SoftwareX 19 (2022) 101168

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication
Flash-X: A multiphysics simulation software instrument

Anshu Dubey *"*, Klaus Weide ", Jared O’Neal ?, Akash Dhruv */, Sean Couch ¢,

J. Austin Harris *, Tom Klosterman ¢, Rajeev Jain ?, Johann Rudi?, Bronson Messer "/,
Michael Pajkos ¢, Jared Carlson ¢, Ran Chu', Mohamed Wahib ", Saurabh Chawdhary ?,
Paul M. Ricker ¢, Dongwook Lee ¢, Katie Antypas#, Katherine M. Riley *,

Christopher Daley ¢, Murali Ganapathy', Francis X. Timmes’, Dean M. Townsley ",
Marcos Vanella¥, John Bachan ¢, Paul M. Rich ¢, Shravan Kumar ", Eirik Endeve >/,

W. Raphael Hix ™, Anthony Mezzacappa', Thomas Papatheodore "

¢ Argonne National Laboratory, Lemont, IL, 60439, USA
b 0ak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
¢ Michigan State University, USA

d University of Illinois, Urbana Champaign, USA

€ University of California, Santa Cruz, USA

f George Washington University, USA

& Lawrence Berkeley National Laboratory, USA

" University of Chicago, USA

i Google Inc, USA

i Arizona State University, USA

K National Institute of Standards and Technology, USA
! University of Tennessee, Knoxville, TN, 37996, USA

™ University of Alabama, Tuscaloosa, AL, 35487, USA

" RIKEN BNL Research Center, USA

Check for
updates

ARTICLE INFO ABSTRACT

Article history: Flash-X is a highly composable multiphysics software system that can be used to simulate physical
Received 10 May 2022 phenomena in several scientific domains. It derives some of its solvers from FLASH, which was first
Received in revised form 12 July 2022 released in 2000. Flash-X has a new framework that relies on abstractions and asynchronous commu-

Accepted 21 July 2022 nications for performance portability across a range of increasingly heterogeneous hardware platforms.

Flash-X is meant primarily for solving Eulerian formulations of applications with compressible and/or

Keywords:

Multiphysics incompressible reactive flows. It also has a built-in, versatile Lagrangian framework that can be used
Simulation software in many different ways, including implementing tracers, particle-in-cell simulations, and immersed
High-performance computing boundary methods.
Performance portability © 2022 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
* Correspondence to: Argonne National Laboratory, 9600 S. Cass Ave,
Lemont, IL, 60439, USA. -
E-mail addresses: adubey@anl.gov (Anshu Dubey), kweide@uchicago.edu (Katie Antypas), riley@alcf.anl.gov (Katherine M. Riley), csdaley@Ibl.gov

(Klaus Weide), joneal@anl.gov (Jared O'Neal), adhruv@anl.gov (Akash Dhruv), (Christopher Daley), murali@google.com (Murali Ganapathy), fxt44@mac.com
scouch@msu.edu (Sean Couch), harrisja@ornl.gov (J. Austin Harris), (Francis X. Timmes), dean.m.townsley@ua.edu (Dean M. Townsley),
tklosterman@anl.gov (Tom Klosterman), jain@anl.gov (Rajeev Jain), marcos.vanella@nist.gov (Marcos Vanella), john.bachan@gmail.com
bronson@ornl.gov (Bronson Messer), mapajkos@gmail.com (Michael Pajkos), (John Bachan), richp@alcf.anl.gov (Paul M. Rich), shravan2915@gmail.com
jaredc.scholar@gmail.com (Jared Carlson), rchu@vols.utk.edu (Ran Chu), (Shravan Kumar), endevee@ornl.gov (Eirik Endeve), raph@ornl.gov
saurabh.chawdhary@gmail.com (Saurabh Chawdhary), pmricker@illinois.edu (W. Raphael Hix), mezz@tennessee.edu (Anthony Mezzacappa),
(Paul M. Ricker), dlee79@ucsc.edu (Dongwook Lee), kantypas@lbl.gov papatheodore@ornl.gov (Thomas Papatheodore).

