TMC: Near-Optimal Resource Allocation for
Tiered-Memory Systems

Yuanjiang Ni*
Alibaba Group
USA

Ethan Miller
UC Santa Cruz
Pure Storage
USA

Abstract

Main memory dominates data center server cost, and hence
data center operators are exploring alternative technologies
such as CXL-attached and persistent memory to improve
cost without jeopardizing performance. Introducing multiple
tiers of memory introduces new challenges, such as selecting
the appropriate memory configuration for a given workload
mix. In particular, we observe that inefficient configurations
increase cost by up to 2.6X for clients, and resource stranding
increases cost by 2.2X for cloud operators. To address this
challenge, we introduce TMC, a system for recommending
cloud configurations according to workload characteristics
and the dynamic resource utilization of a cluster. Whereas
prior work utilized extensive simulation or costly machine
learning techniques, incurring significant search costs, our
approach profiles applications to reveal internal properties
that lead to fast and accurate performance estimations. Our
novel configuration-selection algorithm incorporates a new
heuristic, packing penalty, to ensure that recommended con-
figurations will also achieve good resource efficiency. Our
experiments demonstrate that TMC reduces the search cost
by up to 4X over the state-of-the-art, while improving re-
source utilization by up to 17% as compared to a naive policy
that requests optimal tiered memory allocations in isolation.

“Work was performed as a graduate student at UC Santa Cruz

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SoCC 23, October 30—-November 1, 2023, Santa Cruz, CA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0387-4/23/11.
https://doi.org/10.1145/3620678.3624667

Pankaj Mehra

Elephance Memory, Inc.
USA

Heiner Litz
UC Santa Cruz
USA

CCS Concepts

« Information systems — Storage class memory; » Soft-
ware and its engineering — Memory management.

Keywords
Tiered memory management, Resource allocation

ACM Reference Format:

Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz. 2023.
TMC: Near-Optimal Resource Allocation for Tiered-Memory Sys-
tems. In ACM Symposium on Cloud Computing (SoCC °23), October
30-November 1, 2023, Santa Cruz, CA, USA. ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3620678.3624667

1 Introduction

Continuing growth in data center applications’ main mem-
ory requirements [9, 50, 76], along with the slowdown of
DRAM scaling, renders main memory one of the costliest
components of data center infrastructure. Moreover, due to
the strict service level objectives (SLO) imposed by data cen-
ter applications, memory is often over-provisioned. Alibaba
reported [31] CPU and memory utilization of 38% and 88%,
respectively, in their clusters, while Microsoft found [45] that
50% of the provisioned main memory capacity remains un-
touched by virtual machines (VM). Emerging storage class
memories (SCM) [1, 14, 23, 38, 39, 42, 46, 77, 78] promise
higher density and lower energy cost while only moder-
ately degrading performance. Memory disaggregation [4, 30,
47, 48, 76] and Compute Express Link (CXL) attached mem-
ory [16, 45, 50, 64] enable pooled deployment of recycled,
slower, previous-generation memory across a fabric. While
remote memory induces higher access latency, it significantly
reduces costs, as shown in prior work [4, 40, 45]. Disaggre-
gated, CXL-attached, and persistent memories are practical,
as they can be mapped into application virtual address space
and accessed using conventional load-store instructions. Al-
though such tiered-memory systems are now increasingly
supported by operating systems such as Linux [39, 50, 76, 78],
it remains unclear how applications should allocate their data

https://doi.org/10.1145/3620678.3624667
https://doi.org/10.1145/3620678.3624667

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

structures between the faster, more expensive and the slower,
less-expensive tiers for maximizing performance per total
cost of ownership (TCO).

Cloud providers such as Microsoft Azure [53], Amazon
AWS [5], and Google [28] offer Infrastructure as a Service
(IaaS) to satisfy the computing needs of their clients. In
such platforms, optimizing tiered memory systems becomes
even more challenging as the optimal allocation of memory
now depends on multiple applications and their require-
ments. The selection of the right resources benefits the cloud
provider and client. It reduces the overall computation cost,
informs pricing models, and enables providers to build phys-
ical systems with the right amount of DRAM and alternative
memory technologies.

For instance, as we will show in Section 2.1, a wrong con-
figuration increases the TCO by up to 2.6x for the cloud
customer. In addition, the optimization of cloud configura-
tions also determines the overall resource efficiency of a data
center. In particular, to reduce resource stranding, an efficient
tiered-memory configuration policy also needs to consider
the actual available amount of memory in the different tiers.

Optimizing the cloud resource configurations such as the
fast to slow memory ratio in tiered memory systems and
predicting its performance implications is challenging due to
the large search space. Utilizing a brute-force approach, an
infeasible number of configurations covering all fast to slow
memory ratios and hardware resources needs to be evalu-
ated to devise accurate performance and TCO models. Prior
works such as Cherrypick [3] and Selecta [41] have tried to
address this challenge by obtaining end-to-end performance
measurements of a considerable number of configurations
learning the application’s sensitivity to memory bandwidth
and latency. These systems utilize Bayesian Optimization
(BO) and Collaborative Filtering (CF) to reduce the search
space, by predicting the performance of configurations based
on a small set of measurements. Nevertheless, these tech-
niques suffer from several shortcomings. BO, for instance,
does not generate a performance model, and hence it is un-
able to explore Pareto-optimal cost-performance trade-offs
required to minimize the cost for both the cloud provider and
customer (i.e. it predicts only a single performance-optimal
configuration). CF [20, 41] has been applied to reduce search
overheads, however, its complexity still scales linearly with
the number of explored configurations while also failing to
provide a performance model.

To overcome these challenges, we introduce the tiered
memory configurator (TMC), a mechanism to effectively
manage systems with multiple tiers of memory, including
the last-level cache (LLC), slow memory (SCM/CXL/remote),
and the fast memory (DRAM) tier. TMC recommends near-
optimal tiered-memory configurations according to the be-
havior of the application and the real-time utilization of the

Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

3 1.5
Performance —¥— Cost
2 F1.0

.
T

o

t

Execution cost (Normalized)

Execution time (Normalized)

ANANAN N AN AN AN AN AN AN NN
— = — — — =~ © © O © © ©
- - - - - SR SV VY SV AR SV VAR N
o a4 ¥ © © o - - - - - -
S o o o o - 2 9 % 9 o <9
vV V V V V V © © o o o -
vV vV V. V. V V

Figure 1: Execution time and cost analysis for 12 (Slow
memory ratio, LLC capacity) configurations (graph500
workload): The slow memory ratio represents the frac-
tion of slow memory in relation to the total memory
capacity. The LLC capacity indicates the number of
LLC ways allocated in each configuration.

data center. Instead of utilizing a machine-learning-based,

black-box approach as in prior works, TMC devises a perfor-

mance model based on the understanding of hardware per-
formance characteristics. Our resulting model only contains

a minimal amount of workload-specific variables, which only

requires three profile runs of an application. This separates

our work from techniques such as simple regression [54],

which requires many profile runs to obtain a predictive

model. To optimize both performance and cost, our method-
ology optimizes for a single metric: performance per TCO. In
particular, we determine the additional hardware resources
that are required to offset a performance degradation to com-
pute the holistic performance per TCO of a system. In addi-
tion, we introduce a new heuristic, packing penalty, which
penalizes the configurations that lead to resource-stranding.

As a result, TMC not only optimizes performance per TCO

for a particular user but also ensures efficient real-time re-

source utilization for the data center operator. In summary,
this paper makes the following contributions:

o We investigate hardware-based profiling that can be used
to unearth the application-specific properties for estimat-
ing performance per TCO.

e We propose a comprehensive memory performance esti-
mation technique that requires only three profile runs.

e We propose a novel optimization mechanism that pro-
duces ideal configurations for both cloud customers and
providers.

o We show that TMC reduces the search overhead by 3x
compared to the state-of-the-art improving resource effi-
ciency in the cloud by 17%.

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems

2 Background and Motivation

In this section, we discuss the application of multiple memory
tiers in the datacenter. Then we discuss how the selection of
the VM’s memory configuration affects resource efficiency.

2.1 Cost Efficiency for Cloud Customers

Public IaaS cloud providers such as Amazon’s EC2 [5] of-
fer their customers a limited number of predefined VM in-
stance types and charge them on a per-hour basis. On the
other hand, a few IaaS cloud providers, such as Google’s
Compute Engine, further allow cloud users to create a VM
instance with a customized number of vCPUs and amount
of memory [28]. Prior work [84] has shown that enabling
VM customization is beneficial for both the provider and
the user. This work targets a future IaaS cloud incorporat-
ing both traditional DRAM and additional, slower memory
tiers. We expect, that in future clouds, customers will be
able to configure the number of vCPUs, the amount of local
DRAM, the amount of second-tier memory, and the capacity
of the last-level cache (LLC) of their vCPUs in a VM. Cloud
providers have the option to leverage technologies like In-
tel’s cache allocation technology (CAT)[34, 65] or fine-grain
cache partitioning techniques such as vantage[65] to dynam-
ically adjust the sizes of the last-level caches for different
applications. The IaaS cloud then charges the users based on
Equation 1.

Total cost = VM cost X Execution time (1)

Scaling down a VM configuration reduces its hourly VM
cost, however, it also increases the execution time of ap-
plications. To minimize the total cost, one must choose a
proper configuration that optimizes both. Figure 1 shows the
execution time and cost for graph500 utilizing various config-
urations with different allocations of slow and fast memory
as well as different last-level cache sizes. As the fraction of
slow memory increases, the total cost is reduced while the
run time is increased. This is because the hourly cost savings
outweigh the performance penalty of scaling down the VM.
However, the total cost eventually increases as the higher
run time exceeds the savings in hourly cost. Note that in
this experiment, we translate a performance slowdown into
cost by computing the additional total number of VMs re-
quired to offset the performance degradation. This assumes
that applications are throughput-bound, i.e. an increase in
execution time can be offset with additional hardware re-
sources. This assumption is typical for data centers that scale
user request-level throughput with hardware resources or
deploy high fan-out architectures (e.g. Google Websearch)
to distribute the execution time of a request across servers.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

Applications | Config 1 Config 2 Config 3

2% slower, | 3% slower, | 4% slower

0.7X cost 0.4X cost 0.3X cost
cactusBSSN | (0.1, 28) (0.1,28) (1.0,28)
graph500 (0.4, 28) (0.4, 28) (0.9,20)
memcached | (0.0,2) (0.9,2) (0.9,2)
xsbench (0.9,4) (0.9,3) (0.9,3)
canneal (0.6,2) (0.6,1) (0.6,1)
xhpcg (0.0,1) (0.0,1) (0.0,1)

Table 1: Diversity of optimal configurations: Each col-
umn represents the optimal memory configurations
for a specific tiered-memory configuration.

