ON WRONSKIANS AND ¢¢-SYSTEMS

ANTON M. ZEITLIN

ABSTRACT. We discuss the gg-systems, the functional form of the Bethe ansatz equations
for the twisted Gaudin model from a new geometric point of view. We use a concept
of G-Wronskians, which are certain meromorphic sections of principal G-bundles on the
projective line. In this context, the gg-system, similar to its difference analog, is realized as
the relation between generalized minors of the G-Wronskian. We explain the link between
G-Wronskians and twisted G-oper connections, which are the traditional source for the
qg-systems.
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1. INTRODUCTION

The impact of quantum integrable models on modern mathematics is enormous. The
important examples of this kind are the so-called spin chain models [B1, KBI, R]. While
many of the algebraic structures observed there found themselves in pure mathematics, in
particular in the modern theory of quantum groups, the original method of solution of these
models, known as algebraic Bethe ansatz [TF,R] remained popular mainly in the framework
of mathematical physics. The centerpiece of this method, which on the folklore level is a
method of diagonalization of a mutually commuting set of operators (transfer-matrices)
in finite-dimensional vector space [KBI, R] is the resulting algebraic equations, known as
Bethe equations [B2, KBI| which at first sight have no particular mathematical meaning. In
recent years a lot of activity has been devoted to finding the geometric context in which
these equations appear naturally. In a particular case of XXX /XXZ spin chains [TF, OW],
the integrable models, based on Yangians (Y3;(g))/quantum affine algebras (Up(g)), the
Bethe equations emerge as the relations for the quantum equivariant cohomology/K-theory
of a certain variety [PSZ,KPSZ, AO, O] as conjectured in the theoretical physics context
[NS1,NS2]. At the same time, these relations may straightforwardly be written in terms
of a system of difference equations, known as QQ-systems. Incidentally for Uy(g) the QQ-
systems emerge as the relations in the extended Grothendieck ring of finite-dimensional
representations of quantum affine algebras [BLZ, HJ,FH1, FH2].
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2 A.M. ZEITLIN

Much earlier, another geometric realization due to B. Feigin, E. Frenkel and their col-
laborators [FFR1, F1, F2, FFTL, FFR2| was achieved for the semiclassical version of the
aforementioned integrable models, the so-called Gaudin model. It turned out the Bethe
equations, in this case, describe certain principal “G-bundle connections (group G cor-
responds to the Langlands dual © g) on the projective line, called opers, with a prescribed
singularity structure. This geometrization of Gaudin Bethe equations was a part of a far
bigger story: this correspondence is an example of a geometric Langlands correspondence.

A naturally arising question is whether there exists a deformation of this example if
a similar correspondence holds for Bethe equations of XXX/XXZ models, and what is a
proper generalization of the principal bundle connection. In [KSZ, FKSZ]| we introduced
the deformed version of the connection, which we called (*G, h)-opers for Bethe equations
of XXZ type '. While [FKSZ] we treated (“G, h)-opers on Lie-theoretic level, in [KSZ, KZ2]
for (SL(N), h)-opers we exploited a different approach, which used interpretations of QQ-
systems as minors in the deformed and twisted version of the Wronskian matrix. At the time,
it seemed like a construction specific for defining the representation of SL(N). Still, later, it
was observed in [KZ1] that a QQ-system emerges from a new object, (“G, h)-Wronskian: a
meromorphic section of a principal “G-bundle satisfying a certain difference equation. We
established the explicit correspondence between (“G, h)-opers and (*G, h)-Wronskians in
[KZ1], so that the QQ-system emerges as relations between generalized minors [FZ1,FZ2]
of (G, h)-Wronskian.

In [BSZ] we described the classical limit of the QQ-system: we called it gg-system, which
is a system of differential equations representing the original Gaudin model/oper context.
On the level of equations one obtains (QQ-system from gg-system via proper application
of h — 1 limit and rescaling. In this note we explain how to obtain the differential G-
Wronskian and generalized minor interpretation of the gg-system.

The exposition is as follows. First, Section 2 reviews the concept of generalized minors
following Fomin and Zelevinsky. Then, in Section 3, we introduce the idea of G-Wronskian
for simply connected simple group G and its relation to the gg-system. Next, in Section 4,
we discuss the class of G-opers, which correspond to the gg-system, following [BSZ]. Finally,
in Section 5, we establish the relation between two objects: G-opers and G-Wronskians and
discuss the differences between G-Wronskians and their deformed analogs.

