)]

Check for
Updates

Enabling Multi-tenancy on SSDs with Accurate 10
Interference Modeling

Lokesh N. Jaliminche*

University of California, Santa Cruz, USA
ljalimin@ucsc.edu

Changho Choi

Samsung Semiconductor, Inc, USA
changho.c@samsung.com

ABSTRACT

Technological advancements in the past decades have sub-
stantially increased the capacity and performance of Solid
State Drives (SSDs). Provisioning such high-capacity SSDs
among tenants can reap multiple benefits, such as elevated
performance, efficient resource utilization, and cost savings
through reduced Total Cost of Ownership. However, work-
loads perform poorly when co-located with others on the
same SSD due to IO Interference, potentially violating Ser-
vice Level Objectives (SLOs). High overprovisioning can ad-
dress the SLO issue, however, it entails low utilization. Prior
works proposed Machine Learning (ML) techniques to pre-
dict SSD performance in the presence of interfering tenants
for optimizing workload placement. However, we find that
these works suffer from two notable limitations. First, pre-
vious ML models do not capture interference impact due to
the non-uniform workload characteristics and SSD internals.
Second, they fail to compute interference of an arbitrary
number of workloads due to a lack of feature aggregation.
As a result, these works still offer low utilization and can
only enforce weak SLOs. To address these limitations, we
propose a Gray-box feature representation and aggregation
technique to capture the IO interference impact of multiple
non-uniform workloads based on internal SSD character-
istics. Our technique improves prediction accuracy by 12x
(lower mean absolute error) over prior works, resulting in
up to 60% higher resource utilization or enforcing up to 2.5x
stricter SLOs.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SoCC °23, October 30—November 1, 2023, Santa Cruz, CA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0387-4/23/11.
https://doi.org/10.1145/3620678.3624657

216

Chandranil (Nil) Chakraborttii
Trinity College, Hartford, USA
nil.chakraborttii@trincoll.edu

Heiner Litz
University of California, Santa Cruz, USA
hlitz@ucsc.edu

CCS CONCEPTS

« Computing methodologies — Modeling methodologies;
Information systems — Storage management.

KEYWORDS

IO Interference, Performance Modeling, Machine Learning,
Resource Allocation, SSDs, Performance Isolation

ACM Reference Format:

Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho
Choi, and Heiner Litz. 2023. Enabling Multi-tenancy on SSDs with
Accurate IO Interference Modeling. In ACM Symposium on Cloud
Computing (SoCC ’23), October 30-November 1, 2023, Santa Cruz,
CA, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.
1145/3620678.3624657

1 BACKGROUND AND INTRODUCTION

0 (MB/Sec)
512 (MB/Sec)

W 1024 (MB/Sec)
w2048 (MB/Sec)

mmm 3072 (MB/Sec)

300 = 4096 (MB/Sec)

150%

Execution Time (Seconds)
G
o

Query Query Query Query Query Query Query Query Query Query Query Query
1 3 4 5 6 7 10 11 12 13 14 15

TPCH Queries

Figure 1: Postgres performance degradation due to IO
Interference

Modern SSDs support multi-terabyte of storage capacity
by exploiting techniques such as planar scaling [74], 3D in-
tegration [50], and multi-level cells [49]. This trend seems to
persist with SSDs utilizing Host Memory Buffer(HMB) [36].
In addition, SSD manufacturers have also been scaling the
I0 bandwidth of SSDs by utilizing multiple parallel NAND
chips, multiple channels, and multi-plane operations [63]. As
a result, single workloads can now rarely utilize the perfor-
mance and capacity offered by a modern SSD. Public cloud

https://orcid.org/
https://doi.org/10.1145/3620678.3624657
https://doi.org/10.1145/3620678.3624657
https://doi.org/10.1145/3620678.3624657
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620678.3624657&domain=pdf&date_stamp=2023-10-31

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

providers leverage this trend by partitioning physical SSDs
into multiple virtual SSDs and leasing them to customers as
individual storage resources [37, 38, 48, 70]. This greatly im-
proves resource utilization and cost-effectiveness. However,
it also introduces the challenge of IO interference, which can
significantly degrade performance for the tenants sharing
the SSD. To demonstrate this effect, we conduct an exper-
iment running TPC-H [14] queries on PostgreSQL while
concurrently scheduling multiple interfering workloads on
the same SSD. Figure 1 shows that, as the IO bandwidth of
the Interfering Workloads increases, PostgreSQL suffers sig-
nificant performance degradation as query execution time
increases by up to 150%. This happens due to the internal
structure of SSDs, which leads to contention in accessing
shared resources (such as flash chips) across workloads. In
such cases, tenants’ service level objectives (SLO) can be vio-
lated, resulting in high over-provisioning, affecting resource
utilization and cost-effectiveness [6].

Prior works propose several approaches to address the
challenge of IO interference. These approaches can be broadly
divided into two categories. The first category involves works
suggesting changes to the internal architecture of SSDs [11,
27, 29, 30, 32, 41, 47, 62, 65, 67] isolating physical resources.
While these techniques can reduce interference, they are dif-
ficult to adapt, and often waste resources due to static parti-
tioning as they can only support a small number of workloads
or tenants. Furthermore, partitioning SSD resources reduces
the number of effective resources applications can use, limit-
ing performance. The second category of works uses black-
box Machine Learning (ML) algorithms to model the device
performance in the presence of IO interference and inform re-
source allocation strategies improving efficiency and utiliza-
tion while maintaining adequate performance [12, 13, 15, 52].
These approaches are easy to adapt as they do not require
changes to SSD architecture. Since they do not isolate the
physical resources, applications can utilize all the resources
available, improving overall performance and utilization.

Unfortunately, determining IO interference is non-trivial
due to the large variety of workload characteristics and inter-
nal SSD architectures. In particular, the workload character-
istics affecting IO interference include the read and write in-
tensity, IO size, IO alignment, access patterns, and burstiness.
At the same time, SSDs respond differently to such workload
characteristics based on their internal organization of chan-
nels, flash chips, and their implemented allocation policies.
Consequently, prior works [12, 13, 15, 52] suffer from the
following shortcomings.

First, they are limited to predicting workload interference
between two or, at most, a small, fixed number of work-
loads. Multiple workloads cannot be supported easily as
their ML models cannot simultaneously accept an arbitrary
number of feature sets (one for each workload). Second, prior

217

Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

works are incapable of extracting complex behaviors such
as burstiness from an observed workload as they consider
only a limited feature set, such as IO size, IO intensity, and
IO access patterns (sequential and random). Third, because
black-box prediction models lack the understanding of an
SSD’s internal device architecture, without extensive fea-
ture engineering, they cannot determine the behavior of a
particular architecture for a given workload.

We address these challenges with a novel gray-box feature
representation and aggregation technique. We first perform
a detailed quantitative analysis of workload characteristics
to determine their precise effects on 10 interference. Then,
we propose new features that can accurately represent the
non-uniform nature of workloads (such as variability in IO
size and burstiness of the workloads) and their interference
impact on SSD’s performance. We refer to our technique as
gray-box, as we relate each of our observations to the device
architecture. For instance, we find that for our analyzed SSDs,
the interference impact of IO size can be captured by cate-
gorizing them according to their alignment with the page
size of the SSD. Furthermore, we introduce a new feature
aggregation technique that enables interference prediction
across an arbitrary number of workloads by aggregating
their features to represent a single aggregated workload. In
summary, we make the following contributions.

(1) A root cause analysis of SSD internals and workload char-
acteristics for modeling IO interference (Section3).

(2) A novel feature representation and aggregation technique
for representing and aggregating IO workload characteristics
enabling multi-workload interference representation with
its usage model (Section 4, 5).

(3) An evaluation on several real-world workload traces (Al-
ibaba [42] and Tencent [75]), outperforming prior works by
up to 12X (lower mean absolute error) (Section 6).

(4) Demonstrating increased resource utilization and reduced
TCO by reducing the number of SSDs for workload place-
ment (Section 6.2).

2 SSD INTERNALS ANALYSIS

In this section, we briefly introduce the internal architecture
of modern SSDs and then highlight specific SSD properties
that cause IO interference. Based on these observations, Sec-
tion 4 will introduce the necessary features to support our
machine-learning mechanism.

2.1 Internal Device Parallelism

Figure 2 shows the basic architecture of a modern SSD con-
sisting of a controller, DRAM, and multiple flash chips. Mul-
tiple flash chips are connected to the controller via channels,
while each flash chip consists of planes, blocks, and pages.
SSDs leverage parallel flash chips and channels to boost

Enabling Multi-tenancy on SSDs with Accurate 10 Interference Modeling

DRAM Buffer

Flash Chlps

Planes

Memory Channels Blocks Pages

5 || |5 |—h“—,—‘ i EEEEE
PIRE SaEalaal "|538]558
83”8 C 11 |mooyooo
* TP 5o llooolson

Figure 2: Basic SSD Architecture

performance [1, 23-26, 56]. However, concurrent usage of
hardware resources (e.g., memory channels) introduces con-
tention, causing performance degradation[25, 41]. In sec-
tion 3.2 and 3.3, we analyze how such contention impacts IO
interference.

As flash memory cannot be written without a prior erase
operation, SSDs utilize out-of-place updates and sophisti-
cated allocation policies to distribute write traffic equally
across flash chips. Consequently, spatial address patterns
such as sequential or random accesses do not necessarily
determine the physical location of a sector. In contrast, reads
cannot be load-balanced across flash chips as the physical
location is determined on each write operation. We study
how such spatial IO access patterns affect interference in
section 3.5

2.2 Read and Write Amplification

Read respectively write amplification is defined as the ratio
of data accessed from the SSD and the data requested by
software [72]. Such read/write amplification happens due
to garbage collection [22] but also because of unaligned IO
sizes and unaligned IO offsets [31, 33, 44, 72].

