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Abstract—Event classification is a critical task to ensure the
reliability of the power system. Recent developments in event
classification methods leverage data-driven techniques with fine-
grained Phasor Measurement Units (PMU) data. However, the
existing event classification methods are vulnerable to different
types of adversarial attacks that can significantly degrade the
event classification performance. In this paper, we evaluate the
vulnerability of the classification models against feature collision
attacks on PMU data. Feature collusion attack leverages a sur-
rogate model to learn the victim’s classification model which in
turn makes it a plausible attack strategy for both black-box and
white-box settings. Specifically, this attack strategy undermines the
accuracy of the classification models by crafting poisonous samples
that share common features with benign samples which in turn
changes the decision boundaries of the classification models. The
experimental results on real-world PMU data in a black-box setting
show that generating and adding poisonous samples into the model
training dataset can significantly degrade the accuracy of current
event classification methods.

Index Terms—Phasor Measurement Units (PMUs), Adversarial
Attacks, Data Poisoning Attacks, and Feature Collusion Attack.

1. INTRODUCTION

Phasor Measurement Unit (PMU) is an important tool used on
electric transmission systems to improve operators’ visibility
into what is happening across the vast grid network [1]. One of
the main applications of using PMUs is to develop accurate and
robust event classification frameworks which are considered a
crucial tool for improving power transmission system reliability
[2]. Correctly classifying the PMU events from one another and
differentiating them from a normal condition of the network, is
very important in identifying the best remedial actions and ac-
quiring insights for post-event analysis applications. The large-
scale real-world PMU dataset and associated event logs pro-
vided by the U.S. Department of Energy and Pacific Northwest
National Lab (PNNL) has paved the way for developing event
diagnostic and classification frameworks for analyzing PMU
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data [3-6]. However, the proposed event classification models
are vulnerable to adversarial attacks where small changes to
the PMU data may result in the misclassification of the events
rendering them, unreliable in real-world applications.
Adversarial attacks are malicious activities aimed at manipu-
lating the output of a machine-learning model by introducing
subtle perturbations to the input data. The goal of these attacks
is to cause the model to make incorrect or biased predictions,
leading to potentially harmful security consequences. There are
various types of adversarial attacks, including evasion attacks
[7], where an attacker tries to manipulate input data to evade
detection, and poisoning attacks [8], [9], where an attacker tries
to inject malicious data into the training set to undermine the
integrity of the model. Since the PMU data streams can be easily
manipulated by injecting false data, power system applications
are more susceptible to data poisoning attacks [10], [11].

Data poisoning attacks can be categorized into backdoor and
clean-label attacks. Backdoor attacks [12] involve embedding
hidden malicious behaviors into classification models, resulting
in misclassifications and activation only on inputs that contain
a specific "trigger". These attacks are relatively easy to detect
because they require triggers to be placed on the test samples.
In contrast, clean-label attacks (e.g., [8], [9]) manipulate the
training instances without utilizing triggers. The goal is to
misclassify a single test sample by introducing perturbations
that disrupt the feature region of the targeted sample. The
feature collusion attack [8] is a form of clean-label attack
where the attacker manipulates the feature representation of the
training data to affect the model’s output. This attack is not
exclusive to neural networks but can also be applied to any
other types of machine-learning models. Additionally, it can be
executed in either a white-box or black-box setting, making it
a highly effective technique for adversaries.

Despite the significant amount of research on cyberattacks in
power systems, such as false data injection attacks [13], [14],
there has been relatively little focus on adversarial attacks



against power system’s machine learning applications [15], [16].
The existing studies mainly leveraged attack strategies that
are only applicable to neural network-based models which in
turn limits their applicability to non-neural network classifiers.
The vulnerability of the deep learning-based event classifica-
tion models against several adversarial attack mechanisms is
evaluated in [15] where small data perturbations are tailored
and added to the PMU signals. Their findings indicate that the
current deep learning-based event classifiers in power systems
are highly susceptible to adversarial attacks which in turn pose
a significant risk to the reliability of power systems. However,
the scope of their work is limited to neural network-based
classification models with white-box settings where the attacker
has complete knowledge of the targeted model, including its
architecture, parameters, and training data.

In this paper, we leverage a data poisoning scheme based on
the feature collusion attack. The current attack strategies on
PMU data are limited to white-box settings whereas the feature
collusion attack can be used in both black-box and white-box
settings. This is due to using a surrogate model to learn the
victim’s classification model, making it a viable strategy in both
scenarios. Moreover, we examine how slight modifications to
the PMU data can lead to incorrect predictions by both non-
neural network (i.e., random forest model) and neural network
event classification models. Finally, we conduct a large-scale
case study using real PMU data from power system events in
the Western Interconnection of the U.S. transmission grid to
demonstrate the vulnerability of the event classification models
to feature collusion attacks. Based on our findings, the current
event classification models are vulnerable to poisoning attacks,
as the addition of small perturbations to the PMU data leads to
a significant reduction in the models’ accuracy.