=

o}

N Il Min. 1 Max.
©

£ 2

S

=2 |_ ’7 |_ 1

(7]

8 S — —

“© S\ N & oC 22 S
2 %‘5 N N e o Xe
IE @Cws %@Q e‘(\c * <@

Figure 2: Costs for best/worst/average configuration,
normalized to the average cost of all configurations.

Table 1 shows the optimal tiered memory ratio and LLC
configuration across six different workloads and three mem-
ory technologies. Each column represents a specific tiered
memory technology where the slow memory is s times slower
and p times cheaper than DRAM. Performance per TCO opti-
mal configurations for each workload are shown in the form
of (slow memory ratio, LLC size). For example, if the slower
memory tier has a 3X higher read latency but 0.4x lower cost,
the cost-optimal configuration for the workload graph500
has a (slow memory ratio = 0.4, LLC size = 28 ways). As we
can see, there exists no configuration that is uniformly best
for all workloads or memory technologies. Figure 2 further
shows the minimum and maximum cost for the different
hardware configurations and workloads (normalized to the
average cost of all configurations). As can be seen, customers
spend 1.2-1.5X less for the optimal configuration compared
to the average configuration and 1.4 - 2.6X less compared to
the worst configuration.

While this work mainly evaluates two memory tiers and
variable LLC capacity, it can be easily extended to handle
additional tiers and other resources such as memory band-
width. We investigate general techniques that can be used
to uncover application-specific properties for the workloads
regardless of the underlying memory technology—the slow

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

>

(&}

52_ 8 4 -

‘o A A A

= A A

et A A A A
3] A

ao 1 A ‘
=

X

(&)

o 2 4 6 s 10 12 14

Workload mix

Figure 3: The packing efficiency improvement achieved
by a resource-optimal policy over the naive policy.

memory tier can be locally attached 3DXP or CXL-attached
DRAM/3DXP. Furthermore, while we do not explicitly dis-
cuss latency-critical workloads, we efficiently support them
through customizable objective functions, e.g. TMC can find
the most cost-effective configuration fulfilling a certain SLO
requirement (<X% slowdown).

2.2 Resource Efficiency for Cloud Operators

Cloud customers request VM instances of a specific hardware
configuration. The cloud’s VM scheduler is responsible for
selecting a server that can hold the new VM according to
the hardware requirements and the current availability of
machines in the cluster. One important aspect for optimizing
the cost efficiency of such clouds is to optimize the packing
density [70]. If VMs can be packed into fewer machines at
a given time, idle machines can be powered down to save
energy and cost, or they can be used to run low-priority batch
jobs. Packing inefficiency leads to resource stranding where
one of the resources (e.g. vCPUs) becomes fully utilized while
others (e.g. memory) are not. Existing cluster schedulers [27,
29, 71] consider packing efficiency during job scheduling to
maximize cloud resource utilization. However, they fail to
be effective if the resource demand of the VM workload is
fundamentally unbalanced. For example, if all workloads at
a given moment request disproportionately large amounts
of DRAM, a large amount of second-tier memory can be
left unused. VM configurations need to adapt based on the
real-time resource utilization of the cloud.

We thus investigate the potential upper-bound benefit
of considering packing efficiency when choosing a tiered
memory configuration. In particular, we determine the opti-
mal slow-to-fast memory ratio based on resource availabil-
ity. We evaluate 15 different workload mixes consisting of
4 applications each and compute the benefit provided by
the resource-optimal policy considering packing efficiency
over a naive policy. For additional information regarding the
workload mix, please refer to Section 4. The naive policy re-
quests optimal tiered memory allocations for each individual
application in isolation, whereas the resource-optimal policy
considers the availability of physical hardware resources.

Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

For instance, if a machine contains 3X more slow than fast
memory, the resource-optimal policy reserves 0.5x fast and
1.5% slow memory regardless of what the actual optimal
slow-to-fast memory ratio of an application is. As shown
in Figure 3, the resource-optimal policy achieves up to 2.2x
higher packing efficiency than the naive cost-optimal config-
uration, motivating the consideration of both configuration
cost and packing efficiency.

2.3 Performing Optimal Resource
Allocation

Resource allocation in tiered memory systems must be per-
formed whenever an application is submitted to the cluster,
considering the workload’s requirements and currently avail-
able physical resources. Performing optimal allocations is
generally unfeasible due to the large search space of configu-
rations and resources that need to be explored. It is crucial to
minimize the required time for identifying a good memory
configuration for a workload since the primary objective of
using tiered memory systems is to reduce the total cost of
ownership (TCO). In particular, the runtime cost of deter-
mining a near-optimal configuration should be significantly
lower than executing the workload. Prior works tried to
address this challenge mainly through black-box machine
learning techniques.

Machine learning. Machine learning techniques [52, 58,
67, 69] such as KNN, Support Vector Machines (SVM), or
regression can predict application performance under a spe-
cific machine configuration. However, traditional machine
learning methods are not aware of search cost considerations
and often require a large number of samples.

Collaborative filtering. Collaborative filtering [20, 41]
predicts the performance of an unknown application across
various configurations using sparse performance data ob-
tained from profiling training workloads. However, systems
like Selecta [41] need substantial training on diverse work-
loads and configurations to achieve accurate predictions.

Bayesian Optimization. Previous works [3] propose the
use of Bayesian optimization (BO) to minimize the search
cost in optimizing an objective function that maps a specific
configuration to an execution cost. BO treats the objective
function as a black box and aims to find an optimal solution
with minimal samples. However, incorporating resource effi-
ciency goals with BO is challenging, as it requires initiating a
new search every time resource utilization changes, leading
to increased search costs.

3 TMC Design

In this section we describe how TMC produces tiered mem-
ory and LLC configurations optimizing cost efficiency for
both the cloud provider and user.

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

Configuration ' ®

o o
Annotate B
mem. alloc. * Profiling]*

Cycles, # Inst., Mem. Latency, MLP

¥...
i)

Mem.
allocation i
1
]
1
: Placement

misses

; N
LLC Size Mem. \ [=
Freq. Table Cache miss curve placement v\ =

unJ uononpoid Ul pasn

Figure 4: Workflow of TMC. The frequency table records the memory access rate (MAR) and size of each data
structure, while the cache miss curve estimates the overall memory access rate by considering the number of

allocated last-level cache (LLC) ways.

l name [description [
fast gy 0% slow memory, maximum LLC size
fast i 0% slow memory, minimum LLC size
slowmax 100% slow memory, maximum LLC size

Table 2: Reference configurations

3.1 Overview

TMC requires 3 inputs: i) the workload submitted by a cloud
customer, ii) the cost model stating the price of slow and fast
memory as well as the cost of an LLC way, and iii) the latest
resource utilization of the available hardware. To enable
its performance predictions, TMC monitors the memory
consumption of an application during a profiling stage. TMC
then automatically determines two VM parameters: the near-
optimal memory ratio of local DRAM and slow memory and
the number of LLC-ways allocated to the VM.

In line with prior work [23, 74], we observe that the charac-
teristics above are almost always data-structure specific. As
a result, our proposed methodology determines application
properties such as memory access rate on a per data-structure
level and not on raw page data. One advantage of this design
choice is that it takes advantage of application semantics,
allowing for memory data access tracking at a coarser gran-
ularity. This results in reduced memory consumption for
storing access statistics, lower sampling overhead, higher
accuracy, and independence from the OS page size. For ex-
ample, in our applications (as shown in Table 5), we have up
to 30 data structures, which would require only 960 bytes of
memory for storing access statistics, assuming a conservative
overhead of 32 bytes per data structure. Additionally, while it
is challenging to track the access rate for individual pages of
4 KiB or 2 MiB using existing techniques [1, 24, 51, 61] such
as Intel’s precise event-based sampling (PEBS), assessing the
access rate at the data structure level is straight forward.

Being agnostic to the OS page size is also important for ap-
plications that utilize huge pages [51].

To enable data-structure profiling, each memory alloca-
tion needs to be associated with a tag that links to a specific
data structure. In line with prior work [23], our prototype
offers a customized memory allocation interface enabling
the user or an automated script can provide a tag. Memory
allocated for distinct data structures (e.g., sharing the same
tag) will be served from separate memory chunks of coarse-
grained memory units of e.g. 2 MiB. Consequently, data from
different data structures can be prevented from sharing the
same page. The procedure for annotating data structures typ-
ically starts by pinpointing the source-code locations where
substantial memory allocations occur. These allocations are
then substituted with our customized memory allocator that
includes an extra tag passed as an argument. To prevent over-
looking any allocations, one can utilize an LD_PRELOAD
wrapper to intercept all malloc calls and trace the call stack.
Regarding containers, our prototype utilizes a customized
allocator, guaranteeing that all allocations made by these
containers receive appropriate tagging. In our experimental
work, we find ourselves modifying an average of 23 lines
of code for the benchmarks. In Section 3.6, we discuss an
automated approach to assign tags, eliminating any burden
to the programmer.