Unaligned IO Size operations occur if reads or writes
access an amount of data that is not a multiple of the page
size (4K). Particularly, if write operations are smaller than
the page size, a read-modify-write (RMW) operation must be
performed. Similarly, when read operations are smaller than
the page size, the entire page is fetched into a read buffer,
and the required data is subsequently extracted from the
relevant offset. In both scenarios, an excessive amount of
data is read and written, causing read or write amplification.
We will analyze this effect in section 3.1.

Unaligned IO offset Operations occur if reads or writes
utilize addresses that are not page-aligned, causing RMW
operations on multiple pages, significantly increasing read
and write amplification compared to aligned offset oper-
ations [72]. We analyze the impact on IO interference of
unaligned IO offsets in section 3.6.

2.3 Read Write Assymetry

NAND flash writes require high voltages to re-program the
floating gate transistors, taking substantially longer than

218

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

reads [46, 69]. Flash chips only support one outstanding
operation (read, write, or erase) at a time. As a result, a heavy
write workload can reduce the overall read performance. In
section 3.4, we evaluate how read-write asymmetry affects
the performance of neighboring workloads.

3 WORKLOAD CHARACTERISTICS
ANALYSIS

This section analyzes the effect of specific IO workload prop-
erties on interference. We are particularly interested in inves-
tigating non-linear effects as their representation requires
more sophisticated IO interference modeling. We use this
analysis as a guide for proposing our SSD-specific feature
representation. In particular, we analyze the following work-
load properties:

e 1O Size

e JO Rate

e 10 Depth

e 1O Type

e Temporal and Spatial IO access Pattern

To enable a thorough understanding of each of the above
properties corresponding to SSD internals, we perform our
experiments with two types of SSDs, shown in Table 1. We
utilize the flexible IO tester (FIO) [3] to develop synthetic
benchmarks where we define interferering workloads (IW)
and generally one workload under test (WUT). We run these
benchmarks and observe the performance degradation for
the WUT. For each benchmark, we vary one of the above
properties for IW, keeping all the other properties constant,
allowing us to understand the IO interference impact of that
specific property. We use a lower 10 rate for the SATA SSD
compared to the NVMe SSD in line with their maximum
supported bandwidth. We describe the FIO features used
in each benchmark in their respective sections in a tabular
format.

We use libaio [16] as the IO engine and use 8 threads to gen-
erate each IO workload for all the experiments. To analyze
the IO interference impact caused by a particular IO metric,
we use the delta between the IO bandwidth degradation ob-
served by the WUT (y-axis) corresponding to variation in
that IO metric (x-axis). To calculate the difference (Delta), we
first calculate the average IO bandwidth degradation by cap-
turing the WUT’s average 10 bandwidth running in isolation
and then compare it against the bandwidth when exposed
to IO interference (Equation 1). Then we calculate the Delta
between the two corresponding benchmarks to observe the
variation in the IO interference impact corresponding to dif-
ferent values of a particular IO metric (Equation 2). This
applies to all the experiments except for section 3.2 and 3.3,
where we evaluate the average bandwidth degradation for
WUT when run against an IW.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

| Hardware/Software | Configuration

CPU Intel Xeon @ 2.00GHz,
2 Sockets, 14 Cores,
2 Threads per core,
DRAM 80GB

SSD 1 (NVMe) Samsung PM1735 (3.4TB)

Peak Read BW: ~6GB/s

Peak Write BW: ~3GB/s

Peak Mixed BW: ~3GB/s
Samsung 870 EVO (1.8TB)
Peak Read BW: ~512MB/s

Peak Write BW: ~512MB/s
Peak Mixed BW: ~300-512MB/s
FIO

Ubuntu 20.04.4 LTS
Table 1: System Setup for Experiments

SSD 2 (SATA)

Benchmarking Tool
Operating System

Due to space constraints, our analysis primarily focuses
on the read metrics, omitting the write sensitivity analysis.
While write performance is important for tasks such as write-
ahead-logging, modern SSDs generally complete writes as
soon as they are absorbed by the battery-backed DRAM
write buffer and DRAM is less susceptible to interference
than flash. Nevertheless, as we will show in section 6, our
feature representation and aggregation technique (discussed
in section 4) takes into account the impact of IO interference
on both read and write workloads.

Bandwidth Degradation =
Non-Interference BW — Interference BW % 100 (1)
Non-Interference BW
Delta Bandwidth Degradation =
(2)

|IBW Degradation(A) — BW Degradation(B)|

3.1 IO Size Misalignment

FIO parameters
Workload (Io t}ljpe, IO size, 10 rate, 10 depth)
WUT(NVMe) | randread,4k,524288,128 (2GB/Sec)
WUT(SATA) | randread, 4k,65536,128 (0.25GB/Sec)
IW(NVMe) randwrite,4K:8K,349520,128(2GB/Sec)
randwrite,6k,349520,128(2GB/Sec)
IW(SATA) randwrite,4K:8K,43680,128(0.25GB/Sec)
randwrite,6k,43680,128(0.25GB/Sec)

Table 2: IO Size Sensitivity Experiment

To analyze the IO size impact on IO interference, we define
several IWs sweeping their IO sizes from 4 KB to 1024 KB.

219

Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

It is generally accepted that larger IO sizes have a higher
IO interference impact since a higher amount of data for IO
occupies more SSD resources. So we focus on comparing the
IO interference impact between the aligned vs. unaligned
IO sizes corresponding to the page size of the SSD (4KB).
For a fair comparison, we use similar IO bandwidth across
all the IWs. To keep the IO rate and depth constant, we
use two 4KB aligned sizes whose average results in 4KB
unaligned size. This allows us to ensure that only the IO size
property of the IWs is varied. For instance, Table 2 shows
the configuration of IWs where we use two page-aligned
IO sizes of 4KB and 8KB that achieves the IO bandwidth of
2GB/Sec (each IO size is responsible for 50% of the total IO
rate). For the corresponding page-unaligned workload, we
use a 6KB IO size that has exactly same IO rate and IO depth.
The WUT uses a fixed size of 4KB across all the IWs.

w
o
)

= NVMe-SSD
SATA-SSD

N
w
o

N}
o
o

-
o
S)

(Aligned vs Unaligned Size)
&
o

o
o

Delta Bandwidth Degradation (%)

o
o

6k 10k 18k 34k 130k

Average 10 Size (IW)

258k 514k 1026k

Figure 3: 10 Size Misalignment Sensitivity

From Figure 3, we observe that for NVMe SSD, the delta
between bandwidth degradation caused by aligned and un-
aligned size workloads is ~ 20%, which decreases as 10 sizes
increase. This stark difference in performance degradation
caused by aligned and unaligned IO size is explained by the
read amplification and write amplification issue explored in
section 2.2. This delta keeps decreasing for higher IO sizes
because an increase in the IO size increases the number of
aligned writes vs. unaligned writes. For instance, a 6 KB IO
size causes one aligned write and one unaligned write. How-
ever, 1026KB causes 256 aligned writes and one unaligned
write reducing the IO interference impact of unaligned writes.
However, for SATA SSD, we do not see a significant differ-
ence in the IO interference impact of aligned vs unaligned
writes even for smaller writes. We attribute this effect to
the data transfer latency of the SATA interface, which is
significantly higher than the NVMe interface [66], hiding
the impact of unaligned writes in SSDs.

3.2 10O Rate

To understand IO interference sensitivity to the IO rate, we
devise a single WUT and several IWs sweeping only the IO

Enabling Multi-tenancy on SSDs with Accurate 10 Interference Modeling

rate (Table 3). We only discuss the results for the NVMe SSD
as our observations apply equally to the SATA SSD. From
Figure 4, we can see that the IO interference impact of IW
keeps increasing from 0 to = 30% as we increase the IO rate of
the interfering workload. We see this effect as an increase in
the IO rate increases the contention for accessing the internal
SSD resources (Section 2.1), such as memory channels and
flash chips, consequently affecting the performance of the
WUT. However, the IO interference impact is similar for the
IO rate from 314k to 524k (~ 15—18%). Such behavior can
arise from the correlation between the cost of IO operations
and the IO rate. For instance, while contending for the 10
resources with similar IO depth, because less expensive 10
requests get served faster, such workloads can maintain a
higher IO rate, especially when contending with larger IO
sizes workloads. As a result, they suffer lesser IO interference.
This effect can change with the IO depth, which we will
discuss in section 3.3

FIO parameters
(IO type, IO size, IO rate, IO depth)
WUT (NVMe) | randread,4k, 524288,128 (2GB/Sec)

‘Workload

WUT (SATA) | randread,4k, 65536,128 (0.25GB/Sec)
IW (NVMe) randwrite,4k, 104k - 629K, 128

(0.4 - 2.4GB/Sec)
IW (SATA) randwrite,4k, 4k - 65K, 128

(0.02 - 0.25GB/Sec)
Table 3: IO rate sensitivity experiment

50.0
mmm NVMe-SSD

20.0 SATA-SSD

N}
o
o

10.