Acknowledgements. The author is indebted to E. Frenkel, P. Koroteev, and D. Sage
for fruitful discussions. The author is partially supported by Simons Collaboration Grant
578501 and NSF grant DMS-2203823.

2. GENERALIZED MINORS

2.1. Group-theoretic data. Let G be a connected, simply connected, simple algebraic
group of rank r over C. We fix a Borel subgroup B_ with unipotent radical N_ = [B_, B_]
and a maximal torus H C B_. Let By be the opposite Borel subgroup containing H. Let
{ai1,...,a,} be the set of positive simple roots for the pair H C B4. Let {d,...,d&,} be
the corresponding coroots; the elements of the Cartan matrix of the Lie algebra g of G are
given by a;; = (o, &;).

The Lie algebra g has Chevalley generators {e;, fi, &;}i=1,.. r, so that b_ = Lie(B_) is
generated by the f;’s and the &;’s and by = Lie(B;) is generated by the e;’s and the
&;’s, while h = by /[by,by] is generated by &;’s. Let {wi}i=1,. ,» and {@;}i=1,. ,» be the

n the non-simply laced case of g, the situation is more involved, see recent paper [FHR].
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fundamental weights and coweights correspondingly, defined by (w;, &;) = (W;, oj)d;5. The
element ad;, where p = >"" ; @; defines a principal gradation on by = @®;>0b. ;.

Let W = N(H)/H be the Weyl group of G. Let w; € W, (i = 1,...,r) denote the
simple reflection corresponding to a;. We also denote by wg be the longest element of W,
so that By = wo(B-). We also fix representatives s; € N(H) of w;, and in general will
denote w the representative of w in N(H).

2.2. Generalized Minors and their properties. Consider the big cell Gy € GG in Bruhat
decomposition: Gg = N_HN,. Any element g € Gg can be represented as follows:

(2.1) g=n_ hng.

for some ny € Ny, h € H, and n_ € N_. Let V; be the irreducible representation of G
with highest weight w; and highest weight vector v; which is the eigenvector for any element
h € H,ie. hy; = [h]*v;, where [h]* € C* denotes an eigenvalue of h.

We formulate the following definition.

Definition 2.1. [FZ1] Regular functions {A“};,_; _, on G, whose values on a dense set
Gy are given by

(2.2) A% (g) = [h]*", 1=1,...,r
will be referred to as principal minors of a group element g.

In case of G = SL(r + 1), these functions coincide with the principal minors of the
standard matrix realization of SL(r 4+ 1). We define other generalized minors using the
action of the lifts of the Weyl group elements on the right and the left and then applying
principal minors to the result. In other words, we have the following definition.

Definition 2.2. [FZ1] For u,v € W, we define a regular function Ay, 4., on G by setting
(2.3) Avonven(9) = A% (a7 g 5),

where @, v are lifts of Weyl group elements u, v to G.

Notice that in this notation A, .,(g) = A% (g). Consider the orbit Oy, = Wg - Cu;.
Then we have the following Proposition.

Proposition 2.3. Action of the group element on the highest weight vector v; € V; is as
follows:

(2.4) g = Z A (W - v+ ..o,
weWw
where dots stand for the vectors, which do not belong to the orbit Oy .

The set of generalized minors {A ., w, Jwew:i=1,...r creates a set of coordinates on G/By.,
known as generalized Pliicker coordinates. In particular, the set of zeroes of each of Ay ., w,
is a uniquely and unambiguously defined hypersurface in G/B. This feature is important
for characterizing Schubert cells as quasi-projective subvarieties of a generalized flag variety,
see [FZ2] for details.

We started this section from the explicit definition of the principal minors by means of
Gaussian decomposition. The following proposition (see Corollary 2.5 in [FZ1]) provides a
necessary and sufficient condition of its existence for a given group element.

Proposition 2.4. An element g € G admits the Gaussian decomposition if and only if
A% (g) #0 foranyi=1,...,r.
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Finally, we introduce the fundamental relation ([FZ1], Theorem 1.17) between generalized
minors, which will be crucial in the following.

