter-
sections must have a two-dimensional span because the natural map from the space
span{αn, αn+2, αn+3} (or span{αn, αn+1, αn+3}) to C

n−1 sending a matrix to its r

column in this space is injective.
Let us now first assume that Ã satisfies (6.47). Let B(1) and B(2) be matrices

belonging to the intersection of span{αn, αn+2, αn+3} and A such that the r column
of B(1) is linearly independent from the r column of B(2). For an (n − 1) × (n − 1)
matrix B, let (B(i,j)) be a partition of B into a block matrix whose diagonal blocks
have the same size as the diagonal blocks of A. Let j be the index such that B(1,j)

contains part of the r column of B. By Lemma 5.1, since c 
= 0 there exists i ∈ {1, 2}
such that B(i,j) = 0 for all B ∈ A , because otherwise Lemma 5.1 implies that the
(1, 1) and (2, 2) blocks of AA have the same eigenvalues. In particular, at most one
of the (1, j) and (2, j) blocks of any linear combination of B(1) and B(2) is nonzero.
It follows that, for each k ∈ {1, 2}, B(k)

(1,j) = 0 and B
(k)
(2,j) 
= 0 because otherwise the

r column of each B(k) belongs to span{e1}, which contradicts our choice of B(1) and
B(2). Moreover, by (6.50) and (6.51), the first nonzero column of each block B

(k)
(2,j)

has zero in all but its first two entries.
Each B

(k)
(2,j) is either characterized by Lemma 5.1 and is identically zero or char-

acterized by Lemma 5.4 and Corollary 5.5 and more specifically characterized by
(5.9), (5.10), or (5.11) (with λi = 0). If B

(k)
(2,j) is characterized by (5.11) then j = 2

and, by (5.11), the second entry of the first nonzero column of B
(k)
(2,2) is zero. If, on

the other hand, B(k)
(2,j) is characterized by (5.9) (or (5.10)) and the second entry of the

first nonzero column of B
(k)
(2,j) is nonzero, then, by (5.10) (or respectively (5.9)), the

B
(k)
(j,2) block of B(k) is nonzero and contained in the first r −1 columns of B(k), which

contradicts our choice of r . Therefore if B
(k)
(2,j) is nonzero then the second entry of

the first nonzero column of B
(k)
(2,j) is zero. Yet this contradicts our choice of B(1) and

B(2) because it means that the only nonzero entry in the r column of B(1) and B(2) is
the second entry.



D. Sykes, I. Zelenko

Let us now address the remaining case, that is, assume that Ã satisfies (6.48).
Again, let j be the index such that B(1,j) contains part of the r column a given
(n − 1) × (n − 1) matrix B. Let B(1) and B(2) be matrices belonging to the inter-
section of span{αn, αn+1, αn+3} and A such that the r column of B(1) is linearly
independent from the r column of B(2). From this independence condition and the
fact that nonzero entries of these respective rth columns of B(1) and of B(2) appear
within their first three entries (the latter is a consequence of (6.50) and (6.52)), it fol-
lows that there exists a matrix B in span{B(1), B(2)} such that there exists i ∈ {1, 2}
with B(i,j) 
= 0 (because otherwise, the third entry is the only nonzero entry of rth
columns of B(1) and B(2), which contradicts the independence of these columns).
Since r > 3 it follows that j > 2. Thus, it follows from Lemma 5.1 and Corollary 5.3
that this nonzero B(i,j) with i ∈ {1, 2} is characterized by (5.8). Yet (5.8) implies that
the B(j,i) is a nonzero block contained in the first r − 1 rows of B, which contradicts
our choice of r .

Lemma 6.10 Under the assumptions (6.12) and (6.13), if

A =
k copies

︷ ︸︸ ︷
J0,2 ⊕ · · · ⊕ J0,2 ⊕Jc,1 ⊕ J0,1 ⊕ · · · ⊕ J0,1,

for some integer k and some c > 0 then gred1 = 0.

