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Recurrent spiking neural network (RSNN) is a frequently studied model to understand biological neural networks, as 

well as to develop energy efficient neuromorphic systems. Deep learning optimization approach, such as 

backpropogation through time (BPTT), equipped with surrogate gradient, can be used as an efficient optimization 

method for RSNN. Including dynamic properties of biological neurons into the neuron model may improve the 

network's temporal learning capability. Earlier work only considers the spike frequency adaptation behavior with a 

large adaptation time constant that may be unsuitable for neuromorphic implementation. Besides adaptation, synapse 

is also an important structure for information transfer between neurons and its dynamics may influence network 

performance. In this work, a Leaky Integrate and Fire neuron model with dynamic synapses and spike frequency 

adaptation is used for temporal tasks. A step-by-step experiment is designed to understand the impact of recurrent 

connections, synapse model, and adaptation model on the network accuracy. For each step, a hyper-parameters 
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tuning tool is used to find the best set of neuron parameters. In addition, the influence of the synapse and adaptation 

time constants is studied. Results suggest that, dynamic synapse is more efficient than adaptation in improving the 

network's learning capability. When incorporating adaptation and synapse model together, the network can achieve a 

similar accuracy as the sate-of-the-art RSNN works while requiring fewer neurons and smaller time constants. 
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1 INTRODUCTION 

Recurrent spiking neural networks (RSNNs) are inspired by brain's dynamics [12] [28] and are 

used to develop energy efficient neuromorphic systems [19] [8] [6]. Different from artificial 

recurrent neural networks (ANNs), a set of dynamic functions is used to model the neuron 

behavior in RSNNs, and the information is processed and propagated through discrete 

spikes [17]. Although the brain is good at processing certain temporal tasks, RSNN can have a 

lower accuracy as compared to ANNs due to the lack of an efficient optimization method for 

training the dynamic features [24]. 

Recent studies [30] [3] showed that deep learning approaches, such as backpropagation through 

time (BPTT) [29], can be used as an efficient optimization mechanism for RSNN. With the use 

of surrogate gradient [21] [5], the discontinuous gradient of a spiking neuron can be estimated 

with a continuous function. Thus the gradient can be auto-calculated through the well-developed 

deep learning platform such as Tensorflow [1] and Pytorch [23]. Another finding is that 

incorporation of spike frequency adaptation can significantly increases the computing and 

learning capability of a RSNN [15]. RSNN equipped with adaptation and BPTT can achieve 

similar performance to its ANN counterparts on standard benchmarks such as sequential 

MNIST [13] and speech recognition [25]. 

In addition to time-dependent spike integration and frequency adaptation, synapses also 

contribute to dynamic behaviors of biological neural networks [11]. Synapse is an essential 

structure that permits a neuron to pass an electrical or chemical signal to another neuron. 

Dynamic behavior of the synapse can be described by an exponential decay function with a time 

constant τsyn that is activated by a pre-synaptic spike. In contrast to spike frequency adaptation, 

which is dependent on a single neuron's firing rate, synapse dynamics of a specific neuron are 

influenced by the firing pattern of all the pre-synaptic neurons. To the best of our knowledge, the 

impact of synaptic and somatic dynamics, including spike frequency adaptation, on network's 

learning capability, has not been studied systematically. 
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In this work, a step-by-step protocol is designed to understand the impact of recurrent 

connections, synapse model, and adaptation model on the network accuracy. For each step, a 

hyper-parameters tuning tool [15] is used to find the best set of neuronal and synaptic 

parameters. Instead of the adaptive threshold implementation used in earlier works, in this work, 

spike frequency adaptation is implemented by an adaptation current. The adaptation current 

model is thought to be better in reproducing the neuron properties of a more realistic 

conductance-based model [4]. In addition, the influence of time constants on learning capability 

is also studied in this work. Results suggest that, when incorporating both adaptation and 

dynamic synapse mechanisms into the model together, smaller time constants (< 50ms) can be 

used to achieve good prediction accuracy. For analog neuromorphic system designs that use 

advanced CMOS technologies to implement spiking neurons, the rapidly increased leakage 

current is a limitation factor for achieving a large time constants [22] [18] [7]. More 

sophisticated device and circuit design is required to support large time constants. Findings in 

this work may help to design efficient neuromorphic systems. With optimized spike frequency 

adaptation and dynamic synapse time constants, this work achieves accuracy close to the state-

of-the-art neural networks on sequential MNIST and Ti46-Digit speech dataset with fewer 

neurons and a single recurrent layer. 

