Persimmon: an append-only ZNS-first filesystem

Devashish R. Purandare!, Sam Schmidt!, and Ethan L. Miller}2
YWniversity of California, Santa Cruz
2Pure Storage
Santa Cruz, CA, USA
dpuranda@ucsc.edu, sadschmi@ucsc.edu, elm@ucsc.edu

Abstract—While NAND flash has become the centerpiece
of modern data center storage, legacy interfaces impact its
performance and lifetime. Emulating in-place updates on SSDs
results in frequent garbage collection, causing slowdowns, wear,
and write amplification. Changing how we utilize modern SSDs
to unlock their full potential is necessary. Even though Zoned
Namespace SSDs provide an efficient append-only interface,
filesystems on such drives still depend upon in-place updates and
fixed metadata addresses, making their use with zoned storage
complex and inefficient.

We present Persimmon, a fork of the f2fs filesystem built with
append-only metadata structures and tuned for zoned names-
paces. Persimmon updates f2fs with new in-memory structures
for better management in a zoned context, improved check-
point logic, and append-only metadata management. Persimmon
reduces tail latency, background garbage collection, and write
amplification. Persimmon adapts its layout to zoned device
constraints to unlock greater utilization and better drive cleanup.

Index Terms—TFilesystems, ZNS, SSDs, RocksDB, F2FS

I. INTRODUCTION

SSDs have become the centerpiece of modern data storage
and need to grow in capacity as data centers move to flash-
based primary storage. However, traditional scaling techniques
such as die-shrink and increasing flash density come at the cost
of durability and performance [1]. With the lifetime of modern
flash down to a few hundred program-erase cycles, wear is
further exacerbated by the overhead of garbage collection
introduced by interfaces not designed for flash. Standard disk-
based storage interfaces, which assume random writes and in-
place updates, must be emulated by the controller as NAND
flash does not support them. Even with append-only log-
structured systems, the overhead of log-on-log structures can
adversely impact write-amplification and tail latency [2].

To address such issues, Zoned Namespace SSDs (ZNS)
were introduced to help align device logs with system logs,
exposing the device geometry in equal-sized append-only
regions. However, the complexity of adapting current systems
to an append-only interface has hurt the adoption of these
SSDs. Even log-structured append-only systems such as f2fs,
btrfs, and RocksDB still depend on known locations and in-
place updates for various metadata operations.

These systems typically employ auxiliary drives that support
in-place updates while maintaining the logs in append-only re-
gions. A device-mapper solution like dm-zoned can address

This work was supported by NSF grants CNS-1841545, CNS-2106259. D.
Purandare and S. Schmidt contributed equally to this work.

this requirement but has limitations, such as not supporting
zones where the size and capacity differ. These random-write
drives still need to perform garbage collection, which can
cause slowdowns, and complex multi-namespace or multi-
device setups can impact the performance and stability of
such systems. Further, the limited compatibility updates can
mean odd characteristics in practical use: for instance, f2fs has
as low as 36% of the total size as usable (depending on the
configuration) with ZNS [3], and btrfs uses less than half the
capacity of each zone.

The required volume of such random-write space scales
with system size, making adoption difficult. In the case of
f2fs, the metadata structures and the checkpoint region grow
with the size of the disk, requiring gigabytes of random-write
space on larger drives. We observed that above 1 TB, the size
of these structures goes beyond 4 GB, which is the amount of
random-write space on the 8 TB Western Digital Ultrastar DC
ZN540 SSD, necessitating additional drives to support total
capacity of the drive. Such cross-device mappings can lead
to performance and stability issues. Hence, to unlock the full
potential of zoned SSDs in reducing wear and tail latency,
we need an append-only filesystem that does not depend on
any fixed addresses (which need in-place updates) or random
updates. Such a filesystem should partition data by lifetime,
performing garbage collection as required while maintaining
POSIX compatibility to avoid application rewrites.

We present Persimmon, a ZNS-first filesystem that uses
append-only structures and does not depend on in-place up-
dates for any of its metadata operations. We demonstrate
reduced write amplification and garbage collection overhead
over f2fs while maintaining the same flash-optimized perfor-
mance. Persimmon adds new in-memory tracking structures
to efficiently allocate and free up zones and implement easy-
to-garbage-collect checkpoints with rolling logs. Persimmon
takes design choices from various log-structure filesystems and
puts them together, making ZNS-specific decisions to offer a
filesystem designed for zoned storage. We demonstrate the
improvements Persimmon offers over f2fs, btrfs, and zoned-
f2fs and discuss the lessons learned and the best strategies for
zoned filesystems.