=]

Bandwidth Degradation(%) (WUT)

0.0

104k, 4k 209k,8k 314k,16k 419k,32k 524k,51k 629k,65k
10 Rate Configuration (IW)

Figure 4: IO rate sensitivity

3.3 10 Depth

To understand the effect of IO depth, we design an exper-
iment where we sweep the IO depth of the IWs from 8 to
16384, keeping IOPS constant (shown in Table 4). We only
discuss the results for the NVMe SSD as our observations
apply equally to the SATA SSD. Figure 5 shows that as we

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

FIO parameters
(IO type, IO size, IO rate, IO depth)
WUT (NVMe) | randread, 4k, 524288, 128(2GB/Sec)

Workload

WUT (SATA) | randread, 4k, 65536, 128(0.25GB/Sec)

IW (NVMe) randwrite, 4k, 524288, 8 - 16384
(2GB/Sec)

IW (SATA) randwrite, 4k, 65536, 8 - 16384
(0.25GB/Sec)

Table 4: IO depth sensitivity experiment

~
o
o

mmm NVMe-SSD
SATA-SSD

g o
°c o
o o

N w B
© S o
o o o

-
o
=)

Bandwidth Degradation(%) (WUT)

o
=}

8 32 64 128 256 512 1024 2048 16384
10 Depth Configuration (IW)

Figure 5: I0 Depth Sensitivity

increase the 10 depth, WUT suffers higher bandwidth degra-
dation, increasing from 0 to 30%. We see such effect due to
increased contention to access the SSD resources correspond-
ing to IO depth. However, we see a step function where IO
depths 64-256 and 8192-16384 have similar IO interference
impacts. We see such behavior because 10 depth generally
helps to achieve certain required IO bandwidth. Once the
required bandwidth of the workload is already met, further
increases in IO depth do not cause higher IO interference,
which is the case for the IO depths 8192-16384.

3.4 10 Type

FIO parameters
(IO type, 10 size, 10 rate, 10 depth)
WUT(NVMe) | randread, 4k, 524288, 128 (2GB/Sec)

Workload

WUT (SATA) | randread, 4k, 65536, 128 (0.25GB/Sec)

IW (NVMe) randread, 4k, 524288, 128 (2GB/Sec)
randwrite, 4k, 524288, 128 (2GB/Sec)

IW (SATA) randread, 4k, 65536, 128 (0.25GB/Sec)

randwrite, 4k, 65536, 128 (0.25GB/Sec)
Table 5: IO Type Sensitivity Experiment

This section analyzes the IO interference impact of read vs.
write workloads. So we only vary the IO type of the IWs (Ta-
ble 5). From Figure 6, we can see that the delta between the
bandwidth degradation caused by read and write workloads

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

mmm NVMe-SSD
SATA-SSD

Delta Bandwidth Degradation(%) (WUT)
(Read vs Write)
N
o
o

Read vs (Read, Write)
10 Type Configuration (IW)

Figure 6: I0 Type Sensitivity

is & 30% for NVMe SSD and = 10% for SATA SSD. This
essentially happens as writes are significantly more expen-
sive than read requests due to the physical nature of SSD
discussed in section 2.3.

3.5 Spatial IO Access Patterns

FIO parameters

Workload (Io t}I:pe, IO size, IO rate, IO depth)

WUT (NVMe) | randread, 4k, 524288, 128 (2GB/Sec)
read, 4k, 524288, 128 (2GB/Sec)

WUT (SATA) | randread, 4k, 65536, 128(0.25GB/Sec)
read, 4k, 65536, 128 (0.25GB/Sec)

IW (NVMe) randwrite, 4k, 524288, 128 (2GB/Sec)
write, 4k, 524288, 128 (2GB/Sec)

IW (SATA) randwrite, 4k, 65536, 128(0.25GB/Sec)
write, 4k, 65536, 128 (0.25GB/Sec)

Table 6: IO Access Pattern Sensitivity Experiment

w
o
o

mmm NVMe-SSD
SATA-SSD

N
u
)

N
o
)

(Sequential vs Random)
= =
S u
o o

ok
o

Delta Bandwidth Degradation (%)

0 Seq vs (Seq, Random) Random vs (Seq, Random)
10 Access Pattern Configuration (IW)

Figure 7: Spatial 10 access pattern Sensitivity
This section analyzes the interference impact of spatial IO

access patterns, such as sequential vs. random. In this exper-
iment, we define two read-only WUTs and two write-only

221

Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

IWs for both NVMe and SATA SSD, only varying their IO
access patterns (Table 6). Then we run all four configuration
permutations. For NVMe SSD, Figure 7 shows that the delta
between bandwidth degradation caused by sequential and
random IW is less than =~ 5%. We attribute this behavior to
the write allocation policies described in section 2.1. The
probability of accessing a particular flash chip is the same
for all chips as long as a sufficient number of outstanding
requests and some IO request buffering capability exists in
the system [35, 44]. However, for the SATA SSD, we see a
higher delta between the performance degradation caused
by the random and sequential IWs, ~ 10% for sequential
and ~ 20% for random WUT. This can be explained by our
discussion in section 3.2, where we show that operations
with a shorter completion time could maintain a higher IO
rate and suffer less IO interference. Sequential operations
are more efficient than random operations as SSD manufac-
turers employ optimization techniques, such as prefetching
and IO striping [9, 46, 71], increasing overall IO efficiency.
As a result, the more efficient sequential WUTs suffer less. In
the SATA SSD, such behavior is more evident due to limited
hardware resources and less efficient write operations than
NVMe SSD.

3.6 IO Offset Alignment

FIO parameters
Workload (IO t}ljpe, 10 size, 10 rate, IO depth)
WUT (NVMe) | randread, 4k, 524288, 128 (2GB/Sec)
WUT (SATA) | randread,4k, 65536,16 (0.25GB/Sec)
IW (NVMe) randwrite, 4k, 524288, 128 (2GB/Sec)
write:17k, 4k, 524288, 128 (2GB/Sec)
IW (SATA) randwrite, 4k, 65536, 128(0.25GB/Sec)
write:17Kk, 4k, 65536, 128(0.25GB/Sec)

Table 7: IO offset Alignment Sensitivity Experiment

w
o
<)

mmm NVMe-SSD
SATA-SSD

N
w
)

N}
o
o

(Aligned vs Unaligned Offset)
[
p w
o o

L
=}

Delta Bandwidth Degradation (%)

o
o

4k 8k 16k 32k 128k 256k

10 Size Configuration (IW)

512k 1024k

Figure 8: 10 interference due to IO offset alignment

To explore the IO interference caused by different IO offset
alignments, we devise a single WUT and several IWs that

Enabling Multi-tenancy on SSDs with Accurate 10 Interference Modeling

generate two types of IWs. IWs with page-aligned and page-
unaligned offset IOs. Note that using FIO with "write:17k" IO
type performs page unaligned offset IOs by skipping 17k after
each write operation. We do this for multiple IO sizes (Ta-
ble 7). We only explain the results for SATA SSD; similar
observations apply to NVMe SSD. Figure 8 shows that the
delta between the bandwidth degradation caused by aligned
and unaligned offset IWs is ~ 10%, and it keeps decreas-
ing as the IO size increases. We attribute this delta to RMW
(read-modify—write) operations caused by unaligned offset
IOs explained in section 2.2. The decrease in IO interference
impact is explained in section 3.1, where an increase in IO
size leads to lower unaligned operations than aligned oper-
ations. Note that un-aligned offset IOs shows a higher 10
interference impact than un-aligned size IOs, as crossing the
page boundary can cause RMW operations on two pages,
making it significantly expensive. For instance, 4k unaligned
IO offset cause two RMW operations as no direct flash writes
can be performed. While in the case of 6k IO size on aligned
offset cause only one RMW operation.

3.7 Temporal I0 Access Patterns

FIO parameters

Workload (IO type, IO size, IO rate, IO depth,
startdelay, thinktime, thinktime)

WUT (NVMe) | randread,4k, 524288,32, 0, 0, 0
(Avg:2GB/Sec, Std:0)

WUT (SATA) | randread,4k, 65536,32, 0, 0, 0
(Avg:0.25GB/Sec, Std:0)

IW Uniform randwrite, 4k, 262144,128, 0, 0, 0

(NVMe) (Avg:1024MB/s, Std:0)

IW Bursty randwrite, 4k, 53608,128, 1s, 1s, 1s

(NVMe) randwrite, 4k, 470680,128,0,1s,1s
(Avg: 1024MB/s, Std: 1152MB/s)

IW Uniform randwrite, 4k, 32768,128, 0, 0, 0

(SATA) (Avg:128MB/s, Std:0)

IW Bursty randwrite, 4k, 12496,128, 1s, 1s, 1s

(SATA) randwrite, 4k, 50000,128,0,1s,1s
(Avg: 128MB/s, Std: 144MBY/s)

Table 8: Uniform vs Bursty IO Sensitivity Experiment

This section analyzes the degree of interference caused by
temporality of IO access patterns. In particular, we compare
bursty workloads against uniform workloads. As per our
knowledge, no prior work has considered the varying 10
interference of temporal access patterns, although bursty
workloads are common in real-world scenarios. For this
experiment, we define two IWs. The first IW generates a
uniform IO rate (uniform IW), i.e., the bandwidth remains

222

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

w
o
o

mmm NVMe-SSD
SATA-SSD

N
u
o

N
o
o

—
o
<)

(Uniform vs Bursty)
=
w
o

u
o

Delta Bandwidth Degradation (%)

o
=)

1024, 1152 128, 144
Average Bandwidth and Standard Dev. (IW)

Figure 9: Temporal (uniform vs. bursty) IO access pat-
tern induced performance degradation

the same throughout its lifetime, while the other workload
(bursty IW) exhibits a variable IO rate. To generate the bursty
IW and control the IW’s burstiness, we define two FIO jobs
that generate varying IOPS during their execution. We uti-
lize FIO job parameters such as startdelay, thinktime and
thinktime_iotime (the last three parameters in Table 8). To
setup a single bursty IW, we synchronize four FIO jobs by
overlapping their start delay (startdelay), idle phase (think-
time), and IO phase (thinktime_iotime), generating an average
bandwidth, standard deviation values of approximately 1024,
1152, and 128, 144 for NVMe-SSD and SATA-SSD experiment
respectively.

