

Article Navigation×Abstract

1 INTRODUCTION

2 EXPERIMENTAL SETUP 2.1 Neuron Model 2.2 Temporal Tasks and Network Structure

2.3 Learning Algorithm 2.4 Hyper-Parameters Tuning

3 EXPERIMENTS AND RESULTS 3.1 Method 3.2 Understanding the Impact of Recurrent

Connections, Synapse Dynamics, and Adaptation through Parameter Auto-Tuning 3.3

Sensitivity Study of Synapse and Adaptation Time Constants 3.4 Comparison with Related

Work

4 CONCLUSION

REFERENCES

Optimizing Recurrent Spiking Neural

Networks with Small Time Constants for

Temporal Tasks

Yuan Zeng, Lehigh University, USA, yuz615@lehigh.edu

Edward Jeffs, Lehigh University, USA, elj221@lehigh.edu

Terrence Stewart, National Research Council Canada, Canada, terry.stewart@gmail.com

Yevgeny Berdichevsky, Lehigh University, USA, yeb211@lehigh.edu

Xiaochen Guo, Lehigh University, USA, xig515@lehigh.edu

DOI: https://doi.org/10.1145/3546790.3546796

ICONS 2022: International Conference on Neuromorphic Systems, Knoxville, TN, USA, July

2022

Recurrent spiking neural network (RSNN) is a frequently studied model to understand biological neural networks, as

well as to develop energy efficient neuromorphic systems. Deep learning optimization approach, such as

backpropogation through time (BPTT), equipped with surrogate gradient, can be used as an efficient optimization

method for RSNN. Including dynamic properties of biological neurons into the neuron model may improve the

network's temporal learning capability. Earlier work only considers the spike frequency adaptation behavior with a

large adaptation time constant that may be unsuitable for neuromorphic implementation. Besides adaptation, synapse

is also an important structure for information transfer between neurons and its dynamics may influence network

performance. In this work, a Leaky Integrate and Fire neuron model with dynamic synapses and spike frequency

adaptation is used for temporal tasks. A step-by-step experiment is designed to understand the impact of recurrent

connections, synapse model, and adaptation model on the network accuracy. For each step, a hyper-parameters

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-2
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-3
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-4
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-5
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-8
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-8
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-11
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-12
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-13
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-14
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-14
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-15
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-15
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-16
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-16
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#sec-17
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#ref-001
https://orcid.org/0000-0002-5550-9379
mailto:yuz615@lehigh.edu
https://orcid.org/0000-0003-0457-9294
mailto:elj221@lehigh.edu
https://orcid.org/0000-0002-1445-7613
mailto:terry.stewart@gmail.com
https://orcid.org/0000-0001-7539-601X
mailto:yeb211@lehigh.edu
https://orcid.org/0000-0001-7704-0412
mailto:xig515@lehigh.edu
https://doi.org/10.1145/3546790.3546796
https://doi.org/10.1145/3546790
http://www.acm.org/

tuning tool is used to find the best set of neuron parameters. In addition, the influence of the synapse and adaptation

time constants is studied. Results suggest that, dynamic synapse is more efficient than adaptation in improving the

network's learning capability. When incorporating adaptation and synapse model together, the network can achieve a

similar accuracy as the sate-of-the-art RSNN works while requiring fewer neurons and smaller time constants.

CCS Concepts: • Networks → Network performance analysis;

Keywords: Recurrent Spiking Neural Network, BPTT, Synapse, Spike Frequency Adaptation, Time Constant,
Dynamics

ACM Reference Format:

Yuan Zeng, Edward Jeffs, Terrence Stewart, Yevgeny Berdichevsky, and Xiaochen Guo. 2022. Optimizing

Recurrent Spiking Neural Networks with Small Time Constants for Temporal Tasks. In International Conference on

Neuromorphic Systems (ICONS 2022), July 27–29, 2022, Knoxville, TN, USA. ACM, New York, NY, USA 8 Pages.

https://doi.org/10.1145/3546790.3546796

1 INTRODUCTION

Recurrent spiking neural networks (RSNNs) are inspired by brain's dynamics [12] [28] and are

used to develop energy efficient neuromorphic systems [19] [8] [6]. Different from artificial

recurrent neural networks (ANNs), a set of dynamic functions is used to model the neuron

behavior in RSNNs, and the information is processed and propagated through discrete

spikes [17]. Although the brain is good at processing certain temporal tasks, RSNN can have a

lower accuracy as compared to ANNs due to the lack of an efficient optimization method for

training the dynamic features [24].

Recent studies [30] [3] showed that deep learning approaches, such as backpropagation through

time (BPTT) [29], can be used as an efficient optimization mechanism for RSNN. With the use

of surrogate gradient [21] [5], the discontinuous gradient of a spiking neuron can be estimated

with a continuous function. Thus the gradient can be auto-calculated through the well-developed

deep learning platform such as Tensorflow [1] and Pytorch [23]. Another finding is that

incorporation of spike frequency adaptation can significantly increases the computing and

learning capability of a RSNN [15]. RSNN equipped with adaptation and BPTT can achieve

similar performance to its ANN counterparts on standard benchmarks such as sequential

MNIST [13] and speech recognition [25].