Proposition 2.5. Let, u,v € W, such that fori € {1,...,r}, {(uw;) = £(u) + 1, L(vw;) =
(v)+ 1. Then

—aj;
(25) Au-wi,v-wi (g)Auwi-wi,vwi-wi (g) 7Auw¢-wi,v-wi (g)Au-wi,vwi-wi (9) = H [Au-wj,v-wj (9)
J#i

3. G-WRONSKIANS

3.1. Differential equations and G-Wronskian. Consider the irreducible representation
V; of G with highest weight w;. It comes equipped with a 2-dimensional subspace W; =

Lf ®L;, L:r = Cvy;, L; = Cf;v;, which is invariant under the action of B.

Suppose we have a principal G-bundle Fg and its B -reduction Fp, and thus an H-
reduction Fg, where H = B /[By, B4] as well. Therefore for each i = 1,...,r, the vector
bundle

ViZ?B+B>< V%foGéVE
+

associated to V; contains an H-line subbundles

LF=FuxLf, L7 =FuxL;
H H

associated to L;t c V.

Definition 3.1. G-Wronskian on P! is the quadruple (g, I, Y, V%), where ¢ is a mero-
morphic section of a principle bundle Fg, Fp, is a reduction of Fg to By, V% is an
H-connection, so that H = By /[B4, By], satisfying the following condition. There exist
a Zariski open dense subset U C P! together with the trivialization 25 . of Fp, so that
z'diVZ =VZ =0, Z, where Z € ) = by /[by, b, ], so that for certain sections {v }i=1

of line bundles {Lf}izl,,,,m on U we have ¢4 as an element of G(z) satisfy the following
conditions:

(3.1) VG v ) =% v, i=1,...,r

In local terms we have the following. Representing the corresponding section 4 = ¥(z) €
G(z), we have:

(3.2) (0. — 2)9(2)v; = 9 (2)p° | (2)wi,

where pfl@') = > 1 ¢i(2)fi, and ¢;(z) € C(z). We are interested in the case when
{¢i(2)}i=1,. , are polynomials.

Definition 3.2. G-Wronskian has regular singularities if pfl(z) =ph(2) =30 Mi(2) fi,
where A;(z) € C[z].

We also are interested to impose some non-degeneracy conditions on ¢(z), which has to
do with their generalized minor structure.

Definition 3.3. We say that G-Wronskian with regular singularities is nondegenerate if
Ay w; (9(2)) are nonzero polynomials for all w € Wand i =1,...,r.
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Now let us look at the equations, satisfied by non-degenerate genralized G-Wronskians:
(3.3) (0. — 2)9 (2)v; = 9 (2)p™, (2)vi
Restricting this equation to W; C V;, we have the following:
(0: = {Z,wi)) A, 0, (9 (2)) = Ni(2) A, w0, (D (2))
(3.4) (0> = (Z,wi — i) Aw,; ;.0 (9 (2)) = Ai(2) A,y w0 (9 (2))
Let us make use of the relation (2.5), when u,v = 1, applying it to ¥(2):

(3.5)

A wi (G (2)) Aw;wiw; wi (G (2)) — Bwywpwi (9 (2) Duy ws i (G (2)) = H [ijywj (4(2))
J#i

—aj;

With the help of (3.4) we obtain:
A'_l(z)Awi,wi (g(z))(az - <27 Wi — a>)Awiwi7wi (g(z)) -

(3.6) AN ) Awrnr ()02 = (Z,w0) Dun (9(2)) = [ ] AGL,(#(2)).
J#i
Denoting Ay, w, (4(2)) = ¢*.(2), Aw;wiwi (9(2)) = ¢°(2), then simplifying, and collecting
such equations for all fundamental weights, we arrive to the following system:

¢4 (2)0:0"(2) = 4" (2)0:¢} (2) + (Z, 2i)d’, (2)q" (2) =
(3.7) Ai(z) H [qﬂ_(z)} 7%1, i=1,...,7

J#i
Applying @ € G which is a lift of the element of w € W to (3.3), we have:
(3.8) (8. — Z)G" (2)v; = G¥ (2)p™ 1 (2)vi

where Z* € wZw ™" and ¥ (z) = W ¥(z). Let us denote A1, . (4 (2)) = qiw(z) Then,
if ((wts;) = L(w™1)+1, we have A1, .. (9(2)) = ¢5"(2), so that Ay, ., 0, (9(2)) = ¢"(2)
and the following relations hold:
65" (2)0:02" (2) — ¢ (2)0:41" (2) + (2%, i) ()42 (2) =
. —aji
(3.9) Ai(z)H{qiw(z)} Y=, weW.
J#i
Definition 3.4. The collection of equations (3.7) on polynomials {q¢’ };—1__(2) is called
the qq-system. The collection of equations (3.9) is called the full qq-system.