2 EXPERIMENTAL SETUP 

This section describes the neuron model, network structure, input datasets, and hyper-parameters 

setting used in the experiments. 

2.1 Neuron Model 

τmidui(t)dt=−(ui(t)−Vresti)+Rmi∑kWkix(t)+RsyniIsyni(t)−RadpiIadpi(t) 
 

(1)  

τsynidIsyni(t)dt=−Isyni(t)+∑jWjiδ(t−t0) 
 

(2)  

τadpidIadpi(t)dt=−Iadpi(t)+biδ(t−t0) 
 

(3)  

 
(4)  

The adaptive leaky integrate and fire (ALIF) [15] neuron model used in the paper is described by 

Eq. 1-Eq. 4. Eq. 1 models how membrane potential changes with time. In these equations, u 

represents a neuron's membrane potential, τm represents the membrane time constant, and Vrest 

means resting potential. ∑kWkix(t) 

is weighted sum of external inputs. Radp is the membrane resistance. Isyn is the synaptic current 

that comes from other connected neurons. The term Iadp(t) models the spike frequency adaptation 

behavior and Radp is the adaptation resistance. Synapse dynamics are represented by Eq. 2, where 
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Rsyn is the synapse resistance, τsyn is the synapse time constant and Wji is the synapse weight 

between the modeled neuron i and its neighboring neurons j. 

The dynamics of the adaptation current are described in Eq. 3. τadp is the adaptation time 

constant. The term bδ(t − t0) means that, while a neuron is firing, the adaptation current is 

increased by an amount b when each local spike happens. Due to this effect, a neuron's firing rate 

will decay when a constant input is given. Different from earlier SNN studies on temporal tasks 

that implements the adaptation behavior through the dynamic threshold function, in this paper, 

spike frequency adaptation is implemented via an adaptation current. Although dynamic 

threshold and adaptation current can both be used to model the adaptation behavior, it has been 

shown that  [4] the two approaches have different effect on the neuron's transfer function. 

Adding adaptation current to an integrate-and-fire neuron can better reproduce the biological 

functionality of a neuron. 

A neuron fires when the membrane potential reaches a pre-defined numerical threshold Vth. After 

the spike injection, it will enter a refractory period where no other spike can happen. These are 

described by Eq. 4. For discrete time implementation, Forward-Euler first-order exponential 

integrator method is used with d(t) = 1ms. An example of Eq. 3 discretization is showing in 

Eq. 5, where α = exp(− d(t)/τadp).  

Iadpi(t+d(t))=αIadpi(t)+(1−α)biδ(t) 
 

(5)  

Figure 1: An illustruation of the 

network structure used for the sequential MNIST.  

2.2 Temporal Tasks and Network Structure 
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In this work, tasks are selected to test the network's temporal learning capabilities. For these 

tasks, inputs span multiple time steps and are given to the network one at a time step. The 

network needs to have the capability of incorporating the information from the past to make 

correct prediction. 

2.2.1 Sequential MNIST. The MNIST [13] dataset contains 70,000 images for handwritten digits 

from zero to nine, each image has 28 × 28 pixels. When used for temporal task, each image is 

flattened into an one-dimensional pixel array. The input is given to the network one pixel at a 

time. Therefore, 784 time steps are needed to input one image. In this paper, one input neuron, n 

hidden layer neurons, and ten output neurons are used for the sequential MNIST task as shown in 

Fig. 1. Hidden layer neurons are recurrently connected, input to hidden and hidden to output 

neurons are fully connected. For a specific neuron (e.g., neuron i in Fig. 1), the red line 

represents the input spike train coming to the neuron, the green line represents the recurrent spike 

train coming to the neuron, and the blue line represent the spike train going out of the neuron. 

The membrane and adaptation time constants are internal parameters of a neuron cell, synapse 

time constant is a property of the connection and the output time constant is related to the output 

of this neuron. 

2.2.2 Ti46-Digits Speech Dataset. Ti46-Digits [25] is the digits subset of the TI46 speech dataset. 

It contains read utterances from 8 males and 8 females each speaking digits zero through nine, 

with total 1594 training samples and 2542 testing samples. The corpus was collected at Texas 

Instruments in a quiet acoustic enclosure using an Electro-Voice RE-16 Dynamic Cardiod 

microphone at 12.5kHz sample rate with 12-bit quantization. The waveform is pre-processed by 

LyonPassiveEar model [16], which calculates the probability of firing along the auditory nerve. 