Figure 4 outlines the workflow of TMC. TMC initially
measures important application properties, including the
memory access rate, observed latency, and memory level
parallelism (MLP), alongside the execution time of the work-
load under three reference configurations (fast,,;,, fast,, ..
and slowp,y). Note that while our current approach selects
only three reference configurations, incorporating additional
reference points would enhance the model’s accuracy, albeit
with an associated increase in search cost. Detailed informa-
tion about these reference configurations can be found in
Table 2. In Section 3.2 and Section 3.3, we demonstrate how

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

Definition ‘
CPI Cycle Per Instructions
CPI 4che | CPlin a system with perfect LLC cache
MAR Memory access rate (accesses per instruction)
MAR,,, | Memory access rate to second-tier memory
MLP Effective memory level parallelism
Liram Effective DRAM latency
Lgiow Effective slow-memory latency
AL Latency increase in slow memory over fast memory

Table 3: Performance metric list with definitions.

TMC utilizes these application properties and the execution
time of the reference configurations, to facilitate efficient
and accurate performance estimation. An accurate perfor-
mance estimation model allows TMC to select appropriate
configurations for the tiered memory. For each configuration
with different sizes of LLC, fast memory, and slow memory,
we utilize Equation 1 to calculate the total cost. It should
be noted that the cost of the virtual machine (VM) for each
configuration is determined by the cloud’s price profile. Fur-
ther details about the price profile used in our experiment
can be found in Section 4.1. Furthermore, in Section 3.4, we
will showcase the application of the estimated performance
profiles in guiding data placement in tiered memory systems.
TMC generates data placement instructions based on data
structure hotness, and a hybrid memory-aware allocator en-
forces per-data structure limits to optimize the efficiency of
the tiered memory system.

3.2 TMC Performance Model

In this section, we analyze prior work on application perfor-
mance modeling and then propose an improved model that
can handle tiered memory systems. Our model is based on
prior work [15] that proposed Eq. 2 to quantify the relation-
ship between off-chip memory accesses and the application
performance in a homogeneous system (e.g. DRAM-only).
Table 3 shows the performance metrics used by the devised
models.

MARX Ly
CPI = CPlogche + Wm’" (2)

In Eq 2, CPI 4.pe represents the on-core CPU cycles, while
% accounts for the off-core cycles spent waiting for
memory accesses. When memory accesses are processed se-
quentially, the off-core cycles are MAR X Lgyam €.g. MLP = 1.
However, due to existing memory level parallelism (MLP),
some of the memory latency is amortized, allowing for con-
current memory accesses and reducing the effective off-core
cycles. We expand upon Eq.2 to encompass systems featuring
a tiered memory hierarchy. We incorporate the performance
penalty introduced by a second-tier memory, as depicted in

Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

Eq.3:

MAR X Lgram . MAR,, X AL
MLP MLP

Equation 3 signifies that various factors influence the per-
formance of applications in tiered memory systems. These
factors include the on-core performance (CPI.4che), the mem-
ory access rate (MAR and MARy,,), the sensitivity to mem-
ory latency (AL), and the presence of memory level paral-
lelism (MLP).

e On-core performance. The on-core cycles (CPlqcpe) €X-
clusively account for the non-blocking CPU cycles, exclud-
ing the cycles spent waiting for memory stalls. The con-
sumption of on-core cycles by an application depends on
the specific CPU microarchitecture and the nature of the
application, such as whether it is computation-intensive
or memory-intensive.

e Memory access rate. The overall memory access rate
(MAR) is influenced by the application’s memory access
pattern and the size of the CPU cache. In the presence of
memory tiering, a portion of the memory access is fulfilled
by the slower second-tier memory, depending on the size
of the second-tier memory and the data structures placed
within it.

e Memory latency. The effective memory latency can be
highly dependent on the access pattern of the applica-
tion [8, 11, 32, 35, 46, 79]. For instance, the queuing delay
within the memory subsystem depends on the memory
bandwidth, while the access patterns affect the probability
of DRAM row hits. Thus, we assess the average end-to-end
memory latency for each application individually.

o Memory level parallelism. Memory accesses incur sig-
nificant latency and result in prolonged CPU stalls. To
mitigate some of this latency, modern Out-of-Order CPUs
execute multiple memory accesses concurrently. Memory
level parallelism (MLP) denotes the average number of
concurrent, outstanding memory accesses during the ex-
ecution of a program. It is important to note that in this
paper, we refer to MLP as effective MLP, which is deter-
mined not only by the application’s structure (instruction
parallelism) but also by the limitations imposed by the
underlying memory system hardware (such as the instruc-
tion window’s hardware constraints on parallelism).

CPI = CPl oehe + 3)

3.3 Inferring Tiered-Memory Performance

We now describe the methodology of collecting application
properties for informing TMC’s performance model. We
assume that performance properties such as on-core per-
formance (CPI q4che), effective MLP, and effective first and
second-tier memory latency (Lgyqm and Lgjo,) are not affected
by the tiered memory configuration. This assumption is
based on the observation that memory tiers differ on the

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

l [CPU cycles [# Instructions

[Memory Latency [MLP

[Cache miss curve [Access frequency [

l Granularity ‘ app. ‘ app. ‘ app.

‘ app. ‘ app. ‘ struct. ‘

Table 4: Application properties and their profiling level (application level or data structure level).

memory-system, but not CPU-core level, and has been val-
idated through experiments. Table 4 provides an overview
of the application properties collected during the profiling
stage and outlines the specific granularity at which these
performance properties are observed.

PMU Counters. Our TMC simulator in Section 4 emulates
hardware performance monitoring unit (PMU) counters that
measure on-core, non-blocking CPU cycles, MLP, and mem-
ory access latency. The on-core CPI and MLP are obtained
by averaging measurements of the three reference configu-
rations (Table 2). Additionally, the access latency (Lgqm) of
the first-tier memory can be measured in either the fast,, .
or fast,;, reference configuration, while the slow memory’s
latency (Lsjow) can be measured in slow,,,. Contemporary
CPUs offer the following hardware performance counters to
capture the required application properties:

e On-core cycles. All X86 processors support PMU coun-

and other similar hardware sampling techniques that enable
the recording of LLC-miss addresses directly. We will inves-
tigate the implication of the PEBS sampling rate on accuracy
and performance overheads in Section 5. The frequency ta-
ble enables TMC to rank data structures according to their
“hotness”, which is used for determining data placement in
the fast and slow memory tiers (Section 3.4). In particular,
the slow-memory access rate is estimated as the cumulative
access rate of data structures placed in the slow memory. In
the example shown in Figure 4, assuming a working-set size
of 2.5 GiB, when the slow memory ratio is 20% (512 MiB), the
data structures Hash (384 MiB) and List1 (128 MiB) will be
placed in the slow memory. Therefore, the access rate to the
second-tier memory can be estimated as the accumulated
access rate of Hash and List1 (i.e. 0.8).

LLC-specific memory access rate. To determine the
optimal number of LLC-ways for an application, TMC needs

ters to measure the total CPU cycles (CPU_CLK_UNHALTED. CORE) to estimate the slow-memory access rate for a given LLC size.

and memory stalls (CYCLE_ACTIVITY.STALLS_L3_MISS)

from which the on-core CPU cycles can be derived.

e MLP and memory access latency. Due to the lack of
general performance counters in contemporary Intel CPUs
to directly measure MLP and average memory latency,
one approach is to indirectly assess them by computing
the amortized performance penalty using the application
properties collected in fast,, . and slowp,y. Further details
about this approach can be found in Section 5.

Memory access rate. The memory access rate (or LLC
miss rate), non-linearly depends on the last-level cache (LLC)
size and the spatial and temporal locality characteristics of
an application. To estimate the memory access rate for dif-
ferent LLC sizes (number of ways), we utilize the concept
of cache miss curves proposed by Qureshi [60]. These curves
are derived from per-set hit counters using the LRU stack
property. By measuring a cache miss curve in any of the
three reference configurations, we can approximate the over-
all access rate (MAR) based on the number of allocated LLC
ways. After determining the memory access rate, TMC needs
to estimate the fraction of accesses that are served by the
second-tier memory (MARjo). Therefore, we introduce the
frequency table, which is constructed from application mem-
ory traces during the profiling step, by tracking the accesses
and memory region for each data structure. Each memory
access is mapped back to its corresponding data structure to
update its access count. Data structure access frequencies can
be obtained via Intel’s Precise Event-Based Sampling (PEBS)

A naive approach would be to measure the slow-memory
access rate under every configuration, collecting a frequency
table for each LLC-size configuration introducing a signifi-
cant profiling overhead. We address this challenge through
an approximation methodology that requires only two fre-
quency tables obtained when running fast,;, and fast, .. We
define the r% slow-memory miss curve as a curve depicting
how the slow-memory access rate changes over the LLC size
with a slow memory ratio of r%. The approximation is based
on the assumption that all slow-memory miss curves of an
application are likely to have the same slope. For instance,
the "knee" in the 50% slow-memory miss curve is expected
to occur at the same position (e.g. LLC ways = 3) as in the
cache miss curve. The process is detailed in Figure 5. First, for
each slow memory ratio r%, the access rate to the second-tier
memory is known only for (slow memory=r%, LLC=MIN)
and (slow memory=r%, LLC=MAX), which constitute the
start and end points of the r% slow-memory miss curve. To
approximate the complete miss curve for the target ratio, we
first align the cache miss curve with the start point of the
slow-memory miss curve (step 2) and then scale it vertically
to fit the endpoint (step 3).

3.4 Data Placement

While the presented methodology above enables TMC to
determine a near-optimal slow-to-fast memory ratio and the
number of LLC ways, we must also devise a policy to decide
which data structures should be placed in fast, respectively,

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

* slow mem. = 0.4
slow mem. =0.8

* slow mem. = 0.4
slow mem. = 0.8

8 | 8
'4 K'd k
|
A Y 7 Yy — v

0 \r\v 0

3 5 7 1 3 1 3 5 7

ways # ways # ways
Step 1 Step 2 Step 3

“ slow mem. = 0.4
slow mem. = 0.8

©

Cache miss curve

Access rate
(MPI)
£

o

Figure 5: Estimating LLC-specific memory access rate
with the cache miss curve. The approximation assumes
that all slow-memory miss curves of an application
exhibit a similar slope.

slow memory. TMC utilizes a policy based on the access
count per MiB as determined by ‘%ZCEO”’” to represent the
hotness of a data structure.

