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We propose a frustration-free model for the Moore-Read quantum Hall state on sufficiently thin cylinders

with circumferences �7 magnetic lengths. While the Moore-Read Hamiltonian involves complicated long-range

interactions between triplets of electrons in a Landau level, our effective model is a simpler one-dimensional

chain of qubits with deformed Fredkin gates. We show that the ground state of the Fredkin model has high overlap

with the Moore-Read wave function and accurately reproduces the latter’s entanglement properties. Moreover,

we demonstrate that the model captures the dynamical response of the Moore-Read state to a geometric quench,

induced by suddenly changing the anisotropy of the system. We elucidate the underlying mechanism of the

quench dynamics and show that it coincides with the linearized bimetric field theory. The minimal model

introduced here can be directly implemented as a first step towards quantum simulation of the Moore-Read

state, as we demonstrate by deriving an efficient circuit approximation to the ground state and implementing it

on an IBM quantum processor.
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I. INTRODUCTION

The enigmatic fractional quantum Hall (FQH) state ob-

served at filling fraction ν = 5/2 [1] stands out as a rare

example of an even-denominator state among the majority

of odd-denominator states described by the Laughlin wave

functions [2] and composite fermion theory [3]. One of the

leading theoretical explanations of the ν = 5/2 state is based

on the Moore-Read (MR) variational wave function [4]. Two

unique properties of the MR state are worth highlighting: (i)

It represents a p-wave superconductor of composite fermions

[5] and (ii) its elementary charge excitations behave like Ising

anyons, i.e., they carry charge e/4 and exhibit non-Abelian

braiding statistics [4,6]. The latter has motivated the use of

MR state as a potential resource for topological quantum

computation [7], whereby quantum information is encoded

in the collective states of MR anyons and quantum gates are

executed by braiding the anyons. Such operations would be

protected by the topological FQH gap, avoiding the costly

quantum error correction.

On the fundamental side, the understanding of particle-

hole symmetry and collective excitations in the ν = 5/2 state

has recently generated a flurry of interest. While the numer-

ics [8,9] provided initial support of the MR wave function
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capturing the physical ground state at ν = 5/2, it has been

realized that preserving (or breaking) particle-hole (PH) sym-

metry can lead to distinct phases of matter. For example, by

PH conjugating the MR wave function one obtains a dis-

tinct state known as the “anti-Pfaffian” state [10,11], while

enforcing the PH symmetry leads to another, PH-symmetric

Pfaffian state (“PH-Pf”) [12]. Understanding the relation of

these states with the MR state in light of physical PH sym-

metry breaking effects, such as Landau level mixing [13–15]

remains an important task for reconciling numerics [16–19]

with experiment [20,21].

On the other hand, collective excitations of the ν = 5/2

state have also attracted much attention. The pairing in the

MR state mentioned above gives rise to an additional collec-

tive mode—the unpaired “neutral fermion” mode—which has

been “seen” in the numerical simulations [22–24] but so far

not detected in experiment. The gap of the neutral fermion

mode is of direct importance for topological quantum compu-

tation, as the former can be excited in the process of fusion

of two elementary anyons. Recently, Ref. [25] proposed a

description of the neutral fermion mode based on an emer-

gent “supersymmetry” with the more conventional, bosonic

density-wave excitation [26,27]. The numerics in Ref. [28]

suggests that supersymmetry can indeed emerge in a realistic

microscopic model of ν = 5/2.

In this paper we develop a framework for studying the MR

state in a quasi-one-dimensional limit, obtained by placing

the FQH fluid on a streched cylinder or torus whose lengths

in the two directions obey L2 ≪ L1. This “thin-torus” limit

has been fruitful in gaining understanding of the structure
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FIG. 1. [(a) and (b)] Two types of three-electron scattering

processes present in the Moore-Read Hamiltonian. The cylinder

circumference, L2, controls the spacing 2πℓ2
B/L2 between Landau

level orbitals (dashed lines). [(c) and (d)] Sending L2/ℓB → 0 sup-

presses the longer-range hopping (d) compared to the one in (c). It

will be shown that (c), where one electron is fixed while the other

two electrons hop between the nearest-neighbor orbitals, maps to a

controlled-SWAP (Fredkin) gate.

of many FQH ground states and their excitations [29–36].

The thin-torus limit provides a natural classical “cartoon” of

the complicated physics in the two-dimensional limit: The

off-diagonal matrix elements of the Hamiltonian describing a

FQH state become strongly suppressed ∼ exp[−(2πℓB/L2)2]

in the limit L2/ℓB → 0, allowing for considerable simplica-

tions of the problem—see Fig. 1 for an illustration.

However, there have been comparatively few studies of

the MR state near the thin-torus limit. Most previous works

[37–40] focused on the “extreme” thin-torus limit, also known

as the Tao-Thouless limit [29], where the Hamiltonian is

reduced to purely classical electrostatic repulsion. It is there-

fore important to develop an analytically tractable model for

the MR state beyond the strict Tao-Thouless limit, where some

correlated hopping terms are present in the model. For the

Laughlin and Jain states, such models were previously formu-

lated in Refs. [41–44] and one of the goals of this paper is to

work out an analogous model for the MR state. The intrinsic

one-dimensional (1D) structure of such models makes them

suitable for implementation on digital quantum computers,

as recently shown for the ν = 1/3 Laughlin state [45,46].

The versatility of such devices allows to probe questions,

such as the real-time dynamics following a quench, that are

challenging for traditional solid-state experiments [47–50].

In particular, the implementation on IBM quantum processor

allowed to simulate the “graviton” dynamics induced by de-

forming the geometry of the Laughlin state [51–55].

The remainder of this paper is organized as follows. We

start by reviewing the parent Hamiltonian of the MR state in

Sec. II. We make use of the second-quantization formalism

to derive a simplified frustration-free model near the thin-

cylinder limit and we show that its ground state has high

overlap with the MR state, with similar entanglement proper-

ties. In Sec. III we show that the frustration-free model can be

expressed as a deformed Fredkin model for spin-1/2 degrees

of freedom. Working in the spin representation, we present an

intuitive picture of the ground state of this deformed Fredkin

model and derive its matrix-product state (MPS) represen-

tation. We also demonstrate that the ground state can be

efficiently approximated by a quantum circuit, which we im-

plement on the IBM quantum processor. In Sec. IV we show

that the Fredkin model also captures the dynamics of the MR

state induced by quenching the anisotropy of the system, and

we elucidate the mechanism of this dynamics. Our conclu-

sions are presented in Sec. V, while the Appendices contain

technical details of the derivations, further characterizations

of the ground state, and a generalization of the Laughlin case

in Ref. [41] to a closely related Motzkin spin chain.

II. MOORE-READ HAMILTONIAN ON A THIN CYLINDER

In this section we formulate a frustration-free model that

provides a good approximation of the MR ground state near

the thin-cylinder limit. In the infinite 2D plane, the parent

Hamiltonian of the MR state is a peculiar interaction potential

that penalizes configurations of any three electrons forming a

state with relative angular momentum equal to 3—the smallest

possible momentum allowed by the Pauli exclusion principle

[56,57]. At the same time, pairs of electrons do not experience

any interaction. The combination of these two effects gives

rise to an exotic many-electron state with p-wave pairing

correlations [5].

Concretely, the MR interaction potential can be written in

real space using derivatives of delta functions [9]:

HMR = −
∑

i< j<k

Si, j,k

[

∇4
i ∇2

j δ
2(ri − r j )δ

2(r j − rk )
]

, (1)

where Si, j,k is a symmetrizer over the electron indices i, j, k.

At filling ν = 1/2, the ground state of this Hamiltonian has

energy E = 0 and it is unique (on a disk, sphere, or cylinder

geometry) or sixfold degenerate on a torus, corresponding

exactly to the wave function written down by Moore and

Read [4]. The same state was shown to have high overlap

with the exact ground state of Coulomb interaction in the

first-excited Landau level [9,58]. Moreover, the Hamiltonian

above also captures the collective excitations of the MR state

[22–24,59,60]. Below we first convert the Hamiltonian (1)

into a second-quantized form on the cylinder and torus ge-

ometries. This form allows us to derive a simplified model for

the MR state on a thin cylinder.

A. Moore-Read Hamiltonian in second quantization

The singularities in Eq. (1) are naturally regularized by pro-

jection to the lowest Landau level (LLL). Assuming Landau

gauge A = (0, Bx, 0), the single-electron wave functions are

given by [61]

φ j (r) =
1

√

L2

√
πℓB

ei2π jyℓ2
B/L2 e−(x−2π jℓ2

B/L2 )2/2ℓ2
B , (2)

where L2 is the cylinder circumference in the y direction and

ℓB =
√

h̄c/eB is the magnetic length. The jth magnetic orbital

is therefore exponentially localized (in x direction) around

2π jℓ2
B/L2. For simplicity, unless specified otherwise, below

we will work in units ℓB = 1.