https://doi.org/10.1016/j.s0ftx.2022.101168
2352-7110/© 2022 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101168
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101168&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:adubey@anl.gov
mailto:kweide@uchicago.edu
mailto:joneal@anl.gov
mailto:adhruv@anl.gov
mailto:scouch@msu.edu
mailto:harrisja@ornl.gov
mailto:tklosterman@anl.gov
mailto:jain@anl.gov
mailto:bronson@ornl.gov
mailto:mapajkos@gmail.com
mailto:jaredc.scholar@gmail.com
mailto:rchu@vols.utk.edu
mailto:saurabh.chawdhary@gmail.com
mailto:pmricker@illinois.edu
mailto:dlee79@ucsc.edu
mailto:kantypas@lbl.gov
mailto:riley@alcf.anl.gov
mailto:csdaley@lbl.gov
mailto:murali@google.com
mailto:fxt44@mac.com
mailto:dean.m.townsley@ua.edu
mailto:marcos.vanella@nist.gov
mailto:john.bachan@gmail.com
mailto:richp@alcf.anl.gov
mailto:shravan2915@gmail.com
mailto:endevee@ornl.gov
mailto:raph@ornl.gov
mailto:mezz@tennessee.edu
mailto:papatheodore@ornl.gov
https://doi.org/10.1016/j.softx.2022.101168
http://creativecommons.org/licenses/by/4.0/

Anshu Dubey, Klaus Weide, Jared O’'Neal et al.

Code metadata

SoftwareX 19 (2022) 101168

Current code version

Permanent link to code/repository used for this code version

Code capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments and dependencies
Developer documentation/manual

Support email for questions

1.0

https://github.com/ElsevierSoftwareX/SOFTX-D-22-00102
https://github.com/Flash-X/Workflows/tree/main/incompFlow/FlowBoiling
Apache 2.0

git

Fortran, C, C++, Python3, MPI, OpenMP, OpenACC, HDF5

Unix, Linux, OSX based compilers for languages and libraries mentioned above
https://flash-x.org/pages/documentation/

flash-x-users@lists.cels.anl.gov

1. Motivation and significance

Flash-X [1] is a new incarnation of FLASH [2,3], a multiphysics
software system that has been used by multiple science commu-
nities. Flash-X is meant for use beyond existing FLASH science
communities. It is designed to be easily adaptable for use by
any computational scientists who rely upon differential equa-
tions as their primary mathematical model with finite-volume
or finite-difference discretization. FLASH was designed only for
a homogeneous, distributed-memory parallel model with bulk-
synchronism, which has rendered it unsuitable for use on many
newer system architectures that are heavily reliant on disparate
memory spaces (e.g., accelerators). This difficulty is further ex-
acerbated by increasing heterogeneity in hardware as well as
solvers within the code. Flash-X has a fundamentally redesigned
architecture that uses abstractions and asynchronous operations
for performance portability across a variety of platforms, both
with and without accelerators. Our design is forward-looking in
that it makes minimal assumptions about which parallelization
or memory models are likely to be prevalent in future plat-
forms. The design relies upon self-describing code components of
varying granularity and a toolchain that can interpret the meta-
data of the code components to synthesize application instances.
The synthesis is done partly through assembly, partly through
code translation, and partly through code generation. Some code
assembly features have been imported from FLASH, but have
been significantly enhanced to discretize components at a finer
scope than subroutines or functions. Tools for code translation
and runtime management are new and will enable orchestration
of computation and data movement between distinct compute
devices on a node.

In addition to the new architecture, Flash-X has newer and
higher-fidelity physics solvers. Most notable among these are
Spark [4] for magnetohydrodynamics, XNet [5,6] for nuclear burn-
ing, thornado [7,8] for neutrino radiation transport, and Weak-
Lib [9-11] for tabulated microphysics. Additionally, Flash-X can
support multiphase flow through a level-set method, which did
not exist in FLASH releases [12]. Flash-X has been exercised on
small clusters at Argonne National Laboratory and on leadership-
class machines at Oak Ridge National Laboratory and Argonne
National Laboratory. Flash-X will showcase the key performance
parameters of ExaStar [13], a project under the Exascale Com-
puting Project [14,15] (ECP), through a core-collapse supernova
(CCSN) simulation on exascale machines to be deployed by the
US Department of Energy. To run effectively at scale, Flash-X will
rely upon the toolchain described above. Some components of the
toolchain are embedded in Flash-X, while others are encapsulated
into independent libraries that can be used by other codes. Note
that compilation and execution of the code do not require using
these external libraries; they are used only to orchestrate data
movement and computation for better performance.

Along with a new architecture, Flash-X also adopts a
community-based, open development model. The stewardship of
the code is guided by a Council representing all the major science
communities of FLASH/Flash-X. More details of our community
development model are available at https://flash-x.org.

2. Software description

The Flash-X code is a component-based software system for
simulation of multiphysics applications that can be formulated
largely as a collection of partial and ordinary differential equa-
tions (PDEs and ODEs), as well as algebraic equations. The equa-
tions are discretized and solved on a domain that can have
uniform resolution (UG) or adaptive mesh refinement (AMR). In
Flash-X, one can select between PARAMESH [16], an octree-based
library written in Fortran, or AMReX [17,18], a highly-flexible,
patch-based, C++ AMR library. Both AMR frameworks can inter-
face to math libraries such as hypre [19] and PETSc [20], making
those solvers available to Flash-X. Physics units are designed
to be oblivious of domain decomposition. Bulk of their code is
written for block-by-block update, interspersed with invocation
of fine-coarse boundary resolution related API functions of the
Grid unit as needed.