We explain the results for NVMe-SSD; similar observa-
tions apply to the SATA-SSD experiment. Figure 9 shows that
the delta between the bandwidth degradation caused by uni-
form vs. bursty workload is approximately =~ 25%, which we
explain as follows. The aggregated 10 bandwidth of the WUT
(2GB/s) and uniform IW (1 GB/s) is accommodated by the
peak bandwidth of the device (3 GB/s), as shown in Table 1.
As long as the aggregate bandwidth is lower than or equal
to the peak bandwidth of the device, performance interfer-
ence is limited. However, for bursty interference workloads,
the real-time bandwidth varies over time and sometimes ex-
ceeds the device’s peak bandwidth, causing interference. As
a result, burstiness affects the available percentage of peak
bandwidth that can be utilized without causing interference
showing the insufficiency of average IO rate and bandwidth
to predict performance interference. Next, we discuss our
proposed approach to represent burstiness.

Representing Burstiness: The burstiness of a workload
can be described with a time series of IOPS values. However,
such time series have an unbounded size and are difficult to
aggregate. Furthermore, we would need to know the exact
phase difference between the WUT and the IW to compute
interference. We propose a different technique to represent
the burstiness of a workload based on the standard deviation
from its mean. To evaluate the applicability of the standard

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

deviation, we devise an experiment where we expose the
WUT to several bursty IWs with variable IO rates. Our re-
sults in Figure 10 demonstrate a strong correlation between
the average bandwidth and standard deviation of the IWs
with the average bandwidth achieved by WUT, showing that
standard deviation is a good proxy for bursty interference.

11500
mmm Average Bandwidth (MB/Sec) (WUT) - Std, Dev

r1000

N)
i
=)
.

N
N
=]

o

=3

S]

N
(=]
o
Standard Deviation (IW)

e

=
@
=]
=)

1024,128 1024,256 1024,384 1024,768 1024,896
Average and Standard Deviation (MB/Sec) (IW)

NVMe

1024,1152

80 el

70

Average Bandwidth (MB/Sec) (WUT)

50+

128,16 128,32 128,64 128,96
Average and Standard Deviation (MB/Sec) (IW)
SATA

128,8 128,160

Figure 10: Correlating Std. Dev. and IO Interference

4 GRAY-BOX FEATURE APPROACH

Prior works [6, 7, 12, 13, 15, 52] lack important features while
building IO Interference prediction models. Consequently,
they suffer from the following shortcomings. First, they can-
not represent 10 interference caused by SSD internals, which
is important because IO interference changes significantly
corresponding to IO size and offset alignment due to the
physical nature of the SSD (discussed in section 3.1 and 3.6).
Second, traditional features such as average 10 bandwidth
alone cannot represent the bursty behavior of the workloads
and fails to represent their IO interference impact, which
can be significantly different from uniform workloads (see
section 3.7).

To address these issues, we define our Gray-box feature
set that considers workload properties corresponding to SSD
internals to represent 10 interference impact accurately. We
refer to our features as Gray-box because we relate each SSD
property affecting IO interference (discussed in section 2)
while representing the IO workloads.

4.1 Gray-box Features

Table 9 lists our proposed features for representing an IW.
We utilize 8 features, each considering IO type (read and
write) and IO size alignment classes (page aligned and page
unaligned size), following our analysis in section 2 and sec-
tion 3. Since a single IW could have varying IO sizes, we
represent the IO sizes used by the IW by taking the weighted
mean of all the IO sizes observed in the workload correspond-
ing to their IO rate. To consider the IO Interference impact
of burstiness of the workload (discussed in section 3.7), we
utilize the average and standard deviation of the IO rate

223

Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

and IO bandwidth, which are valid proxies for representing
burstiness (Section 3.7). In our feature set, we utilize both IO
rate and IO bandwidth as these features also represent queu-
ing contention inside an SSD. IO bandwidth, together with
weighted mean size and avg IO rate, represents contention
to utilize resources such as flash chips. To consider the effect
of the IO offsets (discussed in section 3.6), we calculate the
ratio of unaligned offset IOs in their respective categories.
Similarly, we calculate the ratio of random IOs capturing the
effect of spatial IO access patterns (discussed in section 3.5).
In section 6, we evaluate the prediction accuracy enabled
by our proposed features, demonstrating that our proposed
features are sufficient to represent IO interference impact
accurately. Next, we describe our methodology for feature
aggregation from multiple workloads and its importance.

Features Read / Write
Aligned | Unaligned
Size IOs | Size 10s
Weighted Mean Size WM, WM,
Average 10 Rate AR ARy
Std. Dev. 10 Rate SR, SR,
Average 10 BW ABgs ABy;
Std. Dev. IO BW WM WM,
Unaligned Offset Ratio Ugs Uus
10 Depth D
Random Ratio Rratio

Table 9: Gray-box Features

4.2 Gray-box Feature Aggregation

Small Feature Space :

Fail to predict for high number of
workloads

Large Feature Space :

Difficult to train

Allocated Workload's

Gray-Box Aggregation:
Fixed feature space enabling
predictions for arbitrary
number of workloads

Allocated Workload's

Features Gray-box Features
Whew | W, | W, | | Wy | Whew | Wy | W, Wy |
Gray-Box Aggregation
v A4 A4 v
ML Model : ML Model
Prevdiction PreH]ction

(Bandwidth/Latency of New
Workload Under Interference)

(Bandwidth/Latency of New
Workload Under Interference)

Figure 11: Supporting Arbitrary Number of Workloads

In a real-world environment, estimating the number of
workloads that can share the SSD is difficult as it is subject to
their SLOs. For instance, while a few workloads with strict

Enabling Multi-tenancy on SSDs with Accurate 10 Interference Modeling

SLOs can be colocated, many workloads with flexible SLOs
can be colocated on the same SSD. Essentially, the ML model
should be able to predict the IO Interference impact of the
arbitrary number of workloads. Nevertheless, predicting 10
interference with an arbitrary number of workloads poses a
challenge as training ML models with a fixed number (N) of
workloads can render the model ineffective in predicting IO
interference beyond N workloads. Alternatively, increasing
the feature space to support predictions for a higher number
of workloads makes the training and inference difficult and
sometimes infeasible due to the curse of dimensionality (Fig-
ure 11) [76]. Therefore, we propose our Gray-box feature
aggregation technique to aggregate the individual features
of N IWs without losing their IO interference characteris-
tics. This technique enables the ML model to generalize its
predictions to an arbitrary number of workloads. Next, we
explain the process for feature aggregation.

First, we preprocess the block traces of interfering work-
loads and represent them with our proposed Gray-box fea-
tures (Section 4.1). As shown in Table 9 we first separate IO
traffic according to their IO type and size alignment. In the
following, we describe how to aggregate features in the Ta-
ble’s first column (Aligned Size I0s). The same methodology
applies to calculating the feature values in another column.
To calculate the aggregated Weighted Mean Size (W Mys) of
N IWs, we use equation 3 using average rate as weight (ARs).
To aggregate the average and standard deviation values of
10 rate and bandwidth (AR, SRys, ABgs, SBgs), we utilize
equations 4 and 5, respectively. IO depth features should be
aggregated by summing up the IO depths of N IWs. For cal-
culating the aggregated ratios, we utilize equation 6, where
we first multiply the fraction of unaligned offset ratio by the
average 10 rate (ARgs) for all the IWs and then calculate the
aggregated ratio(equation 6). Sequential to random ratio is
aggregated similarly; the only difference is that the fraction
is multiplied by the average IO rate across both aligned and
unaligned IO size traffic (average aligned(AR,;) + average
unaligned IO rate(ARy;)).

fil (Size; - Rate;y)

Agg_Weighted_Mean(Size;, Rate;) =

Zf\il Size;
®)
N
Aggregate_Avg(X;) = Z Xi (4)
Aggregate_Std(Y;) =)
N

N U; x Avg IO Rate,

Aggregated Ratio = Lizt i = (6)

>N, Avg IO Rate,

224

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

USAGE MODEL

Gray-Box
Resource
Allocator

A '
Retrain u n D
ML Model u u D

(Update)

* (1]u)]
Extract Gray- Allocation on
Box Features

Final SSDs
Trace Collection from
Staging and Final SSDs

Figure 12: Usage Model

Workloads

Allocation on
Staging SSDs

Algorithm 1 Resource Allocation

1: function GRAY_BOX_RESOURCE_ALLOCATION(workload)
2 GroupCount, allocations « global_allocations

3 assigned « False

4 slo_violation « False

5 for i in range (GroupCount) do

6 t_group « allocations[i] + workload

7 for j in range (len(t_group)) do

8 w <« t_group|[j]

9: g « [all the workloads in t_group except w|
10: if SLO_VioLATION(W, g) then
11: slo_violation « True
12: break

13: end if

14: end for

15: if not slo_violation then

16: allocations[i].append(workload)

17: break

18: end if

19: end for
20: if not assigned then
21: allocations.append([workload)
22: GroupCount « GroupCount + 1
23: end if
24: global_allocations < GroupCount, allocations

25: end function

Figure 12 shows a high-level usage model of the Gray-box
Resource Allocator. Submitted workloads are retrieved from
a queue and looked up in a database of previously seen work-
loads. If the workload is already known (Yes), the Gray-box
Allocator queries the SSD cluster for existing allocations to
determine candidate SSDs that could absorb the new work-
load. To handle workload identification, we use a unique

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

identifier corresponding to extracted gray-box features from
their trace profiles. In the real world, it can be a workload
ID in a private cloud or a signature in a public cloud. We
recognize that signature identification can be difficult and
may require more complex mechanisms capturing various
phases of a workload [4, 53, 59]. We intend to investigate
such mechanisms in our future work.