As illustrated in Figure 4, in addition to determining the
tiered memory configuration, TMC generates data placement
instructions that are utilized at runtime. These instructions
take into account the optimal allocation between the first
and second-tier memory, as well as the hotness of each data
structure. Based on this information, we can determine the
appropriate allocation of first-tier memory for each data
structure. For example, in the case presented in Figure 4, as-
suming the determined optimal slow memory capacity is 256
MiB and fast memory capacity is 1024 MiB, TMC allocates
130 MiB of fast memory and 256 MiB of slow memory for
the Hash data structure while placing all other data struc-
tures into fast memory since they are considered hotter. At
runtime, a hybrid memory-aware TMC memory allocator
enforces the per-data structure limit on DRAM capacity. This
allocator ensures that the allocated memory for each data
structure adheres to the defined limits optimizing the tiered
memory system efficiency. In our present implementation,
we utilize Jemalloc hooks to allocate data structures within
distinct arenas. The differentiation is achieved through tags
assigned either by programmers or the language runtime, as
elaborated in Section 3.6.

While prior work such as X-MEM [23] has proposed more
complex policies that consider MLP for data structure place-
ment, we observed that such an approach only provides a few
performance improvements over a policy based on access
count. In addition, X-MEM introduces a 40X slowdown as it
must use expensive application instrumentation to analyze
continuous memory access traces in order to distinguish
memory access patterns e.g. pointer chasing, sequential, or
random.

3.5 Optimizing Packing Efficiency
The performance estimation model, as discussed in Sec-

tion 3.2 and Section 3.3, serves the purpose of predicting the
execution time for a given configuration. To determine the

Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

Algorithm 1 Configuration Selection Algorithm

Conf; > The i’th candidate configuration
i > Total execution cost for conf;
min > Minimum execution cost (estimated)
> Total resource capacity in a machine

> Overall resource utilization in a cloud
> Number of candidate configurations

> Acceptable cost deviation from optimal

SES)

Nz X

procedure OPTIMIZATION(...)
> First round: optimize the cost for the customers
for eachi € {1..N} do
if % —1<T then
opt.insert(Conf;)
end if
end for

> Second round: optimize the resource efficiency

for eachi € {1...5} do > S is the size of opt
D, o (i, B, o, 2
penalty; =D; - U

end for

Sort the opt according the penalty (increase)

return opty

end procedure

values of C; and Cy;p, for use in Algorithm 1, one can lever-
age the estimated execution time and unit cost associated
with the specific configuration, as described in Equation 2.
Algorithm 1 shows the pseudo-code of our configuration
selection. Our selection algorithm consists of two rounds.
In the first round, we identify all configurations that satisfy
the cost-performance objective of the customer. If the esti-
mated cost of a configuration is within a threshold T of the
estimated optimal cost, we consider it as a cost-optimal. In
the second round, we pick a configuration that maximizes
the resource efficiency for the cloud provider. We propose a
new heuristic, packing penalty, to evaluate the impact of a
configuration on the resource efficiency in the cloud: a con-
figuration with a lower packing penalty makes more efficient
usage of cloud resources and vice versa.

The packing penalty is calculated as the dot product of the
two vectors U and D. The vector U represents the overall
resource utilization of each configuration, while the vector D
represents the resource demand of each configuration. The
dimensions of these vectors correspond to the number of
resource types, which is four in our work (e.g., CPU, LLC,
slow memory, fast memory). The rationale behind the pack-
ing penalty is to penalize configurations that heavily utilize
scarce resources. For example, let’s consider a simplified

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems

scenario with two resource types: fast memory and slow
memory. We have identified two cost-optimal candidate con-
figurations: Config_1 requires 0.2 GiB of fast memory and
0.8 GiB of slow memory, while Config_2 requires 0.8 GiB of
fast memory and 0.2 GiB of slow memory. Suppose the fast
memory is under high pressure (e.g. 70% utilization), while
the slow memory is relatively idle (e.g. 20% utilization). In
this case, we would prefer Config 1 due to its lower packing
penalty (0.2 X 0.7 + 0.8 X 0.2 = 0.3) compared to Config 2
(0.8X 0.7 +0.2 X 0.2 = 0.6).

3.6 Discussion

Application transparency. We now explore several options
to alleviate the adoption of the TMC methodology. First, TMC
can by implemented as part of the language runtime, elimi-
nating the need for developers to annotate memory alloca-
tions manually. In modern C++, heap memory objects are typ-

ically managed using smart pointers (e.g. std: :make_unique<T>)

or STL containers (e.g. std: : vector<T>). Therefore, we can
delegate the tagging responsibility to the language runtime.
For example, the STL container can utilize the type informa-
tion T as the tag for its memory allocation. Alternatively, we
can allow the memory allocator to dynamically generate a
tag at runtime by examining the call stack. This approach
leverages the fact that the same memory allocation call site
always allocates memory objects of the same type.

Bandwidth. Our prediction model assumes that the end-
to-end memory latency of an application is relatively stable
across different configurations. We found that this assump-
tion holds as long as the memory bandwidth of the system is
not overly saturated, particularly less than 80% of the peak.
As demonstrated in prior studies [25, 35, 36, 79], there is
a “knee” in the bandwidth-latency curve at around 80% of
the maximal bandwidth. For most of the operating range,
memory latency is relatively flat, however, it increases ex-
ponentially after the “knee”. As reported in [35], the “knee”
for 3DXP when dealing with random read workload is at
around 10 GiB/s where the latency increases from 300ns
to 400ns. Our technique assumes that the cloud provider
enforces workload mixes via scheduling that consumes at
most 80% of a machine’s DRAM bandwidth. This has been
naturally the case for all workload mixes evaluated in this
paper. Google has reported [37] that data center applications
are almost exclusively DRAM latency and not bandwidth
limited.

Tail latency. While TMC predicts latency (execution
time), it currently does not allow predicting tail latency. We
assume that other tail-latency mitigating techniques are de-
ployed [19] and as a result, the application is not too tail-
latency sensitive. This approach should apply to sufficient
application areas, as Google has reported that high-priority

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

workloads run on dedicated and not shared machines [7].
Prior works predicting optimal configurations also do not
consider tail latency [3, 41].

Application specific MLP. Prior work has proposed mea-
suring data structure specific MLP by extending the memory
controller [46] or by adding expensive instrumentation [23].
However, our study indicates that replacing application spe-
cific MLP with data structure specific MLP provides little
improvement over the prediction accuracy (less than 1%).
Hence, our work measures the MLP of the application, assum-
ing MLP is identical across different memory configurations.
Our approach has shown to be accurate when applied in real
systems for predicting application performance (Section 5).

Noisy profiles. If the profiling runs of an application hap-
pen to be scheduled on a machine that is under abnormal
conditions e.g. overloaded, TMC might produce a perfor-
mance model that is not representative of the machines in
the cluster. To overcome this problem, we can design a micro-
benchmark that performs operations exercising different re-
sources in the system, and that is executed periodically in the
machines of the cluster, reporting back the representative
metrics. We will schedule the profiling runs on a machine
whose condition is consistent with the common machines
in the cluster.

Dynamic tiering. In data centers, applications are recom-
piled, deployed, and profiled multiple times a day, enabling
TMC to adapt to changing inputs, application characteristics,
and hardware resources. Google [13] has shown that input
characteristics change slowly and that profiles only become
outdated over weeks. TMC can be deployed as an always-on
system that constantly profiles and re-allocates memory for
new application invocations based on the existing hardware
resources. TMC provides accurate predictions with low PEBS
sampling overhead as demonstrated in Section 5. In such a
dynamic environment, the improved search time provided
by TMC over prior work is particularly important.
Practicality in Cloud Deployments. In private clouds
PEBS access is not an issue. Linux supports PMU virtualiza-
tion with vPMU. AWS supports the virtualization of core-
PMUs. Finally, Clients can also pre-profile their workloads
on native machines and then submit the information to the
cloud operator.

4 FEvaluation in Simulation

In this section, we first present our experiment methodology.
We then analyze the effectiveness of TMC.

4.1 Experimental setup

Cloud VM simulation. We simulate physical hardware
in the cloud using the cycle-accurate simulator Scarab [33].
We modify Scarab to implement the required performance

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

#
Structs.

CactusBSSN [12] | 30
Graph500 [55] 5
Memcached [17] | 3
XSBench [68] 5

Description

Model a vacuum flat space-time
BFS search on an undirected graph
Workload C in YCSB

Monte Carlo neutron transport

Canneal [10] 10 Opt. routing cost of a chip design

XHPCG [21] 13 Preconditioned conjugate gradient

Table 5: Description of the benchmarks including the
required number of annotated data structures (i.e. tags)
for each application.

counters for capturing cache miss curves and application-
specific properties (see Section 3.3) required by TMC. The
simulated machines in our study contain 12 cores, 12 MiB
48-way associative LLC and 24 GB DRAM. Existing machines
support 16-20 LLC ways which is insufficient for realizing
optimal configurations. This motivates us to evaluate a larger
number of LLC ways to enable fine-grained LLC allocation.
Alternatively, future systems can also employ more advanced,
fine-grain cache partitioning techniques such as vantage [65].
Although our work makes no assumption on the type of me-
dia that will be used in the slow memory tier, we simulate
the performance characteristics of 3DXP memory by default
i.e. 3% [35, 79] the DRAM latency (100 ns). In our experi-
ment, the slower memory tier is provisioned by attaching
a 128 GiB 3DXP DIMM to a server, except for Section 4.5
where we explore the effectiveness of TMC in other memory
tiering architectures. In particular, we simulate a fast mem-
ory tier (DRAM) and a CXL-attached memory pool as the
slow tier. Our CXL-based disaggregated system provides a
shared memory pool for each 8-node rack. Similar to prior
work [45], we add an additional latency of 85 ns to each
CXL access i.e. the end-to-end memory latency is comprised
of the CXL delay and the access latency of the second tier
memory. New allocated VMs are added to a queue in order
of their arrival. Every time a new virtual machine is created,
the scheduler checks all machines to find one with sufficient
resources. TMC analyzes the machines in random order, and
places the job on the first one that has the required available
resources.