II. BACKGROUND

Host-device communication efforts predate SSDs, with de-
signs such as the host-managed mode of Shingled Magnetic

Recording (SMR) drives. Throughout the years, several ap-
proaches have been proposed and implemented, starting with
NVMe Streams [4], Open-channel SSDs [5], Zoned Names-
paces (ZNS) [6] and Flexible Device Placement (FDP) [7].
In the current NVMe specification, ZNS and FDP are the
chief interfaces, the main difference between them being the
append-only nature of ZNS, and the backwards compatible
hint interface offered by FDP. ZNS offers several advan-
tages over FDP such as reduced complexity, reduced over-
provisioning and DRAM requirement, guaranteed reduction
in write amplification, and immutability. With the goal of
reducing cost of SSDs and improving the lifetime, we focus on
ZNS for our work. With the append-only nature of ZNS being
a drawback for applications that perform in-place updates, we
need a way to virtualize these patterns.

A. Background: ZNS

Host-device coordination efforts predate SSDs, with designs
like the host-managed mode of Shingled Magnetic Record-
ing (SMR) drives. Throughout the years, several approaches
have been proposed and implemented, starting with NVMe
Streams [4], Open-channel SSDs [5], Zoned Namespaces
(ZNS) [6] and Flexible Device Placement (FDP) [7]. In the
current NVMe specification, ZNS and FDP are the chief inter-
faces, the main difference between them being the append-only
nature of ZNS and the backward-compatible hint interface
offered by FDP. ZNS offers several advantages over FDP, such
as reduced complexity, reduced over-provisioning and DRAM
requirement, guaranteed reduction in write amplification, and
immutability. For Persimmon, we limit our focus to ZNS due
to the availability of kernel API and devices, and we plan to
explore FDP in the future.

ZNS works by partitioning the drive into equal-sized
append-only logs known as zones. The host can pick zones
and use the stored write pointer or the zone append command
to append; random writes are rejected. When a zone fills up,
it transitions to a read-only state, which needs to be explicitly
reclaimed by the host for garbage collection. The host can
use zones to group related data, treating it as an erase unit.
Reclaiming a zone is free if all the data in a zone has a similar
lifetime: it needs a single Zone Reset command. Thus, one
of our aims is to collect data with similar lifetimes in the same
zone, reducing the cost of relocation of valid data.

Previous work [6], [8], [9] describes the benefits of zoned
storage over conventional SSDs. We focus on features that
we use to help us design the Persimmon filesystem: the on-
device write pointers offer us known locations of the last
write, eliminating the need to have known Logical Block
Addresses (LBAs) for metadata and checkpoints. The zones
expose device geometry and allow us to group writes with
similar lifetimes on the same zone, and the host-managed
garbage collection allows us to perform garbage collection
on the segments with the highest amount of invalid data.

We focus on a system that only uses sequential zones, ensur-
ing append-only access to these logs. A sequential-only device
is simpler as it does not need to maintain a complex FTL

or a mapping, eliminating the need for large DRAM buffers
or complex controllers and reducing the device’s cost and
wear. While the ZNS protocol supports conventional zones,
i.e., zones that support in-place updates, these require the drive
controller to implement a device-level Flash-Translation Layer
(FTL) to emulate in-place updates, negating the benefits of
an append-only device. Unlike other filesystems, Persimmon
works without a random-write area, making it well-suited for
devices with only sequential zones.

B. Approaches: Copy-on-Write vs Log-Structured

To achieve our goal of a ZNS-first filesystem, we first looked
at desirable properties in a filesystem from a ZNS perspective.
An append-only log-structured filesystem is well suited for
such an interface [9]. We looked at two append-only update
design families: log-structured merge trees and a copy-on-
write design. To explore these, we chose f2fs and btrfs as they
are flash-optimized, append-only, open source, and POSIX
compliant. btrfs is a Copy-on-Write filesystem, organized as a
B-Tree, while f2fs uses up to six separate append-only logs.

We then ran a simple sequential insert workload to measure
the performance and utilization of each of these approaches.
We expected btrfs, with its Copy-on-Write nature, to generate
large amounts of data invalidated with each RocksDB com-
paction. To test out this theory, we set up a 32 GB emulated
SSD with btrfs and f2fs. We then wrote 100 million records of
10 Bs, each with compression writing 6 GB to each filesystem.
The same workload yielded the following utilization results:

TABLE I: Comparison of btrfs and f2fs on a 32 GB SSD.

Zones Capacity
Used Full Used Invalid Total Writes
f2fs 10 5 7GB 1GB 28 GB
btrfs 25 12 18GB 12GB 23GB

As seen in Table I, f2fs performs more writes than btrfs,
mainly due to the relocation of invalid data on garbage
collection. On the other hand, btrfs has valid data scattered
across 25 zones and cannot garbage collect them due to the
limited availability of free zones. With its 6 logs of varying
temperatures, f2fs can better identify temporary files and
garbage collect them together to free up zones. btrfs, on the
other hand, has a single log with all the writes, making it
harder to collect garbage.