The allocator utilizes Algorithm 1 to find the best candi-
date location. In particular, it iterates through all candidate
locations with enough storage capacity to house the work-
load and then utilizes the ML model to assess whether the
new workload (WUT) suffers or causes SLO violations when
colocated with the preexisting workloads (IW) on that SSD.
The two-nested loop in Algorithm 1 is required as in addition
to analyzing whether the new workload can be scheduled
without violating its SLO, we also need to ensure that the
already provisioned workloads’ SLOs are not violated. As a
result, the worst-case execution time of the allocation mech-
anism is given by the number of candidate locations (SSDs
that provide sufficient storage capacity) times the number of
pre-existing workloads on these candidate locations. Each
model inference task takes less than 400 microseconds on
the Intel Xeon server (see Table 1) we use for our experi-
ments, and hence for a 1000 SSD cluster allocation can be
performed in less than 10 seconds. The two-nested loop in
Algorithm 1 can be unrolled and parallelized. By batching
inference tasks and leveraging GPUs, we envision allocation
can be performed in a few milliseconds.

For predicting the expected performance for the new work-
load (bandwidth or latency) under interference, the ML model
utilizes Gray-box features. These features encompass both
the new workload’s gray-box features and the existing work-
loads’ aggregated gray-box features, serving as input features
for the model (Figure. 11). The ML model is trained using
the Random Forest (RF) regression algorithm, which has
shown to provide high accuracy for IO Interference predic-
tion [15]. We utilize the Scikit-learn [58] ML library with
the default parameters and 100 estimators: RandomForestRe-
gressor(n_estimators=100, random_state=42). To handle a
variety of SSD landscapes today, we train separate models for
each SSD type, incorporating their different IO interference
characteristics corresponding to their internals as shown in
section 3.

If the new workload is unknown and cannot be found
in the database of previously seen workloads, it is assigned
to a staging SSD, where workload traces, and performance
data are collected. The trace is analyzed to extract Gray-box
features, and a new entry is added to the database for future
observations of the same workload. At this point, the work-
load can be migrated, or the SSD can be logically moved to the
storage cluster. To ensure that the accuracy of the ML model
does not degenerate over time, it can be periodically retrained

225

Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

to accommodate new types of workloads. Trace collection is
performed for 10 seconds after the workload reaches a steady
state and before features are extracted in the staging area.
At this point, the staging SSD can be added to the main SSD
cluster. In a real-world environment, workload characteris-
tics can change over their lifetime. To handle such workload
drifts, online performance tracking (SLO violations) with
cost-benefit analysis can be leveraged to trigger re-profiling
and readjusting resource allocation [5, 18, 20, 59, 61]. How-
ever, such mechanisms might incur profiling overhead and
downtime during data migration. We plan to explore such
overheads in the future.

6 EVALUATION

We will first describe our evaluation methodology and then
evaluate the utilization and TCO improvements provided
by our proposed Gray-box technique. To provide additional
insights, we then provide a thorough accuracy and feature
sensitivity analysis of the ML model used by the Gray-box
Allocator.

6.1 Experimental Setup and Methodology

Baselines. Due to the neglect of the feature aggregation
problem in prior literature, no existing studies have put for-
ward a feature aggregation technique specifically designed
for SSDs. Therefore we compare our Gray-box technique
against the Weighted-mean baseline proposed for HDDs
by Park et al. [55]. Weighted-mean aggregates interference
workloads by computing the simple weighted mean of the
10 sizes, 10 depths, sequential to random ratios, average IO
rates, and average IO bandwidths. The Weighted-mean tech-
nique does not consider temporal behavior (burstiness) nor
SSD internals (IO offset and size misalignment). Weighted-
mean utilizes the same Random Forests (RF) based regression
algorithm as Gray-box (with different features). For the TCO
and SLO analysis, we also compare against a quota-based
mechanism that is commonly used in existing systems. The
quota-based mechanism assigns each workload its worst-
case quota (overprovisioning rate) required to meet a certain
SLO.

ML Methodology. To evaluate our Gray-box ML model,
we evaluate five performance metrics: Average bandwidth
(MB/Sec), Average Latency (microseconds), and Tail latency
(90th, 95th, and 99th percentile in microseconds) for two
evaluation metrics: R2 score and Mean Absolute Error (MAE).
R2 score [68] is the coefficient of determination representing
the proportion of feature data that correlates with labels. We
use MAE along with R2 score as it does not represent the
accuracy of predictions. We train separate models for each
performance metric corresponding to its IO type(Read/Write)

Enabling Multi-tenancy on SSDs with Accurate 10 Interference Modeling

and randomly choose 75% of the data for training and 25%
for validation.

Input Data Sets. We evaluate the accuracy of our ap-
proach on real-world block-level IO traces from Alibaba
Cloud [42] and Tencent [43] live production servers, obtained
via the SNIA [64] and Github [2] open source trace reposito-
ries. In particular, these traces are used for the evaluation in
sections 6.2, 6.3, and 6.5. To generate the actual workloads,
we randomly select 500 ten-second workload samples from
these traces. Each sub-trace is viewed as a separate workload,
exhibiting its own IO access pattern.

For the experiment in section 6.4, we utilize synthetic
traces to precisely control specific workload characteristics
such as unaligned accesses. To prepare synthetic traces, we
prepare 500 constrained-random synthetic FIO workloads
with varying workload properties, run them on the SSD in
isolation for 10 sec, and collect their traces.

Evaluation and Test Set. To prepare training and eval-
uation data, we randomly select 2-16 workload traces, run
them on the SSD simultaneously and collect the performance
observed by each trace-replay (workload), which we use as
our labels. We limit ourselves to 16 traces considering the
maximum bandwidth supported by the device. Then we cal-
culate Gray-box features for each trace. For each run, we
alternatively consider one workload as WUT and the remain-
ing as IWs. Features contain Gray-box features for WUT and
aggregated Gray-box features for IWs. Performance numbers
of WUT are used as labels. In such a way, we have prepared
more than 4000 data points (2000: synthetic 2000: real-world).
We randomly choose 75% of the data for training and 25%
for validation.

6.2 Optimized Gray-box Allocation

Our proposed Gray-box Allocator considers comprehensive
workload characteristics and SSD internals to improve inter-
ference prediction and, as a result, increases resource utiliza-
tion while reducing SLO violations. Here we evaluate the
number of required SSDs to house 1000 workloads consider-
ing different SLO levels.

Figure 13 compares our Gray-box approach against the
Weighted-mean and quota-based baselines for different SLOs.
If tenants are unwilling to accept a single percentage per-
formance decrease when co-locating other workloads, none
of the techniques can improve utilization. As the SLO is
relaxed, e.g., if 5% performance degradation is acceptable,
Gray-box can pack the 1000 workloads with 327 SSDs, while
Weighted-mean requires over 600 SSDs. Providing more ac-
curate interference predictions allows Gray-box to aggres-
sively combine workloads on a shared SSD without violating
SLOs. We will further examine this aspect in section 6.3. The
quota-based mechanism requires much more relaxed SLO

226

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

configurations to improve utilization. The key disadvantage
of the quota-based mechanisms is that it considers the worst-
case interference across all workloads. In contrast, Gray-box
and Weighted-mean consider pairwise interference between
2 sets of workloads. For an SLO of 10%, Gray-box provides
31% higher resource utilization over Weighted-mean and 60%
over quota-based allocation. Similarly, for the same utiliza-
tion rate(<700 SSDs), while Weighted-mean and Quota-based
allocations only enforce an SLO of 5%, Gray-box can enforce a
stricter SLO of 2%. In summary, Gray-box improves resource
utilization by up to 60% when considering an SLO of 5%, or it
can enforce an up to 2.5x stricter SLO over Weighted-mean
when utilizing up to 68% of the available SSDs.

