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B4 tis the best of times and it is the worst of times in the
world of datacenter memory technology. According to
IDC (International Data Corporation), DRAM (dynamic
i1 random-access memory) revenues exceeded $100
billionin 2022. Yet, the anticipated growth rate is
hugglng the zero line, and many producers either reported
loss-making quarters or are rumored to do so soon.

From the perspective of datacenter customers, by some
estimates, the cost of renting memory ranges from $20 to
S30 per gigabyte per year, for a resource that costs only
$2 to $4 to procure outright. On top of this, Saa$S (software
as a service) end users, for example, are forced to rent all
the memory that they will need up front. By some rough
estimates, they then end up using less than 25 percent of
that memory more than 75 percent of the time.

CXL (Compute Express Link], a new technology emerging
from the hardware side,” is promising to provide farmemory.
Thus, there will be more memory capacity and perhaps even
more bandwidth, but at the expense of greater latency.
Optimization will first, seek to keep memory in far tiers
colder, and, second, minimize the rates of both access
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into and promotion out of these tiers."® Third, proactive
promotion and demotion techniques being developed for
far memory promoteldemote whole objects instead of

one cache line at a time to take advantage of bulk caching
and eviction in order to avoid repeatedly incurring its

long latency. Finally, offloading computations with many
dependent accesses to a near-memory processor is already
being seen as a way to keep the latency of memory out

of the denominator of application throughput." With far
memory, this will be a required optimization.

CHASING POINTERS “NEAR” MEMORY

Applications that operate over richly connected datain
memory engage heavily in pointer-chasing operations
either directly (e.g., graph processing in deep-learning
recommendation models) or indirectly (e.g., B+ tree index
management in databases). Figure 1shows an example

of pointer-chasing applications in far memory: [1] graph
traversal, [2] key lookup in a B+ index, and [3] collision
resolution under open hashing.

Data from previous work? suggests that as data structures
scale beyond the memory limits of a single host, causing
application data to spill into far memory, programmers are
forced to make complex decisions about function and data
placement, intercommunication, and orchestration.

Performance characteristics of far memory

By default, pointers (like the internode ones in figure 1) are
defined in the virtual address space of the process that
created them. Because of this, if left unoptimized, pointer-
chasing operations and their dependent accesses can
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FIGURE 1: EXAMPLE OF POINTER CHASING APPLICATIONS IN FAR MEMORY
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overwhelm the microarchitecture resources that support
memory-level parallelism (e.g, reorder buffers) even

on asingle CPU with local memory. With latencies that
can range from 150ns to more than 300ns,? far memory
further compounds this problem.

Inadistributed setting, a simple-minded pointer-chasing
offload without taking care of virtual-to-physical address
translation results in chatty internode coordination with
the parent process.” Effective optimization of pointer-
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chasing operations entails minimizing communication
between the near-memory processor executing the
traversal and the server running the parent process.

Developing far memory-ready applications

Evidence from HPC (high-performance computing] and
database workloads points to the extreme inefficiency of
pointer-rich sparse memory operations on CPUs and GPUs
alike,*" in some cases hitting less than one percent of peak
performance. This leads applications to want to offload
such work to near-memory processors. In the case of far
memory, that near-memory processor is itself outside the
translation context of the parent process of the pointer-
rich data. Pointers therefore must make sense everywhere
in these new heterogeneous disaggregated systems.

In order to lower infrastructure rent, cloud applications
also wish to exploit disaggregated far memory as a
fungible memory resource that can grow and shrink with
the amount of data. Moreover, they want to independently
scale their memory and compute resources. For example,
database services want to flex compute up or downin
proportion to query load. Pointer-rich data in far memory
must be shareable at low overhead between existing and
new compute instances.

PRIOR WORK ON FAR MEMORY

Pointers in traditional operating systems were valid only in
the memory space of the parent process. Sharing pointer-
rich data among processes, nodes, and devices therefore
required serialization-deserialization. This limitation
remained even when prior art was recently extended by
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taking an approach of tombstoning dangling references
to data demoted to far memory using special pointers.”*
Those pointers could be dereferenced only from the
original context of data creation, precluding independent
scaling of memory and computation.

Global address spaces such as PGAS (partitioned global
address space) support a limited form of global pointers
that persist only for the lifetime of a set of processes
across multiple nodes. NVM [nonvolatile memory] libraries
such as PMDK (Persistent Memory Development Kit)
support object-based pointers, but their “large” storage-
format pointers are more than 64 bits long, and their
traversal cannot be offloaded.

Commercial virtualization frameworks such as
VMware’s Nu proclets™ can maintain only the illusion
of global pointers by compromising security (by turning
address space layout randomization off, for example).

