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ABSTRACT While methane is typically produced under anoxic conditions, methane
supersaturation in the presence of oxygen has been observed in both marine and
fresh waters. The biological cleavage of methylphosphonate (MPn), which releases both
phosphate and methane, is one pathway that may contribute to this paradox. Here, we
explore the genomic and functional potential for oxic methane production (OMP) via
MPn in Flathead Lake, a large oligotrophic freshwater lake in northwest Montana. Time
series and depth profile measurements show that epilimnetic methane was persistently
supersaturated despite high oxygen levels, suggesting a possible in situ oxic source.
Metagenomic sequencing indicated that 10% of microorganisms in the lake, many
of which are related to the Burkholderiales (Betaproteobacteria) and Actinomycetota,
have the genomic capacity to cleave MPn. We experimentally demonstrated that these
organisms produce methane stoichiometrically with MPn consumption across multiple
years. However, methane was only produced at appreciable rates in the presence of
MPn when a labile organic carbon source was added, suggesting that this process may
be limited by both MPn and labile carbon supply. Members of the genera Acidovorax,
Rhodoferax, and Allorhizobium, organisms which make up less than 1% of Flathead
Lake communities, consistently responded to MPn addition. We demonstrate that
the genomic and physiological potential for MPn use exists among diverse, resident
members of Flathead Lake and could contribute to OMP in freshwater lakes when
substrates are available.

IMPORTANCE Methane is an important greenhouse gas that is typically produced

under anoxic conditions. We show that methane is supersaturated in a large oligotro-

phic lake despite the presence of oxygen. Metagenomic sequencing indicates that

diverse, widespread microorganisms may contribute to the oxic production of methane

through the cleavage of methylphosphonate. We experimentally demonstrate that these Editor Jennifer B, Glass, Georgia Institute of
organisms, especially members of the genus Acidovorax, can produce methane through  focnology, Atlanta, Georgia, USA

this process. However, appreciable rates of methane production only occurred when
both methylphosphonate and labile sources of carbon were added, indicating that
this process may be limited to specific niches and may not be completely responsible
for methane concentrations in Flathead Lake. This work adds to our understanding of
methane dynamics by describing the organisms and the rates at which they can produce See the funding table on p. 17.
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is that it occurs exclusively under anoxic conditions (2, 3). However, in the upper ocean
and the epilimnia of freshwater lakes where oxygen is present, concentrations
of methane can be supersaturated with respect to atmospheric equilibrium (4-8). A
growing number of studies using measurements of methane stable isotopic composition
and physical transport modeling indicate that supply from anoxic habitats may not
be responsible for these elevated concentrations (7, 9). While many mechanisms for
methane production in oxic waters have been suggested, including photosynthesis,
the metabolism of methylated amines, and within cryptic anoxic niches (10-13), the
degree to which these pathways contribute to methane supersaturation is unknown. Our
understanding of the production of CH4 and its contribution to atmospheric concentra-
tions is important as methane flux from lakes is projected to increase in future climate
change scenarios (14, 15).

Many lakes appear phosphorus limited (16, 17), potentially inducing the use of
alternative phosphorus sources other than phosphate by microorganisms. A portion
of the dissolved organic matter pool in marine and freshwater environments resides
as dissolved organic phosphorus (DOP), a poorly characterized reservoir of carbon
and phosphorus (18). DOP can include phosphonates, compounds characterized by a
stable C-P bond that is synthesized as part of lipid headgroups, exopolysaccharides,
and glycoproteins (19). These compounds are produced by some of the most abundant
lineages in the global ocean, including SAR11, Prochlorococcus, and Nitrosopumilus (20—
23). While phosphonates and the transcription of genes involved in their synthesis
have been detected in freshwater ecosystems (10, 24-29), quantitative determinations
of their types, abundances, and distributions are sparse. One type of phosphonate is
methylphosphonate (MPn), the demethylation of which releases not only phosphate but
also methane. Oxic methane production (OMP) via the degradation of MPn has helped
explain the methane paradox in the upper ocean (30-34). Organisms in freshwater and
meromictic lakes can also cleave MPn, including members of the Alphaproteobacteria,
Gammaproteobacteria, and Betaproteobacteria (35-37). However, the contribution of
this process to methane production in phosphorus-limited freshwater systems and the
diversity of organisms catalyzing it have not been well documented.

We explored the dynamics of methane and the microbial capacity to use MPn in
Flathead Lake, Montana, one of the largest (surface area ~500 km?, maximum depth
116 m) natural freshwater lakes in the western United States. Its short hydrologic
residence time (~2.2 years) (38) and environmentally protected, largely undeveloped
montane watershed make Flathead Lake oligotrophic; soluble reactive phosphorus levels
are typically below detection, and N:P stoichiometric ratios are elevated (39). Experimen-
tally, plankton growth in the lake can be limited by nitrogen, phosphorus, or light (39—
42). A large fraction of the available nitrogen and phosphorus may be in the form of
dissolved organic matter (39, 43). In this study, we sought to address four questions: (i)
How do concentrations of methane vary over space and time in Flathead Lake? (ii) What
is the taxonomic and temporal distribution of organisms that have the genomic capacity
for methylphosphonate-mediated methane production? (iii) Can we show experimen-
tally that these organisms can perform OMP? (iv) What factors may limit the magnitude
of OMP in situ?