Then the analog data is encoded to 78 spike trains using Bens spiker algorithm (BSA) [27]. For 

this Ti46-Digits dataset, 78 input neurons are fully connected with the hidden layer neurons. The 

other parts of the network structure is the same as the MNIST task. 

2.3 Learning Algorithm 

τpidIqi(t)dt=−Iqi(t)+δ(t−t0) 
 

(6)  

Outputq=∑iWiqIqi(tend) 
 

(7)  

dzi(t)dvi(t):=γmax{0,1−|vi(t)|} 

 

(8)  

2.3.1 Inference. For temporal tasks, output of the hidden layer neurons are spike trains that span 

multiple time steps. In this paper, the effect of the spike trains is described by an output current Iq 

through Eq. 6. τp is named output time constant and controls how fast the output current decays. 

After all the inputs are given, the output current observed at time step tend is used to calculate 

network output (Eq. 7) and then passed through a softmax function for classification. 
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2.3.2 Training. Backpropagation through time (BPTT) algorithm is used in this paper. Similar as 

earlier spiking neural network works that adopt the BPTT algorithm, gradient is estimated for the 

non-differentiable function between a neuron's spiking output (dzi(t)) and its membrane potential 

(dui(t)). As described in Eq. 8, dvi(t)=dui(t)−ww 

is the normalized membrane potential and γ is the damping factor. This is also known as a linear 

surrogate gradient function as illustrated in Fig. 2.  

Figure 2: Illustration of the surrogate 

gradient function.  

2.4 Hyper-Parameters Tuning 

There are many parameters in the neuron model as well as in the learning algorithm. These 

parameters can be classified into two categories. One is hyper-parameters that are pre-defined 

before the learning process starts, another is the parameters learned during the training process, 

such as input, recurrent, and output weights. In this paper, there are 11 hyper-parameters realted 

to the neuron model: τm, τsyn, τadp, τp, Rm, Rsyn, Radp, b, Vrest, Vth, w. There are also parameters 

related to the learning algorithm such as learning rate and damping factor. Based on the 

experimental results, it is observed that these hyper-parameters can directly influence the 

learning ability and needs to be optimized. Finding a good set of hyper-parameters by hand-

tuning or grid search is unfeasible. In this work, Optuna [2] is used for hyper-parameter tuning. 

Optuna is an open-source automatic hyperparameter optimization framework written in Python. 

It can efficiently search large optimization spaces and prune unpromising trials for faster results. 

The program is also easy to parallelize. By defining the error function, setting the number of 

trials, parameter tuning range, and optimization direction, Optuna can return the optimized 

tuning result for each trail. 

3 EXPERIMENTS AND RESULTS 

3.1 Method 

In this work, the influence of each neuron and network component is evaluated with the 

experiments listed in Table 1: 1). Use leaky integrate and fire (LIF) neuron without dynamic 

synapse and adaptation in a network without recurrent connections in the hidden layer. 

Therefore, this network is a feedforward spiking neural network. 2). Add recurrent connections 

for the hidden layer based on setting 1. The network is a recurrent spiking neural network. 3). 
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Add synapse dynamics to the neuron model based on setting 2. 4). Add adaptation to the neuron 

model based on setting 2. 5). Add both synapse dynamics and adaptation to the neuron model 

based on setting 2. 6). Constrain the synapse time constant based on setting 3 to be within 50ms. 

There is no adaptation for the neuron. 7). Constrain the synapse and adaptation time constant to 

be within 50ms based on setting 5. For the Ti46-Digit dataset, in order to better show the 

influence of each component, an additional constraint is added to settings 1-7 to restrict the 

output time constant to be within 20ms (Eq. 6). The reason behind this setting is introduced in 

the next subsection. In order to compare the result with and without this constraint, this paper 

includes a setting 0) for Ti46-Digit dataset, which is setting 1 without output time constant 

restriction. 