Quota-Based

B Weighted-Mean s Gray-Box

Number of SSDs

N S (=)} ©
o o o o
o o o o o

\
\
\
\
I
]
\
]
|

Service Level Objective (SLO)

Figure 13: Resource Allocation Comparison

6.3 Resource Utilization and SLO
Compliance

In the previous section, we showed how Gray-box can im-
prove resource utilization. To provide additional insight into
how Gray-box outperforms Weighted-mean, we pick 30 ran-
dom samples from our prediction results and measure the
prediction error corresponding to the actual bandwidth. A
high positive error means that the ML model underpredicted
the interference, leading to an SLO violation, whereas a
high negative error means the ML model overpredicted the
interference, causing low-resource utilization. This exper-
iment shows the quality of the ML models, in particular,
how well they can approximate the actual Interference. Fig-
ure 14 represents the prediction error (in %) of Gray-box
and Weighted-mean, corresponding to the actual bandwidth
observed by the WUT in the presence of interference. As can
be seen, for a chosen SLO of 10%, Weighted-mean shows 14
(out of 30) violations (e.g., workload mixes 26, 27), whereas
Gray-box suffers from none. Furthermore, in nine cases, the
Weighted-mean technique falls below the 10% resource uti-
lization threshold reducing efficiency and causing high TCO.
For instance, for workload mixes 12 and 13, the Weighted-
mean technique predicts the bandwidth ~ 15 and 25% lower
than the actual bandwidth preventing co-locating them with
their respective workload mixes.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

30 @~ SLO Weighted-Mean mmm Gray-Box
20
=
‘-g O e O B S OSPS5OS5BS NSRRI 55 PSS 537 NSNS S50 S 1 PSSP ——Y
ué ol _ I - - - - . . e He H
S I - . || I | - - .
%-10 P s O @ @ A v e Qi e S @ Qi S i i i @ s @ e
a
-20
-301 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Benchmarks
Figure 14: Effectiveness of Gray-box for preventing SLO violations and increasing Resource utilization
1.2 Weighted Mean mmm Weighted Mean + offset, size
Weighted Mean + offset Emm Gray-Box
1.0
o 0.8
5
A 0.6
o
* 0.4
0.2
0 Average BW Mean Tail Average BW Mean Tail Tail Tail
(Read) Latency Latency Latenc Latency (Write) Latency Latency Latency Latency
(Read) 90p (Read) 95p (Read) 99p (Read) (Write) 90p 95p 99p
(Write) (Write) (Write)
Labels
Figure 15: Gray-box ML Feature Sensitivity: Synthetic Data (R2 score)
E 14 Weighted Mean B Weighted Mean + offset, size
g 12 Weighted Mean + offset ~ mEE Gray-Box
=}
Fi
210
<
c 8
3
s 6
T 4
N
® 2
Ey .-
2 Average BW Mean Tail Tail Tail Average BW Mean Tail Tail Tail
(Read) Latency Latency Latency Latency (Write) Latency Latency Latency Latency
(Read) 90p (Read) 95p (Read) 99p (Read) (Write) 90p 95p 99p
(Write) (Write) (Write)
Labels

Figure 16: Gray-box ML Feature Sensitivity: Synthetic Data (MAE)

In summary, Gray-box always shows higher resource uti-
lization than Weighted-mean while maintaining SLO compli-
ance, as its prediction closely follows the actual performance.

6.4 ML Features Sensitivity Study

Our proposed Gray-box technique considers SSD internals
and additional workload characteristics such as burstiness
to improve prediction accuracy over the Weighted-mean
baseline. In the following, we evaluate the impact of these
individual features on prediction performance. In particular,
we evaluate the effect of considering IO offsets, IO sizes, and

227

burstiness by adding the features one by one (Gray-box has
all features enabled). Figure 15 shows the R2 score for pre-
dicting the WUT’s performance when running against an
IW. The x-axis shows different performance metrics, such as
latency and bandwidth and the y-axis shows the R2 score. We
train (10 x 4) ML models, for each performance metric to eval-
uate how each of the newly proposed features contributes
to accuracy.

To evaluate the impact of the features on the actual pre-
diction, we calculate the Normalized Mean Absolute Er-
ror (NMAE), considering predictions with Gray-box features

Enabling Multi-tenancy on SSDs with Accurate 10 Interference Modeling

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

1.2 Weighted-Mean mmm Gray-Box
1.0
0 0.8
S
& 0.6
o
< 0.4
0.2
0 Average BW Mean Tail Average BW Mean Tail
(Read) Latency Latency Latency Latency (Write) Latency Latency Latency Latency
(Read) 90p (Read) 95p (Read) 99p (Read) (Write) 90p 95p 99p
(Write) (Write) (Write)
Labels

Figure 17: Weighted-Mean Vs. Gray-box Prediction Accuracy: Real-World Data (R2 score)

E 14 Weighted-Mean mmm Gray-Box
212
g 10
c 8
3
s 6
2 4
N
E 2
5 o | | . . | | | || || |
=z Average BW Mean Tail Tail Tail Average BW Mean Tail Tail Tail
(Read) Latency Latency Latency Latency (Write) Latency Latency Latency Latency
(Read) 90p (Read) 95p (Read) 99p (Read) (Write) 90p 95p 99p
(Write) (Write) (Write)
Labels

Figure 18: Weighted-Mean Vs. Gray-box Prediction Accuracy: Real-World Data (MAE)

as a baseline (shown in Figure 16). We can see how adding
our proposed Gray-box features considering burstiness and
SSD Internals (offset, size alignment) improves the MAE.
In particular, NMAE for the Weighted-mean prediction is
6 to 14 times higher than the Gray-box prediction for all
the performance metrics. While Weighted-mean + offset fea-
tures improve the prediction accuracy, their NMAE is still
4 to 8% higher, which reduces to 2 to 6x after adding size
alignment features. This shows how adding our proposed fea-
tures decreases the MAE and improves the IO Interference’s
prediction accuracy.

6.5 Prediction Accuracy: Real World data

Figure 17 shows the R2 score to predict the performance of
real-world WUT when run against IW. The interpretation
of the graph is analogous to Figure 15. Similar to synthetic
data, we could see that the R2 score for the Weighted-mean
is significantly lower than the Gray-box features. For all
the performance metrics, while R2 score for Weighted-mean
remains lower than 0.87, for the Gray-box, it is more than
0.98. Fundamentally, this happens as the Weighted-mean
features disregard the non-uniform IO interference impact of
workload properties such as burstiness and SSD internals (IO
size and offset alignment), making IO interference impact

228

difficult to learn. Similarly, Figure 18 shows Normalized Mean
Absolute Error analogous to Figure 16. For each performance
metric, MAE for the Weighted-mean is 4 to 12X higher than
the Gray-box prediction.

In summary, we show that our proposed Gray-box tech-
nique enables accurate IO interference prediction essentially
due to first accurately representing the IO interference im-
pact of SSD internals and non-uniform workload charac-
teristics (Section 4.1) and second aggregating features from
multiple IWs (Section 4.2) without losing their IO interfer-
ence characteristics.

7 RELATED WORK

Prior research [12, 13, 15, 21, 40, 52] has proposed several
approaches to address the problem of IO interference in
HDD based storage technologies. As the internal architec-
ture of HDDs differs substantially from SSDs, these tech-
niques are not applicable for our work. In particular, these
suffer reduced accuracy as their considered feature set does
not consider non-uniform workload characteristics and SSD
internals. For instance, Noorshams et al. [52] use average
IO throughput, IO size, threads, file set size, access pattern
(random, sequential), and read ratio; while Chiang et. al [13]
only use CPU utilization and read/write requests per second.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

We have shown that these features alone do not represent
accurate IO interference, as they do not express non-uniform
nature workloads as discussed in section 3.1 and 3.7. Further-
more, these prior works do not use any workload aggrega-
tion technique limiting their predictions to a fixed number
of workloads. For instance, Dartois et al. [15] use ML tech-
niques to model SSD IO performance in the presence of up
to five interfering workloads. Their approach also fails to
predict tail latency interference.

Bhimani [6] proposes batching containerized workloads
to improve overall resource utilization and fairness based
on a few proposed guidelines. Although the guidelines help
improve overall resource utilization, they are insufficient to
efficiently eliminate IO interference. Chiang [12] proposes
a contention-aware placement strategy based on ML-based
clustering algorithms for container placement. Their work fo-
cuses on improving overall resource utilization, while ignor-
ing performance interference. In addition, their placement
strategy is based on CPU utilization, memory utilization,
and IO utilization, ignoring SSD specific properties. Gulati
proposes Basil [19] and Pesto [20] to enable load balancing
of IO workloads. Those systems use the LQ-slope perfor-
mance model representing the latency-to-queue depth ratio
showing a linear relationship between latency and queue
depth. While this model can predicts overall performance
degradation it cannot determine the interference impact on
individual workloads. Kim [34] designed classification-based
ML models to predict SSDs performance saturation using
kernel IO statistics and workload features. However, those
features do not represent the interference impact of the non-
uniform IW and SSD internals on the workloads. Queuing
models [40] have also been used to predict IO interference
impact on the performance of workloads. However, first of
all, they base their work on HDDs. Second, the feature set
they use does not represent the IO interference impact of
spatial IO access patterns such as unaligned offset IOs, which
leads to significant IO interference in the case of SSDs as
discussed in section 3.6.

Apart from performance modeling, researchers proposed
performance isolation techniques that require changes to the
internal SSD resources [11, 27, 29, 30, 32, 41, 47, 62, 65, 67].
For instance, they propose static or dynamic partitioning
techniques for allocating SSD resources to workloads. While
these techniques can reduce interference, they require time-
consuming manual application configuration, often wasting
resources due to static partitioning as they can only support
a small number of workloads or tenants. A dynamic resource
allocation scheme can help this situation. However, resource
allocation can be skewed as they lack workload context,
reducing overall resource utilization. Kim [35] introduced
VA-LVM, a logical volume manager, creating logical volume
mapping to SSD’s internal volumes. While VA-LVM provides

229

Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

better performance isolation, it is limited by the availability
of SSD’s internal volume. In contrast, our work focus on
sharing overall SSD that can improve resource utilization
while preventing SLO violations.

Another category of works proposed techniques to throt-
tle IO requests based on various feedback-based heuristics,
leveraging system statistics [17, 21, 45, 51, 54, 57, 73]. These
approaches lack an understanding of the underlying hard-
ware and usually only react to an observed performance
degradation while our approach can prevent such perfor-
mance degradation in the first place. Prior works [39] utilize
execution time degradation for IO scheduling, however, it
requires extensive profiling to generate a model.

Several other works which are mostly orthogonal to ours
have proposed machine learning models for improving SSD
performance to improve performance [9, 60] , increase life-
time [8, 28], and to reduce garbage collection overheads [10].