Further, btrfs’ B-Tree structure with Copy-on-Write gener-
ates new data on every write, writing it to statically sized pre-
allocated chunks, causing a large number of partially filled
chunks that require garbage collection to reclaim. Unlike a
traditional SSD, these empty regions cannot be written to on
an append-only device, causing write and space amplification.
For instance, in Fig. 1, we analyze a full block group from this
experiment to a full block group on a traditional SSD and see
that 60% of it does not contain valid data, resulting in poor
utilization. Further, the balancing process is expensive in terms
of writing and hurts the performance and the lifetime of the

(a) btrfs (Conventional) (b) btrfs (ZNS)

Fig. 1: We compare “full” block groups on btrfs on a conven-
tional SSD with ZNS; white: valid data, black: unused space.
On ZNS btrfs sees half-filled extents and poor utilization

drive. In addition, as we see in Fig. 8, f2fs performs better than
btrfs as its multi-log and multi-append point design enables
greater parallelism and simpler grouping on a zoned device.
The performance and layout benefits inspired Persimmon to
inherit f2fs’ data segment design.

However, f2fs metadata still expects a traditional in-place
update-friendly interface and fixed locations. f2fs optimizes
itself for SSDs by maintaining six logs for appending writes.
Three logs are used for node data in the ‘main area’ while
the other three keep filesystem data. Node data includes any
block of information required to address other blocks, such as
inodes or indirect blocks. Filesystem data makes up files or
directories. These groups maintain separate logs for hot, warm,
and cold data. Separating this data can extend the lifetime of
a device by reducing write amplification.

f2fs supports ZNS for the data region [10], but not for
checkpoint and metadata region which require fixed addresses
and an in-place updates. This can be achieved either by:

o Dedicated conventional zones with in-place updates.

o Multi-device setup

« In-place updates virtualized by a device-mapper

e dm-zoned mapped random-write region on append-only
devices

These options are not particularly desirable as they maintain
all the limitations of conventional SSDs (although at a smaller
scale) and add complexity to the architecture, and impact
performance. Further they have their own limitations, dm—
zoned for instance, requires zone capacity to match zone
size, which is not the case on the drives we tested.

III. PERSIMMON: A ZONE-FIRST APPROACH

To design an append-only filesystem optimized for ZNS,
we started with a fork of f2fs with an unchanged data
section. In Persimmon, we eliminate the random writes and
in-place updates seen in f2fs associated with metadata and
checkpoints. Further, f2fs does not overprovision efficiently on
zoned storage, causing large amounts of reserved space. We
introduce a new logic for overprovisioning and new in-memory
structures to aid zone allocation and cleanup, reducing garbage
collection overhead.

A. Append-Only Metadata Handling

f2fs metadata requires fixed Logical Block Addresses
(LBAs) and hence in-place updates for maintaining the fol-
lowing structures:

1) The Segment Information Table (SIT) stores the number
of valid blocks in the log and a bitmap for their validity.

2) The Node Address Table (NAT) provides a mapping of
node ids and associated LBAs in f2fs.

3) The Segment Summary Area (SSA) stores owner infor-
mation about blocks.

While these structures are necessary, the in-place up-
dates can be virtualized. Persimmon maps the SIT, NAT,
and SSA block addresses to physical addresses on the
drive emulating an in-place update interface. These are
stored in dedicated zones as they see frequent updates
and can be garbage collected with a low data move-
ment cost. Persimmon’s page cache operation modifies the
address_space_operations function table to make
these changes while minimizing the change required in the f2fs
codebase. When grabbing pages, Persimmon can switch out
the address_space_operations object without affect-
ing other filesystem operations. However, simply remapping
the metadata is insufficient as it can add performance overhead
to operations in Persimmon. To address the slowdown in
access and cleanup, we introduce new in-memory structures
that offer speedups for zone and metadata operations.

B. New In-Memory Data Structures

We introduce three additional in-memory data structures,
as seen in Fig. 2 to manage the metadata mapping, optimize
lookups, and to aid in zone allocation and garbage collection:

Metadata Allocation Table (MAT)

o\\\ : " —

Zone Zone

Zone Information Table (ZIT)

Zone Bitmap
[0110101000111111111100]

5 (15(300| O 01

0o 1 2 n-1

Fig. 2: The three structures that reside in memory: the Meta-
data Allocation Table (MAT), the Zone Information Table
(ZIT), and the Zone Bitmap. Here m is the number of pages
in metadata and n is the number of zones.

1) The Metadata Allocation Table (MAT): is an array that
associates metadata block indices with block addresses. The
f2fs metadata exists in a contiguous address range, with the
last SIT address adjacent to the first NAT address. We offset
indices by the first SIT address to reduce memory overhead
before queries. The MAT size is the difference between the
largest and the smallest block addresses.

2) The Zone Information Table (ZIT): is an array that maps
a zone index to a count of the number of invalid blocks within
that zone. The ZIT allows for speeding up garbage collection.
Calculating the number of invalid blocks for a given zone
requires iterating through each zone. This lookup table is
updated if the address for a block does not match the one
under consideration, incrementing the count.