RESULTS
Methane dynamics and production in Flathead Lake

To evaluate the possibility of OMP occurring in Flathead Lake, we investigated the
dynamics of methane and oxygen concentrations in Flathead Lake over a 3-year period
(Fig. 1). Sampling was conducted at the long-term monitoring site Midlake Deep
(MLD), one of the deepest points in the lake (~113 m). The lake was persistently
oxic, with oxygen percent saturation rarely falling below 80%. Methane concentrations
typically ranged from 20 to 200 nM and were consistently oversaturated with respect
to atmospheric levels. Methane was generally highest and evenly distributed across all
depths during the spring. As the summer progressed, a subsurface methane maximum
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FIG 1 Methane is present and temporally variable, despite the consistent presence of oxygen, in Flathead Lake, Montana. Methane concentrations (A) and

oxygen percent saturation (B) in Flathead Lake over a 3-year period. Black dots reflect sampling points. The gray area reflects dates and depths where no

methane measurements were conducted.

developed. Concentrations were elevated throughout the upper 10-15 m and peaked
within the upper thermocline in August and September, suggesting an in situ source of
methane within the epilimnion.

Methane-related microbial diversity in Flathead Lake

We performed metagenomic sequencing to explore the potential for methane
generation in Flathead Lake during 2018 (Table S1). The methyl coenzyme M reductase
(mcrA) gene, a diagnostic marker for methanogenesis (44), and known methanogenic
archaea were absent in our metagenomic and 16S rRNA amplicon data sets. In con-
trast, we found that up to 15% of the species in Flathead Lake had the capacity to
cleave MPn, producing phosphate and methane, using the C-P lyase gene phnJ (Fig.
2). When accounting for the relative abundances of these organisms, they represented
between 2% and 10% of the total overall community. The majority of the phnJ diver-
sity was represented by sequences related to the Betaproteobacteria (order Burkholder-
iales; some databases now classify them as Gammaproteobacteria) and Actinomycetota
(previously Actinobacteria or Actinobacteriota; class llumatobacteraceae) but also
included members of the Alphaproteobacteria, Bacteroidota (previously Bacteroidetes),
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FIG 2 Members of the Betaproteobacteria and Actinomycetota are the most diverse and abundant phnJ-containing

organisms in Flathead Lake (metagenomic sequencing from samples collected in 2018). (A) Relative abundance of species that

have phnJ relative to the total number of unique species estimated from single-copy marker genes. (B) Relative abundance

of microorganisms within the community which have phnJ relative to single-copy marker gene abundances based on read

recruitment. Relative abundances at each time point are designated by circle size, while the colors represent the proportion of

that relative abundance attributed to a given taxonomic group. Circle size and colors are the same in both panels.

other Pseudomonadota (Proteobacteria), and Verrucomicrobiota. While the number of
organisms with phnJ generally appeared higher within the epilimnion than in deeper
waters, neither the percentage of species (Pearson correlation, R < 0.1, P > 0.9) or
percentage of organisms (Pearson correlation, R < 0.1, P > 0.75) correlated with methane
concentrations. These observations were consistent when looking at the distributions of
other genes in the phn operon.
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We screened the in situ metagenomes for the capacity for phosphonate production
and alternative pathways of methane cycling. Members of the phylum Nitrospirota
(previously Nitrospirae) and the family Rhodospirillales (Alphaproteobacteria) possessed
the pepM gene for the first step in phosphonate biosynthesis. These genes were present
in the deep waters of the lake. We also identified putative, divergent pepM genes
related to members of the Dehalococcoideae, Ignavibacteriae, Bacteroidota, Bacillota,
Woesarchaeota, Pseudomonadota (<70% similar to Pelagibacter), and Polynucleobacter.
These sequences generally showed less than 70% similarity to all currently published
sequences. The gene ppd (aepY), involved in the conversion of Pn-pyruvate to Pn-acety-
laldehyde, was also divergent in our metagenomes, with genes often showing less than
50% similarity to sequences belonging to the Deltaproteobacteria, Alphaproteobacteria,
Woesarchaeota, Nitrospirota, Verrucomicrobiota, Bacillota, and Flavobacteriaceae within
the Bacteroidota. We were unable to find the mpnS gene, which encodes the protein
for the final step of MPn biosynthesis, in any of the in situ lake metagenomes based
on KEGG annotations. While not the focus of this study, we did see evidence that
other types of phosphonates may also be important in freshwater systems; genes for
the degradation of 2-aminoethylphosphonate (phnW, phnX) were found in abundant
members of the Flathead Lake bacterial community, including the genus Limnohabitans,
Chloroflexota (previously Chloroflexi), Nitrospirota, and Verrucomicrobiota. Notably, we
identified a methane monooxygenase subunit A (pmoA) gene related to the Methylococ-
caceae, often used to identify methanotrophs, in April at multiple depths when methane
concentrations were elevated. This was consistent with 16S rRNA gene amplicon
sequencing which revealed that the methanotrophic family Methylococcaceae (<0.2% of
all communities) was present at all depths in April but subsequently decreased to below
detection the upper 15 m in the summer despite elevated methane concentrations (Fig.
S1).

Nutrient amendments

Given the presence of the metabolic potential for OMP via MPn demethylation as
revealed by metagenomics, we evaluated the functional capacity for this process using
rate measurements of methane production under different nutrient amendments during
the summers of 2017, 2018, and 2021 (Fig. 3). These experiments, using water collected
from 5 m in July and August, were timed to coincide with periods when methane
concentrations were elevated in the upper 10 m of the lake. Amendments included
combinations of MPn, phosphate (P), nitrate (N), and glucose (C) under different light
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FIG 3 Flathead Lake summer communities (2017, 2018, and 2021) consistently produce methane when amended with methylphosphonate, nitrate, and
glucose. (A) Time-course methane concentrations from five experiments conducted with communities from 5-m depth that were amended with different
nutrients (MPn, methylphosphonate; P, phosphate; N, nitrate; C, glucose). (B) Average rates of methane production grouped by type of nutrient amendment.

