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Recurrent spiking neural network (RSNN) is a frequently studied model to understand biological neural networks, as
well as to develop energy efficient neuromorphic systems. Deep learning optimization approach, such as
backpropogation through time (BPTT), equipped with surrogate gradient, can be used as an efficient optimization
method for RSNN. Including dynamic properties of biological neurons into the neuron model may improve the
network's temporal learning capability. Earlier work only considers the spike frequency adaptation behavior with a
large adaptation time constant that may be unsuitable for neuromorphic implementation. Besides adaptation, synapse
is also an important structure for information transfer between neurons and its dynamics may influence network
performance. In this work, a Leaky Integrate and Fire neuron model with dynamic synapses and spike frequency
adaptation is used for temporal tasks. A step-by-step experiment is designed to understand the impact of recurrent
connections, synapse model, and adaptation model on the network accuracy. For each step, a hyper-parameters
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tuning tool is used to find the best set of neuron parameters. In addition, the influence of the synapse and adaptation
time constants is studied. Results suggest that, dynamic synapse is more efficient than adaptation in improving the
network's learning capability. When incorporating adaptation and synapse model together, the network can achieve a
similar accuracy as the sate-of-the-art RSNN works while requiring fewer neurons and smaller time constants.
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1 INTRODUCTION

Recurrent spiking neural networks (RSNNs) are inspired by brain's dynamics [12] [28] and are
used to develop energy efficient neuromorphic systems [19] [8] [6]. Different from artificial
recurrent neural networks (ANNs), a set of dynamic functions is used to model the neuron
behavior in RSNNs, and the information is processed and propagated through discrete

spikes [17]. Although the brain is good at processing certain temporal tasks, RSNN can have a
lower accuracy as compared to ANNs due to the lack of an efficient optimization method for
training the dynamic features [24].

Recent studies [30] [3] showed that deep learning approaches, such as backpropagation through
time (BPTT) [29], can be used as an efficient optimization mechanism for RSNN. With the use
of surrogate gradient [21] [5], the discontinuous gradient of a spiking neuron can be estimated
with a continuous function. Thus the gradient can be auto-calculated through the well-developed
deep learning platform such as Tensorflow [1] and Pytorch [23]. Another finding is that
incorporation of spike frequency adaptation can significantly increases the computing and
learning capability of a RSNN [15]. RSNN equipped with adaptation and BPTT can achieve
similar performance to its ANN counterparts on standard benchmarks such as sequential
MNIST [13] and speech recognition [25].

In addition to time-dependent spike integration and frequency adaptation, synapses also
contribute to dynamic behaviors of biological neural networks [11]. Synapse is an essential
structure that permits a neuron to pass an electrical or chemical signal to another neuron.
Dynamic behavior of the synapse can be described by an exponential decay function with a time
constant 7y, that is activated by a pre-synaptic spike. In contrast to spike frequency adaptation,
which is dependent on a single neuron's firing rate, synapse dynamics of a specific neuron are
influenced by the firing pattern of all the pre-synaptic neurons. To the best of our knowledge, the
impact of synaptic and somatic dynamics, including spike frequency adaptation, on network's
learning capability, has not been studied systematically.
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In this work, a step-by-step protocol is designed to understand the impact of recurrent
connections, synapse model, and adaptation model on the network accuracy. For each step, a
hyper-parameters tuning tool [15] is used to find the best set of neuronal and synaptic
parameters. Instead of the adaptive threshold implementation used in earlier works, in this work,
spike frequency adaptation is implemented by an adaptation current. The adaptation current
model is thought to be better in reproducing the neuron properties of a more realistic
conductance-based model [4]. In addition, the influence of time constants on learning capability
is also studied in this work. Results suggest that, when incorporating both adaptation and
dynamic synapse mechanisms into the model together, smaller time constants (< 50ms) can be
used to achieve good prediction accuracy. For analog neuromorphic system designs that use
advanced CMOS technologies to implement spiking neurons, the rapidly increased leakage
current is a limitation factor for achieving a large time constants [22] [18] [7]. More
sophisticated device and circuit design is required to support large time constants. Findings in
this work may help to design efficient neuromorphic systems. With optimized spike frequency
adaptation and dynamic synapse time constants, this work achieves accuracy close to the state-
of-the-art neural networks on sequential MNIST and Ti46-Digit speech dataset with fewer
neurons and a single recurrent layer.