Using this definition we can formulate the following Theorem.

Theorem 3.5. i) The element ¢4 (z) € G(z), which defines the nondegenerate G- Wronskian
has a Gaussian decomposition 9 (z) = B_(2) N (z).

i1) Generalized minors, which determine %_(z) are the solutions of the qq-system, according
to the formula ¢4 (z) = Ay=1.4,, 4, (Z(2)).

iii) Representing N, (z) = €™+, the restriction n4(2)]e, 1 (z) 15 determined by the solution
of the qq-system. 7

iv) Given a solution 9 (z) of (3.8), we obtain that 9 (z)Us(z), where Up(z) € [Ny, N1](z),
i.e. Uy (2) = e+ (3 s0 that uy (2) € Gp>ony.
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Proof. To prove i), it is enough to refer to nondegeneracy condition of ¥(z) and use 2.4.
We derived ii) above. Part iii) follows from the fact that all components of n(2)|y, ,(z)
which is a linear combination of e;’s appear in the right hand side of (3.3), since they act
on f;v;. For the same reason iv) is true since e“+(z)\Wi = idw;,, if uy(2) € Bp>ony. O

Part iv) of the above Theorem motivates the following definition.

Definition 3.6. Two G-Wronskians ¥ (z), %(z) are called equivalent if 4 (z) = % (2)UL(z),
where Uy (2) € [Ny, N4](2).

Theorem (3.5) implies that there is a map from equivalence classes of nondegenerate G-
Wronskians to the solution of the full gg-systems, where {¢}"(2)}wew,i=1,.., are nonzero.
As one could guess, we would like an inverse map. We will construct it in the last section
(we also refer to the last section for the explicit SL(2) example). An important tool for
that is the concept of Z-twisted Miura G-oper with regular singularities, which we review
in the next section.

4. Z-TWISTED G-OPERS ON P! AND THE ¢g-SYSTEMS

4.1. Z-twisted G-opers on P'. We now define meromorphic G-oper conenctions, or, sim-
ply, G-opers, on P!. Let us consider the pair (Fg, V) of a principal G-bundle on P! and
a connection, which is automatically flat. Let Fp, be a reduction of F¢ to the Borel sub-
group B,. If V' is any connection which preserves Fp, , then V — V' induces a well-defined
one-form on P! with values in the associated bundle (g/by)s, . We denote this 1-form by
V/Fp_.

Following [BD] (see also [F3]) we will define a G-oper as a G-connection (F¢g, V) together
with a reduction Fp,, such that this reduction is not preserved by the connection but
instead satisfies a certain condition on the 1-form V/Jp, .

Let O € [ny,n;]t/b, € g/b, be the open B, -orbit consisting of vectors stabilized by
N, and such that all of the simple root components with respect to the adjoint action of
By /N, are non-zero, where the orthogonal complement is taken with respect to the Killing
form.

T,

Definition 4.1. A meromorphic G-oper on P! is a triple (Fg, V, FB, ), where pair (Fg, A)
is a principal G-bundle on P! with a meromorphic connection and Fp . is a reduction of T
to B, satisfying the following condition: there exists a Zariski open dense subset U C P!
together with a trivialization of Fp, such that the restriction of the 1-form V/H’BJr to U,
written as an element of g/b(z), belongs to O(z).

Using the trivialization 15_, the G-oper can be written as a differential operator:

(4.1) V=0.+Y ¢i(2)fi +b(2)
i=1

where ¢;(z) € C(z) and b(z) € by (z) are regular on U and moreover ¢;(z) has no zeros in
U.

One can impose the following restrictions on ¢;:

Definition 4.2. We say that a meromorphic G-oper has regular singularities if ¢;(z) =
Ai(z), where Aj(2) € Clz] forall i =1,...,7.
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4.2. Z-twisted Miura G-opers with regular singularities.

Definition 4.3. A Miura G-operon P! is a quadruple (¥, V,Fp,,Fp_), where (F¢,V,Fp, )
is a meromorphic G-oper on P! and Fp_ is a reduction of the G-bundle F5 to B_ that is
preserved by the connection V.