The second-quantized representation of the MR Hamilto-

nian is

HMR =
Nφ−1
∑

j1,..., j6=0

Vj1 j2 j3 j4 j5 j6 c
†
j1

c
†
j2

c
†
j3

c j4 c j5 c j6 , (3)
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where the operators c
†
j , c j create or destroy an electron in the

orbital φ j (r). The matrix elements are derived by integrating

Eq. (1) between the single-electron eigenfunctions (2), which

yields

Vj1 j2 j3 j4 j5 j6 =
4
√

3κ8

πg4
11

δ j1+ j2+ j3, j4+ j5+ j6

× ( j1 − j2)( j1 − j3)( j2 − j3)

× ( j6 − j5)( j6 − j4)( j5 − j4)

× exp

{

−
κ2

2g11

[

∑

j2
i −

1

6

(

∑

ji

)2

+ ig12

(

j2
1 + j2

2 + j2
3 − j2

4 − j2
5 − j2

6

)

]}

. (4)

The magnitude of the matrix element is controlled by the

cylinder circumference L2 in units of magnetic length ℓB,

which defines the parameter κ = 2πℓB/L2. We have derived

the matrix elements by assuming a general anisotropic band-

mass tensor gab, which will be relevant for the discussion of

geometric quench in Sec. IV. Note that the matrix element

Vj1··· j6 is properly antisymmetric, resulting in a minus sign

when any two electrons are exchanged, hence the limits in

the sum in Eq. (3) can be restricted to j1> j2> j3, j6> j5> j4
without loss of generality. The delta function in Eq. (4) en-

codes momentum conservation during a scattering process,

hence one of the indices, e.g., j6 can be eliminated in terms

of j1, . . . , j5.

A few comments are in order. We have denoted by integer

Nφ the number of magnetic orbitals. For a cylinder, to focus

on bulk properties we choose Nφ = 2Ne−2, where Ne is the

number of electrons. The offset −2 is a geometric feature

of the MR state called the Wen-Zee shift [62]. The total

area of the fluid of dimensions L1 × L2 must be quantized

in any FQH state [63], thus we take the thin-cylinder limit

according to

L2/ℓB → 0, such that L1L2 = 2πℓ2
BNφ, (5)

which ensures that the number of orbitals, and hence the filling

factor, remains constant.

Although we will focus on cylinder geometry in this paper,

we note that the same Hamiltonian, Eqs. (3) and (4), can also

be used on a torus, with a few modifications. On a torus, the

shift vanishes and Nφ = 2Ne. However, because of the period-

icity in both x and y directions, the momentum is only defined

modulo Nφ . This means that the momentum conservation

takes the form j1 + j2 + j3 = j4 + j5 + j6 (mod Nφ). More-

over, the matrix element (4) must be explicitly periodized

to make it compatible with the torus boundary condition,

which can be done by replacing ji→ ji+kiNφ and summing

over ki.

The derivation of the effective Hamiltonian in the thin-

cylinder limit proceeds by noting that, in the limit of κ ≫ 1

(equivalently, L2 ≪ ℓB), there is a natural hierarchy of ma-

trix elements (4), which are separated by different powers

of exp(−κ2) [31,33,64]. Below we list the first few relevant

terms in decreasing order:

22e−2κ2

np+1npnp−1; 111, (6)

2232e−14κ2/3np+2np+1np−1; 1011, (7)

25e−5κ2

c
†
p−1c†

pc
†
p+1cp+2cpcp−2; 10101 → 01110, (8)

2332e−20κ2/3c†
pc

†
p+1c

†
p+4cp+3cp+2cp; 11001 → 10110,

(9)

28e−8κ2

np+2npnp−2; 10101, (10)

235e−8κ2

c
†
p−2c

†
p+2c

†
p+3cp+2cp+1cp; 001110 → 100011,

(11)

2432e−26κ2/3np+4np+3np; 11001, (12)

22325e−26κ2/3c
†
p−1c†

pc
†
p+2cp+3cpcp−2; 101001 → 011010.

(13)

We have included a binary mnemonic to represent the type of

process generated by each Hamiltonian term. A single pattern,

e.g., 1011, represents a diagonal term in the Hamiltonian

which assigns energy penalty for the given local pattern of

occupation numbers anywhere in the system. The terms con-

taining an arrow, such as 10011→01101, can be visualized as

correlated hopping processes, Fig. 1. In such cases, the Her-

mitian conjugates of the processes, corresponding to reflected

hoppings with the same amplitude, are implied.

B. Tao-Thouless limit

The “extreme” thin-torus limit, also known as the Tao-

Thouless limit, of the MR Hamiltonian was discussed in

Refs. [37,38]. In this limit, the only terms that survive are

Eqs. (6) and (7), giving energy penalty to configurations

. . . 111 . . . and . . . 1011 . . . . Hence, the ground states at filling

ν = 1/2 (with zero energy) are

. . . 110011001100 . . . and . . . 10101010 . . . , (14)

while any other Fock state will be higher in energy by at

least an amount ∼ exp(−14κ2/3), see Eq. (7). This gives the

expected sixfold ground-state degeneracy of the MR state on

the torus [5], since the first state in Eq. (14) is fourfold and

the second is twofold degenerate under translations. These

ground states have different momenta on the torus, so they

live in different sectors of the Hilbert space [65]. Similarly,

the ground states in Eq. (14) are the densest zero-energy

states one can construct, as increasing the filling factor would

necessarily violate the terms in Eqs. (6) and (7). On the other

hand, decreasing the filling factor is allowed, leading to many

more E = 0 states. These correspond to quasihole excitations

and can be interpreted as domain walls between two different

types of ground-state patterns in Eq. (14), see Refs. [37,38].

On a finite cylinder, the densest zero-energy ground

state is found instead at Nφ = 2N−2, as expected from the

Wen-Zee shift. This coincides with the root partition of

the Jack polynomial corresponding to the MR state [66],

11001100 . . . 0011, with 11 at each boundary. The other torus
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root state can be similarly adapted to a finite cylinder accord-

ing to 1010 . . . 101. However, this requires an extra orbital,

since the flux is now Nφ = 2N−1. Thus, the second type of

torus ground state becomes an excited state on a cylinder. In

both cylinder and torus geometries, the Tao-Thouless ground

states are trivial product states without any entanglement. We

next discuss how to go beyond the extreme thin-cylinder limit

and generate an entangled ground state.

C. Frustration-free model beyond the Tao-Thouless limit

Beyond the extreme limit discussed above, we would like

to retain a few more terms, with smaller powers of exp(−κ2),

and thereby generate a more accurate approximation of the

MR state over a slightly larger range of L2. A natural way

to do to this would be to choose a magnitude cutoff and

keep only the Hamiltonian matrix elements that are larger

than this cutoff. However, we would also like to be able to

analytically solve for the ground state of the resulting trun-

cated Hamiltonian. In this sense, it is natural to look for a

Hamiltonian which is frustration free, i.e., has a ground state

that is simultaneously annihilated by all individual terms in

the Hamiltonian. In such cases it is often possible to find

analytically exact ground states even though the Hamiltonian

overall may not be solvable, e.g., as in the case of the Affleck-

Kennedy-Lieb-Tasaki (AKLT) model [67].

Unfortunately, the program outlined above fails for our

three-body Hamiltonian: Keeping the terms in the order they

are listed in Eqs. (6)–(13) does not result in a positive semidef-

inite operator. This can be seen by considering the first two

correlated hoppings, Eqs. (8) and (9). One would want to

include these hoppings as they naturally act on the two types

of ground states in the extreme thin-torus limit, Eq. (14),

and would create some entanglement. However, the “dressed”

ground states would no longer be zero modes and their degen-

eracy would be lifted. Inspired by the Laughlin construction

[41], one could try to remedy this by including the terms

Eqs. (10) and (12) to create a sum of two positive semidef-

inite operators. One quickly realizes that the hopping term

Eq. (13) now becomes a problem, spoiling the frustration-

free property. In Ref. [64], an attempt was made to define a

frustration-free model for a bosonic MR state by dropping

the equivalent of hopping Eq. (13) [as well as the hopping

Eq. (11)]. Unfortunately, on further inspection, we have found

the claim in Ref. [64] to be inaccurate because the model

proposed there does not yield strictly zero-energy ground

states.

We now describe the simplest frustration-free truncation of

the Hamiltonian in Eqs. (6)–(13) that we have found. We will

focus on the cylinder root state |R0〉 = |11001100 . . . 0011〉,
which is nondegenerate. In order to obtain a unique “dressed”

ground state on the cylinder, we consider the Hamiltonian

terms that act nontrivially on this root state. The resulting

states will be the first relevant corrections to the ground state.

The effective Hamiltonian contains terms in Eqs. (6), (7), (9),

and (12):

H ′
MR =

Nφ−3
∑

i=0

A
†
i Ai +

Nφ−4
∑

i=0

(B†
i Bi + C

†
i Ci ), (15)

FIG. 2. Overlaps between the ground state |ψMR〉 of the full

model in Eq. (3) (i.e., the Moore-Read state) and the ground state

|ψ0〉 of the truncated model in Eq. (15), for different system sizes. For

cylinder circumferences up to L2 ≈ 7ℓB (shaded), the overlap is 95%

or higher, indicating this truncation returns a good approximation for

the ground state in the thin-cylinder regime.

where the operators A, B, and C are given by

Ai = αcici+1ci+2, (16)

Bi = βcici+2ci+3 + γ cici+1ci+4, (17)

Ci = βci+1ci+2ci+4 + γ cici+3ci+4. (18)

For brevity, we have introduced the parameters

α =
√

V012210, β =
√

V023320, γ = eiθ
√

V014410, (19)

given in terms of matrix elements (4) and θ = 2κ2g12/g11.