Each amendment was performed in triplicate.
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TABLE 1 Nutrient amendments performed using water from the epilimnion in Flathead Lake”
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Unamended

Start date control N+C P+N P+N+C 2P+N+C MPn+N MPn+N+C 2MPn+N+C MPn+P+N+C Conditions

2 August 2017 + - - 2:30:106 - - 02:30:106 - - Dark, 22.5°C

2 July 2018 + 16:106 — 1:16:106 - - 1:16:106 - - Dark, 22.5°C

24 July 2018 + 16:106 — 1:16:106 - - 1:16:106 - - Dark and light,
22.5°C

9 August 2018 + - - 1:16:106 - - 1:16:106 - 0.5:0.5:16:106 Dark, 22.5°C

20 July 2020 + - 1:16 1:16:250  2:16:250 1:16 1:16:250 2:16:250 1:1:16:250 Insitu light and
temperature

7 July 2021 + 16:250 - 1:16:250 - - 1:16:250 - 0.5:0.5:16:250 Insitu light and

temperature

“All ratios indicate micromolar nutrient additions. Symbol + or a ratio indicates the amendment was performed, while symbol — means it was not performed. P, phosphate;

N, nitrate; C, glucose; MPn, methylphosphonate.

regimes (Table 1). In the unamended controls, net rates of methane production were low,
averaging 0.55 + 0.14 nmol CH4 L™ d™' (n = 6 experiments). Treatments amended with
only N + C demonstrated net methane consumption (averaging —0.75 + 0.69 nmol CHy,
L' d7"; n = 4 experiments). Similarly, treatments amended with P + N + C yielded net
rates of methane production that were lower than in the controls (0.15 = 0.26 nmol CHy4
L' d™'; n = 6 experiments). None of these treatments were significantly different than the
control (Dunnett’s test, P > 0.05). In contrast, Flathead Lake water amended with MPn +
N + C consistently produced methane after a 2- to 3-day lag time, with rates averaging
116.6 = 23.2 nmol CHy L' d7' (n = 6 experiments; Dunnett’s test, P < 0.05). Methane
production was correlated with the drawdown of total dissolved phosphorus (Fig. S2). In
some treatments, methane concentrations plateaued at a maximum of ~0.5 uM methane
despite remaining MPn. Some of these treatments also showed apparent remineraliza-
tion of phosphorus over the course of the incubation, with total dissolved phosphorus
(TDP) initially decreasing, but then increasing again later in the incubation period. These
amendments had the lowest carbon:nitrogen:phosphorus (106:16:1 uM) concentrations
added. In contrast, in treatments where carbon (250 uM) or nitrogen (30 uM) was added
in excess, methane increased to final concentrations that approached the total added
MPn. When samples were amended with both MPn + P, along with labile carbon and
nitrogen sources, methane production rates were significantly repressed, averaging only
13.0 £ 10.1 nmol CHy4 L™ d™" (n = 2 experiments). No differences were observed between
amendments incubated in the dark, in the light, or in a dockside incubator maintaining
in situ light and temperature fluctuations (dark, 0.58 + 0.20 nmol CH4 L™' d™; constant or
in situ light, 0.49 + 0.23 nmol CH4 L™ d™"; t-test, P > 0.05).

To evaluate the community response to MPn, we measured a more exhaustive list
of properties during an amendment using lake water from 5-m depth in Summer 2020
performed under simulated in situ lake light and temperature conditions. This included
measurements of cell abundances, chlorophyll a (chl a), nutrient concentrations, and
metagenomic sequencing. Methane concentrations were highest in the upper 15 m
at the time of sampling for this experiment, with in situ concentrations in excess of
1,000% of atmospheric equilibrium (Fig. S3). The rate of methane production without
amendment was 1.51 nmol CH4 L™' d™' (Fig. 4). Methane production was not stimulated
through the addition of P + N or P + N + C (1.11 and 1.32 nmol CH4 L™" d™', respec-
tively). The addition of MPn + N also did not substantially increase methane production
(2.46 nmol CHy L' d7). In contrast, as previously observed, the addition of MPn + N +
C increased rates of net methane production to >50 nmol CHy L™ d', with methane
produced stoichiometrically with the amount of phosphorus consumed. Consistent with
the previous experiments, the addition of P alongside MPn + N + C inhibited methane
production. Greater than 75% of the amended P was consumed in the MPn + N + C,
P+ N+ C and P + N treatments where 1 uM P was added (Fig. 4; Fig. S4). In contrast,
less than ~10% of the available phosphorus and nitrate were consumed in the MPn + N
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FIG 4 Methane is produced by members of the Betaproteobacteria (Burkholderiales) following amendment of Flathead Lake water (5-m depth) with

methylphosphonate, glucose, and nitrate in July 2020. (A) Methane concentrations over time following amendment with different nutrients (MPn, methyl-

phosphonate; P, phosphate; N, nitrate; C, glucose). (B) The total amount of methane produced relative to the amount of phosphorus consumed in each

amendment. The dashed line is the 1:1 line. (C) The percentage of species present in each amendment which have the phnJ gene, colored by their taxonomic

distribution. One replicate was performed for each amendment.

treatment. TDP also remained in treatments where 2 pM phosphorus was added, likely
reflecting carbon or nitrogen limitation.