2 EXPERIMENTAL SETUP

This section describes the neuron model, network structure, input datasets, and hyper-parameters
setting used in the experiments.

2.1 Neuron Model
Tmidui(t)dt=—(ui(t)—Vresti)+Rmiy k Wkix(t)+Rsynilsyni(t)—Radpiladpi(t)

(1)
TsynidLsyni(t)dt=—Isyni(t)+>_jW;jid(t—to)

2
Tadpidladpi(t)dt=—Tadpi(t)+bid(t—to)

€)

(4)

The adaptive leaky integrate and fire (ALIF) [15] neuron model used in the paper is described by
Eq. 1-Eq. 4. Eq. 1 models how membrane potential changes with time. In these equations, u
represents a neuron's membrane potential, 7,, represents the membrane time constant, and Vies
means resting potential. Y kWkix(t)

is weighted sum of external inputs. R 1s the membrane resistance. Iy, is the synaptic current
that comes from other connected neurons. The term /.4,(¢f) models the spike frequency adaptation
behavior and Rua4p 1s the adaptation resistance. Synapse dynamics are represented by Eq. 2, where
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Ry, 1s the synapse resistance, gy, 1s the synapse time constant and Wj; is the synapse weight
between the modeled neuron i and its neighboring neurons j.

The dynamics of the adaptation current are described in Eq. 3. 744 is the adaptation time
constant. The term bd(¢ — to) means that, while a neuron is firing, the adaptation current is
increased by an amount » when each local spike happens. Due to this effect, a neuron's firing rate
will decay when a constant input is given. Different from earlier SNN studies on temporal tasks
that implements the adaptation behavior through the dynamic threshold function, in this paper,
spike frequency adaptation is implemented via an adaptation current. Although dynamic
threshold and adaptation current can both be used to model the adaptation behavior, it has been
shown that [4] the two approaches have different effect on the neuron's transfer function.
Adding adaptation current to an integrate-and-fire neuron can better reproduce the biological
functionality of a neuron.

A neuron fires when the membrane potential reaches a pre-defined numerical threshold V. After
the spike injection, it will enter a refractory period where no other spike can happen. These are
described by Eq. 4. For discrete time implementation, Forward-Euler first-order exponential
integrator method is used with d(¢) = 1ms. An example of Eq. 3 discretization is showing in

Eq. 5, where a = exp(— d(t)/tadp).

Ladpi(t+d(t) )=aladpi(t)+(1—a)bid(t)

(5)
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Figure 1: An illustruation of the
network structure used for the sequential MNIST.

2.2 Temporal Tasks and Network Structure
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In this work, tasks are selected to test the network's temporal learning capabilities. For these
tasks, inputs span multiple time steps and are given to the network one at a time step. The
network needs to have the capability of incorporating the information from the past to make
correct prediction.

2.2.1 Sequential MNIST. The MNIST [13] dataset contains 70,000 images for handwritten digits
from zero to nine, each image has 28 x 28 pixels. When used for temporal task, each image is
flattened into an one-dimensional pixel array. The input is given to the network one pixel at a
time. Therefore, 784 time steps are needed to input one image. In this paper, one input neuron, n
hidden layer neurons, and ten output neurons are used for the sequential MNIST task as shown in
Fig. 1. Hidden layer neurons are recurrently connected, input to hidden and hidden to output
neurons are fully connected. For a specific neuron (e.g., neuron i in Fig. 1), the red line
represents the input spike train coming to the neuron, the green line represents the recurrent spike
train coming to the neuron, and the blue line represent the spike train going out of the neuron.
The membrane and adaptation time constants are internal parameters of a neuron cell, synapse
time constant is a property of the connection and the output time constant is related to the output
of this neuron.