IaaS cloud. We assume that customers can choose a slow
memory ratio out of 11 slow memory ratios (0%, 10%, 20%,
... , 100%) and an LLC size out of seven configurations (1,
2,3, 4, 12, 20, 28) utilizing technology such as Intel’s cache
allocation technology (CAT) [34, 65]. In total, there exist 77
candidate configurations. We obtain the hourly cost for a
single vCPU and 1 GB of DRAM by using the least square
method to solve a system of equations derived from all VM
instances in the Msv2-series of Microsoft Azure. We assume

Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

-

¢ [Rand B BO B TMC

kS

504

(9]

(5}

bl

=02

(]

(%)

£0.0 N N 3 A

3] I\ o\ 2 S :

_g w‘g’ss q}%\’\& z((\f«?‘a\e 1&“6\0 (,’b‘\(\e 13\90 we
@

Figure 6: Execution cost increase over exhaustive
search

the cost of 3DXP memory is 0.4x that of DRAM. Following
the methodology described in [83], we obtain the hourly cost
for a unit of LLC capacity according to the estimated area
percentage of the LLC in a CPU chip.

Workloads. The workloads used in our experiments cover
a broad spectrum of applications. The specifics of these work-
loads are available in Table 5. We modify the applications to
utilize our custom memory allocator that assigns each data
structure with a tag. For each application, we performed a
basic-block vector-based analysis (Simpoint-like), determin-
ing that 2 billion instructions are representative in regards
to IPC, MPKI, branches, and other metrics. We pick four
out of the six workloads to form a workload mix resulting
in 15 workload mixes in total. We believe four workloads
strike a good balance between mix diversity and the total
number of workloads in a mix. A workload mix represents
the workloads that will be submitted to the cluster in an
experiment. We select one of the workloads of the mix as the
newly submitted workload. After a new workload arrives
(randomly selected from the workload mix), TMC finds an
appropriate VM configuration for the new workload. The
new VM request is submitted to the cluster scheduler. After
completing a certain number of workloads (5000 in our evalu-
ation), we report the average execution cost for all workloads
submitted to the cloud.

Baselines. We compare TMC with the following strate-
gies: i) Exhaustive search (ES) finds cost-optimal configura-
tions by running all the configurations. It provides an up-
per bound on the overall performance. ii) Random (Rand)
selects a configuration randomly from a set of candidate
configurations without any test runs. iii) Bayesian Optimiza-
tion (BO) is a state-of-the-art solution that has been used in
prior work [3] to reduce the number of samples to reach a
cost-optimal configuration. In our experiment, we set the Ex-
pected Improvement (EI) to 5% and use three initial samples.

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems

-E I BO H TMC

£

£ 0.15

o)

= 0.10

B 0 o

S 0.05

o

=

E 0.00 S N N - N

0] (S) N N3 oC o2 Q(,% P‘\l%
© N 29 &% o N

V’ (;ad&\)s o «\eﬁ‘\c * <

Figure 7: Search cost of TMC and BO, normalized to
the search cost of exhaustive search (ES). ES and Rand
are omitted as they are one and zero.

4.2 Execution and Search Cost

In this work we aim to learn cost-optimal tiered-memory con-
figurations with minimal search overheads. For each work-
load in Table 5, we utilize TMC and the baseline techniques
to recommend a VM configuration and the run the work-
load with the recommended configuration. We repeat the
experiment 10 times and report the average number of test
runs (search cost) and execution cost. Figure 6 shows the
execution cost of the VM, LLC, fast and slow memory config-
uration determined by TMC and the baseline techniques. As
can be seen, TMC reduces the execution cost by 1.3X over
Rand and by 1.05% over BO in average. TMC only incurs a
2% higher TCO per performance than the ES’s cost-optimal
configuration. While ES provides the best performance in
terms of cost minimization, it also incurs the highest search
cost of all approaches as shown in Figure 7. For ES, every
configuration needs to be run at least once. For instance, if
an application has a one-minute average execution time and
there are 77 candidate configurations in our experimental
setup, it would require 77 minutes of profiling. Our TMC
provides 26X lower search cost than ES and 3% lower search
cost than BO. Rand imposes no search overhead by simply
choosing a configuration randomly, however, it has no way
of controlling the quality of the recommended configuration,
and, as a result, it increases TCO by up to 50% and 33% on
average compared to ES.

4.3 Improving Packing Efficiency

The second goal of TMC is to increase packing efficiency
for the cloud operator without introducing a significant cost
increase for the customer. For the cost increase, we set the
threshold T to 2.5% so that the recommended configuration
can be at most 2.5% more costly than the optimal configura-
tion. The compact cluster size [70] refers to the minimum
cluster size required to accommodate a given workload. In
our work, we utilize the compact cluster size as a metric to
assess the packing efficiency of the cloud. We determine the

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

compact cluster size by progressively reducing the cluster
size until the job is rejected due to insufficient available ma-
chines. A smaller compact size indicates a higher level of
packing efficiency, as it indicates fewer machine resources
are required to sustain the workload.

Figure 8 compares the compact cluster size and the average
running cost achieved by the evaluated schemes. Since the
Bayesian Optimization (BO) methodology does not prioritize
resource efficiency and only tries to optimize the search cost,
we do not include it in this comparison. The compact clus-
ter size and the average running cost are normalized to the
ES configuration. As can be seen in Section 4.2, exhaustive
search recommends actual cost-optimal configurations, how-
ever, it entails significant search overheads. As compared to
ES, TMC reduces the compact cluster size by 17% and intro-
duces only a 1.5% higher cost. In addition, we also observe
that TMC can indeed control the quality of the recommended
configurations and achieve a significantly lower execution
cost compared to a randomly selected configuration.

4.4 Threshold Sensitivity Study

We next study the impact of the threshold T. A larger thresh-
old T allows more configurations to be deemed cost-optimal,
enabling TMC to increase further resource efficiency. Ad-
ditional details about the threshold T can be found in Sec-
tion 3.5. For example, when the T increases from 0% to 2.5%
(resp., 7.5%), TMC can boost resource efficiency by reducing
the compact cluster size by 25% (resp., 32%) as shown in
Figure 8. On the other hand, increasing T also lowers the
stand overall performance of the cost-optimal configurations,
increasing the execution cost. For example, the average cost
execution of the configurations recommended by the TMC
is 1.1%, 2.6%, and 7.9% higher than the optimal cost when
the threshold T is 0%, 2.5% and 7.5% respectively.

4.5 Memory Tiering Sensitivity Analysis

This experiment investigates the effectiveness of TMC under
various tiered memory architectures. The two Local con-
figurations deploy slow memory locally via DIMMs: 128L
attaches one 128 GiB 3DXP module and 256L attaches two
128 GiB modules to each node. The current 3DXP modules
only come in capacities of 128GB, 256GB and 512GB. As
a result, Local can only increase the memory capacity at a
very coarse granularity. The four Pool configurations explore
rack-scale pooled deployment enabled by the emerging CXL
technology to connect slow memories to 8 nodes via a CXL
fabric: 128P / 384P / 640P / 896P respectively provide 128 / 384
/ 640 / 896 GiB of 3DXP memory in the pool. For each such
far memory configuration, we evaluate two configurations
of local DRAM with either 24 GiB or 48 GiB per machine.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

S M ES [Rad EEE TMC(T=0% [TMC(T=25%) HEEE TMC (T =7.5%)
b 1.5
3 1.0
(8]
© 0.9
3
g 0.0- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.
e Workload mix
(a) compact cluster size

. EEEES [Rad EEE TMC(T=0%) [J TMC(T=25%) EEE TMC (T =75%)
8 1.51
)
5 1.0+
5051
0
x |
i 0.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Workload mix

(b) execution cost

Figure 8: Efficiency of TMC’s configuration selection (normalized to ES). TMC increases the efficiency while

minimizing the cost penalty for the customer.

BN ES [Rand EEEE TMC (T =0%) [TMC (T = 25%) B TMC (T = 7.5%)
& DRAM = 48 GiB DRAM = 24 GiB

g 60
gH i (KK
S
0
’fb\‘ 6@\, ’L%Q %bf? b‘g? qbQ W ’Z«%\' %@\, ’l%Q %b(? b(Q? Q@? P‘&’
Figure 9: Effectiveness of TMC under various configu-

rations of tiered memory.

We run the 15 workload mixes under various tiered mem-
ory configurations to observe the average compact cluster
size of each configuration shown in Figure 9. First, we demon-
strate that TMC improves resource efficiency in nearly all
architectures as compared to other approaches. For exam-
ple, TMC reduces the compact cluster size on average by
30% (resp. 13%) as compared to ES when the DRAM size
per machine is 48 GiB (resp. 24 GiB). Second, we observe
that the 384P and 640P already allow TMC to achieve opti-
mal resource efficiency when the size of the local DRAM is
24 GiB and 48 GiB respectively. 384P and 640P effectively
provision 48 GiB and 80 GiB far memory per node. On the
other hand, Local only allows the memory to be expanded
at the coarser 128 GiB granularity, potentially leading to the
over-provisioning and stranding of slow memory. Finally,
data center operators must comprehensively consider both
platform cost and resource efficiency in order to find an

Il Sl =2 I Sl =103 1 SI = 10007
100
S
~ 75
3
3 50
g
0 N S N
[\ cJQ e o &2 o 20
cx\s%c) @zQ\\ «\@C &S AR «®
(o «

Figure 10: PEBS sampling overhead. We choose prime
SIs to avoid bias from periodicities like prior work [49].

optimal server configuration. We particularly note two inter-
esting examples: i) Doubling the local DRAM from 24 GiB to
48 GiB reduces the compact cluster size for all approaches;
However, it also introduces significantly higher per-machine
costs, ii) 640P reduces platform cost by requiring 37.5% less
3DXP memory as compared to 128L; however, TMC (T=7.5%)
achieves 14% lower resource efficiency in a 640P.