Community composition following amendment

We performed metagenomic sequencing to identify the microorganisms which
responded to the Summer 2020 amendment which simulated in situ lake light and
temperature conditions. Based on 16S rRNA gene composition, at the onset of the
experiment the in situ lake community contained high abundances of members of
the Actinomycetota (Fig. S5), including sequences similar (>99%) to those from the
genera Nanopelagicus, Planktophila, and other members of the hgcl clade. The most
abundant 16S rRNA gene was related to the clade SAR11, identical to that obtained
from Lake Superior (45) and 99.8% similar to the isolate Fonsibacter ubiquis (46).
Abundant sequences related to the Burkholderiales included those similar to Limnoha-
bitans, Limnobacter, Polynucleobacter, Methylopumilus, and Rhodoferax. Other taxa of
note included those related to the Methylacidiphilaceae within the phylum Verruco-
microbiota, the cyanobacterial genus Cyanobium, and the Flavobacterium within the
Bacteroidota. These organisms are consistent with those reported from other freshwater
lakes (47-50), indicating that our starting community reflected the diversity typically
found in freshwater systems. At the end of the experiment, the community in the
unamended control was similar to the starting sample.

Nutrient amendments strongly influenced community composition. Photosynthetic
and eukaryotic taxa responded to the P + N treatment based on cell abundances, chl
a concentrations, and predicted eukaryotic contigs (Fig. S6). Cyanobacteria belonging
to the genus Cyanobium were present, along with Bacteroidota which are known to
be associated with phytoplankton blooms [e.g., references (51-53)]. Eukaryotic 18S
rRNA genes also became more prevalent in the P + N treatment, including rRNA
genes deriving from diatoms Bacillariophyta (Thalassiosira, Skeletonema), the green
algae Chlorophyta, and the ciliate Ciliophora. In contrast, the microbial community
from the treatment amended with MPn + N remained largely similar to the control
community, reflected by high abundances of Fonsibacter, the actinobacterial hgcl clade,
and diverse members of the Burkholderiales. In treatments amended with P + N + C,
we observed a strong response of members of the Bacteroidota. The most abundant
sequences in this treatment were related to the Spirosomaceae and included the genus
Flectobacillus (54), an organism which can change its cell size to avoid grazing (55-58).
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In addition, members of the Alphaproteobacteria, including sequences related to the
genus Caulobacter and the groups Sphingomonadales and Rhodobacteraceae, and the
phylum Actinomycetota (genera Rhodoluna and Aquiluna) all responded to the P + N +
C treatment. Uncharacterized sequences within the Burkholderiales, which were distantly
related (<96% similar) to Rhodoferax and Acidovorax, were also present.

In contrast to the above community responses, samples amended with MPn + N + C
were dominated by members of the Burkholderiales. The most abundant 16S rRNA gene
sequences belonged to the genus Acidovorax and were similar to Acidovorax sp. RACO1
(59). Sequences related to Rhodoferax, Curvibacter, Ideonella, and Hydrogenophaga were
also present (60, 61). Altogether, members of the Betaproteobacteria represented more
than 90% of the community following amendment with MPn + N + C. The alphapro-
teobacterial family Rhizobiaceae also made up 1% of these communities. Despite the
presence of MPn, N, and C, the MPn + P + N + C amendment was comparable to samples
amended with P + N + C, showing an enrichment of Bacteroidota, Microbacteriaceae,
and Sphingomonadales.

Methylphosphonate cycling diversity

To identify organisms which responded to our treatments that had the biosynthetic
capacity for methylphosphonate use, we screened the amendments for the phnJ
gene (Fig. 4). Approximately 7% of the species in the control had the phnJ gene,
consistent with our analyses from 2018 (Fig. 2). These sequences were similar to
those reported above, including members of the Betaproteobacteria (Burkholderiales;
Rhodoferax, Curvibacter, Limnohabitans, and Methylopumilus), Actinomycetota (Actino-
mycetia and llumatobacteraceae), Alphaproteobacteria (Rhodospirilalles, Caulobactera-
ceae, and Sphingomonadales), and Bacteroidota. In contrast, over 40% of the species in
the MPn + N 4+ C amendments had phnJ, showing that MPn amendment in the presence
of labile carbon and nitrogen selected for microorganisms capable of using MPn. These
sequences were almost entirely related to the Burkholderiales and included the genera
Acidovorax and Rhodoferax. While the in situ lake samples also had sequences distantly
related to Acidovorax and Rhodoferax, the MPn + N + C enrichment phnJ were unique
(sharing <90% amino acid identity), indicating distinct microorganisms in these samples.

To further explore the metabolic potential within each amendment, we performed
genome binning (Table 2). We report metagenome-assembled genomes (MAGs) from
a wide group of phyla that reflect the most abundant organisms in each treatment
(Fig. 5; Fig. S7). This includes two MAGs belonging to the genus Acidovorax which were
the most abundant genomes in the MPn + N + C and 2MPn + N + C amendments.
These genomes shared 98.3% average nucleotide identity, higher than the 95% average
nucleotide identity (ANI) demarcation used for identifying distinct species (62, 63). To
see if the response of this organism was consistent across not only replicates but also
across years, we sequenced one 2018 MPn + N + C enrichment. We discovered that the
2018 enrichment also contained an abundant Acidovorax MAG which shared >98.5%
ANI to those from 2020. All three MAGs shared >98% ANI with strain UKL202B from
Klamath Lake (64). A further Acidovorax genome was obtained from the MPn + N
enrichment; however, this MAG shared less than 83% ANI with the other three Acido-
vorax genomes. Similarly, related yet distinct MAGs belonging to the genus Rhodoferax
showed differential read recruitment between amendments (Fig. S7). Altogether, these
findings suggest the presence of many closely related members of the Burkholderiales
in Flathead Lake that may respond in distinct but reproducible ways to the availability of
nutrients and organic matter.