8 CONCLUSION

In this work, we propose and evaluate a novel Gray-box fea-
ture representation and aggregation technique to accurately
represent IO interference in SSDs. We perform a detailed anal-
ysis of IO interference in SSDs, showing how SSD internals
affect the IO interference (Section 2). Further, we explore the
relationship between different non-uniform workloads and
internal SSD architecture characteristics with exhaustive ex-
perimentation (Section 3). Then, based on our observations,
we define a set of Gray-box features that accurately repre-
sent the IO interference impact of SSD Internals. We propose
new features not considered by prior work, such as IO size
alignment, IO offset alignment, and workload burstiness. To
support predictions of an arbitrary number of workloads,
we propose a new Gray-box feature aggregation technique
to aggregate their features without losing IO interference
accuracy. Our evaluation shows that our Gray-box approach
outperforms prior works by increasing inference prediction
accuracy for latency and bandwidth while reducing the mean
absolute error by up to 12X. Furthermore, in contrast to prior
work, we show that predicting the IO interference impact
on tail latency is indeed feasible. We demonstrate how the
Gray-box technique increases resource utilization by up to
60% or enforces up to 2.5x stricter SLOs when provisioning
SSD among multiple tenants over prior works.

9 ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Brian
Kroth, for their helpful feedback. This work was generously
supported by Samsung and NSF grants CCF-1942754 and
CNS-1841545.

Enabling Multi-tenancy on SSDs with Accurate 10 Interference Modeling

REFERENCES

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark

Manasse, and Rina Panigrahy. Design tradeoffs for {SSD} performance.
In 2008 USENIX Annual Technical Conference (USENLX ATC 08), 2008.

[2] Alibaba Group. block-traces. https://github.com/alibaba/block-traces,

[3] Jens Axboe.

Accessed 2023.
Fio-flexible i/o tester synthetic benchmark. URL

https://github. com/axboe/fio, 2005.

[4] Jayanta Basak, Kushal Wadhwani, and Kaladhar Voruganti. Storage

l6

(14

(15

[16

(17

=

]

[t

=

]

=

—

workload identification. ACM Transactions on Storage (TOS), 12(3):1-30,
2016.

Romil Bhardwaj, Kirthevasan Kandasamy, Asim Biswal, Wenshuo
Guo, Benjamin Hindman, Joseph Gonzalez, Michael Jordan, and Ion
Stoica. Cilantro:{Performance-Aware} resource allocation for general
objectives via online feedback. In 17th USENLX Symposium on Operating
Systems Design and Implementation (OSDI 23), pages 623-643, 2023.
Janki Bhimani, Zhengyu Yang, Ningfang Mi, Jingpei Yang, Qiumin
Xu, Manu Awasthi, Rajinikanth Pandurangan, and Vijay Balakrishnan.
Docker container scheduler for i/o intensive applications running
on nvme ssds. IEEE Transactions on Multi-Scale Computing Systems,
4(3):313-326, 2018.

Giuliano Casale, Stephan Kraft, and Diwakar Krishnamurthy. A model
of storage i/o performance interference in virtualized systems. In
2011 31st International Conference on Distributed Computing Systems
Workshops, pages 34-39. IEEE, 2011.

Chandranil Chakraborttii and Heiner Litz. Improving the accuracy,
adaptability, and interpretability of ssd failure prediction models. In
Proceedings of the 11th ACM Symposium on Cloud Computing, pages
120-133, 2020.

Chandranil Chakraborttii and Heiner Litz. Learning i/o access patterns
to improve prefetching in ssds. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages 427-443.
Springer, 2020.

Chandranil Chakraborttii and Heiner Litz. Reducing write amplifica-
tion in flash by death-time prediction of logical block addresses. In
Proceedings of the 14th ACM International Conference on Systems and
Storage, pages 1-12, 2021.

Da-Wei Chang, Hsin-Hung Chen, and Wei-Jian Su. Vssd: performance
isolation in a solid-state drive. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 20(4):1-33, 2015.

Ron C Chiang. Contention-aware container placement strategy for
docker swarm with machine learning based clustering algorithms.
Cluster Computing, pages 1-11, 2020.

Ron C Chiang and H Howie Huang. Tracon: Interference-aware sched-
uling for data-intensive applications in virtualized environments. In
Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1-12, 2011.
Transaction Processing Performance Council. Tpc benchmark h (deci-
sion support) standard specification revision 3.0.1. 22.

Jean-Emile Dartois, Jalil Boukhobza, Anas Knefati, and Olivier Barais.
Investigating machine learning algorithms for modeling ssd i/o perfor-
mance for container-based virtualization. IEEE transactions on cloud
computing, 9(3):1103-1116, 2019.

Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and
Animesh Trivedi. Understanding modern storage apis: a systematic
study of libaio, spdk, and io_uring. In Proceedings of the 15th ACM
International Conference on Systems and Storage, pages 120-127, 2022.
Congming Gao, Liang Shi, Mengying Zhao, Chun Jason Xue, Kaijie
Wu, and Edwin H-M Sha. Exploiting parallelism in i/o scheduling
for access conflict minimization in flash-based solid state drives. In
2014 30th Symposium on Mass Storage Systems and Technologies (MSST),

230

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

pages 1-11. IEEE, 2014.

Google Cloud. Adopting SLOs. https://cloud.google.com/architecture/
framework/reliability/adopting-slos, 2021.

Ajay Gulati, Chethan Kumar, Irfan Ahmad, and Karan Kumar. Basil:
Automated io load balancing across storage devices. In Fast, volume 10,
pages 13-13, 2010.

Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl Wald-
spurger, and Mustafa Uysal. Pesto: online storage performance man-
agement in virtualized datacenters. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, pages 1-14, 2011.

Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim,
Henry Hoffmann, and Haryadi S Gunawi. {LinnOS}: Predictability
on unpredictable flash storage with a light neural network. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 173190, 2020.

Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and
Roman Pletka. Write amplification analysis in flash-based solid state
drives. In Proceedings of SYSTOR 2009: The Israeli Experimental Systems
Conference, pages 1-9, 2009.

Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Chao Ren.
Exploring and exploiting the multilevel parallelism inside ssds for
improved performance and endurance. IEEE Transactions on Computers,
62(6):1141-1155, 2012.

Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping Zhang.
Performance impact and interplay of ssd parallelism through advanced
commands, allocation strategy and data granularity. In Proceedings of
the international conference on Supercomputing, pages 96-107, 2011.
Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo,
and Mahmut T Kandemir. Hios: A host interface i/o scheduler for solid
state disks. ACM SIGARCH Computer Architecture News, 42(3):289-300,
2014.

Myoungsoo Jung and Mahmut T Kandemir. Sprinkler: Maximizing
resource utilization in many-chip solid state disks. In 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), pages 524-535. IEEE, 2014.

Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho.
The multi-streamed {Solid-State} drive. In 6th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 14), 2014.

Saeed Kargar, Heiner Litz, and Faisal Nawab. Predict and write: Using
k-means clustering to extend the lifetime of nvm storage. In 2021
IEEE 37th International Conference on Data Engineering (ICDE), pages
768-779. IEEE, 2021.

Bryan S Kim. Utilitarian performance isolation in shared {SSDs}.
In 10th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 18), 2018.

Bryan S Kim, Hyun Suk Yang, and Sang Lyul Min. {AutoSSD}: an
autonomic {SSD} architecture. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 677-690, 2018.

Jae-Hong Kim, Dawoon Jung, Jin-Soo Kim, and Jachyuk Huh. A
methodology for extracting performance parameters in solid state
disks (ssds). In 2009 IEEE International Symposium on Modeling, Analy-
sis & Simulation of Computer and Telecommunication Systems, pages
1-10. IEEE, 2009.

Jaeho Kim, Donghee Lee, and Sam H Noh. Towards {SLO} complying
{SSDs} through {OPS} isolation. In 13th USENIX Conference on File
and Storage Technologies (FAST 15), pages 183-189, 2015.

Jaehong Kim, Sangwon Seo, Dawoon Jung, Jin-Soo Kim, and Jaehyuk
Huh. Parameter-aware i/o management for solid state disks (ssds).
IEEE Transactions on Computers, 61(5):636-649, 2011.

Jaehyung Kim, Jinuk Park, and Sanghyun Park. Machine learning based
performance modeling of flash ssds. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, CIKM *17,

https://github.com/alibaba/block-traces
https://cloud.google.com/architecture/framework/reliability/adopting-slos
https://cloud.google.com/architecture/framework/reliability/adopting-slos

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

=

=

=

—

[t

—

—

[t

flan?

[

=

—

—

—

=

—

page 2135-2138, New York, NY, USA, 2017. Association for Computing
Machinery.

Joonsung Kim, Kanghyun Choi, Wonsik Lee, and Jangwoo Kim. Per-
formance modeling and practical use cases for black-box ssds. ACM
Transactions on Storage (TOS), 17(2):1-38, 2021.

Kyusik Kim, Eunji Lee, and Taeseok Kim. Hmb-ssd: Framework for
efficient exploiting of the host memory buffer in the nvme ssd. IEEE
Access, 7:150403-150411, 2019.

Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Remote
flash = local flash. ACM SIGARCH Computer Architecture News,
45(1):345-359, 2017.

Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Selecta: Heteroge-
neous cloud storage configuration for data analytics. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages 759-773, 2018.
Anthony Kougkas, Hariharan Devarajan, Xian-He Sun, and Jay Lof-
stead. Harmonia: An interference-aware dynamic i/o scheduler for
shared non-volatile burst buffers. In 2018 IEEE International Conference
on Cluster Computing (CLUSTER), pages 290-301, 2018.