Hyperbolic equations are solved using explicit methods com-
monly used for compressible flows with strong shocks, described
in Section 2.2. For elliptic equations, one can either use an in-
cluded multipole solver [21], AMReX’s multigrid solver, or an
interface to one of the math libraries. For parabolic equations, one
must rely upon library interfaces.

The maintained code components are written in a combination
of high-level languages such as Fortran, C, and C++, with an
embedded domain-specific configuration language (DSCL) that
also supports Flash-X custom macros. The DSCL permits multiple
alternative definitions of macros with a built-in arbitration mech-
anism to select the appropriate definition for an instance of code
assembly. The accompanying configuration toolchain can trans-
late and assemble different combinations of the components to
configure a diverse set of applications. Flash-X has been designed
from the outset to be performant with increasing heterogeneity
of both the platforms and the solvers within the code.

The code uses the Message-Passing Interface (MPI) library for
communication between nodes, though more than one MPI rank
can also be placed on a node. HDF5 is the default mode for IO.
Support for OpenMP, both for threading and for offloading to
accelerators, is built into several, though not all, of the solvers.

2.1. Software architecture

Flash-X has composable components with accompanying
metadata that can express, for example, inter-component depen-
dency and exclusivity, necessary state variables, etc. The
metadata is encapsulated within the code components by ac-
companying config files and is parsed and interpreted by the
configuration tool, Setup. Setup parses config files recursively,
aggregates requisite components, and assembles a complete ap-
plication. It also assembles the compilation/make system and
runtime parameters for each component included in the appli-
cation. The Setup tool also implements code inheritance through
a combination of keywords in the config files and the Unix direc-
tory structure instead of using programming language supported

https://github.com/ElsevierSoftwareX/SOFTX-D-22-00102
https://github.com/Flash-X/Workflows/tree/main/incompFlow/FlowBoiling
https://flash-x.org/pages/documentation/
mailto:flash-x-users@lists.cels.anl.gov
https://flash-x.org

Anshu Dubey, Klaus Weide, Jared O’'Neal et al.

SoftwareX 19 (2022) 101168

Visit Unit
Generate
Makefile.unit

Update macros
and Runtime
Parameters

Update
Makefile.unit

Update Filelist

Update REQ

i

Get next key
from .ini files

Parameters

Update macros
and Runtime

Apply Reorder

Add to list
And initialize

Replace on list

Fig. 1. Schematic for the implementation of inheritance in Flash-X. Handling of inheritance and variants assumes three lists: one for files, one for macros, and one
for runtime parameters. The flowchart in the right box gives details of how keys and runtime parameters are updated as the source tree is traversed.

Update files

Get next variant
from Config

Done I

I

Get variant macros

& |

’ Replace on list

’ Add to list ‘

from .ini files

o
Get next file

Convert file

Has no
variants

Convert file
Append filename

Remove variant

No A
macros from list

Variants
done

Add to list

on st |

Replace on list

Fig. 2. Schematic for generating variants from single source using inheritance and macros.

inheritance mechanisms. When Setup parses the source tree, it
treats each subdirectory as inheriting all of the files in its parent’s
directory. While source files at a given level of the directory
hierarchy override files with the same name at higher levels,
config files accumulate all definitions encountered. The schematic
for inheritance is shown in Fig. 1.

In Flash-X parlance, the highest-level code component for a
specific type of functionality is called a unit. Units can have sub-
units. A unit includes an API accessible to the whole code through
which it interacts with other units and the driver. While each
subunit can have its own sub-components with no restriction on
how fine-grained they can become, the general rule of thumb is to
keep them as coarse-grained as feasible for ease of maintenance.
A unit can have multiple alternative implementations, one of
which is required to be a null implementation. If a unit is not
needed in a simulation, the null implementation is included.
This feature facilitates maintaining very few implementations of
the main driver while permitting many combinations of capa-
bilities to be included in an application. Any code component
can have multiple alternative implementations, though unlike
the unit-level API, lower-level components do not require null
implementations.