Microsoft CompuCache™ also supported global pointers,
but by using a heavy database runtime atop full VMs even
on disaggregated memory devices. All pointers, whether
at hosts or in the CompuCache, are VM-local only. Pointer
chasing across devices requires repeatedly returning to the
host.

Teleport® supported pointer-chasing offload to remote
memory but by directed, on-demand shipping of the
virtual-to-physical translation context to the target locale
of each function shipped.

Prior work on OS constructs for far memory is
therefore missing a foundation of globally invariant
pointers that can be shared with and dereferenced by any
node or device in a cluster containing far memory.
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INVARIANT POINTERS

When organizing data at object grain, a globally invariant
pointer must contain the ID of the object containing

the target data, as well as an offset to that data. This
object ID can be interpreted anywhere the pointer can

be dereferenced. Ideally, invariant pointers should: (1) be
no larger than 64 bits; and (2) permit access to partially
resident objects. Existing approaches do not meet the first
criterion (e.g., PMDK] or the second criterion (e.g., AIFM™);
AIFM (application-integrated far memory) has a different
pointer form for resident and nonresident objects.
Providing truly globally invariant pointers, however, is
necessary for offloading “run anywhere” code.

Twizzler® is an operating system that introduces globally
invariant pointers by using a context local to the object in
which the pointer is stored, shortening its representation
while allowing any CPU that can read the pointer to fully
resolve its destination. This is done using an FOT (foreign
object table) that is part of each object in the system,
ensuring that any individual object is self-contained.

An object’s FOT contains identifying information for
each foreign object that is the destination for a pointer
in the object. Since these are stored in an ordered table,
stored pointers use the index into the FOT as a stand-in
for the full addressing information, a translation process
shown in figure 2. This approach allows pointers to remain
small: a 64-bit pointer can, for example, include a 24-bit
“local” object ID and 40-bit offset. While this limits the
number of foreign objects that can be referenced froma
single object to 2%, different objects have their own FOTs
and can reference a different set of objects, so the total
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- FIGURE 2: STORED POINTERS USE THE INDEX INTO THE FOT AS PLACEHOLDER

foreign object table

data .

number of objects in the systemis limited only by the size
of an object ID.

This approach also allows for a wide range of resolvers
that translate identifying information in the FOT into an
object ID. For example, the FOT might contain a static
object ID or the equivalent of a file-system name to be
resolved to an object ID by a name resolver. There is no
requirement that a name resolve to the same object ID in
different places: An object named Ivariloglsyslog might
resolve to different object IDs on different system nodes.
Name resolvers themselves can be pluggable: The FOT
needs only to identify the resolver in a way that any node in
the system can run the resolver to return an object ID.

While the first access to a foreign object may be
relatively slow, subsequent accesses are very fast, since
the resolution to an object ID is cached. The system maps
the object into the node’s ‘guest physical” address space,
leveraging MMU (memory management unit) hardware
already in use for virtualization. It then maps the guest
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physical space in which the object resides into the guest
virtual space for any processes that reference the object,
using extended page tables to remove software from

the CPU loadIstore path and allowing the system to run
at memory speed. This is necessary for efficiency: Even
minimal system software interaction on each load and
store will slow the computation significantly.

Preliminary experiments?® show that Twizzler’s approach
is effective at preserving low-latency pointer dereferencing
for bothintra-object and inter-object invariant pointers.
Onan Intel Xeon Gold CPU running at 2.3GHz, intra-object
pointer dereferences take about 0.4ns, approximately the
same time as “normal” dereferences. Cached inter-object
pointer dereferences take 3.2ns, somewhat slower than
intra-object dereferences but still sufficiently fast because
relatively few such references are expected, given multi-
megabyte objects. The first reference to a foreign object
is slower, at 28ns, but still reasonable. If name resolution is
more complex than interpreting a static full-length (128-bit)
object ID, it would be longer still; however, these penalties
are paid only once, regardless of how many times pointers
from object A to object B are dereferenced in the same
process.

Benchmarks on both microscale (in-memory key!
value store] and macroscale (YCSB [Yahoo! Cloud Serving
Benchmark] using different back ends] likewise show
excellent performance for this approach. The top graph
in figure 3 shows performance of the YCSB benchmark on
SQLite using four back ends: the native SQLite back end;
the LMDB (Lightning Memory-mapped Database] back end,
which leverages mmap; our implementation of a PMDK
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FIGURE 3: PERFORMANCE AND LATENCY OF THE YCSB BENCHMARK
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back end, which uses a red-black tree under PMDK; and
Twizzler, which uses a red-black tree with the invariant
pointer approach.

The invariant pointer approach outperforms every other
approach while providing the flexibility of “run anywhere”
invariant pointers. The graph on the bottom of figure 3
similarly shows that these invariant pointers provide lower
latency than other approaches because of the simplicity
of the programming model and the low overhead for
dereferencing pointers. PMDK, in particular, is significantly
slower because its pointers are 128 bits long, requiring
additional register space and memory operations to read
and dereference.