3) The Zone Bitmap (ZB): maintains zone utilization data
in memory to speed up new zone allocation. Persimmon reads
the associated entry from the ZB instead of issuing a zone
management command for the zones, avoiding the penalty of
a zone management command to the device.

Persisting In-memory Structures

To repopulate these in-memory structures on mount and
for crash recovery, we must persist them to the drive. We split
the metadata into page-sized chunks, which are appended to
dedicated metadata zones. In particular, we divide the MAT
into chunks, and its in-memory handle maintains the addresses
of each chunk. The MAT chunks provide direct addressing to
blocks. Alongside the MAT chunks, we update the number of
invalid blocks for a previous zone based on block updates. The
full Zone Bitmap is stored at the end of each chunk because
its size is relatively small compared to the other structures. In
systems with many zones, we may also need to split up the
zone bitmap.

0 4K

1010 32-bit 32-bit | 3R

40 byte
block addresses &

foet | bitmap

Fig. 3: The page-aligned chunk design.

A chunk comprises 1010 32-bit MAT entries (the changes
since the last chunk), a 32-bit zone id, a 32-bit invalid count,
and a 40-byte bitmap as seen in Fig. 3. These data structures
get appended to the checkpoints because of how infrequently
the system generates checkpoints and the small checkpoint size
(no more than a few blocks). We store the chunks adjacent to
the Persimmon metadata and update the f2fs metadata and
checkpoint structures to track them. To avoid small frequent
writes, we batch metadata updates in a bio struct, then
write all dirty chunk pages in the same batch.

The NAT, SIT, and SSA are at least a few megabytes, with
the SSA approaching tens of gigabytes at f2fs’s maximum
supported capacity. These structures are frequently updated,
with an updated NAT with every data change, increasing the
on-drive footprint size for the metadata and, consequently, the
MAT. However, with dedicated zones for frequently updated
data, Persimmon can reclaim space relatively cheaply.

Allocating New Zones

When a metadata zone fills up, Persimmon chooses another
with the help of the Zone Bitmap to continue accepting writes.
Persimmon iterates through zones numerically, consulting the

7ZB until it finds the first free zone. We chose this approach
over defining a queue of zones, assuming there will be few
zones to search and NVMe commands can report empty zones.
We maintain f2fs’ maximum supported size: 16 TB. However,
we run our tests on smaller drives, so we define the bitmap
in our tests as a fixed size of 40 B since this is enough to
address 320 zones, which would be sufficient for metadata.
We allow users to expand ZB size while formatting the drive
with makefs tools.

C. Append-only Checkpoints

Much like metadata, f2fs checkpoints depend on a known
LBA and in-place updates. Since ZNS SSDs do not support
in-place updates, we redesigned the checkpoints to be append-
only with a rolling buffer of zones. For resetting zones, we
adopted a policy similar to btrfs [11], where Persimmon resets
the previous zone after writing the most recent data to another
zone. Persimmon’s checkpoints include additional fields for
the newly introduced structures.

However, checkpoints still depend on a known LBA for
checkpoint headers. We fixed this issue by using the tail LBA
of a zone, maintained in the on-device write pointer. Per-
simmon uses an updated checkpoint design to utilize footers
rather than headers, maintaining the changing header address
in the footer. Since the footer is a fixed size directly preceding
the last-written address maintained by the write pointer, this
simplifies keeping track of checkpoints. Persimmon’s approach
differs from btrfs; checkpoint writes do not spill over into the
other zone, maintaining their separation and eliminating the
need for data movement on garbage collection.

Updates to Drive Layout

To accommodate the sequentially written checkpoints, the
size of the space allocated to the checkpoint is now two
full zones, which allows our rolling buffer design. The size
allocated for non-checkpoint metadata is increased by 20%
over f2fs to provide additional space for persisting in-memory
structures discussed in Section III-B. Beyond that, the layout
of Persimmon remains similar to f2fs. We include the addi-
tional fields in the superblock to allow our metadata mapping
to be recovered on a remount. Persimmon uses two checkpoint
zones and allocates metadata and data zones as needed.

Metadata Garbage Collection

Persimmon uses the ZIT to inform its decision when choos-
ing a zone for garbage collection to minimize the number of
writes incurred from migrating valid data. We trigger garbage
collection whenever the number of free zones is equal to 2,
allowing for space to write to another zone where necessary.
Persimmon allows tuning this threshold based on the per-
formance and capacity requirements of the system. Once a
zone with the most invalid blocks is selected, the validity of
blocks is determined by querying for the Persimmon queries
the associated mapped logical block address to get the valid
blocks. The blocks are copied to a new open zone on a match.