II. FEATURE COLLUSION ATTACK ON PMU pATA

A. Overall Attack Framework

Figure 1 illustrates the overall framework of how an attacker
can generate poisonous PMU data through a feature collision
attack. We assume the attacker has full access to the PMU
dataset and event logs. In the first step, the attacker starts with
data preprocessing, which includes executing event detection
[17] to capture PMU data around event time. The labels for the
captured events are obtained from the system event logs. Once
the data preprocessing procedure is complete, a feature collusion
attack is applied to the event dataset to create poisonous samples
specific to each event type. The generated poisonous samples
are then fed into the feature extraction algorithm, which extracts
the necessary features for building event classification models
(e.g., the random forest classification model [4]). The feature
extraction step is placed to enhance the event classifier’s inter-
pretability and performance by identifying event characteristics
based on patterns of various event types. Note that this step
can be skipped for the neural network-based classifiers as
they have an automated feature extraction embedded in their
model. Finally, the poisonous PMU features are combined with
the benign features in the training dataset to train the event
classification models.
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Fig. 1: Feature collusion attack on power system event classification models
with PMU data.
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Fig. 2: Feature space representation for feature collusion attack.

B. Overview of Feature Collusion Attack

In the feature collusion attack, the goal is to undermine the
accuracy and reliability of the machine learning model by
introducing false data points that share common features. Figure
2 shows how the adversary changes the decision boundary of
the classification model by adding poisonous instances to the
training data. Specifically, the attacker selects an instance from
the test set and modifies it in a subtle manner so that it will be
misclassified by the model during testing. This altered instance
is called the "target instance". In the next step, the attacker
chooses a "base instance” from a different class and alters it
imperceptibly to create a "poison instance". The poison instance
is added to the training data with the goal of tricking the model
into mislabeling the target instance with the base label during
testing. Finally, the model is trained on the poisoned dataset,
which includes both the clean and the poison instances. The
attack is considered successful if the model misclassifies the
target instance as the base class during testing.

C. Attack Model

Denote X = {(X;,Y1),...,(Xy,Yy)} as the event dataset for
PMU data where X is the extracted PMU data features for the
i event and Y; is the associated event label. Each event contains
data features for P streaming PMUs, i.e., X; = [x],x7,...,x"],
where x/' € RM*T is the measurement matrix for the p” PMU
with T samples around the event time and M measurements. We
assume the attacker is capable of detecting the events through
the PMU data streams. Therefore, their goal is to craft the
poisonous samples around the event time and incorporate them
into the training dataset to fool the event classification models.
In order to craft the poisonous samples via the feature collusion



Algorithm 1 Generate Poisonous Samples based on Feature
Collusion Attack on PMU Data

Input: Select target instance Xj € X, base instance Xf’ € X,
learning rate A, maximum number of iterations maxlIters, and
weight factor 8
Initialize X;(0) « X?.
Define Lx, (X)) = [ /(X)) — fXDI?
for k=1 to maxlters do:
Forward step: X;(k) = X;(k — 1) — 1+ VLx.(X;(k — 1))
Backward step: X;(k) = (X;(k) + 1-8-X2)/(1 + 8- 1)
end for

attack, we solve the following optimization problem:
Xi = argminl| (X)) - FXDIZ +BIX; = XPI5, (D)
X

where X; is the generated poisonous instance, X! is the target
class instance, Xf’ is the base class instance, and f(X;) denotes
the surrogate classification model which maps the input signal
X; to the event label Y;. Note that the surrogate model utilized
in the feature collusion attack can be a type of neural network
model designed to replicate the behavior of the original classi-
fication model. By incorporating a surrogate model, it becomes
possible to generate poisonous samples in the black-box setting
and is applicable for non-neural network classifiers. Moreover,
the second term on the right-hand side of Equation (1) ensures
the poisonous instance X; to appear very similar to the base
class instance. We will use a combination of original and poi-
sonous samples, [X; X;], to train the event classification models.
Note that incorporating the poisonous samples in the training
dataset through a feature collusion attack not only alters the
decision boundaries of the event classifier but also decreases the
classifier’s accuracy by increasing the misclassification of the
benign samples, leading to an increased rate of false positives.
In security-critical applications such as event classification in
power systems, the consequences of a compromised model
can be severe resulting in extended blackouts and increased
maintenance costs.