A different mechanism is used when a code component needs
to become smaller than a function or a subroutine. Here, we rely
on macros to implement alternative definitions of an operation,
including the null case. The inheritance mechanism shown in

Fig. 1 arbitrates on which definition to select. The macros may
also have arguments, be inlined, and be recursive. This mecha-
nism serves two purposes. The first is for developer convenience.
Certain code patterns repeat often in the code — for example,
invocation of iterators, bounds for loop-nests, and bounds for
arrays. We have provided macros for such repeated patterns, and
developers can use these at their discretion. Macros make the
code compact, reduce cut-and-paste errors, and help to clarify
the control flow and semantics of the code. The second, more
powerful motivation is that with alternative definitions, we can
generate many variants of a code component from the same
source. This functionality is particularly useful when different
control flow is more suitable for different compute devices. We
can keep arithmetic expressions invariant while using macros for
the control flow, or vice-versa, thus not only eliminating code
duplication but also keeping the maintained code more compact.
The schematic for generating variants from a single source where
specializations are obtained through alternative macro definitions
is shown Figure in 2.

2.2. Software functionalities

The Flash-X distribution includes solvers for compressible and
incompressible fluids, several methods for handling equations of
state (EOS), source terms for nuclear burning, several methods
for computing effects of gravity, level-set methods for multiphase

Anshu Dubey, Klaus Weide, Jared O’'Neal et al.

flow, and several others. The primary formulation for PDEs in
Flash-X is Eulerian, although a versatile Lagrangian framework
is also included that can be configured to do computations such
as tracers, particles-in-cell, immersed boundaries, etc. The vast
majority of applications using Flash-X include some form of hy-
drodynamics or magnetohydrodynamics in their configuration.
However, it is possible to configure applications that completely
bypass those solvers.

Magnetohydrodynamics and Hydrodynamics: a compressible
magnetohydrodynamics/hydrodynamics solver with second- or
third-order strong stability preserving (SSP) Runge-Kutta (RK)
time integration (Spark) [4], another compressible hydrodynam-
ics solver with a predictor-corrector formulation [22,23], and an
incompressible hydrodynamics solver with fluid-structure inter-
action [24] are included in the distribution. All of the solvers can
be used in 1-, 2-, or 3- dimensional configurations.

Equations of State: the code supports several EOS versions suit-
able for a range of regimes in astrophysical flows. The simplest
one is a perfect-gas EOS with a multispecies variant. Another im-
plementation with two variants uses a fast Helmholtz free-energy
table interpolation to handle degenerate relativistic electrons and
positrons and also includes radiation pressure and ions (via the
perfect gas approximation) [25].

Nuclear Burning: three nuclear reaction networks of varying
numbers of species are included in the distribution. Approx-13
and approx-19 [26] are inherited from FLASH. XNet is a stan-
dalone code for evolving astrophysical nuclear burning and is
generalizable to arbitrarily large networks as needed for im-
proved physical fidelity of some applications.

Gravity: the gravitational potential can be treated very simply
as constant, or through a Poisson solve using a multipole or
multigrid method depending upon the symmetry of the density
field.

Particles: this component of the code forms the basis for the
Lagrangian framework [27]. Particles maintain their own spatial
coordinates and are independently integrated in time. They in-
teract with the Eulerian mesh either to obtain physical quantities
needed for their advancement or to deposit quantities such as
mass, charge, or energy to the mesh, depending on usage.

Incompressible Fluid Dynamics: this component of the code
solves incompressible Navier-Stokes equations for single and
multiphase flow simulations with options for heat transfer and
phase transitions [12]. The Navier-Stokes solver is implemented
using a fractional-step temporal integration scheme that uses
a Poisson solver for pressure. Multiphase interfaces are tracked
with a level-set function and use ghost-fluid methods to account
for forces due to surface tension and mass transfer [28]. The
effect of solid bodies on the fluid is modeled using an immersed
boundary method that uses Lagrangian particles [29].

Importable Modules: Flash-X uses GitHub’s submodules to im-
port some capabilities that are independently developed and
hosted in their own repositories. These include WeakLib for tab-
ulated, nuclear EOS and neutrino-matter interaction rates, and
thornado for spectral neutrino radiation transport.

3. Illustrative examples

We describe two example simulations using Flash-X from two
different science communities. The first is a CCSN simulation
that uses compressible hydrodynamics, nuclear EOS, neutrino
radiation transport, and self-gravity solvers. The second is a sub-
cooled flow boiling simulation that uses multiphase incompress-
ible Navier-Stokes and heat advection diffusion solver.

SoftwareX 19 (2022) 101168

0.6 T T T T 208
l100
05} 1§ 4°
/iﬁf 20
~ 10
S 04 o 1
8 LY g
&= v i
= 03 =
& o
E +~
m 02} 1M -
0
01}
I -2
: : : : -15
10° 10" 102 103

Radius [km]

Fig. 3. The electron fraction is plotted versus stellar radius for various times
(relative to the bounce-time, t;) in a CCSN simulation.