D. Limitations

Since Persimmon is a fork of f2fs, we inherit some of
the limitations already present in f2fs, namely, a maximum
filesystem size of 16TB due to 32-bit logical block addresses.
Additionally, Persimmon only works on zoned SSDs. We
add a small amount of write and memory overhead with the
new metadata structures; however, even with these additions,
we reduce the overall amount of writes with better garbage
collection and simplified device structure. Further, because
Persimmon works on zone granularity, it allocates more on-
device real-estate toward checkpoints and metadata relative
to the size of these tables, especially on systems with larger
zones. We plan to explore techniques to reduce this overhead.

IV. EVALUATION

The goal of Persimmon was to create a filesystem with
append-only structures that can utilize the zoned interface to its
full potential, reduce garbage collection overhead, improve tail
latency and space utilization, and reduce write amplification.
We evaluate each of these aspects in this section and measure
the overhead. For evaluation, we used a 64 Core AMD EPYC
server with 256 GB of DRAM. We used dedicated Western
Digital Ultrastar DC ZN540 SSD zoned drives for each
filesystem to ensure strict performance isolation. We use con-
ventional zones on the same drive in case of f2fs to ensure that
cross-device coordination does not impact its performance.
To avoid the impact of on-device operations, we reset the
filesystems and drives between each run to ensure no on-
device garbage collection occurs unrelated to the benchmark.
We capture statistics at the device and filesystem levels to
measure writes. We use Yahoo Cloud Serving Benchmark [12]
with RocksDB and RocksDB’s built-in tool db_bench as
sample workloads.

A. Improvement in Tail Latency

We test the impact on latency with YCSB’s [12] 6 work-
loads: namely: A. Update-heavy workload: 50% reads, 50%
updates, B. Read-heavy: 95% reads, 5% updates, C. Read-only,
D. Read-Insert: 5% records are inserted, and latest records are
read, E. Short ranges: 5% records are inserted and scanned
over short ranges, F. Read-Modify-Write: 50% Reads and 50%
Read-Modify-Writes.

For read latency as seen in Fig. 4 Persimmon performs
uniformly better, minimizing latency for every workload, es-
pecially tail latencies (E and F). We get this advantage due
to the faster lookup operations enabled by the in-memory
MAT and minimizing tail latency spikes usually caused by
background operations. For the Read-Insert workload, the
persistence of recent inserts in the metadata structures hurts
Persimmon at the tail. Zoned f2fs, on the other hand, see
millisecond-to-second spikes in tail latencies, especially during
read-heavy workloads, as the device tries to free up space
and garbage collection. As the filesystem fills up, garbage
collection increasingly impacts performance, and Persimmon
cuts down on garbage collection in the filesystem.

B. Improving Garbage Collection Efficiency

Background %106 Foreground

300000 [

=
o
L

200000

2

Blocks Moved
Blocks Moved
-
o
L

100000

o
»
L

T 0.0
Persimmon

T T
F2FS F2FS Persimmon

Fig. 5: Persimmon performs virtually no garbage collection in
the background as opposed to f2fs.

We ran a multi-threaded benchmark to test garbage col-
lection efficiency by filling the drive with 55 GB sequential
inserts followed by random updates, deletes, and overwrites,
and finally by random reads. This is the benchmark we used to
measure throughput and write amplification. Effectively, these
actions yielded more than 200 GB of writes on the 128 GB
drives, ensuring in-filesystem garbage collection.

We measured the number of pages moved by the device
in the two garbage collection modes: 1. Background: f2fs
and Persimmon’s age-sorted background mode, which lazily
garbage collects and 2. Foreground: When space runs out,
the filesystem aggressively frees up zones.

Background Foreground

200 ;
7 l 150 / !
Al %

100 +

GC Calls
GC Calls

50

0 0

T T
F2FS Persimmon

T f
F2Fs Persimmon

Fig. 6: Persimmon triggers less calls to garbage collection,
improving performance.

As seen in Fig. 5, during the benchmark, Persimmon does
not need to move large amounts of pages to perform back-
ground garbage collection since Persimmon can reset metadata
and checkpoint zones without data movement as the data has
a short lifetime. Persimmon’s greater availability of free space
further helps it wait longer to collect garbage, waiting for more
data to be deleted over f2fs, resulting in lower data movement.
f2fs needs to perform more background garbage collection to
ensure free space. On the other hand, both systems perform
similar amounts of foreground garbage collection, as this is
workload-dependent and in the data region.