Proof Let ϕ ∈ gred1 and let (κi)
n−1
i=1 be as in (6.11). By the same arguments as in the

beginning of the proof of Lemma 6.8 , it will suffice to show that κi = 0 for every
1 ≤ i ≤ n − 1. We work with (H�, A) in the canonical form of Theorem 4.1, so H�

is as in (4.1), that is

H� = ε1N0,2 ⊕ · · · ⊕ εkN0,2 ⊕ εk+1Nc,1 ⊕ · · · ⊕ εγ N0,1

for some coefficients εi = ±1.
For a matrix B in A , let (B(i,j)) be a partition of B into a block matrix whose

diagonal blocks have the same size as the diagonal blocks of A. By Lemma 5.4 and
Corollary 5.5, we have

B(i,j) = εi

(
b c

0 d

)
and B(j,i) = −εj

(
b e

0 d

)
∀ i, j ≤ k

and

B(i,j) =
(

a

0

)
and B(j,i) = (

0 b
) ∀ i ≤ k < j

for some b, c, d, e ∈ C that depend on (i, j). By Corollary 5.5 and Lemma 5.8,

B1,1 = B2,2 = · · · = B2k+1,2k+1, (6.53)

where here Bi,j denotes the (i, j) entry of B rather than the (i, j) block B(i,j). By
Lemma 5.1 and Corollary 5.5,

B(i,k+1) = 0 and B(k+1,i) = 0 ∀ i 
= k. (6.54)

Since, by Lemma 6.7, (κ1, . . . , κn−1)A = 0, we have

κi = 0 whenever i is odd and i ≤ 2k + 1. (6.55)
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From (6.11) and Lemma 6.6 it follows that, for 0 ≤ p ≤ n − 1, the i column of the
matrix αn+p is equal to κi times the p + 1 column of A. In particular, the (i, j) entry
of αn+2k is

(αn+2k)i,j = κj cδi,2k+1. (6.56)

Since, by Lemma 6.1, each αn+p belongs to A0 + C

(
H�

−1
�∗H�

)
and αn+2k does

not belong to A0 \ {0}, which can be seen by contrasting (6.54) and (6.56), it follows
that

either αn+2k = 0 or H�
−1

�∗H� ∈ A0 + spanC{αn+2k}.
But αn+2k = 0 if and only if κ1 = · · · = κn−1 = 0, which is equivalent to what we
want to show, so let us proceed assuming

H�
−1

�∗H� ∈ A0 + spanC{αn+2k}
in order to produce a contradiction. Accordingly, let �0 ∈ A0 and s ∈ C be such that

H�
−1

�∗H� = H�
−1

�∗
0H� + sαn+2k, (6.57)

or, equivalently,

� = �0 + sH�
−1

α∗
n+2kH�. (6.58)

Here we will apply another result from Section 5, namely Corollary 5.9, which

states that for B ∈ A , since A is not nilpotent, if
(
H�AB

)T + H�AB =
μH�A then BAH−1

� + AH−1
� BT = μAH−1

� . Noting that, by (6.55) and (6.56),

AH�
−1

α∗
n+2kH� = 0, item (iii) in (4.5) and (6.58) imply that

(
H�A�0

)T + H�A�0 = μH�A, (6.59)

and hence Corollary 5.9 implies that

η�0 = μ,

where this notation η�0 refers to the coefficient with that label in items (i) and (ii) or
(4.5).

Since the matrix equation
(
H�AX

)T + H�AX = μH�A is equivalent to
(
H

−1
� X∗H�

)
AH−1

� + AH−1
�

(
H

−1
� X∗H�

)T = μAH−1
� ,

(6.59) implies

η
H�

−1
�∗
0H�

= μ. (6.60)

By (6.60), items (i) and (ii) in (4.5) imply
[
�, H�

−1
�∗

0H�

]
+ μ� ∈ A0, (6.61)

and applying the transformation X �→ H�
−1

X∗H� to the matrix in (6.60) yields
[
H�

−1
�∗H�, �0

]
− μH�

−1
�∗

0H� ∈ A0. (6.62)
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Now we analyze item (iv) of (4.5). Using (6.57), (6.58), and lastly (6.61), we have

[
H�

−1
�∗H�,�

]
=

[
H�

−1
�∗

0H�,�
]

+ [
sαn+2k,�0

] + |s|2
[
αn+2k,H�

−1
α∗

n+2kH�

]

≡ μ� + [
sαn+2k,�0

] + |s|2
[
αn+2k, H�

−1
α∗

n+2kH�

]
(mod A0).