It isimportant to note that the PMDK and Twizzler
implementations are running the same back-end code,
with changes made only to accommodate the different
programming models; this shows the benefit of using 64-
bit pointers local to an object context rather than 128-bit
pointers, as PMDK does.

Elephance MemOS is a fork of Twizzler being developed
to run on CXL far memory devices. It will be ported
and optimized for the SoCs (systems-on-chip) used as
controllers in CXL-disaggregated memory nodes.

PROGRAMMING WITH MEMORY OBJECTS

AND INVARIANT POINTERS

For software developers, what does memory
disaggregation mean and how will systems be built around
it? The architecture of such systems will aim to hide the
details from the majority of programmers, so their code
will not need to change to run on these new systems.
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There are three ways in which systems can be built
to provide disaggregated memory: application libraries,
modification to the operating system’s memory system,
and changes beneath the operating system at the
hardware layers, as seenin figure 4. In the figure, a set
of application servers is connected to a set of MemOS
nodes over a shared bus. Pointer-rich application datain
far memory lives on MemOS nodes. Pointers can be: (1)
inter-object and on the same device, (2] inter-object across
devices, or (3) intra-object.

It is likely that the first way that disaggregated memory
will be made available will be through application libraries
linked directly into the application, seen in (A] at the top of
figure 4. The memory shim acts as a specialized memory
allocator that knows how to handle remote memory using
a MAP (memory access protocol). The MAP may depend
on a current technology such as RDMA (remote direct
memory access), or may be something newer such as CXL3.

Many languages, such as Python, which depend on the
Clibrary for memory, will be able to use the memory shim
to handle memory for objects in the language, freeing the
Python programmer from having to know anything about
disaggregated memory. For languages such as C and C++,
which handle pointers directly, the programmer will have
to work with the memory shim APIs in order to manage
remote memory. The prevalence of Python and similar
managed memory languages in big data and machine-
learning applications means that programmers in those
fields can use disaggregated memory in a transparent
way, no matter where the memory shimis located in the
software stack.
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FIGURE 4: EXAMPLE MEMOS DEPLOYMENT
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Extending the operating system'’s virtual memory
system to integrate with the memory shim s the next
logical place to interpose disaggregated memory in the
stack, seenin (B) in figure 5. Again, the specific MAP is
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not exposed to the kernel developer, only the memory
shim APIs. The Linux operating system already has
HMM (heterogeneous memory management).? which
is a natural place to slot in the memory shim. Once the
shimis integrated into the operating system itself, all
applications can use disaggregated memory transparently
without modifications to their source code or linking with
specialized libraries.

The deepest that far memory can be placed in the stack
isin the hardware itself. Memory controllers integrated
in CPUs from Intel and AMD are already starting to
support early versions of CXL disaggregated memory.
Future, more featureful controllers will present memory

FIGURE 5: EXTENDING THE 0S’S VIRTUAL MEMORY SYSTEM
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to the operating system both locally and remotely in a
transparent manner, but, like the other two cases, will
require a MAP to be interposed between the hardware and
the remote memory. The protocol in this instance will be
CXL3.

While putting the memory shim into hardware will
likely result in the highest bandwidth, lowest latency, and
maximum portability, there are reasons to continue to use
amemory shim as a linked library into the software. First
and foremost is the level of control that linking directly
to the memory shim gives to the programmer. Once such
functionality is embedded into the operating system or
the memory controller, application programmers will lose
control and visibility into the remote memory system.
While many will be happy not to have to manage memory
on their own, applications will remain where such control
is a feature. Novel memory architectures for distributed
memory must first be tried in software, and some may be
too specialized ever to be implemented in hardware.

Consider a memory system where pointers are globally
invariant, which will be possible with MemOS but is not yet
common in pointer-based systems. Building and debugging
such a system in software makes it possible to rapidly
iterate on the design—impossible in a memory controller
and certainly more difficult to debug in the operating
system. Applications that can use globally invariant
pointers have distinct advantages because computation
can take place on any node without the application having
to know where a pointer might reside. Furthermore, it will
be possible to move code, rather than data, to achieve
computational efficiency—again, because no matter which
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compute node a pointer resides on, the pointer itself is the
global handle that computation depends on, rather than an
address in local memory, as things stand today.

KEY TAKEAWAYS

Effectively exploiting emerging far-memory technology
requires consideration of operating on richly connected
data outside the context of the parent process. Operating-
system technology in development offers help by exposing
abstractions such as memory objects and globally
invariant pointers that can be traversed by devices

and newly instantiated compute. Such ideas will allow
applications running on future heterogeneous distributed
systems with disaggregated memory nodes to exploit
near-memory processing for higher performance and to
independently scale their memory and compute resources
for lower cost.
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