Let us discuss the relative position of the two reductions over any = € P!. This relative
position will be an element of the Weyl group. To define this, first note that the fiber
Fa,p of Fg at x is a G-torsor with reductions Fg_ , and Fp, , to B_ and B, respectively.
Under this isomorphism, Fp_ , gets identified with gB_ C G and Fp, , with hB for some
g,h € G. The quotient g~1h specifies an element of the double coset space B_\G/B..
The Bruhat decomposition gives a bijection between this spaces and the Weyl group, so we
obtain a well-defined element of G. We say that Fp_ and Fp, have generic relative position
at = € P! if the relative position is the identity element of W. More concretely, this mean
that the quotient g~'h belongs to the open dense Bruhat cell B_B, C G. It turns out the
following theorem holds.

Theorem 4.4. i) For any Miura G-oper on P!, there exists an open dense subset V C P!
such that the reductions Fp_ and Fp, are in generic relative position for all x € V.

ii) For any Miura G-oper with regular singularities on P', there exists a trivialization of the
underlying G-bundle Fg on an open dense subset of P! for which the oper connection has
the form

(4.2) V=0.-Y gi(z)a+ Y Ai2)fi,
=1 =1

where g;(2), ¢i(z) € C(z).

Let us impose a strong condition, which picks up a subset of opers we are interested in,
namely the Miura G-opers, which are gauge equivalent to a constant connection.

Definition 4.5. A Z-twisted Miura G-oper on P! is a Miura G-oper that is equivalent to
the constant element Z € b_ C g(z) under the gauge action of G(z).

Here we immediately can decompose the twist Z into
T
(4.3) Z=2z"+2N-, Z"=>"Ga,
i=1

breaking it into Cartan and nilpotent part.

For untwisted opers, there is a full flag variety G/B_ of associated Miura opers. If
Z = ZM this space is discrete and is one-to-one correspondence with Weyl group W.
In, general, in the twisted case, we must introduce certain closed subvarieties of the flag
manifold of the form (G/B_)z = {gB_ | g7'Zg € b_}, known as Springer fibers (see, for
example, Chapter 3 of [CG]). For SL(n) (or GL(n)), a Springer fiber may be viewed as the
space of complete flags in C™ preserved by a fixed endomorphism.

Proposition 4.6. [BSZ] The map from Miura Z-twisted opers to Z-twisted opers is a fiber
bundle with fiber (G/B_)z.

Taking the quotient of Fp_ by N_ = [B_, B_], we obtain an H-bundle F5_/N_ endowed
with an H-connection, which we will refer to as associated Cartan connection: V7 =
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0, + A (z), so that

T
(4.4) Afl(z) = Z gi(2)&y
i=1
For Z-twisted Miura G-opers, we immediately obtain that

(4.5) 9i(2) = G — vi(2) "1 0.ui(2),
where y;(z) € C(z). We refer to Section 5 for the explicit SL(2) example.

4.3. Nondegenerate Z-twisted Miura G-opers, ¢g-systems and Backlund trans-
formations. Now we will impose nondegeneracy conditions on y;(z), which will lead us
to the relation between Miura G-opers and the gg-systems. We will formulate it in the
algebraic manner and refer to [BSZ] for more geometric formulation.

Definition 4.7. A Z-twisted Miura G-oper is called nondegenerate, if:
i) it has the form (4.2) with g;(2) satisfying (4.5), where:
(1) yi(2) are polynomials with no multiple zeros;
(2) if a;; # 0, then the roots of Ag(z) are distinct from the the zeros and poles of y;(z);
and
(3) if i # j and there exists k for which a;i, a;i # 0, then the zeros and poles of y;(2)
and y;(z) are distinct from each other.

A related definition, which imposes a similar type of conditions on the solution of the
qq-system is as follows:

Definition 4.8. A polynomial solution {q+(z) ¢ (2)}iz1,..r of (3.7) is called nondegen-

erate if each ¢ (2) is relatively prime to ¢’ (z), and the ¢’ (z)’s satisfy the conditions in
Definition 4.7.

Then the following statement is true.