Substituting the last equation into item (iv) of (4.5) we get, after the obvious
cancellation, that

[
sαn+2k, �0

] + |s|2
[
αn+2k, H�

−1
α∗

n+2kH�

]
+AA − μH�

−1
�∗H� ∈ A0. (6.63)

Similarly, (6.57), (6.58), and then (6.62) yields

[
H�

−1
�∗H�,�

]
=

[
H�

−1
�∗H�,�0

]
+

[
H�

−1
�∗

0H�, sH�
−1

α∗
n+2kH�

]
+ |s|2

[
αn+2k,H�

−1
α∗

n+2kH�

]

≡ μH�
−1

�∗
0H� +

[
H�

−1
�∗

0H�, sH�
−1

α∗
n+2kH�

]
+ |s|2

[
αn+2k,H�

−1
α∗

n+2kH�

]
,

where the equivalence is modulo A0. Substituting the last equation into item (iv) of
(4.5) we get

[
H�

−1
�∗

0H�, sH�
−1

α∗
n+2kH�

]
+ |s|2

[
αn+2k, H�

−1
α∗

n+2kH�

]
+ AA − μ� ∈ A0. (6.64)

On the other hand, again from (6.57) , (6.58), and using that
[
H�

−1
�∗

0H�, �0

]
∈

A0, we can write

[
H�

−1
�∗H�,�

]
≡ [

sαn+2k, �0
]+

[
H�

−1
�∗

0H�, sH�
−1

α∗
n+2kH�

]
+|s|2

[
αn+2k,H�

−1
α∗

n+2kH�

]
,

where here again the equivalence is moduloA0. By subtracting the matrix in item (iv)
of (4.5) from the sum of the matrices in (6.63) and (6.64) and using the last relation,
we get

AA + |s|2
[
αn+2k, H�

−1
α∗

n+2kH�

]
∈ A0,

or, equivalently,
(
AA + |s|2αn+2kH�

−1
α∗

n+2kH�

)
− |s|2H�

−1
α∗

n+2kH�αn+2k ∈ A0. (6.65)

Notice that the first two terms in (6.65), grouped together by parentheses, are matrices
whose only potentially nonzero entry is the (2k + 1, 2k + 1) entry, whereas the other
term has the same value in the first 2k+1 entries of its main diagonal. By (6.53), each
matrix in A0 also has the same values in the first 2k + 1 entries of its main diagonal.
Moreover, the (2k + 1, 2k + 1) entry of AA is nonzero. Therefore, by (6.65),

AA = −|s|2αn+2kH�
−1

α∗
n+2kH�. (6.66)

Defining

α := |s|2H�
−1

α∗
n+2kH�αn+2k,

(6.65) and (6.66) imply that α is in A0.
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It is straightforward to check that, with this definition for α, ηα = 0 in the notation
of item (i) of (4.5) (by calculating, for example, the (1, 1) entries of the terms in
item (i)), and hence items (i) and (ii) of (4.5) yield [�, α] ∈ A0. Or, equivalently, by
(6.58), noting that [�0, α] ∈ A0,

s
[
H�

−1
α∗

n+2kH�, α
]

∈ A0. (6.67)

Notice that H�
−1

α∗
n+2kH�α = 0 because

(
H�

−1
α∗

n+2kH�

)2 = 0, and hence (6.67)

implies

s|s|2H�
−1

α∗
n+2kH�

(
αn+2kH�

−1
α∗

n+2kH�

)
∈ A0. (6.68)

Applying (6.66), we get

− s|s|2
|c|2 H�

−1
α∗

n+2kH�

(
αn+2kH�

−1
α∗

n+2kH�

)
= s

|c|2 H�
−1

α∗
n+2kH�

(
AA

)
(6.69)

= sH�
−1

α∗
n+2kH�,

where this last equality follows easily from (6.56).
By (6.58), (6.68), and (6.69), we get that � is in A0, but this contradicts Lemma

4.3. Therefore, the assumption that αn+2k 
= 0 must be false, which in turn implies
that a1 = · · · = an−1 = 0, completing this proof.

Establishing the following lemma requires analysis of the second special case (i.e.,
wherein (6.14) and (6.15) hold) analogous to the analysis of the first case carried out
above. Although we omit the analysis for the second case, it is fully presented in the
extended version of this text [16].

Lemma 6.11 Under the assumptions (6.14) and (6.15), if A corresponds to a non-
regular CR structure then gred1 = 0.