We perform a CCSN simulation in spherical symmetry, ini-
tiated with a low-mass pre-collapse progenitor star previously
modeled throughout all stages of stellar evolution [30]. Electron-
type neutrinos and anti-neutrinos are evolved using thornado’s
two-moment neutrino transport solver and WeakLib’s tabulated
nuclear EOS [31] and neutrino-matter interaction rates [32].
Compressible hydrodynamics are evolved with Spark, and Newto-
nian self-gravity is computed using the multipole Poisson solver.
For a more detailed description of the physics included, see [33].
Fig. 3 shows the evolution of the ratio of electrons to baryons
(electron fraction) versus radius during a critical epoch in the sim-
ulation that spans the formation of the primary shock-wave dur-
ing core “bounce” — the phenomena of infalling matter colliding
with, and bouncing off of, the newly-formed neutron-star.

Fig. 4 provides details for the subcooled flow-boiling simula-
tion which was designed to replicate experiments performed at
different gravity levels by Lebon et al. [34]. These computations
used the multiphase incompressible Navier-Stokes solver along
with the phase transition capability, and were preformed at a
resolution almost twice the previous state-of-the-art [28,35]. Liq-
uid coolant flows over a heater surface with a mean velocity U,
leading to phase-change and formation of vapor bubbles. These
vapor bubbles grow, merge, and finally depart the heater surface
due to buoyancy which introduces turbulence in the domain.
The heat transfer associated with this turbulence is an impor-
tant parameter in designing cooling systems for automotive and
industrial components, but is difficult to quantify through exper-
imental observations/measurements. With Flash-X we are able to
address this challenge through targeted high-fidelity simulations
to quantify the contribution of turbulent heat flux.

4. Impact

FLASH has been an influential code for computing astrophys-
ical flows almost since its inception. FLASH’s scientific impact is
clearly demonstrated by the citation history of the original paper
describing the code, as shown in Fig. 5. Analysis in [36,37] further
quantifies the scientific significance and impact of the code on
science. FLASH has not only been used extensively for science, it
has also been among the pioneers in giving due importance to
software quality and adopting rigorous auditing and productivity
practices [38].

Anshu Dubey, Klaus Weide, Jared O’'Neal et al.

Liquid Flow

Vapor Bubbles

SoftwareX 19 (2022) 101168

Fig. 4. Example of a flow boiling simulation with Flash-X. Liquid coolant flows over a heater surface with a mean velocity Uy, leading to phase-change and formation
of vapor bubbles. The bubble dynamics introduce turbulence which enhances heat transfer between the heater surface and coolant, shown by temperature (T)

contours.

200 M Scholar ™ ADS
180
160
14

1
O..|.||||‘|‘|h” ‘HH

2002 2005 2008 2011 2014 2017 2020

N B O N
o O O O O o o

Fig. 5. Citation history of the original FLASH paper from Google Scholar and
ADS.

In recent years, FLASH’s use has been diminishing in several
communities because of its inability to use accelerators effec-
tively. Flash-X is designed to fill this gap and become a reliable
multiphysics simulation code for the communities that earlier
relied on FLASH. At least two major communities of FLASH users,
stellar astrophysics [4,33] and fluid-structure interactions [12],
are already transitioning to Flash-X, with some users now ex-
clusively using Flash-X. These use cases have also reported on
performance gains with the use of GPUs. Not all of FLASH's
physics capabilities are available in Flash-X yet. However, since
Flash-X is open source, it is expected that interested users will
assist in transitioning their capabilities of interest to the Flash-X
architecture and help grow the Flash-X community. Additionally,
the new tool-chain for orchestration of data and work move-
ment is still in the early stages of being exercised. Preliminary

performance studies of the runtime tool have been very encour-
aging [39]. It is expected that full performance gains will have
been realized by the next major release

5. Conclusions

Sustained funding under the ECP has permitted moderniza-
tion of a highly capable community code for current and future
platforms. With Flash-X, the FLASH science communities can em-
brace heterogeneity and use available hardware effectively. With
the move to an open, community-based development model,
users are assured of continuity and support for the code without
depending on a single funding source. FLASH has had a long
history of scientific discovery, and Flash-X aims to follow in that
tradition. With more modern solvers and flexible architecture,
Flash-X can continue to be a very useful resource for science
domains that rely on modeling of partial differential equations.

CRediT authorship contribution statement

Anshu Dubey: Conceptualization, Methodology, Software, Val-
idation, Writing - original draft, Supervision, Project admin-
istration, Funding acquisition. Klaus Weide: Conceptualization,
Methodology, Software, Validation, Writing - review & editing.
Jared O’Neal: Conceptualization, Methodology, Software, Vali-
dation, Writing - review & editing. Akash Dhruv: Conceptu-
alization, Methodology, Software, Validation, Writing - original
draft. Sean Couch: Methodology, Software, Validation, Writing
- review & editing. J. Austin Harris: Methodology, Software,
Validation, Writing - review & editing. Tom Klosterman: Concep-
tualization, Methodology, Software, Validation. Rajeev Jain: Con-
ceptualization, Methodology, Software, Validation. Johann Rudi:
Conceptualization, Writing - review & editing. Bronson Messer:

Anshu Dubey, Klaus Weide, Jared O’'Neal et al.