Theorem 4.9. [BSZ] There is one-to-one correspondence between nondegenerate Z-twisted
Miura G-opers and nondegenerate solutions of the qq-system, which allows polynomial so-
lutions to the full qq-system, so that

(4.6) vi(2) = ¢4 (2), i=1,....r
Moreover, any Z-twisted Miura G-oper is ZH -twisted.

) de .
One can write explicit algebraic equations on zeroes of ¢’ (z) = [[,_ gl(q+( )(z — wy) poly-

nomials (without the loss of generality we can assume ¢’ (z) to be monic). These algebraic
equations are known as Bethe equations for Z-twisted “g-Gaudin model [FFTL], [FFR2J:

J

N v
a“ZH _|_ Z <052> Z 'a/j’L - 0,
wy j W — W
=1 YT ey W s

(4.7)

1=1,...,r7, ézl,...,deg(qi(z)).

The correspondence between qg-systems and Bethe ansatz equations is summarized in
the following Theorem (see [MV2,MV3], [BSZ].)
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Theorem 4.10. i) If Z1 is regular, there is a bijection between the solutions of the Bethe
ansatz equations (4.7) and the nondegenerate polynomial solutions of the qq-system (3.7).
i) If {oq, ZH) = 0, for I = i1,...,i and is nonzero otherwise, then {¢' (2)}i=1,.., and
{q"(2)Yitiy....ir» are uniquely determined by the Bethe ansatz equations, but each {q” (z)} for
j=1,...k is only determined up to an arbitrary transformation ¢ (z) — ¢" (2) +qu:f (2),
where ¢; € C.

From now on we will drop the superscript H over Z and consider Z to be an element
of Cartan subalgebra. We also remark, that in the case of Gaudin model, one puts the
restrictions on degrees of {¢' (2)}i=1,....r, so that they determine a certain weight:

N
(4.8) A= Z \i — Z deg(qi(z))o?i
i=1 i

in the representation of g, and the degrees of {qiw}wew i=1,..r in the full gg-system

)

determine w- A = Zfil Ai— Y, deg(q}"(2))d;. This means that with this restriction on the
degrees, the gg-system can be extended to the full ¢g-system, allowing polynomial solutions.
From now on we will assume that gg-systems allow such extension to the full gg-system.

The Miura G-oper connection operator, which correspond to the gg-system can be ex-
plicitly written as follows:

(4.9) V=0.-Z+) 0.log(q"(2))ai+ > Ai(2)fi .
i=1 i=1
Let us explain what role the full gg-system will play in this context. To do that, we use

the following Proposition to introduced Bdacklund transformations, aligned with the action
of the generators of the Weyl group 2.

Proposition 4.11. [BSZ] Let {qi,qi}j:17,,_77« be a polynomial solution of the qq-system

(3.7), and let V be the connection in the form (4.9). Let V% be the connection obtained
from ¥ wvia the gauge transformation by et(?)€i where

(4.10) wi(z) = Ai(2) ™! [82 log <M> + (o, 21
¢4.(2)

Then V) is obtained by making the following substitutions in (4.9):

¢ (2) = d(z),  §#d
4.11 . )
( ) ¢ (2) = ¢' (=), 7 — si(ZH) =zH _ (ai,ZH> &; .

Thus the sequence of Béacklund transformations produces Z%-twisted Miura G-oper,
where

(4.12) Z¥ =wZo ", weWw,

corresponding to a given G-oper, each of which is constructed from qiw(z).

2We note here that the degenerate version of the gg-system (Z=0), as well as degenerate version of the
Proposition below were introduced by Mukhin and Varchenko [MV1].
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5. FROM Z-TWISTED MIURA GG-OPERS TO G- WRONSKIANS

We see that there is a crtain relation between nondegenerate G-Wronskians and non-
degenerate G-opers. Let us make this correspondence explicit. The Z-twisted condition
implies that that there exist an element %_(z), such that

(5.1) V =8B"Y2)(0. — 2)B_(2),
where
r ql:_(z)fi r ' Y
(5.2) B_(z2) =[] [qﬁr(z)] o
=1 =1

where dots stand for the terms from [N_, N_](z). Let us use the following upper-triangular
transformation, choosing a certain order in the product below:

T (9zlog(d} ()= Ci)ey
(5.3) Np(z)=[]e O
i=1
such that
(5.4) NI 2)VNL(2) = 0, + P + 1y (2)

where ny(z) € ny(z). Then applying this operator to the highest weight vector v in some
representation V' the product §(z) = B_(2)Ny(z) satisfies the equation

(5.5) 5(2)71(0: — 2)3(2)v = Py,
which coincides with equations 3.3 when v varies over highest weights corresponding to

fundamental representations. Turns out this correspondence works in a different direction
as well, namely we want to show the following.