2.2.2 Ti46-Digits Speech Dataset. Ti46-Digits [25] is the digits subset of the TI46 speech dataset.
It contains read utterances from 8 males and 8 females each speaking digits zero through nine,
with total 1594 training samples and 2542 testing samples. The corpus was collected at Texas
Instruments in a quiet acoustic enclosure using an Electro-Voice RE-16 Dynamic Cardiod
microphone at 12.5kHz sample rate with 12-bit quantization. The waveform is pre-processed by
LyonPassiveEar model [16], which calculates the probability of firing along the auditory nerve.
Then the analog data is encoded to 78 spike trains using Bens spiker algorithm (BSA) [27]. For
this Ti46-Digits dataset, 78 input neurons are fully connected with the hidden layer neurons. The
other parts of the network structure is the same as the MNIST task.

2.3 Learning Algorithm
TpidLqi(t)dt=—Lqi(t)+3(t—to)

(6)
Outputq=) iWiqlqi(tend)

(7)
dzi(t)dvi(t):=ymax {0,1—|vi(t)[}

(8)

2.3.1 Inference. For temporal tasks, output of the hidden layer neurons are spike trains that span
multiple time steps. In this paper, the effect of the spike trains is described by an output current /
through Eq. 6. 7, is named output time constant and controls how fast the output current decays.
After all the inputs are given, the output current observed at time step fexa 1s used to calculate
network output (Eq. 7) and then passed through a softmax function for classification.
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2.3.2 Training. Backpropagation through time (BPTT) algorithm is used in this paper. Similar as
earlier spiking neural network works that adopt the BPTT algorithm, gradient is estimated for the
non-differentiable function between a neuron's spiking output (dzi(¢)) and its membrane potential
(dui(t)). As described in Eq. 8, dvi(t)=duit)-ww

is the normalized membrane potential and y is the damping factor. This is also known as a linear
surrogate gradient function as illustrated in Fig. 2.

dz;(t) 1 4

d;(t) | R

Vth-w Vth Vth+w  u(t)

Figure 2: Illustration of the surrogate
gradient function.

2.4 Hyper-Parameters Tuning

There are many parameters in the neuron model as well as in the learning algorithm. These
parameters can be classified into two categories. One is hyper-parameters that are pre-defined
before the learning process starts, another is the parameters learned during the training process,
such as input, recurrent, and output weights. In this paper, there are 11 hyper-parameters realted
to the neuron model: 7, Tsyn, Tudp, Tp, Ry Rsyny Radp, D, Viest, Vth, w. There are also parameters
related to the learning algorithm such as learning rate and damping factor. Based on the
experimental results, it is observed that these hyper-parameters can directly influence the
learning ability and needs to be optimized. Finding a good set of hyper-parameters by hand-
tuning or grid search is unfeasible. In this work, Optuna [2] is used for hyper-parameter tuning.
Optuna is an open-source automatic hyperparameter optimization framework written in Python.
It can efficiently search large optimization spaces and prune unpromising trials for faster results.
The program is also easy to parallelize. By defining the error function, setting the number of
trials, parameter tuning range, and optimization direction, Optuna can return the optimized
tuning result for each trail.