D. Optimization Procedure

Algorithm 1 illustrates the optimization procedure which is
based on the forward-backward splitting method [18] to solve
(1). The initial (forward) step involves performing a gradient
descent update to reduce the L2 distance to the target instance
in the feature space. The subsequent (backward) step employs
a proximal update to minimize the Frobenius distance from the
base instance in the input space. The weight factor 8 tunes the
degree of similarity between the poison and base class instances.

III. EXPERIMENTS
A. Dataset and Event Description

The dataset for this project is a real-world dataset collected from
the western interconnection transmission grids in the United
States given by the Pacific Northwest National Laboratory
(PNNL). There are 23 PMUs with a sampling rate of 60
frames per second. The dataset under consideration spans two
years, 2016 and 2017. In addition to the raw measurements
(i.e, voltage and current magnitude of positive sequence and
frequency), we have event logs that can be utilized as labels for
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Fig. 3: Cropping PMU around the detected event time (cropped 15 seconds,
i.e., 900 samples, around an event)

event classifiers. After collecting PMU data, we use the event
detection method to accurately localize the event times [17].
After detecting the exact event time index, we crop the event
data over a time frame of 15 seconds (300 samples before and
600 samples after the event index, i.e., 900 samples of event
data). In total, 7389 events were detected with three types of
events, frequency, line outage, and transformer outage events.
The dataset is split into 1903 testing samples and 5486 training
samples including 1760 frequency, 2084 line outage, and 1624
transformer outage events.

B. Experimental Setup

We discuss each component of the proposed framework in Fig-
ure 1 in detail to establish a concrete setup for our experiments.
1) Event Detection: Upon analyzing the PMU measurements
collected from PNNL dataset, it has been observed that direct
utilization of the PMU data is challenging due to its poor
data quality, which does not meet the requirements of standard
machine learning techniques. To overcome this limitation, an
existing real-time event detection scheme is leveraged to capture
the data around the event time [17]. The proposed event
detection scheme constructs rank signatures using the relative
change in the ratio of the two largest singular values of the
PMU measurement matrix. The average relative change of this
ratio across a short time window is computed to detect events
using a threshold-based rule applied to different signals. An
event is detected when one of the signals exceeds a specific
threshold. After the event is detected, event data within a short
time frame (e.g., 300 samples before and 600 samples after the
event time index) is extracted. Figure 3 illustrates the cropped
fifteen seconds of voltage magnitude data (i.e., 900 samples)
for a sample PMU around the event time.

2) Feature Extraction: The goal of feature extraction is to ex-
tract crucial PMU characteristics that improve the performance
and interpretability of event classifiers. We use a pre-existing
approach from [4] for feature extraction that generates event
characteristics based on the patterns of distinct PMU event



TAB
PERFORMANCE OF THE RANDOM FOREST

LE I
CLASSIFIER ON Poisonous PMU EVENTS

Base class:

No. of poisonous samples .
p p Line event

Base class:
Transformer event

Base class:
Frequency event

in the training dataset

Target class: Target class: [Target class:] Target class: (Target class: Target class:
Frequency eventTransformer event| Line event Transformer event Line event [Frequency event
0 92.87 % 92.87 % 92.87 % 92.87 % 92.87 % 92.87 %
500 61.90 % 70.74 % 84.14 % 75.95 % 74.61 % 76.45 %
1000 50.89 % 61.56 % 72.42 % 70.74 % 66.19 % 72.74 %
TABLE II

PERFORMANCE OF THE NEURAL NETWORK MODEL ON Poisonous PMU EVENTS

Base class:

No. of poisonous samples .
p p Line event

in the training dataset

Base class:
Transformer event

Base class:
Frequency event

Target class: Target class: [Target class:) Target class: [Target class: Target class:
[Frequency eventTransformer event Line event Transformer event| Line event Frequency event
0 75.23 % 75.23 % 75.23 % 75.23 % 75.23 % 75.23 %
500 35.60 % 48.90 % 64.44 % 57.89 % 56.31 % 60.90 %
1000 2421 % 33.87 % 5547 % 49.12 % 41.48 % 52.86 %

types. Note that the feature extraction is applied on both clean
and poisonous samples. The feature extraction block generates a
total of 57 features, of which 6 are used for capturing the shape
features for each event type such as Amplitude above average,
Amplitude below average, Ramp-up rate, Ramp-down rate, Area
above average, Area below average; 9 are for computing signal
similarities between different PMUs, including minimum, max-
imum, and mean for frequency, current, and voltage magnitude;
and three are auxiliary ratio features. After extracting the PMU
features for event time samples, these features are used as
training data for the event classification models.