Methodology, Writing - review & editing, Supervision, Funding
acquisition. Michael Pajkos: Software, Validation. Jared Carl-
son: Software, Validation. Ran Chu: Software, Validation, Writ-
ing - original draft. Mohamed Wahib: Conceptualization, Writ-
ing - review & editing. Saurabh Chawdhary: Software, Valida-
tion. Paul M. Ricker: Conceptualization, Methodology, Software,
Validation, Writing - review & editing. Dongwook Lee: Con-
ceptualization, Methodology, Software, Validation. Katie Anty-
pas: Conceptualization, Methodology, Software, Validation, Writ-
ing - review & editing. Katherine M. Riley: Conceptualization,
Methodology, Software, Validation, Writing - review & editing.
Christopher Daley: Methodology, Software, Validation. Murali
Ganapathy: Conceptualization, Software, Validation. Francis X.
Timmes: Conceptualization, Methodology, Software, Validation,
Writing - review & editing. Dean M. Townsley: Methodology,
Software, Validation, Writing - review & editing. Marcos Vanella:
Methodology, Software, Validation. John Bachan: Methodology,
Software, Validation. Paul M. Rich: Software, Validation. Shra-
van Kumar: Methodology, Software, Validation. Eirik Endeve:
Methodology, Software, Writing - review & editing, Supervi-
sion. W. Raphael Hix: Methodology, Software, Validation, Writ-
ing - review & editing. Anthony Mezzacappa: Writing - re-
view & editing, Supervision. Thomas Papatheodore: Software,
Validation.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Anshu Dubey reports financial support was provided by
US Department of Energy.

Data availability
No data was used for the research described in the article.
Acknowledgments

The authors acknowledge all contributors to the Flash-X code,
including contributors to the FLASH code from whose work Flash-
X has inherited.

This work was supported by the U.S. Department of Energy Of-
fice of Science Office of Advanced Scientific Computing Research
under contract number DE-AC02-06CH1137.

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of two U.S. Depart-
ment of Energy organizations (Office of Science and the Na-
tional Nuclear Security Administration) that are responsible for
the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system en-
gineering, and early testbed platforms, in support of the nation’s
exascale computing imperative.

This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC05-000R22725.

The submitted manuscript has been created by UChicago Ar-
gonne, LLC, Operator of Argonne National Laboratory (“Argonne”).
Argonne, a U.S. Department of Energy Office of Science laboratory,
is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display publicly, by or on
behalf of the Government. The Department of Energy will provide
public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan. http://energy.gov/
downloads/doe-public-access-plan.

SoftwareX 19 (2022) 101168
References

[1] Flash-X. URL https://github.com/Flash-X/Flash-X.

[2] Dubey A, Antypas K, Ganapathy MK, Reid LB, Riley K, Sheeler D, et al.

Extensible component-based architecture for FLASH, a massively parallel,

multiphysics simulation code. Parallel Comput 2009;35(10-11):512-22.

http://dx.doi.org/10.1016/j.parco.2009.08.001.

Fryxell B, Olson K, Ricker P, Timmes F, Zingale M, Lamb D, et al

FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical

thermonuclear flashes. Astrophys J Suppl Ser 2000;131:273. http://dx.doi.

0rg/10.1086/317361.

Couch SM, Carlson], Pajkos M, O'Shea BW, Dubey A, Klosterman T.

Towards performance portability in the spark astrophysical magnetohy-

drodynamics solver in the flash-x simulation framework. Parallel Comput

2021;108:102830.

[5] XNet, https://github.com/starkiller-astro/xnet (Apr. 2022).

[6] Hix WR, Thielemann FK. Computational methods for nucleosynthesis and

nuclear energy generation.] Comput Appl Math 1999;109:321-51.

Chu R, Endeve E, Hauck CD, Mezzacappa A. Realizability-preserving DG-

IMEX method for the two-moment model of fermion transport.] Comput

Phys 2019;389:62-93. http://dx.doi.org/10.1016/j.jcp.2019.03.037.

[8] Laiu MP, Endeve E, Chu R, Harris JA, Messer OEB. A DG-IMEX method
for two-moment neutrino transport: Nonlinear solvers for neutrino-matter
coupling. Astrophys] Suppl Ser 2021;253(2):52. http://dx.doi.org/10.3847/
1538-4365/abe2a8.