3 EXPERIMENTS AND RESULTS

3.1 Method

In this work, the influence of each neuron and network component is evaluated with the
experiments listed in Table 1: 1). Use leaky integrate and fire (LIF) neuron without dynamic
synapse and adaptation in a network without recurrent connections in the hidden layer.
Therefore, this network is a feedforward spiking neural network. 2). Add recurrent connections
for the hidden layer based on setting 1. The network is a recurrent spiking neural network. 3).
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Add synapse dynamics to the neuron model based on setting 2. 4). Add adaptation to the neuron
model based on setting 2. 5). Add both synapse dynamics and adaptation to the neuron model
based on setting 2. 6). Constrain the synapse time constant based on setting 3 to be within 50ms.
There is no adaptation for the neuron. 7). Constrain the synapse and adaptation time constant to
be within 50ms based on setting 5. For the Ti46-Digit dataset, in order to better show the
influence of each component, an additional constraint is added to settings 1-7 to restrict the
output time constant to be within 20ms (Eq. 6). The reason behind this setting is introduced in
the next subsection. In order to compare the result with and without this constraint, this paper
includes a setting 0) for Ti46-Digit dataset, which is setting 1 without output time constant
restriction.

Table 1: Experiment List.* only apply to the Ti46-digit dataset.

Recurrent] Synapse| Adaptation Constraints
0 X X X /
1 X X X *7, <20
2 v X X *7, <20
3 v X v *7, <20
4 v v X *7, <20
5 v v v *7, <20
6 v v X Ton < 50, *7, <20
7 v N4 v Tadp, Tsyn < 50, *1, <20

Table 2: OPTUNA Tuning parameters and search range.
Tm Tsyn Tadp Raap 7 Vin
(ms) | (ms) | (ms) | mQ | (ms) (mv)
baseline |[1,700]}[1,700]}[1,700]}[1,100]f[1,700]§[0.01, 10]
constraint| [1,700]} [1,50] | [1,50] |[1,100]} [1,20] | [0.01, 10]

Table 3: Tuned parameters and Accuracy for sequential MNIST with Network Structure 1-200-
10.

(ms)] (ms)] (ms)| (mQ)| (ms)] (mv)] (epoch 1)} (epoch 100)

11 1 / / /1 50)84] 43% 42%
2] 1 / / /1150 1.6 56% 72%
3] 1 / 1500] 40 | 150) 1.3 ] 68% 80%
4 1 |600) / /1350 021 67% 86%
5] 1 | 50350 40 J 100 5.8y 73% 90%
of 1 125] / /1 50)53] 68% 79%
7115150 1 101 5104] 73% 95%

Table 4: Tuned parameters and Accuracy for Ti46-Digis with Network Structure 78-100-10.
Tm | Tsyn | Tadp | Radp | 7 | Vin | TuneAcc] FinalAcc
(ms)] (ms)] (ms)| (mQ)| (ms)] (mv)] (epoch 3)] (epoch 100)
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o 1 / / /350 4 84% 97%
11 1 / / /1201 06] 2% 33%
2] 1 / / /|20 L5 38% 37%
31 1 /1650 60 1 201 04 ] 25% 50%
4 1 |s500) / / 10| 1.2 89% 98%
51 1 |500]350] 1 10 | 2.2 85% 98%
6] 1 |50 / /1201 2 54% 94%
7N 5150])] 1 10 | 151091 60% 97%

For all the model and network settings listed above, 10 output neurons are used to classify the
inputs to 10 classes. Sequential MNIST network has a single input neuron and 200 hidden layer
neurons. Ti46-digists network has 78 input neurons and 100 hidden layer neurons. For each
experiment setting, OPTUNA is used to find the network parameters that give the highest
accuracy. Parameters tuned by OPTUNA and the search range are listed in Table 2. Here the
maximum time constant is set to 700ms, which is close to the maximum input time steps for the
two datasets used in this paper. Range for R.q, and Vth are set empirically. Ve is set to 0, w is
set to Vth and Rm, R, b, refractory period are set to 1 constantly for simplicity. The network
learning rate is set to 0.1 and the damping factor is set to 0.3 based on experience. For each
setting, OPTUNA runs for 200 trials to do parameter search. In order to get the result faster, for
each trial, the sequential MNIST dataset runs for 1 epoch and the Ti46-digit dataset runs for 3
epoch. The best parameters and highest accuracy (TuneAcc) achieved by using this tool are
reported in Table 4 and Table 3. After the parameters are found, they are used for weight training
for a longer time, the accuracy at epoch 100 is reported as “FinalAcc” in Table 3 and Table 4.
Results are explained in the following sections.