Among the terms omitted, Eqs. (8), (10), and (13) do not

act directly on the root state, bringing only subleading con-

tributions. While the term in Eq. (11) can directly act on the

extreme root state, its contribution is suppressed in the vicinity

of the thin-cylinder limit because of the prefactor being much

smaller than the hopping term retained, Eq. (9).

Therefore, to a first-order approximation, H ′
MR is the cor-

rect effective Hamiltonian that captures the departure of the

Pfaffian state from the root |R0〉 in this geometry (in Sec. IV

we will also investigate its dynamical properties to show that

the model captures the properties of excited eigenstates). On

the torus, our model preserves the sixfold ground-state degen-

eracy of the MR Hamiltonian. Four of those, corresponding to

root unit cell 1001 and its translations, will become “dressed”,

in analogy to the ground state of the cylinder Hamiltonian.

The other two will remain inert, i.e., equal to |101010 . . . 〉 and

|010101 . . . 〉 for any value of L2 [since the hopping in Eq. (9)

cannot produce new configurations].

To confirm the validity of the model in Eq. (15) we per-

formed several tests. First, we evaluated the overlap of the

model’s ground state with the full MR state, i.e., the ground

state of the untruncated Hamiltonian. Figure 2 shows that

this overlap is very high close to the thin-cylinder regime,

with overlap on the order ∼95% at L2 ≈ 7ℓB. As we are
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FIG. 3. Bipartite entanglement entropy SA of the full MR state

[i.e., the ground state of Eq. (3)] and the ground state of the trun-

cated model, Eq. (15), as a function of cylinder circumference,

L2. Data are for Ne = 14 electrons and Nφ = 26 magnetic orbitals.

All types of bipartitions are considered: choosing subsystem A to

contain NA
φ = 11 orbitals, the boundary looks like 0|0; it can be

seen that entanglement entropy here starts growing early on. The

case NA
φ = 12, corresponding to 1|0, behaves similarly. By contrast,

choosing NA
φ = 13 corresponds to the bipartition type 1|1, where

entropy grows much more slowly. The truncated model accurately

captures the behavior of the model in the range of circumferences

L2 � 7ℓB (shaded). The inset shows the topological entanglement

entropy γtop, extracted numerically from SA using a linear fit over

the interval [5.5ℓB, Lmax]. Only the bipartitions 0|0 and 1|0 were

used, as those scale correctly near the Tao-Thouless limit. Restricting

ourselves to the range of validity for the truncated model, our γtop

estimate is within 20% of the theoretical value of ln
√

8.

not exactly capturing the full state at a finite value of L2,

the overlaps naturally decay with system size (and vanish

in the thermodynamic limit). Nevertheless, the fact that they

remain very high and weakly dependent on system size in

the range L2 � 7ℓB gives us confidence that the model cap-

tures the right physics, as will be further demonstrated below.

An example of a physical quantity that can be meaningfully

scaled with system size and is sensitive to both local and

nonlocal correlations is the bipartite entanglement entropy, SA.

We compute SA by choosing a bipartition in orbital space, i.e.,

the subsystem A contains NA
φ orbitals and the complementary

subsystem B contains the remaining Nφ−NA
φ orbitals [68].

Due to the Gaussian localization of the magnetic orbitals (2),

this roughly corresponds to the more conventional partitioning

of the system in real space [69,70]. The entanglement entropy

is the von Neumann entropy, SA = −trρA ln ρA, of the reduced

density matrix ρA = trB|ψ〉〈ψ | for the (truncated) MR ground

state |ψ〉. In Fig. 3 we plot SA as a function of cylinder

circumference, contrasting the full MR state with the ground

state of the truncated model (15). The entanglement entropy

of the MR state has been shown to scale linearly with the

circumference of the cylinder [71,72], which is the “area law”

scaling expected in ground states of gapped systems [73]. We

observe that this linear scaling is obeyed also by the truncated

model for L2 � 7ℓB. Furthermore, the subleading correction

γtop to the area law, SA = cL2 − γtop + O(e−ξ/ℓB ), where c is

a constant and ξ is the correlation length, is known to be

a sensitive indicator of topological order as it arises due to

fractionalized anyon excitations [74,75]. As shown in the inset

of Fig. 3, in the range of validity of the truncated model we

obtain γtop within 20% of the theoretically expected value

ln
√

8 for the MR case [71].

Beyond the area-law regime, the entanglement entropy of

the truncated model saturates, illustrating that the model is

no longer able to capture the relevant correlations in the full

MR state. Conversely, near the Tao-Thouless limit L2 � 4ℓB,

there is practically no growth of entropy with L2, as the ground

state remains a product state. In the latter regime, γtop = 0,

illustrating that topological order is completely lost since the

system is too narrow in the y direction.

Finally, Fig. 3 illustrates the sensitivity of entanglement

scaling with respect to the location of the bipartition. This

is due to the cylinder ground state being dominated by the

pattern . . . 11001100 . . . . Given this form of the root state

unit cell, there are three distinct types of locations where we

could place the partition. If we partition between two occupied

orbitals (i.e., 1|1), then at first order there will be no correlated

hoppings across this boundary, leading to a very slow growth

in entanglement, as indeed seen in Fig. 3. Instead, if we par-

tition the system next to an empty orbital (i.e., at 0|0 or 1|0),

then there will be correlated hopping across the boundary and

the two subsystems can get entangled more easily. Note that

this sensitivity to the location of the partition is not present

in the Laughlin case [41]. Moreover, it is an artefact of being

near the thin-cylinder limit where the ground state still pos-

sesses a crystalline-like density modulation, which becomes

strongly suppressed in the isotropic 2D limit where the fluid

is spatially uniform. Nevertheless, Fig. 3 shows that our trun-

cated model (15) successfully captures all the entanglement

features of the full MR state in the regime L2 � 7ℓB. In the

next section, we show that the model (15) can be expressed as

a well-known spin-1/2 chain model.

III. MAPPING TO A DEFORMED FREDKIN CHAIN

Our effective Hamiltonian (15) is frustration free and it

has an exact zero-energy ground state, which is unique on a

cylinder. To write down the ground-state wave function and

provide its intuitive representation, we map the model (15)

to a deformed Fredkin chain [76–78]. The Fredkin model is

a spin-1/2 analog of the Motzkin chain model [79–82]. As

shown in Appendix C, the Motzkin chain allows to generalize

the construction from Ref. [41] and describe the ν = 1/3

Laughlin state over a larger range of cylinder circumferences.

A. Spin mapping

The mapping to spin-1/2 degrees of freedom is possible

because we are only interested in the connected component of

the ground state, i.e., the Krylov subspace spanned by states

(H ′
MR )n|11001100 . . . 110011〉, for an arbitrary integer n [83].

For our truncated model, the dimension of such a subspace

does not exhaust the full Hilbert space dimension, allowing

the mapping onto a spin-1/2 chain. This is an example of
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FIG. 4. Adjacency graph of the truncated model H ′
MR,

Eq. (15), in the connected sector containing the root state

(0)11001100110011(0) or, equivalently, ↑↓↑↓↑↓↑↓ in the spin

representation (marked in red). The graph vertices are product states

that can be reached by repeated application of the Hamiltonian.

The edges denote the nonzero matrix elements of the Hamiltonian

between respective vertices. This example is for Ne = 8 electrons,

where the connected component of the root state contains only 14 of

a total of 151 states with the same momentum quantum number. Any

basis configurations not present here are dynamically disconnected

and cannot be reached from the ground state under the dynamics

generated by H ′
MR. The Fredkin moves (swaps with ↑ on the first

or ↓ on the last site acting as a control qubit), as implemented by

the Hamiltonian, are also shown in the bottom panels. Each move

changes the area of the path by a constant value.

Hilbert space fragmentation [84] and it has previously been

used to perform mappings of two-body FQH Hamiltonians

onto spin models [85]. Thus, without any loss of generality,

we can investigate both the ground state and dynamics by

restricting to the Krylov subspace built from the Tao-Thouless

root pattern.

To perform the mapping, start from the root state

110011 . . . 0011 and pad it with one fictitious 0 on each side.

This allows us to group sites in pairs of two, noticing that the

only present pairs are 01 and 10. These are mapped to spins:

|01〉 → |↑〉 and |10〉 → |↓〉. (20)

Thus, the root state maps to the antiferromagnetic (Néel) state

|(0)110011 . . . 0011(0)〉 → |↑↓↑↓ . . . ↑↓〉. Since H ′
MR acts

on a maximum of five consecutive sites at once, its equivalent

acts on three consecutive spins. As discussed below, acting

with H ′
MR on any product state that can be mapped to spins,

i.e., consists of a sequence of 01 and 10 pairs, generates

another product state that can be similarly mapped to spins.