Given the consistent response of members of Acidovorax to MPn enrichment, we
explored the distribution of genes involved in phosphorus use within representative
members of this genus (Fig. 5). Genes involved in phosphate transport (pstCABS) were
present in every genome. The phn operon (phnFGHIJKLMNP) was widely distributed,
indicating that phosphonate use is not specific to species in Flathead Lake. Genomes of
various members of the Acidovorax that do not possess the capacity for MPn degradation
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FIG5 Members of the genus Acidovorax consistently respond to MPn addition. (A) Metagenomic read recruitment against seven representative MAGs obtained
following nutrient amendment in July 2020. Reads per kilobase million reads (RPKM) values greater than 1 are shown. (B) Distribution of phosphonate cycling
genes in the genus Acidovorax. Genomes obtained in this study are shown in blue. (C) Relative abundance of an Acidovorax 16S rRNA gene amplified sequence
variant based on 16S rRNA gene amplicon sequencing of Flathead Lake which is identical to that obtained in the 2020 MPn amendment. Empty circles reflect the
absence of this sequence.

appear associated with hosts and generally fall along the lines of a recently proposed
genus division (65, 66). While rare, these organisms instead have the capacity for
phosphonate production, including pepM and ppD/aepY to convert phosphoenolpyru-
vate to Pn-acetylaldehyde and its subsequent degradation to either acetate or acetalde-
hyde using phnYA or phnX. None of the genomes had mpnS, the gene responsible for the
final step in the production of MPn. Ultimately, we conclude that nearly every organism
in the genus Acidovorax has some capacity for phosphonate cycling, although mecha-
nisms of phosphonate production and MPn demethylation appear present in discrete
species.

Metagenomic and 16S rRNA amplicon abundances of methane cycling
organisms

To evaluate the distributions of phnJ-containing Acidovorax, Rhodoferax, and Allorhi-
zobium in Flathead Lake, we used metagenomic read recruitment and 16S rRNA
amplicon sequencing. Metagenomic read recruitment against these MAGs showed that
these organisms were rare in the in situ lake community, likely representing less than 1%
of the total population (Fig. S8). Amplicon sequencing revealed one amplified sequence
variant (ASV) identical to the dominant Acidovorax 16S rRNA gene sequence from our
2020 MPn + N + C amendment and shared 99.71% similarity with the 16S rRNA gene
sequence from the 2018 MPn + N + C amendment. This ASV was a rare member of the
Flathead Lake community, found only in the epilimnion during the summer and reached
a maximum relative abundance of 0.30% (Fig. 5).
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DISCUSSION

We explored methane dynamics and the potential for MPn-mediated methane
production in Flathead Lake. Despite high oxygen concentrations, methane was
consistently supersaturated relative to the atmosphere. These findings indicate in
situ methane production or a source which supplies methane to the lake. Methane
concentrations ranged from 20 to 500 nM, relatively low compared to those reported
in the oxygenated water column of other lakes in which OMP has been a focus [e.g.,
references (6, 7, 9)]. Concentrations were highest in April when the lake was fully
mixed, possibly due to fluvial CH, input. However, the oft-reported subsurface meth-
ane maximum also appeared in Flathead Lake as the summer progressed, suggesting
an in situ source. Consistent with the oligotrophic nature of Flathead Lake, methane
production rates in the epilimnion, based on unamended control samples, were low and
averaged 0.69 + 0.18 nmol CH4 L™' d™". These rates are significantly slower than in other
lakes where OMP has been studied, including Lake Stechlin (26-236 nmol L™' d™") (9) and
Lake Hallwil (110 nmol L' d™") (67).

Given high oxygen concentrations and the apparent absence of in situ anaerobic
methanogenesis, we sought to determine if the cleavage of MPn could be responsible
for methane production. Phosphonates can comprise up to 25% of the oceanic DOP
pool (18) and have been detected in lakes, although quantitative estimates are lacking
and indicate they may be low (25, 26, 28). We estimate that ~10% of Flathead Lake
microorganisms have the potential for MPn cleavage via C-P lyase. These abundances are
similar to those in phosphorus-limited oceanic sites (23, 68), suggesting that MPn could
be an important source of P in oligotrophic systems. Members of the Betaproteobacteria
and Actinomycetota were the most well-represented lineages, consistent with findings in
other lakes (10, 35, 37). Although the biosynthetic potential for phosphonate production
appears widespread (29), genes for this process (pepM, ppd, and mpnS) in Flathead Lake
were relatively rare. Similar findings have been reported in the ocean, where genes for
the production of phosphonates are less abundant than those for its consumption (22,
23, 69). It is striking that while some of the most abundant lineages in marine systems
appear capable of producing or consuming MPn, including SAR11 and Prochlorococcus
(21, 22, 70, 71), we did not identify MPn cycling genes within Flathead Lake from
members of the freshwater SAR11 Fonsibacter or cyanobacterial Synechococcus-related
Cyanobium. Given the presence of putative phosphonate transporters in genomes of
freshwater cyanobacteria (72), including those in Flathead Lake, it is possible these
organisms are capable of cycling MPn using currently undescribed pathways. Regardless,
it is evident that diverse microorganisms can use MPn in this system.