3.2 Understanding the Impact of Recurrent Connections, Synapse Dynamics, and
Adaptation through Parameter Auto-Tuning
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Figure 3: Examples of hidden layer spike raster plot after training with different inputs.



(a) Sequential MNIST Acc. (b) Ti-Digit Ace.

S - HH 0.73 0. 0.63 - 0.8 § - 097 097 096 097 096 097 096 097 09
P~ T
@ G
E 8- (xN 079 0.5 [ORY -07 E § - 097 097 097 097 097 096 097 097 0.8
£ 5
% 2 0.46 L-FEN) = - 0.6 % 8-097 09 097 09 057 097 057 098 0.7
= ] [l ™
3 S
Q 05 0.6
o A
@ 2 : i
E - E
[=] ! 0.3
7] 3] 0.3 @
o a
@ © 0.4
=3 0.3 =
=) 0.18 | 0.19 . @
@ 0.3
0.2
- 3 02
700 500 300 100 50 10 1 0
Adaptation Time Constant (ms) Adaptation Time Constant (ms)
Figure 4: Heatmap for Synapse and Adaptaion Time Constant Change.
(a) Sequential MNIST (b) Ti-Digit
1.0 1.0
=8
0.9 1 0.9 /
0.8 0.8
0.7 1 0.7 4
0.6 0.6
&
5 051 5 054
Q —e— tauaAdp 700 8 —a— tauAdp 700
S o4 —— tauAdp 500 | < 0.4 —8— tauAdp 500
—8— tauAdp 300 —e— tauAdp 300
031 tauAdp 100 03 tauAdp 100
03 —8— tauAdp 50 024 —8— tauAdp 50
’ tauadp 10 ' tauadp 10
0.1 —8— tauhdp 1 0.1 4 —a— tauAdp 1
noAdp noAdp
0.0 1— : : . . - , r 0.01— : . , , . :
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Synapse Time Constant (ms) Synapse Time Constant (ms)

Figure 5: Synapse Time Constant Change with Network Accuracy.

Comparing the results between setting 1 and setting 2 for the MNIST dataset, one observation is
that the recurrent connection can significantly improve the network accuracy from 42% to 72%
for sequential MNIST. However, for Ti46-Digit dataset, result of setting 0 suggests that the
network can learn well even without the recurrent connection. This is because the speech dataset
is a spatial temporal dataset and the spatial information can provide a good accuracy when the
output layer integrates temporal information through a large time constant (i.e., 7,=350ms). With
this large output layer time constant, no additional temporal processing through the recurrent
layer is required for the network in order to achieve a good accuracy. However, if the output time
constant is restricted to a small value, then the temporal processing capability is necessary in
order to hold information from earlier time steps. Therefore, to test the temporal processing
capability of the network based on the Ti46-Digit dataset, for experiment settings 1-7, the output
time constant is restricted to be less than 20ms. The result between setting 0 and setting 1 shows
that after adding the constraint, the network accuracy drops from 97% to 33%. This is because
the feed forward spiking neural network does not have the temporal processing capability.
Interestingly, when adding recurrent connections based on setting 1, the accuracy only improved



from 33% to 37%, this suggests that the LIF model without synapse dynamics and adaptation has
limited temporal processing capability on the Ti46-digit dataset.