An example is presented in Fig. 4 which shows the connected

sector of the adjacency graph of H ′
MR that contains the Néel

state. This shows that in this connected component of the

Hilbert space, our model (15) is equivalent to a spin-1/2

model. For simplicity, we will denote the number of spins

by N , although it should be kept in mind this is equal to the

number of electrons Ne.

The moves implemented by the B and C terms in Eq. (15)

are |↑↑↓〉 ↔ |↑↓↑〉 and |↑↓↓〉 ↔ |↓↑↓〉, i.e., they are con-

trolled swaps of spins or Fredkin gates [86], as illustrated in

Fig. 4. Note that the A term in our subspace is redundant, as

this subspace does not contain any . . . 111 . . . patterns. The

resulting spin Hamiltonian is a sum of local projectors and

can be written as

HF =
N−3
∑

i=0

P
↑
i P

ϕ(τ )
i+1,i+2 + P

ϕ(τ )
i,i+1P

↓
i+2, (21)

where the single-spin projector Pσ
i = |σi〉〈σi| projects onto a

local spin pointing in the direction σ =↑,↓. The two-spin

projector P
ϕ(τ )
i,i+1 = |ϕ(τ )i,i+1〉〈ϕ(τ )i,i+1| projects onto the de-

formed superposition state

|ϕ(τ )i,i+1〉 = |↑i↓i+1〉 − τ |↓i↑i+1〉, (22)

τ = −γ /β = −2 exp

(

−2κ2 1 − ig12

g11

)

. (23)

The model (21) is our central result of this section. It can

be recognized that this model corresponds to a (colorless)

deformed Fredkin chain from Ref. [77]. Note that the bound-

ary Hamiltonian terms from Ref. [77], i.e., H∂ = P
↑
0 + P

↓
N−1,

have been omitted because our subspace has the first ↑ spin

and the last ↓ spin frozen.

For convenience, we note that HF can be equivalently ex-

pressed in terms of usual Pauli spin operators:

HF =
Ne−3
∑

j=0

[(

1

2
1+ Sz

j

)

h j+1, j+2(τ )

+ h j, j+1(τ )

(

1

2
1− Sz

j+2

)]

, (24)

where

h j, j+1(τ ) =
1 + |τ |2

4

(

1− 4Sz
jS

z
j+1

)

+
1 − |τ |2

2

(

Sz
j − Sz

j+1

)

− 2Re(τ )
(

Sx
j S

x
j+1 + S

y

j S
y

j+1

)

− 2Im(τ )
(

Sx
j S

y

j+1 − S
y

j S
x
j+1

)

. (25)

Note that outside the connected component of the ground

state, the mapping can be extended by defining the additional

composite degrees of freedom: |11〉 → |+〉, |00〉 → |−〉. In

this mapping, the constrained dynamics of the model resem-

bles that of fractonic models in Refs. [87–90], which can

lead to different thermalization properties in different Krylov

fragments [83].

B. The ground state

The ground state of the Fredkin chain is a weighted su-

perposition of “Dyck paths” of length N (the set of which

we denote DN ). These are product state configurations with

Sz
total = 0 and

∑k
i=0 Sz

i � 0 for all k. The last condition is

equivalent to the number of spin ↑ sites always being greater

than or equal to the number of spin ↓ sites, as we go through

the chain from left to right. The paths in DN can be interpreted
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graphically, as a “mountain range” where each ↑ corresponds

to an upward slope, while ↓ corresponds to a downward slope.

The Dyck constraint is equivalent to the height of these graphs

starting and ending at zero, and always staying positive. The

weight of each path (configuration) p in the ground state |ψ0〉
will be determined by the area A(p) under the mountain range:

|ψ0〉 = N−1
∑

p∈DN

τA(p)/2 |p〉. (26)

According to the phase diagram of the Fredkin spin model,

for |τ | < 1 the entanglement entropy of the ground state

is bounded (obeys area law), whereas |τ | = 1 is a critical

point where the scaling becomes logarithmic in system size

∼ log N .

Reference [76] also discusses the subtleties of the spin

model with periodic boundary conditions. For |τ | = 1, the

ground-state degeneracy scales linearly with N , with zero

modes in every Sz
total sector. However, on decreasing the defor-

mation away from the critical point we find that the extensive

degeneracy disappears—only four zero modes survive. Two

of them are in the sectors Sz
total = ±N/2, corresponding to the

inert states |↑〉⊗N and |↓〉⊗N (or the Fock states |101010 . . . 〉
and |010101 . . . 〉). The other two are in the sector Sz

total = 0

and will correspond to the root unit cells 1001 and 0110;

the two remaining translations break our spin mapping but

can be obtained by shifting every orbital by one position and

then applying the mapping. All other zero modes disappear

because deformed Fredkin ground states are constructed using

the Dyck path area as in Eq. (26), which is only well defined

when Sz
total = 0. These results are in agreement with the six-

fold degeneracy found in the fermionic model.

With this understanding, we can map back to the fermionic

ground state. All Dyck paths can be obtained from the root

configuration |↑↓↑ . . . ↓↑↓〉 by exchanging a number of ↓
with an equal number of ↑ further along the chain. In the

fermionic picture, this is equivalent to performing a number

of “squeezes,” i.e., applications of the operator

Ŝk,d = c
†
2k

c
†
2(k+d )−1

c2(k+d )c2k−1, (27)

with d, k > 0. Similar structure exists in the Laughlin state

[45,46]. The resulting states are in one-to-one correspondence

with those in DN , and we will denote their set by D′
N . Every

configuration s in D′
N can be obtained from a number of n(s)

squeezes applied to the root:

s ∈ D′
N ⇐⇒ |s〉 =

n(s)
∏

i=1

Ŝki,di
|110011 . . . 0011〉. (28)

The weight of such a basis state in the ground state is now

determined by the total distance squeezed D(s) =
∑n(s)

i=1 di,

which is equivalent to the previous definition (26) expressed

in terms of the area under the Dyck path,

|ψ0〉 = N−1
∑

s∈D′
N

τD(s)/2 |s〉. (29)

C. Matrix-product state representation

Along with the undeformed chain (τ = 1), Ref. [76] in-

troduced a matrix-product state (MPS) representation for its

ground state. The associated MPS matrices have bond dimen-

sion χ = N/2 + 1, where N is the number of spins:

M
↑
jk

= δ j+1,k and M↓ = (M↑)T . (30)

As we are working with open boundary conditions, we use the

boundary vectors vL = v
T
R with (vL ) j = δ j,0. This MPS can

be directly extended to the deformed chain, where we need to

introduce the deformation parameter in the following way:

(M↑
τ ) jk = τ j/2 δ j+1,k and M↓

τ = (M↑
τ )T . (31)

This holds for any τ ∈ C so it can be used for anisotropic

states as well. Therefore the Fredkin ground state can be

written as

|ψ0〉 = N−1/2
v

T Mτ,0Mτ,1 . . . Mτ,N−1 v, (32)

where the MPS tensor is given by

Mτ, j =

⎛

⎜

⎜

⎜

⎜

⎝

0 |↑ j〉 0 0 . . .

|↓ j〉 0 τ 1/2|↑ j〉 0

0 τ 1/2|↓ j〉 0 τ |↑ j〉
0 0 τ |↓ j〉 0
...

. . .

⎞

⎟

⎟

⎟

⎟

⎠

. (33)

For, e.g., N = 6 this expression gives
∣

∣ψN=6
0

〉

= |↑↓↑↓↑↓〉 + τ
(

|↑↓↑↑↓↓〉 + |↑↑↓↓↑↓〉
)

+ τ 2|↑↑↓↑↓↓〉 + τ 3|↑↑↑↓↓↓〉, (34)

which indeed agrees with Eq. (29). We note that alternative

tensor network representations of the Fredkin ground states

have been discussed in the literature [91].

Furthermore, the MPS representation above is able to cap-

ture the critical point at |τ | = 1, which is precisely the reason

behind χ increasing linearly with system size. This limits our

ability to extract thermodynamic limit behavior in this phase

using the MPS tensors from Eqs. (30) and (31). However, the

regime of interest for this paper is |τ | � 0.4 (i.e., L2 � 7 ℓB),

which is far from the critical point. Hence, it is possible to

describe the ground state with high accuracy by truncating to

a finite bond dimension. Consider the following tensors:

M
(χ=3)
τ, j =

⎛

⎝

0 |↑ j〉 0

|↓ j〉 0 τ 1/2|↑ j〉
0 τ 1/2|↓ j〉 0

⎞

⎠. (35)

For a chain with even number of spins, this MPS yields the

following simple ground state:

∣

∣ψ
(χ=3)
0

〉

= |↑〉
(

|↓↑〉 + τ |↑↓〉
)⊗ N−2

2 |↓〉. (36)

With a fixed χ , it is straightforward to analytically calculate

the behavior of relevant quantities in the thermodynamic limit

by using the MPS transfer matrix. The average orbital density

takes the form:

〈n̂4 j/4 j+1〉 =
1

1 + |τ |2
, 〈n̂4 j+2/4 j+3〉 =

|τ |2

1 + |τ |2
. (37)

As expected, this resembles a CDW pattern, which in this

approximation (and also in the full Fredkin ground-state state)

is predicted to disappear at |τ | = 1, corresponding to L2 ≈
10.7ℓB (outside the range of validity of the truncated model).