5 Real System Experiments

Simulation allows us to easily observe any application prop-
erties and thus enables us to quickly verify our proposed
techniques on the performance estimation and the config-
uration selection. In this section, we introduce a proof-of-
concept implementation and partly verify the applicability
of using TMC in real systems. In particular, we build a work-
ing prototype that can predict how the run time changes

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems

—+— Ground-truth

—=+= Prediction

—+— Ground-truth

—=+= Prediction

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

—+— Ground-truth —+— Ground-truth

—=+= Prediction —=+= Prediction

%
%

>

[
o

Access rate (Normalized)

S 2 s
Access rate (Normalized)

S

0 20 40 60 80 100
Slow memory (%)

(a) cactusBSSN

20 40 60 80 100
Slow memory (%)

(b) graph500

Access rate (Normalized)
Access rate (Normalized)

o v

0 20 40 60 80 100 0 20 40 60 80 100
Slow memory (%) Slow memory (%)

(c) xsbench (d) xhpcg

Figure 11: Accuracy of estimating the slow memory access frequency in a real system using profiling.

Ground-truth
Prediction

—+— Ground-truth

= —=+= Prediction

—+— Ground-truth
—=+= Prediction

—+— Ground-truth
—=+— Prediction

1200
1000
800
600

Run time (s)

0 20 40 60 80 100 0 20 40 60 80 100
Slow memory (%) Slow memory (%)

(a) cactusBSSN (b) graph500

[t
0 20 40 60 80 100 0 20 40 60 80 100
Slow memory (%) Slow memory (%)

(c) xsbench (d) xhpcg

Figure 12: Accuracy of estimating the execution performance in a real system using profiling,.

with the size of the slow memory. As hardware monitors for
learning the cache miss curve [60] become available, TMC
can be completely implemented in software. In the following
section, we consider the following three main questions:
e What is the overhead of PEBS sampling?
e Can we accurately estimate the access frequencies?
e Can we accurately estimate the performance impact?

We utilize precise event-based sampling (PEBS) to inter-
cept samples of memory accesses to estimate the access fre-
quency of data structures. PEBS captures a snapshot of the
processor state upon certain configurable hardware events.
We program PEBS to monitor MEM_LOAD_RETIRED.L3_MISS
events. PEBS can be configured with a sampling interval
(SI). For a sampling interval of n, PEBS captures every n'"
event into a buffer. When the PEBS buffer is full, an interrupt
is triggered, during which TMC records the CPU state in a
software-accessible buffer. We only record the virtual address
accessed by CPU misses. The sampled memory accesses are
then written to a file in a separate thread. As discussed in
Section 3.3, we count the sampled accesses to different data
structures in the offline analysis. We multiply the number
of sampled memory accesses by the sampling interval (n) to
estimate the actual access frequencies.

Due to the lack of general, well-documented performance
counters that allow us to measure the MLP as well as the
average memory latency in contemporary Intel CPUs, our

current implementation measures MLP and the latency sen-
sitivity of an application indirectly. In particular, we measure
the amortized performance penalty introduced by accessing
the slow memory. The amortized performance penalty takes
into consideration both the latency-sensitivity as well as the
effect of memory level parallelism on an application. We
measure the CPI of an application in the DRAM-only config-
uration (CPly;qm), CPI in the configuration where all data is
placed in the slow memory (CPIj,.,), as well as the number
of accesses to the slow memory (MPI,,,). The amortized
performance penalty can then be computed via Eq. 4. The
performance impact associated with placing data to the slow
memory can be estimated by simply multiplying the access
rate to the slow memory (estimated) and the amortized per-
formance penalty.

AL

CPI - CPI
Perf penalty — T — slow dram

MPIslow

©

5.1 Evaluation

Setup. To evaluate the proposed scheme, we use a server
equipped with a Xeon Gold 5218 processor and a tiered mem-
ory hierarchy with six 32 GiB DRAM DIMMs (192 GiB in
total) and a 128 GiB intel DC Persistent Memory.
Overhead. We first study the overhead introduced by
PEBS which is important as it impacts the search cost of
TMC. Figure 10 shows the sampling overhead for different

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

SIs compared to the application execution time without PEBS
monitoring. The PEBS sampling overhead is comprised of
induced pipeline flushes due to the PEBS assist, and the over-
head for handling extra interrupts [2]. High sampling rates
results in substantial performance overhead. With a SI of two,
the performance overhead can be as high as 102.1% (41.4%
on average). We configure PEBS to use a large sampling in-
terval (10007). With such a large SI, we observe virtually no
overhead (< 1%) due to PEBS sampling across all workloads.

Access-rate estimation. In our experiment, we move
data structures of an application to the slow memory tier one
by one in a random order and then measure the ground-truth
number of accesses to the slow memory and the ground-truth
run-time. Figure 11 shows the number of accesses to slow
memory depending on the amount of data allocated in slow
memory. We show the ground-truth and estimated number
of accesses to the slow memory. As we can see, we achieve
high accuracy in estimating the access frequencies even at a
relatively low sampling rate (SI = 10007). The inaccuracies
in the workload xhpcg is likely caused by the shadow effect
of PEBS [80].

Performance estimation. Figure 12 shows the ground-
truth and estimated run-time depending on the amount of
application data allocated in slow memory. Overall, TMC
achieves high accuracy in estimating the amortized perfor-
mance penalty of different applications and, as a result, is
capable of producing accurate predictions on the execution
time of the application. This observation demonstrates that
our assumption on the MLP and the memory latency as stated
in Section 3.2 holds in most of the cases. However, we also
observe that there is a relatively high prediction error (7%)
on the performance although TMC achieves high accuracy
in estimating the access rate for the cactusBSSN workload
as shown in Figure 11a. The cactusBSSN workload presents
an interesting example where the assumption that MLP /
memory latency is identical across different memory con-
figurations might not hold. However, we argue that adding
new hardware [46] or using costly instrumentation [23] (40x
slowdown) to capture the data structure specific MLP just for
improving the accuracy for a few applications is not justified.

6 Related Work

Data tiering solutions. Hybrid memory systems have been
proposed to allocate performance-sensitive data in first-tier
memory and performance-insensitive data in second-tier
memory, seeking to maintain performance at a lower cost.
Given a fixed allocation between the first and second tier
memory, prior work [1, 14, 23, 38, 39, 42, 46, 77, 78] can
determine the best memory type for a given data item. While
these prior works can provide raw performance guarantees,
they are insufficient in the cloud setting, where operators

Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

and customers need to consider optimal cost efficiency as
well.

Prior work on online data migration is complementary to
our work. Meta’s TPP [50] distinguishes between anonymous
and file-backed allocations, preferring to place file-backed
allocations in the slow tier. Increasingly, researchers [43, 50,
76] try to implement a proactive demotion approach that
achieves two goals: the first is to always have free memory
in the hot tier for hot pages by choosing separate high water
mark and low water mark for the hot tier; the second is
to use machine learning to guide proactive freeing of that
memory [43, 45].

Memory profiling methodology. Previous research [1,
24, 51, 61, 72, 73, 78] has investigated different techniques
for capturing application access patterns. Linux’s page man-
agement approach [72, 73, 78] utilizes the hardware access
bit to distinguish between hot and cold pages, aiding page
replacement decisions. However, relying solely on scanning
the accessed bit cannot accurately estimate the access rate
of pages. It can only indicate recent access without counting
the number of accesses. Frequent analysis of the access bit re-
quiring TLB shootdowns is infeasible due to the performance
overhead.

Another approach to assess the data access frequency is
page sampling and poisoning, employed by works including
Thermostat [1], TPP [51] and AutoNUMA [62]. These works
utilize TLB misses as a proxy for memory accesses, which
can introduce substantial inaccuracies for measuring the
access rate.

Application [23] instrumentation represents another ap-
proach used for memory tracing and determining the ac-
cess frequencies of different data structures. However, this
method introduces substantial profiling overheads, resulting
in a slowdown of up to 40 times. Additionally, it fails to ac-
count for the memory hierarchy, in particular, it is unaware
of the filtering effect of CPU caches.

PEBS has been considered an effective option for tracking
hot pages and has been explored in works such as HeMem [61]
and TMTS [24]. However, our work differs in focus. While
those works aim to select hot pages, our goal is to accurately
measure the access rate. TMTS recognizes that some hot
pages may be missing from PEBS sampling and resorts to
page scanning as a last resort. This is not necessary in our
approach. By leveraging application semantics, our method
tracks memory access at a coarse granularity (data structure
level), allowing for an accurate assessment of the access rate
with minimal overhead.

Tiered-memory in data centers. Some data center op-
erators [43, 76] have chosen to implement the slow memory
tier using compressed DRAM or RDMA [4, 30, 59, 63] in-
stead of new, directly-accessible memory technologies, such
as 3DXP [56, 57] and CXL, considered in this paper. Linux

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems

Zswap and related mechanisms compress swapped pages but
are not fast enough for load/store-based interfaces. Other pre-
vious works [1, 50] dynamically tune the capacity of different
memory tiers to improve cost efficiency while maintaining
the service level objective. However, they offer no general
solution on how to estimate the run time for a memory con-
figuration. Mnemo [22] is a memory sizing tool designed
only for key-value stores such as Memcached, Redis, and
DynamoDB and cannot be used with general applications.
HNVM [82] employs a hybrid of fast NVM (BBNVM) and
slow NVM (PCM) as a persistent, compute-side cache. It op-
timizes the fast-NVM & slow-NVM ratio for an application.
Unlike our work, HNVM utilizes costly exhaustive searches
to build application performance profiles. In the context of
computational memory, Sidekick [44] leverages Genetic Al-
gorithms to optimize the placement of computations, tailor-
ing placement decisions for each function invocation context
individually.