For garbage collection calls, as seen in Fig. 6, we look at the
statistics maintained by the filesystem. Persimmon manages
to garbage collect more efficiently, needing just one call
for regular workloads instead of f2fs’s twelve, and reduced
number of foreground calls. As each call negatively impacts
throughput, write amplification, and latency, we see modest
improvements due to this reduction in overhead. Persimmon

A: Read Latency

B: Read Latency

C: Insert Latency

200
= = Persimmon Read-Update 70 4 == Persimmon Read-Only 50 4 == Persimmon Read-Inserts 1
F2FS Read-Update I' 60 4 F2FS Read-Only . F2FS Read-Inserts
150 9 == Persimmon Read-Heavy ,/ == Persimmon Insert-Read /A wd Persimmon Scan-Inserts
- =+ F2FS Read-Heavy Pid 50 4 ==+ F2FS Insert-Read " =+ F2FS Scan-Inserts
% 100 40 7 30 -
a
% 30
= 20 4
50 20 4
10 1 10
01 04
T T T T T T T T T
Minimum Median 99% Minimum Median 99% Minimum Median 99%
D: Update Latency E: Tail Latency F: Tail Latency
12000 —] 80000
200 4 == Persimmon Light = = Persimmon Read-Update = = Persimmon Read-Only
F2FS Light 10000 A F2FS Read-Update F2FS Read-Only
== Persimmon Heavy . = Persimmon Read-Heavy 60000 o = Persimmon Insert-Read
~ 1507 —.. F2FS Heavy P 8000 { — - F2FS Read-Heavy — . F2FS Insert-Read r
2 6000 - 40000 - .
£ 100 |
8 H
5 4000 + I
50 4 20000 A H
2000 A
e e 4 7
i
04 0 0
T T T T T T T T T T T T T
Minimum Median 99% 0.9 0.99 0.999 0.9999 0.99999 0.999999 0.9 0.99 0.999 0.9999 0.99999 0.999999

Fig. 4: For Read-Latency, Persimmon performs similar to f2fs offering better tail latency.

moves less data in the background while maintaining more
free space.

C. Write and Space Amplification

H

H

’

200
150 A

100 A

Data written in Gigabytes

50
[Persimmon
EZA F2FS

Host Device

Fig. 7: Persimmon reduces writes both to the device and the
filesystem

Persimmon reduces the total writes from the benchmark by
about 4 GB, plus the writes saved in avoiding the garbage
collection, which the metadata drive for f2fs will have to
perform. As seen in Fig. 7, we measure both the writes
reported by the filesystem and those reported by SMART data
on the device. In our tests, on an average Persimmon writes
215 GB to the filesystem, resulting in 220 GB on the device,
where f2fs 218 GB of writes on an average rising up to 224 GB
on the SSD. While it is not a large difference, all of these
writes are due to the extra garbage collection of metadata and
f2fs needs to perform.

Further, Persimmon offers a larger usable space, especially
at smaller size, over f2fs as seen in Table II, with metadata
overhead shrinking with the filesystem size.

TABLE II: Usable space with 10% over-provisioning and
2 GB zones

f2fs (GB) Persimmon (GB)
Size Usable Reserved Usable Reserved
64 GB 33 31 47 17
128GB 93 33 107 21
256 GB 215 41 229 27
Throughput
800000 3 Persimmon
[ZZA F2FS (Zoned)
700000 4 =3 FoFs
N Btrfs

600000 -

—_—

100000

0

Update Overwrite Read

Fig. 8: Persimmon sees a slight slowdown in sequential insert,
but is otherwise similar to f2fs.

D. Throughput

While we do not expect significant improvements in the
flash-optimized f2fs, as seen in Fig. 8, we see similar perfor-
mance to f2fs in Persimmon, with a slight lower insert in the
read-random workload, where since the workload does not
perform writes, both these systems typically perform some
background garbage collection. Performance is better than
non-zoned f2fs and btrfs, however, we were unable to test
btrfs’s update or overwrite performance due to stability issues

in zoned mode.

E. Overhead

1) Mounting and Unmounting: As Persimmon introduces
new in-memory structures we expect to observe some overhead
in terms of mount times and memory usage. However, our
approach is faster at mounting than f2fs, as the single-device
single-namespace layout is faster to read. The time to mount
grows linearly with size as seen in Table III. For unmount,
Persimmon takes a small performance hit, due to the need to
persist extra structures, but the overhead is insignificant.

TABLE III: Mount and unmount times (Seconds)

f2fs Persimmon
Size mount (s) unmount (s) mount (s) unmount (s)
256 GB 0.2185 0.016 0.149 0.02
512GB 0.327 0.018 0.2545 0.022
2TB - - 0.8784 0.026

2) Memory Overhead: With the addition of new in-memory
structures, we observe a modest overhead in memory utiliza-
tion, particularly under heavy workloads. However, this over-
head is about 20 MB per each 100 GB added to the filesystem
size as seen Fig. 9. Since this could be an issue at larger SSD
sizes, we provide an option to limit this overhead with an
ioctl. Lowering the memory use may impact performance.

Memory Overhead
150 - [F2FS 128GB
E=X3 Persimmon 128GB
100 A E== F2FS 256GB
HEl Persimmon 256GB

50

DRAM Usage in Megabytes

Paged

Fig. 9: We observe a modest increase in memory use depend-
ing on the workload, however the overhead is fairly small.