Table 1: Experiment List.* only apply to the Ti46-digit dataset.  
 Recurrent Synapse Adaptation Constraints 

0 ✕ ✕ ✕ / 

1 ✕ ✕ ✕ *τp < 20 

2 ✓ ✕ ✕ *τp < 20 

3 ✓ ✕ ✓ *τp < 20 

4 ✓ ✓ ✕ *τp < 20 

5 ✓ ✓ ✓ *τp < 20 

6 ✓ ✓ ✕ τsyn < 50, *τp < 20 

7 ✓ ✓ ✓ τadp, τsyn < 50, *τp < 20 

Table 2: OPTUNA Tuning parameters and search range.  
 τm τsyn τadp Radp τp Vth 

 (ms) (ms) (ms) mΩ (ms) (mv) 

baseline [1,700] [1,700] [1,700] [1,100] [1,700] [0.01, 10] 

constraint [1,700] [1,50] [1,50] [1,100] [1,20] [0.01, 10] 

Table 3: Tuned parameters and Accuracy for sequential MNIST with Network Structure 1-200-

10.  
 τm τsyn τadp Radp τp Vth TuneAcc FinalAcc 
 (ms) (ms) (ms) (mΩ) (ms) (mv) (epoch 1) (epoch 100) 

1 1 / / / 50 8.4 43% 42% 

2 1 / / / 150 1.6 56% 72% 

3 1 / 500 40 150 1.3 68% 80% 

4 1 600 / / 350 0.2 67% 86% 

5 1 50 350 40 100 5.8 73% 90% 

6 1 25 / / 50 5.3 68% 79% 

7 15 50 1 10 5 0.4 73% 95% 

Table 4: Tuned parameters and Accuracy for Ti46-Digis with Network Structure 78-100-10.  
 τm τsyn τadp Radp τp Vth TuneAcc FinalAcc 
 (ms) (ms) (ms) (mΩ) (ms) (mv) (epoch 3) (epoch 100) 

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq6


0 1 / / / 350 4 84% 97% 

1 1 / / / 20 0.6 26% 33% 

2 1 / / / 20 1.5 38% 37% 

3 1 / 650 60 20 0.4 25% 50% 

4 1 500 / / 10 1.2 89% 98% 

5 1 500 350 1 10 2.2 85% 98% 

6 1 50 / / 20 2 54% 94% 

7 5 50 1 10 15 0.9 60% 97% 

For all the model and network settings listed above, 10 output neurons are used to classify the 

inputs to 10 classes. Sequential MNIST network has a single input neuron and 200 hidden layer 

neurons. Ti46-digists network has 78 input neurons and 100 hidden layer neurons. For each 

experiment setting, OPTUNA is used to find the network parameters that give the highest 

accuracy. Parameters tuned by OPTUNA and the search range are listed in Table 2. Here the 

maximum time constant is set to 700ms, which is close to the maximum input time steps for the 

two datasets used in this paper. Range for Radp and Vth are set empirically. Vrest is set to 0, w is 

set to Vth and Rm, Rsyn, b, refractory period are set to 1 constantly for simplicity. The network 

learning rate is set to 0.1 and the damping factor is set to 0.3 based on experience. For each 

setting, OPTUNA runs for 200 trials to do parameter search. In order to get the result faster, for 

each trial, the sequential MNIST dataset runs for 1 epoch and the Ti46-digit dataset runs for 3 

epoch. The best parameters and highest accuracy (TuneAcc) achieved by using this tool are 

reported in Table 4 and Table 3. After the parameters are found, they are used for weight training 

for a longer time, the accuracy at epoch 100 is reported as “FinalAcc” in Table 3 and Table 4. 

Results are explained in the following sections. 

3.2 Understanding the Impact of Recurrent Connections, Synapse Dynamics, and 

Adaptation through Parameter Auto-Tuning 
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Figure 3: Examples of hidden layer spike raster plot after training with different inputs. 



Figure 4: Heatmap for Synapse and Adaptaion Time Constant Change. 

Figure 5: Synapse Time Constant Change with Network Accuracy.  

Comparing the results between setting 1 and setting 2 for the MNIST dataset, one observation is 

that the recurrent connection can significantly improve the network accuracy from 42% to 72% 

for sequential MNIST. However, for Ti46-Digit dataset, result of setting 0 suggests that the 

network can learn well even without the recurrent connection. This is because the speech dataset 

is a spatial temporal dataset and the spatial information can provide a good accuracy when the 

output layer integrates temporal information through a large time constant (i.e., τp=350ms). With 

this large output layer time constant, no additional temporal processing through the recurrent 

layer is required for the network in order to achieve a good accuracy. However, if the output time 

constant is restricted to a small value, then the temporal processing capability is necessary in 

order to hold information from earlier time steps. Therefore, to test the temporal processing 

capability of the network based on the Ti46-Digit dataset, for experiment settings 1-7, the output 

time constant is restricted to be less than 20ms. The result between setting 0 and setting 1 shows 

that after adding the constraint, the network accuracy drops from 97% to 33%. This is because 

the feed forward spiking neural network does not have the temporal processing capability. 