Following the observation of methane supersaturation and the identification of
widespread genomic potential for MPn use, we experimentally demonstrated that the
functional capacity for OMP exists in Flathead Lake. We found that substantial methane
was only produced when both MPn and glucose were added (102.6 £ 19.4 nmol CHyg
L' d" across all experiments). Methane was not produced following amendment with
only carbon and nitrogen or MPn and nitrogen, indicating that these communities may
be limited in situ not only by MPn substrate availability but also by organic carbon.
OMP was also not observed at high rates in amendments with phosphate, even in the
presence of MPn and carbon. Phosphate repression of C-P lyase has been observed
in both isolates and environmental samples (35, 37, 73, 74), consistent with regulation
by the Pho regulon (69). Our finding that methane production in Flathead Lake may
be carbon limited is consistent with other studies which have shown that methane
production is stimulated by other nutrients, including in the presence of particles and
labile dissolved organic matter and through the addition of carbon, nitrogen, and even
iron (31, 37, 75). Given that dissolved organic carbon in Flathead Lake is ~100 pM,
similar to concentrations in the open ocean (76) where MPn is thought to contribute
significantly to methane production, the type and lability of the carbon available may
be important in how organisms respond to MPn. MPn cleavage may, therefore, occur
at labile carbon hotspots, for example, associated with zooplankton detritus (77) or in

December 2023 Volume 89 Issue 12

Applied and Environmental Microbiology

10.1128/aem.01097-23 12

Downloaded from https:/journals.asm.org/journal/aem on 01 March 2024 by 150.131.109.178.


https://doi.org/10.1128/aem.01097-23

Full-Length Text

the phycosphere, and may be a more prominent source of OMP in eutrophic lakes with
excess C and N. Future work should consider the importance of the types of carbon in
how and which organisms respond to MPn.

Using metagenomic sequencing, we identified the dominant microorganisms
responding to MPn as members of the genera Acidovorax and Rhodoferax. Closely related
strains (>98% ANI) of Acidovorax responded across both replicates and years and showed
similarity to genomes from other lakes. These findings highlight the consistent response
of Acidovorax to MPn, nitrate, and glucose temporally and the potential widespread
distribution of this organism. Notably, members of this genus can produce methane
through other aerobic pathways (78), further solidifying their role in OMP. We found that
the genes for MPn use are widely distributed in this genus and did not co-occur with
those for MPn synthesis, consistent with metagenomic analyses of a wide diversity of
organisms from the ocean (23). In our experiments, unique strains of Acidovorax and
Rhodoferax appeared to respond differently to the amendments, indicating that Flathead
Lake is home to a large diversity of closely related members of the Burkholderiales that
appear to differ in their nutrient and organic matter preferences. The organisms that
responded to MPn amendment are rare in situ, likely representing <1% of the Flathead
Lake community. Future transcriptomic sequencing of Flathead Lake communities will
determine if these microorganisms, which show robust phosphonate utilization, are
active in situ.

While we have shown that heterotrophic microorganisms are able to perform OMP
in Flathead Lake, we conclude that net OMP is altogether very low in this system
(mean 0.34 + 0.07 nmol CH4 L™ d7" in all treatments with no added MPn; range, —2.81
to 1.59 nmol CHy L™ d™'). We are unable to rule out alternative sources of methane that
could contribute to the observed supersaturation in Flathead Lake. One possibility is that
methane may be produced by or associated with certain photosynthetic organisms (10,
11, 79-81). However, we did not observe strong differences in methane production in
treatments in complete darkness or those with light (0.58 + 0.20 and 0.83 + 0.23 nmol
CHy L' d7, respectively; t-test, P > 0.5) or in treatments where photosynthetic organ-
isms responded. This would also not be consistent with high methane concentrations
observed during April when the lake is still fully mixed. Alternatively, lateral transport
from anoxic habitats (littoral, fluvial) could be a source of methane to Flathead Lake
[e.g., references (82-85)]. While we provide evidence that the capacity for MPn use
exists under the right conditions, namely, when both MPn and labile organic carbon
are available, future work will be needed to fully understand the sources and sinks of
methane in Flathead Lake.

MATERIALS AND METHODS

Sampling was conducted at the long-term monitoring site termed Midlake Deep (47.867
N, 114.067 W) in Flathead Lake from aboard the research vessel Jessie B. At 113-m
depth, Midlake Deep is one of the deepest points in the lake. Oxygen measurements
were obtained with a Hydrolab DS5 (OTT HydroMet, Sheffield, UK) and are publicly
available through the Flathead Monitoring Program (https://flos.umt.edu/publicdata).
Water samples were collected using an opaque 3-L Van Dorn water sampler or a 10-L
Niskin bottle affixed to a wire and lowered via electric winch. Methane samples were
fixed immediately (see below), while all other samples were stored in dark coolers during
transportation back to the laboratory.

In situ methane concentrations

Methane concentrations in Flathead Lake were measured approximately monthly over
a 3-year period in 2018-2021. Water was placed in glass serum bottles crimp-sealed
with gray chlorobutyl rubber stoppers and injection of NaOH to a final concentration
of 0.1 M was used to stop biological activity. A headspace was introduced into each
sample using ultra-high pure N, gas followed by agitation to allow gas concentrations
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in the headspace to equilibrate with the liquid sample. Methane was analyzed by gas
chromatography via headspace (20 mL) gas introduction (Model 8610C, SRI Instruments).
Methane and oxygen concentrations were visualized and contoured using Ocean Data
View (86).