Selecting cloud configurations. Machine learning tech-
niques [52, 58, 67, 69] such as KNN, Support Vector Machines
(SVM), or regression can be used to predict application perfor-
mance under a certain machine configuration. However, tra-
ditional machine learning is not conscious of the search cost
and may require a large number of samples. Ernest [69] has
investigated reducing the amount of training data with ex-
perimental experiment design. However, the usage of Ernest
is limited as it can only be used to predict the optimal num-
ber of instances for analytic workloads. CherryPick [3] relies
on Bayesian optimization to reduce the number of samples
that are necessary to reach a cost-optimal configuration. Our
work instead utilizes the application-specific properties, and,
as a result, minimizes the number of test runs required for
performance estimation. While Selecta [41] focuses on se-
lecting storage configurations, our work investigates how to
select memory configurations for the cloud with heteroge-
neous memories.

Data center scheduling and resource allocation. Prior
work on cloud scheduling is complementary to our research.
Existing work on cloud schedulers [26, 27, 29, 66, 71, 81] typ-
ically tries to increase the resource efficiency using heuris-
tics; However, optimizations on the scheduler can be useless
if the VM workload as determined by the selection of ma-
chine configurations is fundamentally unbalanced. Optimiza-
tions [6, 18, 75] such as resource harvesting and oversubscrib-
ing that further improve resource utilization are orthogonal
to our work.

7 Conclusions

This work investigates how to quickly identify ideal mem-
ory configurations for applications in tiered-memory cloud
systems. TMC captures application-specific properties with

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

existing performance monitoring hardware and uses them
for accurate performance prediction. We demonstrate that
TMC reduces the search cost by up to 4x while recommend-
ing high-quality configurations. Our approach additionally
improves resource efficiency by 17% on average versus a
naive policy that requests optimal allocations for each ap-
plication in isolation. As a result, TMC provides the tools to
efficiently support emerging tiered memory systems and to
reap both performance and cost benefits.

Acknowledgments

We extend our gratitude to our shepherd Baptiste Lepers
and the anonymous reviewers for their valuable insights
and improvement suggestions. This work was generously
supported by Samsung and NSF grants CCF-1942754 and
CNGS-1841545.

References

[1] Neha Agarwal and Thomas F Wenisch. 2017. Thermostat: Application-
transparent page management for two-tiered main memory. In Pro-
ceedings of the 2017 International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 631-644.
Soramichi Akiyama and Takahiro Hirofuchi. 2017. Quantitative eval-
uation of intel pebs overhead for online system-noise analysis. In
Proceedings of the 7th International Workshop on Runtime and Operat-
ing Systems for Supercomputers ROSS 2017. 1-8.
Omid Alipourfard, Honggiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. 2017. CherryPick: Adap-
tively Unearthing the Best Cloud Configurations for Big Data Analytics.
In Proceedings of the 13th Symposium on Networked Systems Design and
Implementation (NSDI °17). 469-482.
Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy,
and Scott Shenker. 2020. Can far memory improve job throughput?.
In Proceedings of the 15th European Conference on Computer Systems
(EuroSys °20). 1-16.
[5] Amazon. [n.d.]. Amazon elastic compute cloud. https://aws.amazon.
com/ec2.
[6] Pradeep Ambati, iﬂigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian
Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh
Elnikety, et al. 2020. Providing SLOs for Resource-Harvesting VMs
in Cloud Platforms. In Proceedings of the 14th Symposium on Operating
Systems Design and Implementation (OSDI "20). 735-751.
Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy
Ranganathan. 2018. Memory hierarchy for web search. In Proceedings
of the 24th Int’l Symposium on High-Performance Computer Architecture
(HPCA-24). IEEE, 643-656.
Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ran-
ganathan. 2020. Classifying memory access patterns for prefetching.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
513-526.
Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu
Cho, Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy,
Heiner Litz, Tipp Moseley, and Parthasarathy Ranganathan. 2019. As-
mdb: understanding and mitigating front-end stalls in warehouse-scale
computers. In Proceedings of the 46th International Symposium on Com-
puter Architecture. 462-473.

[2

—

[3

[t

[4

—

[7

—

[8

—

[9

—

https://aws.amazon.com/ec2
https://aws.amazon.com/ec2

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

[10] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D.
Dissertation. Princeton University.

[11] Peter Braun and Heiner Litz. 2019. Understanding memory access pat-
terns for prefetching. In International Workshop on Al-assisted Design
for Architecture (AIDArc), held in conjunction with ISCA.

[12] James Bucek, Klaus-Dieter Lange, and Joakim v. Kistowski. 2018. SPEC
CPU2017: Next-generation compute benchmark. In Companion of the
2018 ACM/SPEC International Conference on Performance Engineering.
41-42.

[13] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO:
Automatic feedback-directed optimization for warehouse-scale appli-
cations. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization. 12-23.

[14] Chia Chen Chou, Aamer Jaleel, and Moinuddin K Qureshi. 2014.

Cameo: A two-level memory organization with capacity of main mem-

ory and flexibility of hardware-managed cache. In Proceedings of the

47th Annual IEEE/ACM International Symposium on Microarchitecture.

IEEE, 1-12.

Russell Clapp, Martin Dimitrov, Karthik Kumar, Vish Viswanathan,

and Thomas Willhalm. 2015. Quantifying the performance impact of

memory latency and bandwidth for big data workloads. In 2015 IEEE

International Symposium on Workload Characterization. IEEE, 213-224.

Compute Express Link Consortium. 2020. Compute Express

Link: The breakthrough CPU-to-Device Interconnect. https://www.

computeexpresslink.org/.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking cloud serving systems with

YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.

143-154.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus

Fontoura, and Ricardo Bianchini. 2017. Resource central: Understand-

ing and predicting workloads for improved resource management in

large cloud platforms. In Proceedings of the 26th ACM Symposium on

Operating Systems Principles (SOSP ’17). 153-167.

[19] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun.
ACM 56, 2 (2013), 74-80.

[20] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-
aware scheduling for heterogeneous datacenters. ACM SIGPLAN No-
tices 48, 4 (2013), 77-88.

[21] Jack Dongarra, Piotr Luszczek, and M Heroux. 2013. HPCG technical
specification. Sandia National Laboratories, Sandia Report SAND2013-
8752 (2013).

[22] Thaleia Dimitra Doudali and Ada Gavrilovska. 2019. Mnemo: Boost-

ing memory cost efficiency in hybrid memory systems. In 2019 IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW). IEEE, 412-421.

Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan

Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten

Schwan. 2016. Data tiering in heterogeneous memory systems. In Pro-

ceedings of the 11th European Conference on Computer Systems (EuroSys

’16). 1-16.

[24] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,

Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela

Mijailovic, et al. 2023. Towards an Adaptable Systems Architecture

for Memory Tiering at Warehouse-Scale. In Proceedings of the 2023

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS). 727-741.

Sadagopan Srinivasan Li Zhao Brinda Ganesh, Bruce Jacob, and Mike

Espig Ravi Iyer. 2009. CMP Memory Modeling: How Much Does Ac-

curacy Matter?. In Fifth Annual Workshop on Modeling, Benchmarking

and Simulation. 24-33.

(15

=

(16

—

(17

—

(18

[t

[23

[t

[25

=

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. 2011. Dominant resource fairness: Fair alloca-
tion of multiple resource types. In Proceedings of the 8th Symposium
on Networked Systems Design and Implementation (NSDI °11).

Tonel Gog, Malte Schwarzkopf, Adam Gleave, Robert NM Watson, and
Steven Hand. 2016. Firmament: Fast, centralized cluster scheduling
at scale. In Proceedings of the 12th Symposium on Operating Systems
Design and Implementation (OSDI ’16). 99-115.

Google. [n.d.]. Create a VM with a custom machine type.
https://cloud.google.com/compute/docs/instances/creating-instance-
with-custom-machine-type.

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. 2014. Multi-resource packing for cluster
schedulers. ACM SIGCOMM Computer Communication Review 44, 4
(2014), 455-466.

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G Shin. 2017. Efficient memory disaggregation with infin-
iswap. In Proceedings of the 13th Symposium on Networked Systems
Design and Implementation (NSDI ’17). 649-667.

Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang
Mao, and Yungang Bao. 2019. Who limits the resource efficiency of my
datacenter: An analysis of Alibaba datacenter traces. In Proceedings
of the 27th International Workshop on Quality of Service (IWQoS ’19).
IEEE, 1-10.

Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz,
Jichuan Chang, Christos Kozyrakis, and Parthasarathy Ranganathan.
2018. Learning memory access patterns. In International Conference
on Machine Learning. PMLR, 1919-1928.

HPS. 2020. scarab. https://github.com/hpsresearchgroup/scarab.
Intel. 2016. Introduction to cache allocation technology in the intel
xeon processor e5 v4 family. https://www.intel.com/content/www/
us/en/developer/articles/technical/introduction-to-cache-allocation-
technology.html.

Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R
Dulloor, et al. 2019. Basic Performance Measurements of the Intel Op-
tane DC Persistent Memory Module. arXiv preprint arXiv:1903.05714
(2019).

Bruce Jacob. 2009. The memory system: you can’t avoid it, you can’t
ignore it, you can’t fake it. Synthesis Lectures on Computer Architecture
4,1 (2009), 1-77.

Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro-
filing a warehouse-scale computer. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture. 158-169.

Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaib-
hav Gogte, and Ronald Dreslinski. 2021. Improving Performance of
Flash Based {Key-Value} Stores Using Storage Class Memory as a
Volatile Memory Extension. In Proceedings of the 2021 USENIX Annual
Technical Conference. 821-837.

Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021. Exploring
the Design Space of Page Management for Multi-Tiered Memory Sys-
tems. In Proceedings of the 2021 USENIX Annual Technical Conference.
715-728.

Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. Reflex: Re-
mote flash == local flash. ACM SIGARCH Computer Architecture News
45,1 (2017), 345-359.

Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2018. Selecta:
Heterogeneous cloud storage configuration for data analytics. In Pro-
ceedings of the 2018 USENIX Annual Technical Conference. 759-773.

https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type
https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type
https://github.com/hpsresearchgroup/scarab
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html

TMC: Near-Optimal Resource Allocation for Tiered-Memory Systems

[42] Apostolos Kokolis, Dimitrios Skarlatos, and Josep Torrellas. 2019. Page-
seer: Using page walks to trigger page swaps in hybrid memory sys-
tems. In Proceedings of the 25th Int’l Symposium on High-Performance
Computer Architecture (HPCA-25). IEEE, 596-608.

Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal,
Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan
Deng, Junaid Shahid, et al. 2019. Software-defined far memory in
warehouse-scale computers. In Proceedings of the 2019 International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 317-330.

Sanghoon Lee, Jongho Park, Minho Ha, Byung Il Koh, Kyoung Park,
and Yeseong Kim. 2023. Sidekick: Near Data Processing for Cluster-
ing Enhanced by Automatic Memory Disaggregation. In 2023 60th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1-6.
Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst,
Pantea Zardoshti, Monish Shah, Ishwar Agarwal, Mark Hill, Marcus
Fontoura, et al. 2022. First-generation Memory Disaggregation for
Cloud Platforms. arXiv preprint arXiv:2203.00241 (2022).

Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang, and Onur
Mutlu. 2017. Utility-based hybrid memory management. In Proceedings
of the 2017 IEEE International Conference on Cluster Computing. IEEE,
152-165.

Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,
Steven K Reinhardt, and Thomas F Wenisch. 2009. Disaggregated
memory for expansion and sharing in blade servers. In Proceedings
of the 36th annual international symposium on Computer architecture.
267-278.

Heiner Litz, Maximilian Thuermer, and Ulrich Bruening. 2010. TC-
Cluster: A Cluster Architecture Utilizing the Processor Host Interface
as a Network Interconnect. In 2010 IEEE International Conference on
Cluster Computing. IEEE, 9-18.

Liang Luo, Akshitha Sriraman, Brooke Fugate, Shiliang Hu, Gilles
Pokam, Chris] Newburn, and Joseph Devietti. 2016. Laser: Light,
accurate sharing detection and repair. In Proceedings of the 22th Int’l
Symposium on High-Performance Computer Architecture (HPCA-22).
IEEE, 261-273.

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. 2022. TPP: Transparent
Page Placement for CXL-Enabled Tiered Memory. arXiv preprint
arXiv:2206.02878 (2022).

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent
Page Placement for CXL-Enabled Tiered-Memory. In Proceedings of the
2023 International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 742-755.

[52] Andréa Matsunaga and José AB Fortes. 2010. On the use of machine
learning to predict the time and resources consumed by applications.
In 2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing. IEEE, 495-504.

Microsoft. [n.d.]. Microsoft Azure: Cloud Computing Services. https:
//azure.microsoft.com/.

Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining.
2021. Introduction to linear regression analysis. John Wiley & Sons.
Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang.
2010. Introducing the graph 500. Cray Users Group (CUG) 19 (2010),
45-74.

Yuanjiang Ni and Shuo Chen. 2020. Closing the performance gap
between dram and pm for in-memory index structures. Technical
report (2020).

[43

—_

(44

=

[45

=

[46

—

(47

—

[48

[t

(49

[’

(50

=

[51

—

[53

—_

(54

=

[55

=

[56

=

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

Yuanjiang Ni, Jishen Zhao, Heiner Litz, Daniel Bittman, and Ethan L
Miller. 2019. SSP: Eliminating redundant writes in failure-atomic
NVRAMs via shadow sub-paging. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 836—848.
Oliver Niehorster, Alexander Krieger, Jens Simon, and Andre
Brinkmann. 2011. Autonomic resource management with support
vector machines. In 2011 IEEE/ACM 12th International Conference on
Grid Computing. IEEE, 157-164.

Yifan Qiao, Chenxi Wang, Zhenyuan Ruan, Adam Belay, Qingda
Lu, Yiying Zhang, Miryung Kim, and Guoqing Harry Xu. 2023.
Hermit:{Low-Latency },{High-Throughput}, and Transparent Remote
Memory via {Feedback-Directed} Asynchrony. In Proceedings of the
20th Symposium on Networked Systems Design and Implementation
(NSDI °23). 181-198.

Moinuddin K Qureshi and Yale N Patt. 2006. Utility-based cache
partitioning: A low-overhead, high-performance, runtime mechanism
to partition shared caches. In 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06). IEEE, 423-432.
Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. 2021. Hemem: Scalable tiered memory management for big data
applications and real nvm. In Proceedings of the 28th ACM Symposium
on Operating Systems Principles (SOSP "21). 392-407.

Red Hat, Inc. 2012. AutoNUMA. https://mirrors.edge.kernel.
org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-
20120530.pdf.

Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam
Belay. 2020. AIFM: High-performance, application-integrated far mem-
ory. In Proceedings of the 14th Symposium on Operating Systems Design
and Implementation (OSDI "20). 315-332.

Samsung. 2015. Samsung Unveils Industry-First Memory Module
Incorporating New CXL Interconnect Standard. https://news.samsung.
com/global/samsung-unveils-industry-first-memory-module
-incorporating-new-cxl-interconnect-standard.

Daniel Sanchez and Christos Kozyrakis. 2011. Vantage: Scalable and
efficient fine-grain cache partitioning. In Proceedings of the 38th Int’l
Symposium on Computer Architecture. 57-68.

Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. 2013. Omega: flexible, scalable schedulers for large compute
clusters. In Proceedings of the 8th European Conference on Computer
Systems (EuroSys ’13). 351-364.

Akbar Sharifi, Shekhar Srikantaiah, Asit K Mishra, Mahmut Kandemir,
and Chita R Das. 2011. METE: meeting end-to-end QoS in multicores
through system-wide resource management. In Proceedings of the 2011
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems. 13-24.

John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.
2014. XSBench-the development and verification of a performance
abstraction for Monte Carlo reactor analysis. The Role of Reactor
Physics toward a Sustainable Future (PHYSOR) (2014).

Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin
Recht, and Ion Stoica. 2016. Ernest: Efficient Performance Prediction
for {Large-Scale} Advanced Analytics. In Proceedings of the 12th Sym-
posium on Networked Systems Design and Implementation (NSDI ’16).
363-378.

Abhishek Verma, Madhukar Korupolu, and John Wilkes. 2014. Evalu-
ating job packing in warehouse-scale computing. In Proceedings of the
2014 IEEE International Conference on Cluster Computing. IEEE, 48-56.
Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster man-
agement at Google with Borg. In Proceedings of the 10th European
Conference on Computer Systems (EuroSys ’15). 1-17.

https://azure.microsoft.com/
https://azure.microsoft.com/
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://news.samsung.com/global/samsung-unveils-industry-first-memory-module
https://news.samsung.com/global/samsung-unveils-industry-first-memory-module
-incorporating-new-cxl-interconnect-standard

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

(72]

(73

—_

(74

[l

(75

=

[76

=

(7]

Vladimir Davydov. 2015. idle memory tracking. https://lwn.net/
Articles/643578/.

Carl A Waldspurger. 2002. Memory resource management in VMware
ESX server. ACM SIGOPS Operating Systems Review 36, SI (2002),
181-194.

Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur
Mutlu, Fang Lv, Xiaobing Feng, and Guoging Harry Xu. 2019. Panthera:
Holistic memory management for big data processing over hybrid
memories. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 347-362.

Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya Bhan-
dari, Neeraja J Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos
Kozyrakis, and Ricardo Bianchini. 2021. SmartHarvest: harvesting
idle CPUs safely and efficiently in the cloud. In Proceedings of the 16th
European Conference on Computer Systems (EuroSys "21). 1-16.
Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,
Chungiang Tang, et al. 2022. TMO: transparent memory offloading in
datacenters. In Proceedings of the 2022 International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS). 609-621.

Kai Wu, Yingchao Huang, and Dong Li. 2017. Unimem: Runtime
data managementon non-volatile memory-based heterogeneous main
memory. In Proceedings of the 2015 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC17). 1-
14.

(78]

[79]

[80]

[81]

[82]

[83]

[84]

Yuanjiang Ni, Pankaj Mehra, Ethan Miller, and Heiner Litz

Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
2019. Nimble page management for tiered memory systems. In Pro-
ceedings of the 2019 International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 331-345.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. 2020. An empirical guide to the behavior and use of
scalable persistent memory. In Proceedings of the 16th USENIX Confer-
ence on File and Storage Technologies (FAST °20). 169-182.

Jifei Yi, Benchao Dong, Mingkai Dong, and Haibo Chen. 2020. On the
precision of precise event based sampling. In Proceedings of the 11th
ACM SIGOPS Asia-Pacific Workshop on Systems. 98-105.

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. 2010. Delay scheduling: a simple
technique for achieving locality and fairness in cluster scheduling.
In Proceedings of the 5th European Conference on Computer Systems
(EuroSys °10). 265-278.

Yanqi Zhou, Ramnatthan Alagappan, Amirsaman Memaripour,
Anirudh Badam, and David Wentzlaff. 2017. HNVM: Hybrid NVM
enabled datacenter design and optimization. Microsoft Research TR
(2017).

Yanqi Zhou, Henry Hoffmann, and David Wentzlaff. 2016. CASH:
Supporting IaaS Customers with a Sub-core Configurable Architecture.
In Proceedings of the 43th Int’l Symposium on Computer Architecture.
682-694.

Yanqi Zhou and David Wentzlaff. 2014. The sharing architecture:
sub-core configurability for IaaS clouds. In Proceedings of the 2014
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’14). 559-574.

https://lwn.net/Articles/643578/
https://lwn.net/Articles/643578/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Cost Efficiency for Cloud Customers
	2.2 Resource Efficiency for Cloud Operators
	2.3 Performing Optimal Resource Allocation

	3 TMC Design
	3.1 Overview
	3.2 TMC Performance Model
	3.3 Inferring Tiered-Memory Performance
	3.4 Data Placement
	3.5 Optimizing Packing Efficiency
	3.6 Discussion

	4 Evaluation in Simulation
	4.1 Experimental setup
	4.2 Execution and Search Cost
	4.3 Improving Packing Efficiency
	4.4 Threshold Sensitivity Study
	4.5 Memory Tiering Sensitivity Analysis

	5 Real System Experiments
	5.1 Evaluation

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