Experiment setting 3-5 are designed to understand the impact of adding synapse and adaptation
model. For sequential MNIST dataset, adding adaptation only, adding synapse dynamics only,
and adding both achieve 80%, 86%, 90% accuracy respectively. For Ti46-Digit dataset the
corresponding experiment ends up with 50%, 98%, 98% accuracy respectively. The results
suggest that, adding synapse current or adaptation current on the LIF model can help to improve
the network's temporal processing capability. Among these two, synapse current shows greater
influence on the accuracy. Adding both mechanisms can help improve the accuracy further for
sequential MNIST. Another observation from the OPTUNA tuning results is that, the time
constant suggested by the tool always stays at a relatively high value, when only synapse or
adaptation current is modeled. The optimized time constant is > = 500ms. When both
mechanisms are included, one of the time constant can be smaller.

In order to understand the influence of synapse and adaptation current better, two additional
experiments are added with a constraint on the synapse and adaptation time constant. A smaller
time constant can lead to more efficient analog neuromorphic implementation with spiking
neurons. It is also interesting to check how accuracy changes with the reduction of the time
constant, which will be introduced in more details in the next subsection. When the time constant
is restricted to be within 50ms and the neuron only has synapse model, accuracy drops for both
datasets. Comparing setting 4 and setting 6, for sequential MNIST, accuracy reduced from 86%
to 79%. For Ti46-Digit, accuracy reduced from 98% to 94%. However, if adaptation current is
added together with the dynamic synapse, good accuracy can be reached. For setting 7,
sequential MNIST gets 95% accuracy and Ti46-Digit gets 97% accuracy with synapse time
constant at 50ms and adaptation time constant at 1ms. Result shows that, spiking neuron model
with dynamic synapse and adaptation current does not require large time constants to solve the
temporal tasks.

Figure 3 shows examples of the spike raster plots of hidden layer neurons under setting 7 with
different network inputs after training. It is observed that, after applying a certain input, some
specific neurons in the hidden layer continue to fire, which is enabled by the feedback loops in
the recurrent network. Training the weights allows a similar group of neurons to continue firing
in response to the same-label inputs, while different sets of neurons to continue firing in response
to inputs with different labels. This is why the output layer can make a good prediction for these
two tasks.

3.3 Sensitivity Study of Synapse and Adaptation Time Constants

To understand how accuracy changes with different synapse and adaptation time constants, grid
search experiment for synapse and adaptation time constant is conducted based on experiment
setting 7. In this experiment, both synapse and adaptation time constants are swept from 1ms to
700ms. In Fig.3, when the adaptation time constant is labeled as 0, the adaptation mechanism is
turned off. A total of 56 experimental results are reported for each dataset. Each result shows the
testing accuracy averaged from three trails. For the sequential MNIST, the accuracy is reported
at epoch 20. For the Ti46-Digit dataset, the accuracy is reported at epoch 50.
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For both tasks, accuracy drops with reduced synaptic time constant. This trend holds for different
adaptation time constant as shown in Fig. 5. When adaptation time constant is reduced, however,
the accuracy changes are not always monotonous. For most cases, the accuracy is significantly
higher when adaptation mechanism is included in the model. This trend is most obvious when
the synapse time constant is small. For example, when synapse time constant is 50ms, without
adaptation, the accuracy is 30% for sequential MNIST and 29% for Ti46-Digit. After adding
adaptation with time constant of 1ms, the accuracy improves significantly and reaches 85% and
93%.

Overall, experiment shows that synapse and adaptation time constant significantly influence

network accuracy and need to be carefully tuned. Specific combinations of the synapse and
adaptation time constant can significantly improve the performance.