Figure 5 shows a comparison of orbital density between the
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FIG. 5. Comparison between the average orbital density of the

MR state and different truncated states: the Fredkin state and the state

obtained by truncating the Fredkin MPS at χ = 3. The system has

Ne = 14 electrons and the cylinder circumference is L2 = 7ℓB. The

truncated states deviate slightly from the charge density wave pattern

of the MR state.

MR state, the Fredkin state and the χ = 3 approximation

above. At L2 = 7ℓB the two truncated states still capture the

CDW pattern, with the Fredkin state showing more accurate

results. Since this approximate state can be written in the

tensor product form above, the density-density correlations

decay to zero with a finite correlation length.

D. Quantum algorithm for preparing the ground state

and its implementation on IBM quantum processor

The simple structure of the MPS wave function in the

above approximation (for χ = 3) is amenable to implemen-

tation on noisy intermediate-scale quantum devices. Indeed,

all states in the superposition can be obtained from a direct-

product root pattern by only one layer of one- and two-qubit

gates. Furthermore, the parameters of the circuit can be de-

termined analytically without the need for any classical or

hybrid optimization, which allows for direct implementation

on a large number of qubits.

The structure of the quantum circuit is shown in Fig. 6. If

we choose the angle θ to be equal to

θ = 2 arctan(τ ), (38)

then the y rotation creates a superposition |↑〉 + τ |↓〉 and the

CNOT then changes the state of the two qubits to |↓↑〉 +
τ |↑↓〉. As a quick check, we executed the circuit on the

ibmq_mumbai device, a 27-qubit processor with quantum

volume 128. This implementation was carried out using the

Qiskit package. In this simulation, we used N = 26, with the

initial and final qubits held in trivial up and down states.

Notably, we refrained from employing any error mitigation

techniques, and we deliberately incorporated qubits and cou-

plings from the device with lower quality. Our simulation

utilized a mere couple of thousand shots to ascertain bit-

string probabilities in the computational basis. We found very

good agreement of the measured orbital densities with the

FIG. 6. The structure of the quantum circuit for six qubits. The

X gates create the root patterns, and the rotations and CNOTs imple-

ment the action of MPS matrices in Eq. (35).

analytical results of Eq. (37), save for a few instances where

gate calibrations during the simulation were imperfect.

The results for the orbital density are shown in Fig. 7.

We used 2048 shots in both the quantum execution and the

FIG. 7. The orbital density from the quantum circuit. There is

good agreement between the results of Eq. (37), classical simulation

of the circuit using IBM Aer simulator and quantum implementation

on the ibmq_mumbai device. The IBM data were obtained on August

31, 2023 at 2:02 PM.
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simulation of the circuit with IBM’s Aer simulator. The Aer

simulation is in excellent agreement with Eq. (37), with slight

differences due to the finite number of shots. There is also

good agreement with the quantum device, except for a few

qubits. Despite its simplicity, the approximate ground state

prepared above can serve as a valuable starting point for ex-

ploring the dynamics of the MR phase on quantum computers.

IV. QUENCH DYNAMICS

Given that our Fredkin model (21) was constructed by

focusing on the root state and it does not represent a trun-

cation of the MR Hamiltonian according to a decreasing order

of magnitude, it is not obvious that the excited spectrum

necessarily matches that of the full MR Hamiltonian. To

demonstrate the correspondence of key physical properties

between the two spectra, in this section we focus on the dy-

namical response of the Fredkin model. In particular, we study

geometric quench [52] to probe the compatibility between the

two models, which was previously used to a similar effect in

the ν = 1/3 Laughlin case [46].

Geometric quench is designed to elicit the dynamical

response of the Girvin-MacDonald-Platzman (GMP) collec-

tive mode [26,27], which is present in all known gapped

FQH states, including the MR state [22–24,92,93]. In the

long-wavelength limit kℓB → 0, the GMP mode forms a

quadrupole degree of freedom that carries angular momentum

L = 2 and can be represented by a quantum metric [51]. In

this respect, the kℓB → 0 limit of the GMP mode has formal

similarity with the fluctuating space-time metric in a theory

of quantum gravity [94,95] and it is sometimes referred to

as “FQH graviton” [92,96]. It was shown that the quantum

metric fluctuations can be exposed by introducing anisotropy

which breaks rotational symmetry of the system [52,53]. Such

geometric quenches induce coherent dynamics of the FQH

graviton, even though the latter resides in the continuum of the

energy spectrum, making it a useful probe of physics beyond

the ground state considered thus far.

A. Spectral function

The GMP mode, to a high accuracy, can be generated

by a simple ansatz called the “single-mode approximation”

[26,27]: The state belonging to the mode with momentum k

is obtained by acting with the projected density operator, ρ̄k,

on the ground state, i.e., |ψGMP
k 〉 = ρ̄k|ψ0〉. Thus, the GMP

states are automatically orthogonal to the ground state as they

live in different momentum sectors. However, in practice, it is

more convenient to study dynamics within the k = 0 sector of

the ground state. This is the case with the geometric quench

setup, described in Sec. IV B below. Thus, in order to identify

the relevant GMP state in the k = 0 sector, possibly hidden

in the continuum of the energy spectrum, we need a different

tool. We identify the long-wavelength limit of the GMP mode

using the following spectral function [52,54]:

I (ω) =
∑

n

|〈ψn|Ô|ψ0〉|2δ(ω − ωn), (39)

where Ô is a three-body operator with quadrupolar x2 −
y2 symmetry, given in Ref. [54], and the sum runs over

(in principle, all) energy eigenstates |ψn〉 with energies ωn,

measured relative to the ground-state energy ω0. In second

quantization, the matrix element of Ô is

O j1 j2 j3 j4 j5 j6 = δ j1+ j2+ j3, j4+ j5+ j6

[

∑

j2
i −

1

6

(

∑

ji

)2
]

× ( j1 − j2)( j2 − j3)( j1 − j3)

× ( j4 − j5)( j5 − j6)( j4 − j6)

× exp

{

−
κ2

2

[

∑

j2
i −

1

6

(

∑

ji

)2]

}

,

(40)

which allows to readily evaluate Eq. (39). Note that in this

section we consider the spectral function for an isotropic

system, hence there is no metric dependence in Eq. (40). As

before, the matrix element given here is derived for cylinder

geometry and appropriate modifications are needed to make

it compatible with torus boundary conditions, as explained in

Sec. II A.

In Fig. 8 we plot the evolution of the spectral function I (ω)

as the cylinder circumference is varied from the Tao-Thouless

limit towards the isotropic 2D limit, in both the untruncated

and Fredkin models. We see there is good agreement between

the two models for L2 � 7ℓB, i.e., across the same range

where we previously established high overlap between the

ground states of the two models. For larger circumferences,

it becomes impossible to adiabatically track the evolution of

the graviton peak in I (ω) due to multiple avoided crossings in

Fig. 8. The graviton resides in the continuum of the spectrum

and it is not protected by a symmetry of the Hamiltonian,

hence its support over energy eigenstates may undergo com-

plicated “redistribution” as the geometry of the system is

varied. In particular, away from the Tao-Thouless limit, there

is also a clear splitting of spectral weight between several

energy eigenstates, suggesting that the graviton degree of free-

dom may not correspond to a single eigenstate in this regime.

B. Geometric quench

Given the complex evolution of the spectral function in

Fig. 8 when interpolating between the isotropic 2D limit and

the thin-cylinder limit we are interested in, it is natural to

inquire if the graviton oscillations observed in the Laugh-

lin case in Refs. [46,52] persist in the MR case and what

their origin may be. In this section we analyze the geometric

quench dynamics in the thin-cylinder limit and establish that

it corresponds to a linearized bimetric theory of Gromov and

Son [97]. This shows that, despite the simplicity of our model

(21), it is successful at capturing a nontrivial many-body effect

of a 2D FQH system away from equilibrium.

The geometric quench setup assumes that electrons are de-

scribed by an arbitrary mass tensor gab, with a, b = 1, 2. The

mass tensor must be symmetric and unimodular (det g = 1)

[51], hence we can generally write it as g = exp(Q̂) where

Q̂ = Q(2d̂ad̂b − δa,b) is a Landau-de Gennes order parameter

and d̂ = (cos(φ/2), sin(φ/2)) is a unit vector [98]. Parame-

ters Q and φ intuitively represent the stretch and rotation of

the metric, respectively, with Q = φ = 0 corresponding to the

013105-9



CRISTIAN VOINEA et al. PHYSICAL REVIEW RESEARCH 6, 013105 (2024)

FIG. 8. Evolution of the spectral function I (ω) in Eq. (39) in the

Fredkin model (top) and the full MR model (bottom), as a function

of cylinder circumference L2. The peak(s) in the spectral function

are identified with the long-wavelength limit of the GMP mode, i.e.,

the FQH graviton. System size is Ne = 10 electrons, Nφ = 18 flux

quanta.

isotropic case. Under Landau-level projection, the interaction

matrix elements acquire explicit dependence on g, as can be

seen in Eq. (4). For g close to the identity (i.e., at weak

anisotropy), the topological gap is robust and the MR state

remains a zero-energy ground state. We assume the initial

state before the quench to be the isotropic MR state with

g = 1. At time t = 0, the anisotropy in the Hamiltonian is

instantaneously changed and, for simplicity, we assume the

new metric to be diagonal, g = diag[g11, g22], with g11 �= g22.