Interestingly, when adding recurrent connections based on setting 1, the accuracy only improved 



from 33% to 37%, this suggests that the LIF model without synapse dynamics and adaptation has 

limited temporal processing capability on the Ti46-digit dataset. 

Experiment setting 3-5 are designed to understand the impact of adding synapse and adaptation 

model. For sequential MNIST dataset, adding adaptation only, adding synapse dynamics only, 

and adding both achieve 80%, 86%, 90% accuracy respectively. For Ti46-Digit dataset the 

corresponding experiment ends up with 50%, 98%, 98% accuracy respectively. The results 

suggest that, adding synapse current or adaptation current on the LIF model can help to improve 

the network's temporal processing capability. Among these two, synapse current shows greater 

influence on the accuracy. Adding both mechanisms can help improve the accuracy further for 

sequential MNIST. Another observation from the OPTUNA tuning results is that, the time 

constant suggested by the tool always stays at a relatively high value, when only synapse or 

adaptation current is modeled. The optimized time constant is > = 500ms. When both 

mechanisms are included, one of the time constant can be smaller. 

In order to understand the influence of synapse and adaptation current better, two additional 

experiments are added with a constraint on the synapse and adaptation time constant. A smaller 

time constant can lead to more efficient analog neuromorphic implementation with spiking 

neurons. It is also interesting to check how accuracy changes with the reduction of the time 

constant, which will be introduced in more details in the next subsection. When the time constant 

is restricted to be within 50ms and the neuron only has synapse model, accuracy drops for both 

datasets. Comparing setting 4 and setting 6, for sequential MNIST, accuracy reduced from 86% 

to 79%. For Ti46-Digit, accuracy reduced from 98% to 94%. However, if adaptation current is 

added together with the dynamic synapse, good accuracy can be reached. For setting 7, 

sequential MNIST gets 95% accuracy and Ti46-Digit gets 97% accuracy with synapse time 

constant at 50ms and adaptation time constant at 1ms. Result shows that, spiking neuron model 

with dynamic synapse and adaptation current does not require large time constants to solve the 

temporal tasks. 

Figure 3 shows examples of the spike raster plots of hidden layer neurons under setting 7 with 

different network inputs after training. It is observed that, after applying a certain input, some 

specific neurons in the hidden layer continue to fire, which is enabled by the feedback loops in 

the recurrent network. Training the weights allows a similar group of neurons to continue firing 

in response to the same-label inputs, while different sets of neurons to continue firing in response 

to inputs with different labels. This is why the output layer can make a good prediction for these 

two tasks. 

3.3 Sensitivity Study of Synapse and Adaptation Time Constants 

To understand how accuracy changes with different synapse and adaptation time constants, grid 

search experiment for synapse and adaptation time constant is conducted based on experiment 

setting 7. In this experiment, both synapse and adaptation time constants are swept from 1ms to 

700ms. In Fig.3, when the adaptation time constant is labeled as 0, the adaptation mechanism is 

turned off. A total of 56 experimental results are reported for each dataset. Each result shows the 

testing accuracy averaged from three trails. For the sequential MNIST, the accuracy is reported 

at epoch 20. For the Ti46-Digit dataset, the accuracy is reported at epoch 50. 

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#fig3


For both tasks, accuracy drops with reduced synaptic time constant. This trend holds for different 

adaptation time constant as shown in Fig. 5. When adaptation time constant is reduced, however, 

the accuracy changes are not always monotonous. For most cases, the accuracy is significantly 

higher when adaptation mechanism is included in the model. This trend is most obvious when 

the synapse time constant is small. For example, when synapse time constant is 50ms, without 

adaptation, the accuracy is 30% for sequential MNIST and 29% for Ti46-Digit. After adding 

adaptation with time constant of 1ms, the accuracy improves significantly and reaches 85% and 

93%. 

Overall, experiment shows that synapse and adaptation time constant significantly influence 

network accuracy and need to be carefully tuned. Specific combinations of the synapse and 

adaptation time constant can significantly improve the performance. 