3.4 Comparison with Related Work

Table 5: Comparison with Related works. R Means Recurrent Layer, three elements under the t
column are Tmembranes Tsynapses Tadaptation

Work] Task Model Network 7 (ms) |Best Acc.
[3] | SMNIST |LIF+adaptive Vth 80-R700 20/-/700f 97.1%
[30]] SMNIST |LIF+adaptive Vth] 40-R256-R128 |20/-/200] 97.8%
[31]] SMNIST | LIF+adaptive Vth] 64-R256-R256 [20/-/200] 98.7%
[32]| Ti46-Digit] LIF+synapse |78-200-R200-200] 64/8/- | 99.4%
[33]| Ti46-Digit] LIF+synapse | 78-100-100-100 | 16/8/- | 99.7%
This | SMNIST | LIF+adaptive 1-R400 1/50/1 98%
work | Ti46-Digit] current+synapse 78-R100 1/50/1 98%

Prior work on spiking neural networks primarily focused on the spatial tasks such as MNIST and
CIFAR [20] [14] [26] [9]. Fewer studies have been published on temporal or spatial temporal
tasks. [3], [30] and [31] propose to train recurrent neural network with BPTT on temporal tasks.
In these works, an adaptation threshold mechanism is implemented and the network is tested
with sequential MNIST. Best accuracy and the corresponding network structure are listed in
Table 5. Here for sequential MNIST task, 400 neurons are used for hidden layer to get better
performance. In this paper, an adaptive current mechanism is used, which is thought to be closer
to a realistic conductance-based neuron model [4]. Dynamic synapse, which is an important
component of the biological neural network, is also added to the model together with the
adaptation mechanism. Results suggests that model proposed in this paper can achieve a similar
best accuracy as compared to prior SNN works with fewer number of neurons and only one
recurrent layer. Other SNN works [32] [33] incorporates synapse model and is tested on the
Ti46-Digit dataset, however, it does not take adaptive model into account. There is another
work [10] that considers both synaptic dynamic and adaptation mechanism. But it was not
evaluated on a long-term temporal task and did not study the impact of each dynamic
component. That work was evaluated on Ti-digit-short, which converted the audio files into
feature vectors through Mel-Frequency Cepstral Coefficients. After conversion, the length of the
sequence is 90, which is shorter than the sequence length evaluated in this paper.
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In this work, we are not only trying to achieve best accuracy with proposed model, but also to
understand the influence of different component and parameters on the network accuracy. Based
on the model proposed in this paper, one finding is that, although synapse and adaptation model
can both help improving the network's temporal processing capability, when having either
synapse or adaption model, synapse model is more efficient. This might because synaptic current
is a global current which comes from neighboring neurons while adaptation current is local.
Another finding is that, when both synapse and adaptation mechanism are incorporated in the
network, a smaller synapse and adaptation time constants can be find to achieve a good accuracy.
This is beneficial because a smaller time constant may lead to more efficient analog
neuoromorphic implementation with spiking neurons. In [30], 7agy = 700ms is used, which is
similar as the dataset input length in the time domain. In [3], 744y with mean 200 ms, standard
deviation 50 is used. In out work, a good accuracy can be achieved with synaptic time constant
50ms and adaptation time constant 1ms.

This work also shows that different neuron and network hyper-parameters can have significant
impact on the result and hyper-parameters tuning is necessary prior to training. Different

from [30], which takes the time constant as a trainable parameter, in this work, time constants are
considered as the hyper-parameters and pre-tuned before the training starts. This is inspired from
biological neurons, which have a fixed time constant.

4 CONCLUSION

This work studies how recurrent connections, adaptation model, and dynamic synapse model
influence a spiking neural network's learning capability for temporal tasks. An automatic hyper-
parameters tuning tool is used to find the best-achievable accuracy for different neuron and
network settings. Results suggests that dynamic synapse is more efficient in improving the
network's learning capability than adaptation. However, when incorporating both mechanisms
into the neuron model, a set of smaller time constants can be found to achieve a good accuracy.
This may help to simplify analog neuromorphic system implementations. This work achieves an
accuracy close to the state-of-the-art on the pixel-by-pixel MNIST and Ti46-Digit speech dataset
with fewer neurons and a single recurrent layer. Code of this work is avaliable at:
https://github.com/yuanzenggit/RSNN-Small TimeConstants.
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