Theorem 5.1. There is a one-to-one correspondence between nondegnerate Z -twisted Miura
G-opers, and equivalence classes of G-Wronskians, corresponding to the solution of the
nondegenerate full qq-system. The element G(z) = B_(2)Ni(2) € G(z), where B_(z),
N4 (2) are defined in (5.2), (5.3) correspondingly, is a representative in the class of G-
Wronskians corresponding to a given solution of the full qq-system.

Proof. Given ¥(z) = #_(2) 4,1 (z) € G(z) corresponding to a G-Wronskian, we have the
following equations:

(5.6) No(2) T B_(2) 70, — Z)B—(2) N (2)vi = PPy, Li=1,...,T
This means A5 (2) "L A(2). A4 (2)v; = p* v;, where
(5.7) 0. + Az) = B_(2)"1(0. — 2)B_(2),

so that A(z) € b_(2). Then A(z) € p®, + b, (2), namely a Miura oper connection. That,
however, implies that A(z) defines a Miura oper connection. The diagonal part of #_(z) is
given by principal minors, which are exactly the qi(z), thus reproducing the diagonal part
of Z-twisted Miura-Plucker oper. O

At the same time, the nondegeneracy conditions on gg-systems is an open condition,
which was only needed for Miura G-oper connection itself and the corresponding Z-twisted
condition, which is not the case for G-Wronskians, which only care about the operator
(4.9), which satisfies Z-twisted condition as long as {¢', () }i=1,., satisfy the gg-system.
Therefore we have the following theorem.
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Theorem 5.2. There is a one-to-one correspondence between solutions of the full qq-system,
such that q:’_w(z) % 0 and equivalence classes of nondegenerate G-Wronskians.

Example: SL(2)-opers and SL(2)-Wronskians. The Z-twisted Miura SL(2)-oper con-
nection is given by the following matrix operator in defining representation of s((2):

0, lo —C Az
69 o (M o)

where A(z) is a polynomial, defining regular singularities ¢4 (z) is a polynomial, satisfying
qgq-system:

(5.9) 4+ (2)0:q-(2) — q-(2)024(2) + 2Cq+ (2)g-(2) = A(2)

The matrices corresponding to B (z) and N, (z) are represented by the following matrices:

(5.10) B_(z):(gjgz; q+(2)_1> N+(z):<(1] A(Z)‘l(azlolg[q#zn—é“))’

so that their product give a version of a Wronskian (one needs to use the qg-system (5.9)
to obtain the answer):

(5.11) 5(2) = B_(2)N4(2) = (3*8 ﬁjggi ; 8?8) '

Comparison to (G, h)-oper case. In [KZ1] we considered a similar construction related
to (G, h)-opers. The (G, h)-Wronskian equations, which is the g-difference version of (3.3)
is as follows:

(5.12) 79 (h2)vy =9 (2)sy (2w, i=1,...7,

where 4 (2) € G(2), Z € H, sp(z) = [[}_; A% (2)s; is a lift of a chosen Coxeter element to
G(z) and A;(z) are polynomials, corresponding to regular singularities. As in the differential
case, one can define a class of those: namely, if 4(z) is a solution of (5.12), then so is
9 (2)n4(z), as long as sany(z)s," € Ni(z). Choosing Coxeter element in such a way

that si/ 2 = wé\, where h is the Coxeter number and wé\ is a lift of the Weyl reflection,
corresponding to the longest root to G(z), we can iterate the equations 5.12:

Z7kg (W2 = G(2)s (2)sy (h2) .. osy (P2,
(5.13) i=1,...r, k=1,...h/2.

The solution of this kind picks up a unique element in the equivalence class of (G, h)-
Wronskians, moreover, we were able to write down a universal formula for it. In the SL(N)
case that gives a suitably twisted (G, i)-Wronskian matrix. Unfortunately it is non-obvious
whether if is possible to write a similar universal formula in differential case: the blunt
approach using differential analogue of equations (5.13) do not seem to work beyond defining
representation of SL(N).
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