3) Event classification Models: We adopt an existing random
forest event classification model with 100 decision trees for
performing event classification as proposed in [4]. To train an
event classification model, we leverage the extracted features
from the event time data instead of the original time-series data.
Our experiments indicate that using the original time-series data
for training the model would yield lower classification accuracy
compared to the case in which we use the extracted features. To
evaluate the vulnerability of the classification model against the
feature collusion attack, we train the model with a combination
of clean and poisonous samples.

To better compare the impact of the poisonous samples in the
performance of the event classification problem, our approach
also involves utilizing a fully connected neural network for the
purpose of training the event classifier. However, it is worth
noting that when using the original time series data to train
the neural network-based classifier, the classification accuracy
is found to be lower than that of the random forest classifier.
This is attributed to a lack of adequate training samples and
overfitting issues [4]. To further improve the classification
accuracy, we add a custom activation layer based on the feature
extraction function as the initial layer of the neural network
event classifier. This layer is kept non-trainable and serves solely
to provide the 57 features necessary for training the classifier.
Using the extracted features instead of the original time-series
data improves the accuracy of the event classification model.

C. Experimental Results

We choose different combinations of event types as target and
base instances and craft the poison samples using Algorithm 1
with default values of the maxIters and 8 from IBM Adversarial
robustness toolbox [19].

1) Performance of Event Classification Models against Feature
Collusion Attack: To investigate the impact of poisonous sam-
ples on the performance of the event classifiers, we incorporate
the generated poisonous samples in the training process of
random forest and neural network-based classifiers. We first
train the classification models with non-poisonous samples, then
evaluate their performance after progressively adding a variable
number of poisonous samples to the training dataset. Note that
the maximum number of poisonous samples which can be added
to the training dataset is equal to the number of base class
samples. For example, if the line outage event is the base class,
we can generate up to 2084 poisonous samples.

Table I shows the classification accuracy of the random forest
classifier in presence of the poisonous samples. The accuracy
of the random forest event classification model after training
with non-poisonous samples is 92.87%. However, the accuracy
is dropping significantly as the number of poisonous samples is
increased in the training process. The results also illustrate the
accuracy of different combinations of the base and target classes.
In all scenarios, the random forest classifier’s accuracy degrades
considerably compared to the scenario in that we have no poi-
sonous samples in the training dataset. We also investigate the
performance of the neural network-based classifier in presence
of the poisonous samples as shown in Table II. We leverage a
fully connected neural network in which the hyperparameters
have been optimally tuned using the scikit-learn grid search
module. The results also indicate that classification accuracy
drastically deteriorates as the number of poisonous samples is
increased in the training process.

2) Signal Similarity of Poisonous and Original Data: Intro-
ducing data perturbations into the original signals through
the feature collision attack can lead to the misclassification
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Fig. 4: Original and poisonous signals after the feature collusion attack

of events. Figure 4 shows how adding perturbations to the
frequency (i.e., f) and voltage magnitude of positive sequence
(i.e., V) signals during a line outage even alters the original
signals and cause the event classification model to misclassify
the event as a frequency event. The figure highlights the striking
similarity between the poisonous and original samples, making
it challenging for bad data detection frameworks to differentiate
the malicious data. To apply this attack on the PMU data,
the attacker needs to gain unauthorized access to PMUs or
the communication infrastructure used to transmit PMU data
or the data storage units. Once inside, they can manipulate
the data or inject poisonous samples by changing the section
of measurement data during the event time and replace it
with the poisonous time series data. This is similar to replay
attacks where the attacker intercepts the communication line
and inserts the previously recorded measurements instead of the
actual sensor data [10], [11]. However, in our case, the attacker
will insert poisonous data to impersonate the original data.
While acknowledging the importance of developing defense
mechanisms against such attacks, this paper does not focus on
the implementation of appropriate security measures. Therefore,
further research and investigation are needed in this area.

IV. CoNcLusIONS

This paper implemented a feature collision attack on phasor
measuring unit (PMU) data and examined how the generation
of poisonous samples in a black-box setting influenced the
accuracy of event classifiers in power systems. By leveraging
the feature collision attack, it was possible to generate poisonous
samples for different types of classifiers such as neural network
and non-neural network-based classifiers. Additionally, leverag-
ing a surrogate model to learn the victim’s classification model
enables the attack to be applied in both white-box and black-box
settings. The experimental results on a real-world PMU dataset
revealed that the event classifiers’ performance was drastically
hampered after adding perturbations to the original PMU data.

These results highlight a significant weakness in power system
event classifiers when it comes to data poisoning attacks. The
outcomes of this study will be utilized to develop robust defense
mechanisms against poisoning attacks for PMU data.
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