[9] WeakLib, https://github.com/starkiller-astro/weaklib (Apr. 2022).

[10] Pochik D, Barker BL, Endeve E, Buffaloe J, Dunham SJ, Roberts N, et
al. Thornado-hydro: A discontinuous galerkin method for supernova hy-
drodynamics with nuclear equations of state. Astrophys] Suppl Ser
2021;253(1):21. http://dx.doi.org/10.3847/1538-4365/abd700.

[11] Landfield RE. Sensitivity of neutrino-driven core-collapse supernova mod-
els to the microphysical equation of state [Ph.D. thesis], University of
Tennessee; 2018, https://trace.tennessee.edu/utk_graddiss/5294.

[12] Dhruv A, Balaras E, Riaz A, Kim J. An investigation of the gravity effects
on pool boiling heat transfer via high-fidelity simulations. Int] Heat Mass
Transfer 2021;180:121826. http://dx.doi.org/10.1016/j.ijheatmasstransfer.
2021.121826.

[13] Exastar, multi-physics stellar astrophysics at exascale. URL https://sites.
google.com/Ibl.gov/exastar.

[14] The exascale computing project. 2020, URL https://www.exascaleproject.
org/.

[15] Alexander F, Almgren A, Bell], Bhattacharjee A, Chen], Colella P,
et al. Exascale applications: skin in the game. Phil Trans R Soc A
2020;378(2166):20190056. http://dx.doi.org/10.1098/rsta.2019.0056.

[16] MacNeice P, Olson K, Mobarry C, de Fainchtein R, Packer C. PARAMESH: A
parallel adaptive mesh refinement community toolkit. Comput Phys Comm
2000;126(3):330-54.

[17] Amrex. 2020, https://amrex-codes.github.io/.

[18] Zhang W, Almgren A, Beckner V, Bell], Blaschke], Chan C, et al
AMReX: A framework for block-structured adaptive mesh refinement. JOSS
2019;4(37):1370.

[19] Falgout R, Yang U. Hypre: A library of high performance preconditioners.
Comput Sci-ICCS 2002;2002:632-41.

[20] Balay S, et al. Petsc web page. 2001.

[21] Couch SM, Graziani C, Flocke N. An improved multipole approximation for
self-gravity and its importance for core-collapse supernova simulations.
Astrophys] 2013;778(2):181.

[22] Lee D, Deane AE. An unsplit staggered mesh scheme for multidimensional
magnetohydrodynamics.] Comput Phys 2009;228(4):952-75.

[23] Lee D. A solution accurate, efficient and stable unsplit staggered mesh
scheme for three dimensional magnetohydrodynamics.] Comput Phys
2013;243:269-92.

[24] Vanella M, Rabenold P, Balaras E. A direct-forcing embedded-boundary
method with adaptive mesh refinement for fluid-structure interaction
problems.] Comput Phys 2010;229(18):6427-49.

[25] Timmes FX, Swesty FD. The accuracy, consistency, and speed of an
electron-positron equation of state based on table interpolation of the
Helmbholtz free energy. Astrophys] Suppl Ser 2000;126(2):501-16. http:
//dx.doi.org/10.1086/313304.

[26] Timmes F. Integration of nuclear reaction networks. Astrophys J Suppl Ser
1999;124:241-63.

[27] Dubey A, Daley C, ZuHone], Ricker PM, Weide K, Graziani C. Imposing a La-
grangian particle framework on an Eulerian hydrodynamics infrastructure
in FLASH. Astrophys] Suppl Ser 2012;201:27. http://dx.doi.org/10.1088/
0067-0049/201/2/27.

[28] Dhruv A, Balaras E, Riaz A, Kim]. A formulation for high-fidelity simula-
tions of pool boiling in low gravity. Int J Multiph Flow 2019;120:103099.
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.103099.

[29] Vanella M, Balaras E. Short note: A moving-least-squares reconstruction for
embedded-boundary formulations.] Comput Phys 2009;228(18):6617-28.
http://dx.doi.org/10.1016/j.jcp.2009.06.003.