The deformed g11 (and, therefore, g22) should be sufficiently

close to unity such that the equilibrium system is still in the

MR phase.

From Eq. (29) we can directly extract the first-order correc-

tions to the root state, |R0〉 ≡ |11001100 . . . 0011〉. These are

given by states where only one squeezing, Eq. (27), is applied

at a minimal distance:

|ψ0〉 ≈
(

1 − τ
∑

i

Ŝi,1

)

|R0〉. (41)

Substituting the deformation parameter in Eq. (22) and assum-

ing exp(−2κ2) and the metric anisotropy Q, φ to be small, we

get

|ψ0〉 ≈ |R0〉 − 2 exp[−2κ2(1 − Qeiφ )]
∑

i

Ŝi,1|R0〉, (42)

where we used g11 = cosh Q, g12 = sinh Qeiφ and therefore

(1 − ig12)/g11 ≈ 1 − iQeiφ . On the other hand, the graviton

state is approximated by

|ψg〉 = Ô|ψ0〉 ∝ e−14κ2/3

[

∑

i

Ŝi,1|R0〉 + O(e−2κ2

)

]

. (43)

Note that |ψg〉 is orthogonal to |ψ0〉. From here, we deduce

the graviton root state,

|Rg〉 =
∑

i

Ŝi,1|R0〉

= |1011010011 . . . 〉 + |1100101101 . . . 〉 + . . . , (44)

which is proportional to the first-order squeezes. This is iden-

tical to the MR ground-state first-order correction to the root

state and, in some sense, it is the simplest translationally

invariant quadrupole structure that we can impose on top of

it, creating quadrupoles of the form − + +− in each unit cell.

From the graviton root state, we can deduce the geometric

quench dynamics up to first order in exp(−2κ2). Assuming,

for simplicity, that the postquench Hamiltonian has the metric

g11 = exp(A) ≈ 1 + A and g12 = 0, the initial state is given

by

|ψ (t = 0)〉 =
∣

∣ψ iso
0

〉

≈ |R0〉 − 2e−2κ2 |Rg〉. (45)

Denoting by |ψaniso
0 〉 the ground state of the postquench

Hamiltonian and using Eq. (42), we get

|ψ (t = 0)〉 =
∣

∣ψaniso
0

〉

− 2e−2κ2 (

1 − e2κ2A
)

|Rg〉. (46)

Very close to the thin-cylinder limit, the graviton root state

will be the correct O(1) approximation to an eigenstate of

the Hamiltonian, as confirmed by the numerics. Thus, to first

order, we can treat both |ψaniso
0 〉 and |Rg〉 as eigenstates and

write the time-evolved state as

|ψ (t )〉 =
∣

∣ψaniso
0

〉

− 2e−2κ2 (

1 − e2κ2A
)

e−iEγ t |Rg〉, (47)

with Eγ being the energy of the graviton state. Assuming that

the combined anisotropy, coming from the metric deformation

and the stretching of the cylinder, is still small, κ2A ≪ 1, we

can rewrite the above expression

|ψ (t )〉 ≈ |R0〉 − 2e−2κ2

[1 + 2κ2A(1 − e−iEγ t )]|Rg〉. (48)

The expression in the bracket can be rewritten

1 + 2κ2A(1 − e−iEγ t ) ≈ e2κ2A(1−e−iEγ t ). (49)

Substituting into the previous equation,

|ψ (t )〉 ≈ |R0〉 − 2 exp{−2κ2[1 − A(1 − e−iEγ t )]}|Rg〉. (50)

We recognize that this is of the same form as Eq. (42),

as the expression in the square bracket can be written as

1 − Q̃ exp(iφ̃), with

Q̃(t ) = 2A sin(Eγ t/2), φ̃(t ) = π/2 − Eγ t/2. (51)
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FIG. 9. Geometric quench dynamics in the Fredkin model (21).

The system size is Ne = 8, Nφ = 14, and the circumference is L2 =
3.6ℓB. The system is initialized in the isotropic ground state and

then time evolved by the anisotropic Hamiltonian with Q = 0.01.

The resulting dynamics is in excellent agreement with the linearized

bimetric theory, shown by dashed lines. The slight disagreement

between the two at late times slow decay comes from the spectral

weight in Fig. 8 spread over more than a single energy eigenstate.

These are nothing but the equations of motion of the lin-

earized bimetric theory [52]. Thus, we have reproduced the

graviton dynamics, which in the thin-cylinder limit reduces

to the above two-level system dynamics. Figure 9 confirms

the existence of regular metric oscillations at L2 = 3.6ℓB and

their agreement with the analytical expression in Eq. (51).

From Eq. (44) we deduce that the energy of the graviton in

the thin-cylinder limit is Eγ = 2V023320 = 72 e−14κ2/3 , which

agrees with the frequency of the oscillations seen in Fig. 9.

Notably, our Fredkin model still accurately captures the dy-

namics beyond the regime where it can be analytically treated

as a two-level system. For example, around circumference

L2 ∼ 5ℓB, the graviton peak splits into a few smaller peaks

close in energy. The resulting metric oscillations can be seen

in Fig. 10. There is now a slowly varying envelope that cannot

be accounted for within the simple linearized bimetric theory

in Eqs. (51). At even larger circumferences, the structure of

the graviton state becomes increasingly complicated, as there

are many types of quadrupolar configurations of the root state.

The spectrum undergoes dramatic transformations at interme-

diate values of L2, as the hierarchy of energy scales in the

Hamiltonian changes. It is expected that close to the 2D limit

and in the thermodynamic limit, the energy of the graviton

stabilizes, as the energy hierarchy stabilizes, too, when κ is

small.

V. CONCLUSIONS AND DISCUSSION

We have formulated a one-dimensional qubit model that

captures the MR state and its out-of-equilibrium properties

on sufficiently thin cylinders with circumferences L2 � 7ℓB.

This was demonstrated by computing the overlap with the

MR wave function and scaling of entanglement entropy with

the size of the subsystem, as well as the dynamics following

FIG. 10. Comparison of the geometric quench dynamics be-

tween the Fredkin and full model at the cylinder circumference L2 =
5ℓB. The system size is Ne = 8, Nφ = 14. The system is initialized

in the isotropic ground state and then time evolved by an anisotropic

Hamiltonian with Q = 0.02. In this case, the dynamics is beyond the

simple two-level system dynamics described by linearized bimetric

theory, as the graviton does not correspond to a single eigenstate. The

contribution of additional eigenstates to the spectral function gives

rise to the beating pattern seen here. Nevertheless, there is still good

agreement between the Fredkin and full model.

a geometric quench. One advantage of the proposed model

is that its ground state can be written down exactly and it

is amenable to efficient preparation on the existing quantum

hardware, as we have demonstrated using the IBM quantum

processor. At the expense of noise-aware error mitigation

schemes [46], these results can naturally be extended to probe

the dynamics of the MR phase on quantum computers. This

would also require an efficient optimally decomposed circuit

to emulate trotterized evolution with our Hamiltonian (24),

which is left to future work.

There are some notable differences between the model

presented here and previous studies of the ν = 1/3 Laughlin

case [46]. While in the latter case, the truncated model can be

easily adapted to either open or periodic boundary condition,

in our case the torus boundary condition leads to consider-

able complications. For example, the hopping term in Eq. (8)

should no longer be neglected as it can act on the root state

1010 · · · 1010, which is one of the Tao-Thouless torus ground

states. Keeping this hopping term, in combination with Eq. (9)

we considered above, leads to more complicated models, none

of which appears to be frustration free (i.e., until we exhaust

all the terms in the Hamiltonian for a given finite system

size). For this reason, our truncated model in Eq. (15) applies

primarily to the cylinder geometry.

The previously mentioned caveats of boundary conditions

highlight the fact that defining a truncated model is a non-

trivial task. Unlike the Laughlin case, where the Hamiltonian

can be naturally truncated according to the magnitude of the

matrix elements, leading to a frustration-free model, such a

truncation scheme was not possible for the MR case. The re-

quirement of a frustration-free truncated Hamiltonian involves

judiciously neglecting certain terms, which necessitates an
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independent demonstration of the model’s validity. In fact,

similar difficulties are encountered even in the Laughlin case

in going beyond the first-order truncation in Ref. [41] (see

Appendix C), and they become progressively more severe in

higher members of the Read-Rezayi sequence [64]. It would

be useful if a systematic approach could be developed for gen-

erating frustration-free models in all these examples, which

would allow to controllably approach the isotropic 2D limit.