6.3 Branching Analysis: the Final Case:

In this subsection, 6.3, we consider the special case where (H�, A) corresponds to a
non-regular CR structure and A is diagonal. Working in the normal form of Theorem
4.1,H� is diagonal too. SinceA corresponds to a non-regular CR structure, the matrix
AA has at least two distinct nonzero eigenvalues, so we can assume without loss of
generality that there are numbers λ1, . . . , λn−1, ∈ C and ε1, . . . , εn−1 ∈ {1, −1} such
that |λ1| 
= |λ2|, λ1 
= 0, λ2 
= 0, and

A = diag (λ1, . . . , λn−1) and H� = diag (ε1, . . . , εn−1).

Accordingly, by (6.11),

αn+pei = κiλp+1ep+1 − δi,p+1ϕ(1) ∀ 0 ≤ p < n, (6.70)

αnAH−1
� ei = λiεiκi

(
λ1e1 − δi,1ϕ(1)

)
, (6.71)
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H−1αT
n+pHe1 = ±ϕ1ep+1 ∀0 ≤ p < n, (6.72)

and

H−1αT
n Hep+1 = ±ϕp+1e1 ∀0 < p < n. (6.73)

By (6.10), we can equate H−1αT
n Hep+1, and hence (6.72) and (6.73) yields

ϕ1 = ϕ2 = · · · = ϕn−1 = 0. (6.74)

Formula in (6.71) now simplifies giving that αnAH−1
� is a matrix with at most 1

nonzero row, and hence the left side of (6.8) (when setting i = n) cannot be a diagonal
matrix of rank greater than one. Yet the right side of (6.8) is a diagonal matrix that
is either zero or of rank greater than 1, so the right side of (6.8) must be zero for the
equation to hold. Since the left side of (6.8) is zero, (6.71) and (6.74) imply that

λ1κ1 = λ2κ2 = · · · = λn−1κn−1 = 0

because λ1 
= 0. In particular,

κ1 = κ2 = 0 (6.75)

because λ1 and λ2 are both nonzero.

Lemma 6.12 If (H�, A) corresponds to a non-regular CR structure and A is
diagonal then gred1 = 0.

Proof Let ϕ ∈ gred1 and let (κi)
n−1
i=1 be as in (6.11). Recall that (ϕ(1))+ = 0 implies

ϕ(1) = 0, by the same argument applied at the end of the proof of Lemma 6.6, and
hence ϕ(1) = 0 by (6.74). Accordingly, by the same arguments as in the beginning of
the proof of Lemma 6.8, it will suffice to show that κi = 0 for every 1 ≤ i ≤ n − 1.

Assume that there exists r such that κr 
= 0 and r is the minimal index with this
property. By (6.75) we have that r > 2. Noting (6.70), by Lemma 6.1, κr 
= 0 implies

span{αn, αn+1} is a 2-dimensional subspace in A + C(H
−1
� �∗H�). Accordingly,

κr 
= 0 yields that span{αn, αn+1} and A have at least a 1-dimensional intersec-
tion. By (6.75) and(6.70), nonzero entries in the matrices in span{αn, αn+1} can only
appear in their first two rows and moreover they do not appear in their first two
columns. Yet, in the Section 5, we describe the matrices in A explicitly. In particu-
lar, given that H� and A are diagonal, the description of A in Section 5 implies that
every matrix in A with nonzero entries in its first two rows also has nonzero entries
in its first two columns, which implies that span{αn, αn+1} and A have a trivial
intersection, a clear contradiction.

By combining the results of Lemmas 6.8, 6.9, 6.10, 6.11, and 6.12, we finish the
proof of item (1) of Theorem 3.7, because these lemmas account for all non-regular
symbols. To prove item (2) of Theorem 3.7 note that by (4.4) and Lemma 3.7, for the
reduced modified CR symbol corresponding to a non-regular symbol,

dim gred0,0 = dim A + 1 < n2 − 4n + 7.
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Therefore, from item (1) of the theorem under consideration and the fact that
dim gred0 = dim gred0,0 + 2 and dim g− = 2n − 1, it follows that

dim u

(
g0,red

)
= dim g0,red < (2n − 1) + (n2 − 4n + 7) + 2 = (n − 1)2 + 7,

which together with Theorem 3.6 completes the proof of item (2) of Theorem 3.7.
Item (3) of Theorem 3.7 follows from item (1) of Theorem 3.7 and the parallelism
construction referred to in [15, Theorem 6.2].
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