V. RELATED WORK

For zoned storage, existing filesystems are broadly in two
categories: a. special-purpose (non-POSIX) filesystems like

A. Special-purpose ZNS filesystems

ZenFS [6] and ZoneFS [13], explicitly designed for the
zoned interface, and b. general-purpose (POSIX) filesystems
like f2fs and btrfs, which have adapted to the ZNS implemen-
tation. ZoneFS [13] exposes each zone as a single file. These
files support writing data but do not support any changes to
the filesystem layout, serving as a block-layer projection of
the underlying device.

ZenFS [6] is a plugin for RocksDB that exposes each zone
as a writable set of extents that can be appended. However,
ZenFS does not support the POSIX interface and systems that
require in-place updates.

B. POSIX filesystems on ZNS

btrfs [11] is a Copy-on-Write filesystem with experimental
support for Zoned Namespaces. It achieves this by enabling
a rolling buffer of zones for the superblock, the only fixed
structure, an approach that inspired our checkpoint design. We
picked the multi-log approach of f2fs over btrfs for the reasons
we discussed in Section II-B.

f2fs [10] is well-suited for a zoned interface but has several
limitations in its current version, namely requiring random-
write areas for metadata and checkpoints, and excessive over-
provisioning which is not designed for a ZNS interface. We use
f2fs as the baseline for the log-structured interface it provides,
along with temperature-specific logs. However, we updated
the metadata management to not depend on in-place updates,
improving performance and reducing write-amplification

Other filesystems like EXT4 or ZFS could be adapted to
the zoned interface. However, they will require significant re-
engineering effort and will not benefit from the flash-optimized
decisions in f2fs. Systems such as RocksDB can work with
ZNS but do not present a POSIX file interface or allow in-place
updates, requiring rewrites of applications for a new storage
interface.

VI. DISCUSSION

Persimmon presents an efficient, performant ZNS-optimized
filesystem, but its performance gains are modest, mainly
focused on garbage collection. It still cannot match the perfor-
mance of application-specific solutions like ZenFS [6]. During
this work, we explored the ZNS design space and would like
to present the following observations:

1) When compatibility is not enough: Adopting new hard-
ware interfaces like ZNS requires changes in fundamental
abstractions that applications rely on. Rewriting applications is
expensive, and it is easier to modify the filesystem to accom-
modate the benefits offered by these new interfaces. However,
changing existing filesystems without breaking backward com-
patibility is a complex task that results in compromises, as we
see with f2fs, requiring a random-write area for metadata and
excess over-provisioning to accommodate the new interface as
seen in Table II.

2) Complexity inherent to kernel filesystems: While future
versions may address these issues, updates depend on Linux
kernel releases, which may take years before data centers adopt
them. Upgrading the filesystem structure requires reformatting
metadata and causes compatibility issues. These issues hurt the
adoption of modern storage protocols like ZNS and FDP since
rewriting applications is expensive, and filesystems do not
support the new standards effectively. However, the interface
has much potential beyond the benefits we demonstrate with
Persimmon. For instance, these filesystems’ hint and grouping
mechanisms are rudimentary and cannot generate workload or
architecture-based hints.

3) Hint Generation:: An essential property of ZNS that we
exploit is the ability to group data with related lifetimes, allow-
ing us low-cost zone resets. The f2fs temperature separation
could be tuned further for file lifetimes rather than workloads,

grouping files with related lifetimes. We can improve over
such naive hints with approaches that use active learning
systems and tune hint generation according to topology and
workload. Persimmon uses a fcntl () system-call-based hint
mechanism for deciding which files end up on which log.
Fundamentally, filesystems are application-unaware and will
need inputs from the application or the user to generate
effective hints.

4) The need for user space approaches:: Since filesystems
are in the kernel, updates to filesystem logic are complex.
Changes require updating the kernel module, migrating the
old structures to the new logic, unmounts, reformats, and
remounts. Errors can cause kernel panics and crashes, further
complicating the adoption of novel filesystems. An easier way
could be to use a simple filesystem, like ZoneFS, which maps
the block layer to a file interface. POSIX compatibility and
placement logic could then be implemented as a shim layer.

5) Kernel bypass: Another way could be to use frame-
works like xNVMe [14] or SPDK [15] to bypass the kernel,
implementing all logic in userspace. Userspace approaches
can unlock performance benefits at the cost of additional
configuration complexity.

6) Other NVMe Protocols: NVMe FDP has been proposed
to address the issues with the append-only nature of ZNS,
allowing grouping based on hints in a random-write friendly
interface. With key-value SSDs, computational storage, and
memory-semantic SSDs, interfaces to SSDs are getting more
diverse, and the adoption of heterogeneous hardware becomes
even more challenging. A filesystem cannot reasonably sup-
port different types of devices and tune each application
according to the workload. We must rethink our approach to
these SSD protocols and filesystems to build data centers with
diverse storage types.