The frustration-free property of the truncated model at ν =
1/3 has recently allowed to rigorously prove the existence of

a spectral gap in that case [99–101]. It would be interesting to

see if such an approach could be generalized to the MR state

and, potentially, to longer-range truncations.

As mentioned in the Introduction, a unique feature of the

MR state is the neutral fermion collective mode and the emer-

gent supersymmetry relating that mode with the GMP mode

we discussed above. It would be worth investigating signa-

tures of the neutral fermion mode in the proposed Fredkin

model or other appropriate truncations of the MR Hamil-

tonian near the thin-cylinder limit. Unlike the GMP mode,

which can be directly probed using the geometric quench, it

is not known how to excite the neutral fermion mode. This

is because the latter carries angular momentum L = 3/2 in

the long-wavelength limit. Therefore, it does not couple to

the anisotropic deformations of the FQH fluid studied above.

We leave the investigation of such dynamical probes and their

implementation on quantum hardware to future work.

Note added. During the completion of this work, we be-

came aware of a few works that found evidence of anomalous

thermalization dynamics and quantum many-body scars in

models related to the deformed Fredkin chain studied above.

The model of Causer et al. [102,103] assumes a differ-

ent parameter range |τ | > 1, while that of Langlett and Xu

[104] introduces destructive interference between the allowed

Fredkin moves. Both of these modifications, however, are un-

physical from the point of view of FQH realization considered

here.
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APPENDIX A: ANISOTROPIC INTERACTION MATRIX

ELEMENTS FOR THE MOORE-READ STATE

We sketch the derivation of the interaction matrix elements

when an anisotropic band mass is introduced. The interaction

Hamiltonian can be written as:

Ĥ =
1

Nφ

∑

p,q

V̄ (p, q,−p − q) : ρ̄(p) ρ̄(q) ρ̄(−p − q) :,

(A1)

where ρ̄(q) = e−iqxqy/2
∑

j eiqxκ j c
†
j+qy/κ

c j is the projected

density operator, and V̄ (p, q,−p − q) is the interaction po-

tential multiplied by the corresponding form factor:

V̄ (p, q,−p − q) = F (p, q,−p − q) v(p, q,−p − q),

(A2)

where the form factor is

F (p, q,−p − q) = e−p2/4−q2/4−(p+q)2/4, (A3)

and the interaction potential

v(p, q, − p − q) = p4q2 + q4p2 + q4(q + p)2 + (q + p)4q2

+ p4(q + p)2 + (q + p)4p2 (A4)

is the Fourier transform of Eq. (1).

The anisotropic band mass tensor affects the single-

electron wave functions; see, e.g., Ref. [105]. Thus, it also

modifies the matrix elements:

Vj1 j2 j3 j4 j5 j6 ∝ Pg({ ji}) exp

{

−
κ2

2g11

[

∑

j2
i −

1

6

(

∑

ji

)2]

+
iκ2g12

2g11

(

j2
6 + j2

5 + j2
4 − j2

3 − j2
2 − j2

1

)

}

. (A5)

Just as in the isotropic case, the polynomial Pg is tightly

constrained: It has to be antisymmetric in the pairs ( j1, j2),

( j1, j3), ( j2, j3), ( j4, j5), ( j5, j6), and ( j5, j6), and its maxi-

mum total degree is 6. The only such polynomial is the one

that appears in the isotropic case. Therefore the only contribu-

tion of the metric in the prefactor is a constant. The final form

will be

Vj1... j6 =
4
√

3κ8

πg4
11

( j1 − j2)( j1 − j3)( j2 − j3)( j6 − j4)

× ( j6 − j5)( j5 − j4) exp

{

−
κ2

2g11

[

∑

j2
i

−
1

6

(

∑

ji

)2]

+
iκ2g12

2g11

(

j2
6 + j2

5 + j2
4 − j2

3

− j2
2 − j2

1

)

}

. (A6)

Besides the geometry and anisotropy dependent factors, the

numerical prefactor in the normalization of the matrix element

ensures that the Hamiltonian is a three-body projector, i.e., the

eigenvalues of a three-particle system in Nφ → ∞ magnetic

orbitals are 0 and 1, for sufficiently small anisotropies and far

from the thin-torus limit.

APPENDIX B: NONLOCAL STRING ORDER

IN THE FREDKIN CHAIN

The nonlocal constraint that defines Dyck paths hints that

the Fredkin ground state might have interesting behavior in
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FIG. 11. The behavior of Oeven/odd as a function of the deforma-

tion parameter τ . String order is not present at τ = 0, i.e., when the

ground state is a product state. For |τ | < 1 the string order parameter

increases but drops quickly at |τ | = 1 where the gap closes. The

difference in magnitude between Oeven and Oodd is a result of stronger

bonds that form between sites 2i and 2i + 1, such that all spins are

paired up. The inset shows the behavior of Oeven as a function of

|i − j|, demonstrating that the nonlocal correlations quickly stabilize

to a τ -dependent value. All numerical results are obtained from a

chain with N = 100 spins, where the values are already converged.

certain nonlocal order parameters. This is reinforced by the

fact that such nonlocal correlations were found in the spin-

1 analog of our model, the deformed Motzkin chain [106].

The natural correlations to probe in the Fredkin chain are the

string orders discussed in Ref. [107] in connection to spin-1/2

ladders and the Majumdar-Ghosh chain:

Oeven/odd = lim
|i− j|→∞

〈(

Sz
i + Sz

i+1

)

eiπ
∑ j−1

l=i+2
Sz

l

(

Sz
j + Sz

j+1

)〉

,

(B1)

where for Oeven/odd the sites i, j are both even/odd, respec-

tively.

Using the MPS representation (31), we test the Fredkin

ground state for nonlocal order, shown in Fig. 11. First, note

that nondecaying expectation values are only found inside the

|τ | < 1 phase (as the inset shows), whereas in the |τ | > 1

“domain-wall” phase these nonlocal correlations decay. This

suggests that in the |τ | < 1 “antiferromagnetic” phase, short

range valence bonds form between consecutive spins. We also

notice that generally Oeven is higher in magnitude compared

to Oodd. Given that the spin chain always has even length,

the favored arrangement is where all spins are paired [i.e.,

(0, 1), (2, 3), . . . , (N − 2, N − 1)], as opposed to the case

where the first and the last spins remain unpaired. This implies

the bonds starting on an even index will be stronger.

APPENDIX C: MOTZKIN CHAIN AS AN EFFECTIVE

TRUNCATED MODEL OF THE ν = 1/3 LAUGHLIN STATE

In this Appendix, for the sake of completeness, we show

that the Motzkin chain [79–82]—a closely related spin-1

cousin of the Fredkin chain—captures the properties of the

ν = 1/3 Laughlin state. This model contains more terms com-

pared to the model derived in Ref. [41] and hence captures the

physics of the Laughlin state over a slightly larger range of

cylinder circumferences.

The model in Ref. [41] can be derived via a similar method

to the one presented above, but for a two-body interaction

given in terms of V1 Haldane pseudopotential [63]. The cor-

responding matrix elements are now given by

Vj1 j2 j3 j4 = ( j1 − j2)( j4 − j3)e− κ2

4
[( j1− j2 )2+( j3− j4 )2]. (C1)

The minimal model beyond the extreme thin-cylinder limit

from Ref. [41] can be written in the positive-semidefinite form

H ′
L =

∑

i

(Q†
i Qi + P

†
i Pi ), (C2)

where

Qi = αici+1ci+2 + γicici+3, Pi = βicici+2, (C3)

and

α =
√

V0110, β =
√

V0220, γ = e
2iκ2 g12

g11

√
V0330. (C4)

The only configurations which are dynamically connected

to the root state are those that can be obtained from apply-

ing squeezing operators Ŝi = c
†
i+1c

†
i+2ci+3ci to 100100 . . . 001.

This connected component of the Hilbert space can be mapped

to a spin-1 model by considering unit cells of three mag-

netic orbitals, whose occupations can only take the following

patterns:

|010〉 → |o〉, |001〉 → |+〉, |100〉 → |−〉. (C5)

Thus, we can write the model of Ref. [41] as

H ′
L =

N−2
∑

i=0

P
ϕL (v)
i,i+1 , (C6)

where |ϕL(v)〉 = |+−〉 − v|oo〉 and v = −
√

V0330/V0110 =
−3 exp(−2κ2). It is important to notice there are no boundary

conditions–they are not necessary if the mapped Hilbert space

is used (which entails constraints, e.g., configurations with the

first spin |−〉 and the last spin |+〉 being disallowed).