In situ lake metagenomic sequencing

To document the microbial diversity and potential for phosphonate use in Flathead Lake,
we performed metagenomic sequencing from 16 samples collected at MLD in 2018.
Depths ranged from 5 to 90 m. Approximately 1 L was serially filtered onto both a
3-um, 25-mm GTTP polycarbonate filter (EMD Millipore, MA, USA) and a 25-mm, 0.2-pm
polyethersulfone filter (SUPOR, Pall Co., NY, USA). Samples were stored at —80°C prior to
DNA extraction. Genomic DNA from the <3.0 to >0.2 um fraction was extracted using a
MasterPure DNA purification kit (Lucigen, WI, USA). DNA libraries were sequenced on a
Novaseq (NEB Ultra Il DNA library prep kit; Novogene, Sacramento, CA), a NextSeq 2000
(INlumina DNA Prep kit; Microbial Genome Sequencing Center, Pittsburgh, PA), or a MiSeq
(Nextera; Genomics Core Facility, University of Montana).

Raw reads were quality trimmed using Trimmomatic v0.39 (87) and assembled with
MEGAHIT (88) using default parameters. The depth of coverage of contigs was estima-
ted using Bowtie 2 v2.3.5.1 (89) and SAMtools v1.10 (90). Open reading frames were
identified with Prodigal V2.6.3 (91). Gene annotation was performed using GhostKOALA
(92). C-P lyase genes (phnJ; K06163) involved in MPn cleavage were classified taxo-
nomically against the nr database using blastP (cut off 75%) (93) and through the
construction of phylogenetic trees using reference sequences. Trees were created by
alignment with MUSCLE (94), built using FastTree (95), and visualized using iTOL (96).
We classified sequences at the phylum or class level. We estimated the percentage of
species able to cleave MPn by dividing the number of phnJ genes by the total number
of organisms estimated using four single-copy marker genes (recA, K03553; gyrB, K02470;
atpD, K02112; tufA, K02358) as previously performed (23, 30, 68). We also estimated
the relative abundance of the total community represented by organisms with phnJ
by using the depth of coverage of all phnJ and single-copy marker genes within each
metagenome. We further identified marker genes for phosphonate production (pepM,
K01841 and K23999; ppd, K09459; mpnS, K18049), the degradation of 2-aminoethyl-
phosphonate (phnW, K03430; phnX, K05306), anaerobic methanogenesis (mcrA; K00399),
and methanotrophy (pmoA, K10944; mmoX, K16157).

Nutrient amendments

To determine methane production rates under different nutrient concentrations,
amendments were performed during the summers of 2017, 2018, 2020, and 2021.
For all years, water was collected from MLD at a depth of 5 m, placed in 20-L polycar-
bonate carboys, and returned to the Flathead Lake Biological Station. Carboys were
amended with MPn, P, N, and C at different final concentrations and molar ratios and
incubated under specific light and temperature conditions depending on the experi-
ment (Table 1). Carboys were subsampled into sealed borosilicate glass serum vials
for subsequent incubations. Amendments from 2017 and 2018 were maintained in a
laboratory incubator at ~22.5°C. While most of these amendments were maintained
in the dark, one experiment (24 July 2018) was performed under both constant dark
and constant light. The incubator provided photosynthetically active radiation (400-
700 nm) of ~400 umol photon m™ s™'. To mimic in situ light and temperature condi-
tions more closely, amendments in 2020 and 2021 were maintained in a dockside
incubator. The incubator was plumbed to continuously supply lake water from ~2-m
depth with minimal shading (at midday; ~16°C, ~70% incident photosynthetically active
radiation, ~900 umol photon m™ s™"). A blue plastic layer made of plexiglass served to
approximate the underwater spectral quality (97, 98). Amendments from 2017, 2018, and
2021 were performed using triplicate 160-mL glass serum vials with gray chlorobutyl
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rubber septa. All July 2020 amendments were performed with one replicate using
individual 1-L glass serum bottles sealed with a blue butyl rubber septum.

Methane concentrations were followed over time to calculate rates of production. All
experiments except July 2020 sacrificed whole samples at each time point. In the case of
the 2020 experiment, 15 mL of sample was withdrawn and replaced with 15 mL of zero
air lacking hydrocarbons. Samples were preserved with a final concentration of 0.1 M
NaOH. Methane concentrations were determined as described above. Rates of meth-
ane production were calculated between equilibrated Ty methane concentrations and
methane concentrations following 5-7 days of incubation. Because methane production
showed a lag period following nutrient amendment, these rates do not necessarily
reflect the maximum rates between any two time points but allow for comparison across
all experiments.

For determination of nitrate + nitrite (NO,) and TDP, samples were filtered through
MilliQ and lake water rinsed, 47-mm diameter, 0.45-um pore size mixed cellulose ester
filters, and frozen at —20°C until analysis on an Astoria A2 segmented flow analyzer
(Astoria-Pacific, OR, USA). TDP was measured colorimetrically following wet chemical
oxidation using an alkaline potassium persulfate digestion and treatment with heterop-
oly-molybdenum blue. For NOy determinations, nitrate was converted to nitrite via
cadmium reduction and quantified colorimetrically using Greiss chemistry.