VII. CONCLUSION

With NAND-flash-based SSDs becoming ubiquitous, we
need to scale them without severely impacting the lifetime
or performance of the drives. ZNS is an effort to enable that.
However, it has not seen its full potential explored due to
the complexity of modern filesystems, manufacturer-specific
extensions, and the need to preserve backward compatibility.

We present Persimmon, the first general-purpose filesystem
tuned for append-only ZNS SSDs. Persimmon starts with
the f2fs design and improves metadata management, garbage
collection, device utilization, and tail latency. Importantly,
Persimmon requires no auxiliary devices and can be used
solely in the append-only region of a ZNS SSD. We demon-
strate that such a filesystem is achievable and can match the
performance of flash-optimized systems while reducing the
garbage collection overhead.

ACKNOWLEDGEMENTS:

We are grateful for the help and support from Shel Finkel-
stein, Daniel Bittman, Darrell D. E. Long, and Center for

Research in Storage and Systems (CRSS) members for their
input and feedback. We are grateful to Matias Bjgrling and
Western Digital for the ZN540 drives and feedback on this
work. This work was supported by NSF grants CNS-1841545,
CNS-2106259, and funding from CRSS industry members.
We also thank the anonymous reviewers for their valuable
comments and suggestions.

REFERENCES

[1] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of NAND
flash memory.” in FAST, vol. 7, no. 3.2, 2012, pp. 10-2.

[2] J. Yang, N. Plasson, G. Gillis, N. Talagala, and S. Sundararaman,
“Don’t stack your log on my log,” in 2nd Workshop on Interactions
of NVM/Flash with Operating Systems and Workloads (INFLOW 14).
Broomfield, CO: USENIX Association, Oct. 2014.

[3] D. Seo, P-X. Chen, H. Li, M. Bjorling, and N. Dutt, “Is garbage
collection overhead gone? case study of F2FS on ZNS SSDs,” in
Proceedings of the USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage), 2023.

[4] J. Bhimani, J. Yang, Z. Yang, N. Mi, N. H. V. K. Giri, R. Pandurangan,
C. Choi, and V. Balakrishnan, “Enhancing SSDs with multi-stream:
What? why? how?” in 2017 IEEE 36th International Performance
Computing and Communications Conference (IPCCC), Dec. 2017, pp.
1-2, iSSN: 2374-9628.

[5] M. Bjgrling, J. Gonzalez, and P. Bonnet, “LightNVM: The linux
Open-Channel SSD subsystem,” in /5th USENIX Conference on File
and Storage Technologies (FAST 17). Santa Clara, CA: USENIX
Association, Feb. 2017, pp. 359-374.

[6] M. Bjgrling, A. Aghayev, H. Holmberg, A. Ramesh, D. Le Moal, G. R.
Ganger, and G. Amvrosiadis, “ZNS: Avoiding the block interface tax
for flash-based SSDs,” in 2021 USENIX Annual Technical Conference
(USENIX ATC 21), 2021, pp. 689-703.

[7]1 C. Sabol and R. Stenfort, “Hyperscale innovation: Flexible data place-
ment mode (FDP),” in NVMe Flexible Data Placement. NVMe Express
Organization, 2022.

[8] T. Stavrinos, D. S. Berger, E. Katz-Bassett, and W. Lloyd, “Don’t
be a blockhead: zoned namespaces make work on conventional SSDs
obsolete,” in Proceedings of the Workshop on Hot Topics in Operating
Systems. Association for Computing Machinery, Jun. 2021, pp.
144-151.

[9] D. Purandare, P. Wilcox, H. Litz, and S. Finkelstein, “Append is
near: Log-based data management on ZNS SSDs,” in Conference on
Innovative Data Systems Research 2022 (CIDR ’22), Jan. 2022.

[10] C. Lee, D. Sim, J. Hwang, and S. Cho, “{F2FS}: A new file system
for flash storage,” in 13th USENIX Conference on File and Storage
Technologies (FAST 15), 2015, pp. 273-286.

[11] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesystem,”
ACM Transactions on Storage (TOS), vol. 9, no. 3, pp. 1-32, 2013.

[12] B. E. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM symposium on Cloud computing, 2010, pp. 143-154.

[13] D. L. Moal and T. Yao, “Zonefs: Mapping POSIX file system interface
to raw zoned block device accesses,” in Vault 2020. Santa Clara, CA:
USENIX Association, Feb. 2020.

[14] S. A. Lund, P. Bonnet, K. B. Jensen, and J. Gonzalez, “I/O interface
independence with xXNVMe,” in Proceedings of the 15th ACM Interna-
tional Conference on Systems and Storage, 2022, pp. 108-119.

[15] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,
J. Stern, V. Verma, and L. E. Paul, “SPDK: A development kit to build
high performance storage applications,” in 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom,).
IEEE, 2017, pp. 154-161.