1. Extension to the Motzkin chain

A natural attempt to improve the model in Eq. (C6) would

be to extend the truncation, Pi → βicici+2 + δicici+4. The

newly obtained Hamiltonian H ′ would have the following

off-diagonal actions:

H ′′
L | . . . 100 010 . . . 〉 = βδ| . . . 010 100 . . . 〉

H ′′
L | . . . 010 001 . . . 〉 = βδ| . . . 001 010 . . . 〉 (C7)

and the Hermitian conjugates. In the spin-1 mapping, these

mean

H ′′
L | . . . − o . . . 〉 = βδ| . . . o − . . . 〉

H ′′
L | . . . o + . . . 〉 = βδ| . . . + o . . . 〉. (C8)

However, the fermionic Hamiltonian also produces hoppings
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FIG. 12. Squared overlaps of the ground states of models in

Eq. (C6) (the minimal model H ′
L) and Eq. (C10) (the extended spin

model HM ) with the ground state of the untruncated V1 Hamiltonian.

The extended spin model captures the properties of the Laughlin state

up to cylinder circumferences of L2 ≈ 8 lB, where the overlaps are

�95%.

of the following kind:

H ′′
L | . . . 100 100 . . . 〉 = βδ| . . . 011 000 . . . 〉

H ′′
L | . . . 001 001 . . . 〉 = βδ| . . . 000 110 . . . 〉. (C9)

These break our spin mapping and connect the entire Hilbert

space. Even though we only keep two types of off-diagonal

terms, we no longer obtain a significant reduction in com-

plexity, and in fact we find numerically that the zero-mode

property is also lost. Thus, we focus only on the spin model

instead. The extension of the Hamiltonian in Eq. (C6) there-

fore takes the form:

HM =
N−2
∑

i=0

[

α2P
ϕL (v)
i,i+1 + β2P

U (w)
i,i+1 + β2P

D(w)
i,i+1

]

, (C10)

where we introduced the projectors on the states |U (w)〉 =
|+o〉 − w|o+〉 and |U (w)〉 = |o−〉 − w|−o〉, where w =
−

√
V0440/V0220 = −2 exp(−3κ2). These implement the addi-

tional the additional terms in our truncation, while keeping the

spin Hamiltonian 2-local.

The Hamiltonian in Eq. (C10) represents a particular de-

formation of the Motzkin spin chain introduced in Ref. [82].

It has a unique, zero-energy ground state which is equal to an

area-weighted sum of Motzkin paths, p ∈ MN :

∣

∣ψM
0

〉

= N−1
∑

p∈MN

v
A�(p)

w
A△(p)|p〉. (C11)

Figure 12 shows that this ground state has good overlap

with the Laughlin over a larger range of circumferences. No-

tice that in the Motzkin ground state with v = w, the weights

of a path p are v
A(p), i.e., only dependent on the total area and

not its shape. Figure 13 illustrates how this is different from

Eq. (C11).

Similarly to the Fredkin chain discussed in Sec. III C, the

ground state of the Motzkin chain also has an exact MPS

FIG. 13. (a): Two types of allowed moves in the Motzkin chain.

The upper move corresponds to |oo〉 → |+−〉, while the bottom one

shows |o+〉 → |+o〉 (|−o〉 → |o−〉 is omitted for brevity). Although

each step increases the area of the path by the same amount, the

corresponding weight in Eq. (C11) scales differently depending on

the move. (b): One type of allowed configuration in the ground state,

that was not present in the model Eq. (C6). The sketch shows how

the total area is divided into A� and A△, determining its weight

in the ground state.

representation in terms of matrices:

Ao
jk = w

j−1δ j,k A+
jk = v

1/2
w

j−1δ j+1,k A− = (A+)T .

(C12)

The Motzkin chain with equal deformation parameters v = w

has been studied in depth in the literature. Its gap for v < 1

has been proven [108], and based on our analogy with the

Laughlin state we conjecture that the gap survives for w � v.

2. Laughlin graviton root state and geometric quench dynamics

Here we analyze the graviton root state and dynamics fol-

lowing the geometric quench for the ν = 1/3 Laughlin state,

following a similar approach the MR state in Sec. IV. As

explained in the main text, we can use the SMA ansatz [26,27]

to identify the GMP state with nonzero momentum k:

|φk〉 = ρk|ψ0〉 = e
ikx ky

2

∑

j

eikxκ jc
†
j+ky/κ

c j |ψ0〉. (C13)

In the thin-torus limit, the ground state is the root state |R0〉 =
|1001001 . . . 〉. Thus, the graviton root state with momentum

k = 2κ ŷ is given by
∣

∣R(2)
g

〉

∝ |1100001001 . . . 〉 + |1001100001 . . . 〉 + . . .

(C14)

In the extreme thin-cylinder limit, these states are degenerate

in energy, and the first product state is the Jack root state [92],

from which all states that follow can be obtained by applying

a sequence of squeezes.

However, as the geometric quench preserves momentum,

to identify the long-wavelength limit of the graviton state we

rely on spectral function I (w) from Eq. (39). In the present

case, Ô is a two-body operator [54] with matrix elements

O j1 j2 j3 j4 = δ j1+ j2, j3+ j4 ( j1 − j2)( j3 − j4)

×
[

∑

j2
i −

1

4

(

∑

ji

)2
]

× exp

{

−
κ2

2

[

∑

j2
i −

1

4

(

∑

ji

)2
]}

. (C15)

To enable comparison with the Motzkin model, we introduce

the following coupling operator for the spin-1 chain, defined
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in analogy with Eq. (C10):

OM =
N−2
∑

i=0

[

α2Q
ϕL (v)
i,i+1 + β2Q

U (w)
i,i+1 + β2Q

D(w)
i,i+1

]

, (C16)

where the two-spin operators Qi,i+1 are

QϕL (v) = |+−〉〈+−| − 5v|+−〉〈oo| − 5v|oo〉〈+−|

+ 9v
2|oo〉〈oo|,

QU (w) = 4|+o〉〈+o| − 10w|+o〉〈o+| − 10w|o+〉〈+o|

+ 16w
2|o+〉〈o+|,

QD(w) = 4|o−〉〈o−| − 10w|o−〉〈−o| − 10w|−o〉〈o−|

+ 16w
2|−o〉〈−o|. (C17)

Because the terms inside the projectors of the Hamiltonian

acquire different additional prefactors [stemming from the

FIG. 14. The spectral functions I (ω) for the Motzkin spin chain

(top) and for the untruncated Laughlin Hamiltonian (bottom) at

ν = 1/3 as the cylinder circumference L2 is varied between the

isotropic 2D limit and the thin-cylinder limit. The system size is

N = 9 electrons, Nφ = 25, equivalent to nine spins for the effective

model. The graviton evolution is reproduced with high fidelity up to

L2 ≈ 8 lB.

FIG. 15. Geometric quench dynamics in the ν = 1/3 Laughlin

state. The system size is Ne = 6, Nφ = 16, and the circumference

is L2 = 2.8ℓB. The system is initialized in the isotropic ground state

and then time evolved by the anisotropic Hamiltonian with Q = 0.02.

The resulting dynamics is in excellent agreement with the linearized

bimetric theory, shown by dashed lines.

first [
∑

j2
i − 1

4
(
∑

ji )
2] term in Eq. (C15)], the Q are not

projectors anymore.

The spectral functions I (ω) for the Motzkin spin chain and

the ν = 1/3 Laughlin state are plotted in Fig. 14. Similarly

to the MR case in Fig. 8, we see that the graviton under-

goes a nontrivial evolution as the cylinder circumference is

varied, with clear avoided crossings in the evolution. In the

thin-cylinder limit, the gap of the graviton can be accurately

estimated from the dominant matrix element in the Hamil-

tonian. Beyond this limit and up to L2 ≈ 8 lB, the Motzkin

model is able to accurately capture the physics of the spin-2

excitation, while simultaneously offering a drastic reduction

in Hilbert space dimension.

The graviton state is given by acting on the ground state

with the quadrupole operator (C15). From the model in

Eq. (C6), we also know that the ground state is approximated

by

|ψ0〉 =
∏

i

(

1 −
√

V0330/V0110 e2iκ2g12/g11 Ŝi

)

|R0〉

≈ |R0〉 − 3e
−2κ2 1−ig12

g11

∑

i

Ŝi|R0〉

≈ |R0〉 − 3 exp[−2κ2(1 − Qeiφ )]
∑

i

Ŝi|R0〉, (C18)

where we assumed e−2κ2

and the metric anisotropy Q, φ to be

small. The graviton is then approximated by:

|ψg〉 = Ô|ψ0〉 ∝ e− 5κ2

2

[

∑

i

Ŝi|ψ0〉 + O
(

e−2κ2 )

]

. (C19)

From here we deduce the graviton root state,

|ψg〉 =
∑

i

Ŝi|ψ0〉 = |01100010 . . . 〉 + |10001100 . . . 〉 + . . .

(C20)
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Similarly to the MR case, the graviton root state here is also

proportional to the first-order squeezes and it encodes the

simplest quadrupole structure of the form − + +− in each

unit cell.

Repeating the same steps as in Eqs. (45)–(51) of the

main text, from the graviton root state we can determine the

time-evolved state, showing that it takes the form (at first

order)

|ψ (t )〉 ≈ |R0〉 − 3e−2κ2

[1 + 2κ2A(1 − e−iEγ t )]|Rg〉, (C21)

which has the identical form to the linearized bimetric theory

in Eq. (51). This agreement is confirmed in Fig. 15.
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