3.4 Comparison with Related Work 

Table 5: Comparison with Related works. R Means Recurrent Layer, three elements under the τ 

column are τmembrane, τsynapse, τadaptation  

Work Task Model Network τ (ms) Best Acc. 

 [3] SMNIST LIF+adaptive Vth 80-R700 20/-/700 97.1% 

 [30] SMNIST LIF+adaptive Vth 40-R256-R128 20/-/200 97.8% 

 [31] SMNIST LIF+adaptive Vth 64-R256-R256 20/-/200 98.7% 

 [32] Ti46-Digit LIF+synapse 78-200-R200-200 64/8/- 99.4% 

 [33] Ti46-Digit LIF+synapse 78-100-100-100 16/8/- 99.7% 

This SMNIST LIF+adaptive 1-R400 1/50/1 98% 

work Ti46-Digit current+synapse 78-R100 1/50/1 98% 

Prior work on spiking neural networks primarily focused on the spatial tasks such as MNIST and 

CIFAR [20] [14] [26] [9]. Fewer studies have been published on temporal or spatial temporal 

tasks. [3], [30] and [31] propose to train recurrent neural network with BPTT on temporal tasks. 

In these works, an adaptation threshold mechanism is implemented and the network is tested 

with sequential MNIST. Best accuracy and the corresponding network structure are listed in 

Table 5. Here for sequential MNIST task, 400 neurons are used for hidden layer to get better 

performance. In this paper, an adaptive current mechanism is used, which is thought to be closer 

to a realistic conductance-based neuron model [4]. Dynamic synapse, which is an important 

component of the biological neural network, is also added to the model together with the 

adaptation mechanism. Results suggests that model proposed in this paper can achieve a similar 

best accuracy as compared to prior SNN works with fewer number of neurons and only one 

recurrent layer. Other SNN works [32] [33] incorporates synapse model and is tested on the 

Ti46-Digit dataset, however, it does not take adaptive model into account. There is another 

work [10] that considers both synaptic dynamic and adaptation mechanism. But it was not 

evaluated on a long-term temporal task and did not study the impact of each dynamic 

component. That work was evaluated on Ti-digit-short, which converted the audio files into 

feature vectors through Mel-Frequency Cepstral Coefficients. After conversion, the length of the 

sequence is 90, which is shorter than the sequence length evaluated in this paper. 

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#fig5
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In this work, we are not only trying to achieve best accuracy with proposed model, but also to 

understand the influence of different component and parameters on the network accuracy. Based 

on the model proposed in this paper, one finding is that, although synapse and adaptation model 

can both help improving the network's temporal processing capability, when having either 

synapse or adaption model, synapse model is more efficient. This might because synaptic current 

is a global current which comes from neighboring neurons while adaptation current is local. 

Another finding is that, when both synapse and adaptation mechanism are incorporated in the 

network, a smaller synapse and adaptation time constants can be find to achieve a good accuracy. 

This is beneficial because a smaller time constant may lead to more efficient analog 

neuoromorphic implementation with spiking neurons. In [30], τadp = 700ms is used, which is 

similar as the dataset input length in the time domain. In [3], τadp with mean 200 ms, standard 

deviation 50 is used. In out work, a good accuracy can be achieved with synaptic time constant 

50ms and adaptation time constant 1ms. 

This work also shows that different neuron and network hyper-parameters can have significant 

impact on the result and hyper-parameters tuning is necessary prior to training. Different 

from [30], which takes the time constant as a trainable parameter, in this work, time constants are 

considered as the hyper-parameters and pre-tuned before the training starts. This is inspired from 

biological neurons, which have a fixed time constant. 

4 CONCLUSION 

This work studies how recurrent connections, adaptation model, and dynamic synapse model 

influence a spiking neural network's learning capability for temporal tasks. An automatic hyper-

parameters tuning tool is used to find the best-achievable accuracy for different neuron and 

network settings. Results suggests that dynamic synapse is more efficient in improving the 

network's learning capability than adaptation. However, when incorporating both mechanisms 

into the neuron model, a set of smaller time constants can be found to achieve a good accuracy. 

This may help to simplify analog neuromorphic system implementations. This work achieves an 

accuracy close to the state-of-the-art on the pixel-by-pixel MNIST and Ti46-Digit speech dataset 

with fewer neurons and a single recurrent layer. Code of this work is avaliable at: 

https://github.com/yuanzenggit/RSNN-SmallTimeConstants.  
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