Stephan Kraft, Giuliano Casale, Diwakar Krishnamurthy, Des Greer,
and Peter Kilpatrick. Performance models of storage contention in
cloud environments. Software & Systems Modeling, 12(4):681-704, 2013.
Miryeong Kwon, Donghyun Gouk, Changrim Lee, Byounggeun Kim,
Jooyoung Hwang, and Myoungsoo Jung. {DC-Store}: Eliminating
noisy neighbor containers using deterministic {I/O} performance and
resource isolation. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 183-191, 2020.

Jinhong Li, Qiuping Wang, Patrick PC Lee, and Chao Shi. An in-depth
analysis of cloud block storage workloads in large-scale production.
In 2020 IEEE International Symposium on Workload Characterization
(IISWC), pages 37-47. IEEE, 2020.

Jinhong Li, Qiuping Wang, Patrick PC Lee, and Chao Shi. An in-depth
comparative analysis of cloud block storage workloads: Findings and
implications. arXiv preprint arXiv:2203.10766, 2022.

Nangingin Li, Mingzhe Hao, Huaicheng Li, Xing Lin, Tim Emami,
and Haryadi S Gunawi. Fantastic ssd internals and how to learn and
use them. In Proceedings of the 15th ACM International Conference on
Systems and Storage, pages 72-84, 2022.

Ning Li, Hong Jiang, Dan Feng, and Zhan Shi. Storage sharing optimiza-
tion under constraints of slo compliance and performance variability.
IEEE Transactions on Services Computing, 12(1):58-72, 2016.

Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis.
Rail: Predictable, low tail latency for nvme flash. ACM Transactions on
Storage (TOS), 18(1):1-21, 2022.

Renping Liu, Xianzhang Chen, Yujuan Tan, Runyu Zhang, Liang Liang,
and Duo Liu. Ssdkeeper: Self-adapting channel allocation to improve
the performance of ssd devices. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 966—975. IEEE, 2020.
Yi Liu, Shouqian Shi, Minghao Xie, Heiner Litz, and Chen Qian. Smash:
Flexible, fast, and resource-efficient placement and lookup of dis-
tributed storage. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 7(2):1-22, 2023.

Chihiro Matsui, Tomoaki Yamada, Yusuke Sugiyama, Yusuke Yamaga,
and Ken Takeuchi. Optimal memory configuration analysis in tri-
hybrid solid-state drives with storage class memory and multi-level
cell/triple-level cell nand flash memory. japanese Journal of Applied
Physics, 56(4S):04CE02, 2017.

Rino Micheloni, Luca Crippa, Cristian Zambelli, and Piero Olivo. Archi-
tectural and integration options for 3d nand flash memories. Computers,
6(3):27, 2017.

Till Miemietz, Hannes Weisbach, Michael Roitzsch, and Hermann
Hartig. K2: Work-constraining scheduling of nvme-attached storage.
In 2019 IEEE Real-Time Systems Symposium (RTSS), pages 56-68. IEEE,

Lokesh N. Jaliminche, Chandranil (Nil) Chakraborttii, Changho Choi, and Heiner Litz

2019.

Qais Noorshams, Axel Busch, Andreas Rentschler, Dominik Bruhn,
Samuel Kounev, Petr Tuma, and Ralf Reussner. Automated modeling of
i/o performance and interference effects in virtualized storage systems.
In 2014 IEEE 34th International Conference on Distributed Computing
Systems Workshops (ICDCSW), pages 88-93. IEEE, 2014.

Lu Pang and Krishna Kant. Server-side workload identification for
hpc i/o requests. In Proceedings of the 2nd Workshop on Performance
EngineeRing, Modelling, Analysis, and VisualizatiOn Strategy, pages
15-22, 2022.

Hyunchan Park, Seehwan Yoo, Cheol-Ho Hong, and Chuck Yoo. Stor-
age sla guarantee with novel ssd i/o scheduler in virtualized data cen-
ters. IEEE Transactions on Parallel and Distributed Systems, 27(8):2422—
2434, 2015.

Nohhyun Park, Irfan Ahmad, and David J Lilja. Romano: autonomous
storage management using performance prediction in multi-tenant
datacenters. In Proceedings of the Third ACM Symposium on Cloud
Computing, pages 1-14, 2012.

Seon-yeong Park, Euiseong Seo, Ji-Yong Shin, Seungryoul Maeng, and
Joonwon Lee. Exploiting internal parallelism of flash-based ssds. IEEE
Computer Architecture Letters, 9(1):9-12, 2010.

Stan Park and Kai Shen. Fios: A fair, efficient flash i/o scheduler. In Pro-
ceedings of the 10th USENIX Conference on File and Storage Technologies,
FAST’12, page 13, USA, 2012. USENIX Association.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of machine learning research, 12(Oct):2825—
2830, 2011.

Pankaj Pipada, Achintya Kundu, Kanchi Gopinath, Chiranjib Bhat-
tacharyya, Sai Susarla, and PC Nagesh. Loadiq: Learning to identify
workload phases from a live storage trace. HotStorage, 12, 2012.
Devashish Purandare, Pete Wilcox, Heiner Litz, and Shel Finkelstein.
Append is near: Log-based data management on zns ssds. In 12th
Annual Conference on Innovative Data Systems Research (CIDR’22).,
2022.

Babak Ravandi, Ioannis Papapanagiotou, and Baijian Yang. A black-
box self-learning scheduler for cloud block storage systems. In 2016
IEEE 9th International Conference on Cloud Computing (CLOUD), pages
820-825. IEEE, 2016.

Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Jagadeesh Shetty,
Jooyoung Hwang, Sangyeun Cho, Daniel DG Lee, and Jaeheon Jeong.
{FStream }: Managing flash streams in the file system. In 16th USENIX
Conference on File and Storage Technologies (FAST 18), pages 257-264,
2018.

I Shin. Improving internal parallelism of solid state drives with selec-
tive multi-plane operation. Electronics Letters, 54(2):64-66, 2018.
SNIA. Block io traces. http://iotta.snia.org/tracetypes/3, Dec 2001.
Xiang Song, Jian Yang, and Haibo Chen. Architecting flash-based solid-
state drive for high-performance i/o virtualization. IEEE Computer
Architecture Letters, 13(2):61-64, 2013.

Arash Tavakkol, Juan Gémez-Luna, Mohammad Sadrosadati, Saugata
Ghose, and Onur Mutlu. Mgsim: A framework for enabling realistic
studies of modern multi-queue {SSD} devices. In 16th { USENIX}
Conference on File and Storage Technologies ({ FAST} 18), pages 49-66,
2018.

Shivani Tripathy, Debiprasanna Sahoo, Manoranjan Satpathy, and
Madhu Mutyam. Fuzzy fairness controller for nvme ssds. In Proceedings
of the 34th ACM International Conference on Supercomputing, pages
1-12, 2020.

Michael R Veall and Klaus F Zimmermann. Pseudo-r2 measures for
some common limited dependent variable models. Journal of Economic

http://iotta.snia.org/tracetypes/3

Enabling Multi-tenancy on SSDs with Accurate 10 Interference Modeling

surveys, 10(3):241-259, 1996.

Suzhen Wu, Weiwei Zhang, Bo Mao, and Hong Jiang. Hotr: Alleviating
read/write interference with hot read data replication for flash storage.
In 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1367-1372. IEEE, 2019.

Minghao Xie and Chen Qian. Reflex4arm: Supporting 100gbe flash stor-
age disaggregation on arm soc. In OCP Future Technology Symposium,
2020.

Rui Xu, Xi Jin, Linfeng Tao, Shuaizhi Guo, Zikun Xiang, and Teng
Tian. An efficient resource-optimized learning prefetcher for solid
state drives. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 273-276. IEEE, 2018.

Gala Yadgar, MOSHE Gabel, Shehbaz Jaffer, and Bianca Schroeder. Ssd-
based workload characteristics and their performance implications.
ACM Trans. Storage, 17(1), jan 2021.

(69

-

(70

=

(71

—

(72

—

232

[73]

[74]

[75]

[76]

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj Kowsalya,
Anand Krishnamurthy, Samer Al-Kiswany, Rini T. Kaushik, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Split-level i/o sched-
uling. SOSP ’15, page 474-489, New York, NY, USA, 2015. Association
for Computing Machinery.

Jung H Yoon and Gary A Tressler. Advanced flash technology status,
scaling trends & implications to enterprise ssd technology enablement.
Flash Memory Summit, 3(3.1):4, 2012.

Yu Zhang, Ping Huang, Ke Zhou, Hua Wang, Jianying Hu, Yongguang
Ji, and Bin Cheng. OSCA: An Online-Model Based Cache Allocation
Scheme in Cloud Block Storage Systems. USENIX Association, USA,
2020.

Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on
unsupervised outlier detection in high-dimensional numerical data.
Statistical Analysis and Data Mining: The ASA Data Science Journal,
5(5):363-387, 2012.

	Abstract
	1 Background and Introduction
	2 SSD Internals Analysis
	2.1 Internal Device Parallelism
	2.2 Read and Write Amplification
	2.3 Read Write Assymetry

	3 Workload characteristics Analysis
	3.1 IO Size Misalignment
	3.2 IO Rate
	3.3 IO Depth
	3.4 IO Type
	3.5 Spatial IO Access Patterns
	3.6 IO Offset Alignment
	3.7 Temporal IO Access Patterns

	4 Gray-box Feature Approach
	4.1 Gray-box Features
	4.2 Gray-box Feature Aggregation

	5 Usage Model
	6 Evaluation
	6.1 Experimental Setup and Methodology
	6.2 Optimized Gray-box Allocation
	6.3 Resource Utilization and SLO Compliance
	6.4 ML Features Sensitivity Study
	6.5 Prediction Accuracy: Real World data

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