(3

[4

(7

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://github.com/Flash-X/Flash-X
http://dx.doi.org/10.1016/j.parco.2009.08.001
http://dx.doi.org/10.1086/317361
http://dx.doi.org/10.1086/317361
http://dx.doi.org/10.1086/317361
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb4
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb4
https://github.com/starkiller-astro/xnet
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb6
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb6
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb6
http://dx.doi.org/10.1016/j.jcp.2019.03.037
http://dx.doi.org/10.3847/1538-4365/abe2a8
http://dx.doi.org/10.3847/1538-4365/abe2a8
http://dx.doi.org/10.3847/1538-4365/abe2a8
https://github.com/starkiller-astro/weaklib
http://dx.doi.org/10.3847/1538-4365/abd700
https://trace.tennessee.edu/utk_graddiss/5294
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121826
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121826
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121826
https://sites.google.com/lbl.gov/exastar
https://sites.google.com/lbl.gov/exastar
https://sites.google.com/lbl.gov/exastar
https://www.exascaleproject.org/
https://www.exascaleproject.org/
https://www.exascaleproject.org/
http://dx.doi.org/10.1098/rsta.2019.0056
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb16
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb16
https://amrex-codes.github.io/
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb18
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb18
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb18
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb18
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb18
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb19
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb19
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb19
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb20
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb21
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb21
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb21
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb21
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb21
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb22
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb22
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb22
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb23
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb23
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb23
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb23
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb23
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb24
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb24
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb24
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb24
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb24
http://dx.doi.org/10.1086/313304
http://dx.doi.org/10.1086/313304
http://dx.doi.org/10.1086/313304
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb26
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb26
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb26
http://dx.doi.org/10.1088/0067-0049/201/2/27
http://dx.doi.org/10.1088/0067-0049/201/2/27
http://dx.doi.org/10.1088/0067-0049/201/2/27
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.103099
http://dx.doi.org/10.1016/j.jcp.2009.06.003

Anshu Dubey, Klaus Weide, Jared O’'Neal et al.

[30]

[31]
[32]

[33]

[34]

[35]

Sukhbold T, Ertl T, Woosley S, Brown]JM, Janka H-T. Core-collapse super-
novae from 9 to 120 solar masses based on neutrino-powered explosions.
Astrophys] 2016;821(1):38.

Steiner AW, Lattimer JM, Brown EF. The equation of state from observed
masses and radii of neutron stars. Astrophys] 2010;722(1):33.

Bruenn SW. Stellar core collapse - numerical model and infall epoch.
Astrophys] Suppl Ser 1985;58:771-841. http://dx.doi.org/10.1086/191056.
Harris JA, Chu R, Couch SM, Dubey A, Endeve E, Georgiadou A, et al. Exas-
cale models of stellar explosions: Quintessential multi-physics simulation.
Int] High Perform Comput Appl 2021;10943420211027937.

Lebon MT, Hammer CF, Kim]. Gravity effects on subcooled flow boiling
heat transfer. Int] Heat Mass Transfer 2019;128:700-14. http://dx.doi.org/
10.1016/j.ijheatmasstransfer.2018.09.011.

Sato Y, Niceno B. Pool boiling simulation using an interface tracking
method: From nucleate boiling to film boiling regime through critical heat
flux. Int] Heat Mass Transfer 2018;125:876-90. http://dx.doi.org/10.1016/
j-ijheatmasstransfer.2018.04.131.

[36]

[37]

[38]

[39]

SoftwareX 19 (2022) 101168

Dubey A, Tzeferacos P, Lamb DQ. The dividends of investing in compu-
tational software design: A case study. Int | High Perform Comput Appl
2019;33(2):322-31.

Grannan A, Sood K, Norris B, Dubey A. Understanding the landscape of
scientific software used on high-performance computing platforms. Int]
High Perform Comput Appl 2020;34(4):465-77.

Dubey A, Antypas K, Calder AC, Daley C, Fryxell B, Gallagher]B,
et al. Evolution of FLASH, a multi-physics scientific simulation code
for high-performance computing. Int] High Perform Comput Appl
2014;28(2):225-37.

O'Neal], Wahib M, Dubey A, Weide K, Klosterman T, Rudi J. Domain-
specific runtime to orchestrate computation on heterogeneous platforms.
In: Chaves R, Heras DB, Ilic A, Unat D, Badia RM, Bracciali A, Diehl P,
Dubey A, Sangyoon O, Scott SL, Ricci L, editors. Euro-Par 2021: parallel
processing workshops. Cham: Springer International Publishing; 2022, p.
154-65.

http://refhub.elsevier.com/S2352-7110(22)00103-0/sb30
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb30
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb30
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb30
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb30
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb31
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb31
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb31
http://dx.doi.org/10.1086/191056
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb33
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb33
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb33
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb33
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb33
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.09.011
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.09.011
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.09.011
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.131
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.131
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.131
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb36
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb36
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb36
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb36
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb36
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb37
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb37
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb37
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb37
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb37
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb38
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb38
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb38
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb38
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb38
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb38
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb38
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb39
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb39
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb39
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb39
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb39
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb39
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb39
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb39
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb39
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb39
http://refhub.elsevier.com/S2352-7110(22)00103-0/sb39

	Flash-X: A multiphysics simulation software instrument
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