2020 amendment

A more comprehensive set of measurements were performed during the amendment on
20 July 2020. These measurements are described below.

Total cell abundances and chl a-containing phototrophic organisms were determined
using an Attune Acoustic Focusing flow cytometer (Thermo Fisher, MA, USA). Samples
(2 mL) were fixed with paraformaldehyde (0.8% final concentration) and frozen at
—80°C until analysis. For total cell abundances, cells were stained with the nucleic acid
stain SYBR Green | for 15 minutes, excited using a 20-mW blue (488 nm) excitation
laser, and detected with a 530-nm emission filter. Phototrophic cells containing chl
a and phycoerythrin were excited using a blue (488 nm) excitation laser at 20 mW.
Small phototrophic eukaryotes were detected based on chl a emission using a 640-nm
longpass filter, while cyanobacteria containing phycoerythrin were distinguished using
an R-phycoerythrin emission filter (574 nm). Concentrations of chl a were determined
following filtration of lake water (100 mL) onto a 25-mm diameter 0.45-um pore size
mixed cellulose ester filter (Millipore). Filters were extracted at —20°C in a 90% acetone
solution overnight and the fluorescence quantified using a Turner 10-AU fluorometer
(Turner Designs, CA, USA), including phaeophytin correction (99).

We performed metagenomic sequencing to determine community shifts in response
to the experimental amendments. Approximately 100-500 mL of water was filtered onto
a 25-mm diameter, 0.2-um polyethersulfone filter (SUPOR, Pall Co., NY, USA) and stored at
—80°C. Genomic DNA was extracted using a MasterPure DNA purification kit (Lucigen, WI,
USA). DNA libraries were prepared using an Illumina DNA Prep kit (Illumina, San Diego,
CA) and 150-bp paired-end reads were sequenced on a NextSeq 2000 at the Microbial
Genome Sequencing Center (MiGS; Pittsburgh, PA). To see if the community response
to MPn amendment was consistent across years, we performed further metagenomic
sequencing on an MPn + N + C amendment from 2018 (July 24, dark incubation).
The amendment was serially filtered through a 3-pum, 25-mm GTTP polycarbonate filter
(EMD Millipore, MA, USA) onto a 25-mm, 0.2-um polyethersulfone filter (SUPOR, Pall
Co., NY, USA). Sample storage and DNA extraction were performed on the 0.2-um filter
as described above. Library preparation and shotgun 150-bp paired-end sequencing
(150 bp) were performed on a Novaseq (Novogene, Sacramento, CA).

Read clean up, assembly, and functional annotation were performed as described for
the in situ communities. To evaluate microbial community composition, 16S ribosomal
RNA genes were identified using barrnap (100) and classified using the SINA Aligner
(101) against the SILVA database (102). Only genes identified as prokaryotic were

December 2023 Volume 89 Issue 12

Applied and Environmental Microbiology

10.1128/aem.01097-23 15

Downloaded from https:/journals.asm.org/journal/aem on 01 March 2024 by 150.131.109.178.


https://doi.org/10.1128/aem.01097-23

Full-Length Text

retained. The depth of coverage of each 16S rRNA gene was used to estimate the percent
abundance of each organism within the community. We further compared metage-
nomes against one another based on functional potential. The coverage of genes with
the same KEGG annotation was summed within each metagenome. KEGG abundances
within each metagenome were rarefied to equal sampling depth and compared using
NMDS ordinations based on Bray-Curtis dissimilarity. Permutational analysis of variance,
based on the type of phosphorus added (MPn or phosphate), was performed using
adonis in the package vegan (103). To explore the response of eukaryotic organisms,
contigs predicted to belong to eukaryotes were identified using EukRep (104). The
percentage of sequencing depth attributable to eukaryotic organisms in each metage-
nome was estimated based on the total reads that mapped to these contigs relative to
the total number of reads.

Metagenome-assembled genomes were obtained using MetaBAT 2 v2.11.1 (105).
Contigs >5 kb in length were retained. The size and quality of each genome bin were
evaluated using QUAST v5.0.2 (106) and CheckM v1.0.13 (107). We report genome bins
more than 60% complete and less than 10% contaminated, representing medium quality
draft genomes (108). Genomes were taxonomically classified with GTDB-tk v1.6.0 (109)
using KBase (110). Genome annotation was performed using Prokka v1.14.6 (111) and
GhostKoala. Whole-genome trees of members of the genus Acidovorax were created
using concatenated single-copy marker genes identified using CheckM, constructed
using FastTree, and visualized using iTOL. Outgroups for Fig. 5B were members of the
genus Hydrogenophaga. ANI comparisons were performed using OrthoANI (112). The
relative representation of each bin within each metagenome was estimated by the
number of reads mapped per kilobase million reads.

16S rRNA gene amplicon sequencing

To further evaluate the distribution of Acidovorax in Flathead Lake, we performed 16S
rRNA gene amplicon sequencing at MLD in 2018. Water collection, DNA extraction,
and sequencing were performed as previously described (113). Sequence data were
processed using the QIIME2 platform (114). ASVs were identified using DADA2 (115)
and classified against the SILVA 138 database (116). Further processing and visualization
were performed using phyloseq (117) in R (118). Sequences related to chloroplasts
and eukaryotes were removed. We used blastn to identify ASVs identical to the most
abundant 16S rRNA gene related to Acidovorax in the 2020 MPn + N + C amendment. We
also used this data set to identify potential methanogenic archaea and methanotrophic
organisms, including the class Methylococcaceae.
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