In addition to time-dependent spike integration and frequency adaptation, synapses also

contribute to dynamic behaviors of biological neural networks [11]. Synapse is an essential

structure that permits a neuron to pass an electrical or chemical signal to another neuron.

Dynamic behavior of the synapse can be described by an exponential decay function with a time

constant τsyn that is activated by a pre-synaptic spike. In contrast to spike frequency adaptation,

which is dependent on a single neuron's firing rate, synapse dynamics of a specific neuron are

influenced by the firing pattern of all the pre-synaptic neurons. To the best of our knowledge, the

impact of synaptic and somatic dynamics, including spike frequency adaptation, on network's

learning capability, has not been studied systematically.

https://doi.org/10.1145/3546790.3546796
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0012
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0028
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0019
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0008
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0006
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0017
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0024
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0030
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0003
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0029
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0021
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0005
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0001
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0023
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0015
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0013
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0025
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0011

In this work, a step-by-step protocol is designed to understand the impact of recurrent

connections, synapse model, and adaptation model on the network accuracy. For each step, a

hyper-parameters tuning tool [15] is used to find the best set of neuronal and synaptic

parameters. Instead of the adaptive threshold implementation used in earlier works, in this work,

spike frequency adaptation is implemented by an adaptation current. The adaptation current

model is thought to be better in reproducing the neuron properties of a more realistic

conductance-based model [4]. In addition, the influence of time constants on learning capability

is also studied in this work. Results suggest that, when incorporating both adaptation and

dynamic synapse mechanisms into the model together, smaller time constants (< 50ms) can be

used to achieve good prediction accuracy. For analog neuromorphic system designs that use

advanced CMOS technologies to implement spiking neurons, the rapidly increased leakage

current is a limitation factor for achieving a large time constants [22] [18] [7]. More

sophisticated device and circuit design is required to support large time constants. Findings in

this work may help to design efficient neuromorphic systems. With optimized spike frequency

adaptation and dynamic synapse time constants, this work achieves accuracy close to the state-

of-the-art neural networks on sequential MNIST and Ti46-Digit speech dataset with fewer

neurons and a single recurrent layer.

2 EXPERIMENTAL SETUP

This section describes the neuron model, network structure, input datasets, and hyper-parameters

setting used in the experiments.

2.1 Neuron Model

τmidui(t)dt=−(ui(t)−Vresti)+Rmi∑kWkix(t)+RsyniIsyni(t)−RadpiIadpi(t)

(1)

τsynidIsyni(t)dt=−Isyni(t)+∑jWjiδ(t−t0)

(2)

τadpidIadpi(t)dt=−Iadpi(t)+biδ(t−t0)

(3)

(4)

The adaptive leaky integrate and fire (ALIF) [15] neuron model used in the paper is described by

Eq. 1-Eq. 4. Eq. 1 models how membrane potential changes with time. In these equations, u

represents a neuron's membrane potential, τm represents the membrane time constant, and Vrest

means resting potential. ∑kWkix(t)

is weighted sum of external inputs. Radp is the membrane resistance. Isyn is the synaptic current

that comes from other connected neurons. The term Iadp(t) models the spike frequency adaptation

behavior and Radp is the adaptation resistance. Synapse dynamics are represented by Eq. 2, where

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0015
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0004
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0022
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0018
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0007
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0015
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq1
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq4
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq1
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq2

Rsyn is the synapse resistance, τsyn is the synapse time constant and Wji is the synapse weight

between the modeled neuron i and its neighboring neurons j.

The dynamics of the adaptation current are described in Eq. 3. τadp is the adaptation time

constant. The term bδ(t − t0) means that, while a neuron is firing, the adaptation current is

increased by an amount b when each local spike happens. Due to this effect, a neuron's firing rate

will decay when a constant input is given. Different from earlier SNN studies on temporal tasks

that implements the adaptation behavior through the dynamic threshold function, in this paper,

spike frequency adaptation is implemented via an adaptation current. Although dynamic

threshold and adaptation current can both be used to model the adaptation behavior, it has been

shown that [4] the two approaches have different effect on the neuron's transfer function.

Adding adaptation current to an integrate-and-fire neuron can better reproduce the biological

functionality of a neuron.

A neuron fires when the membrane potential reaches a pre-defined numerical threshold Vth. After

the spike injection, it will enter a refractory period where no other spike can happen. These are

described by Eq. 4. For discrete time implementation, Forward-Euler first-order exponential

integrator method is used with d(t) = 1ms. An example of Eq. 3 discretization is showing in

Eq. 5, where α = exp(− d(t)/τadp).

Iadpi(t+d(t))=αIadpi(t)+(1−α)biδ(t)

(5)

Figure 1: An illustruation of the

network structure used for the sequential MNIST.

2.2 Temporal Tasks and Network Structure

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq3
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0004
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq4
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq3
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq5

In this work, tasks are selected to test the network's temporal learning capabilities. For these

tasks, inputs span multiple time steps and are given to the network one at a time step. The

network needs to have the capability of incorporating the information from the past to make

correct prediction.

2.2.1 Sequential MNIST. The MNIST [13] dataset contains 70,000 images for handwritten digits

from zero to nine, each image has 28 × 28 pixels. When used for temporal task, each image is

flattened into an one-dimensional pixel array. The input is given to the network one pixel at a

time. Therefore, 784 time steps are needed to input one image. In this paper, one input neuron, n

hidden layer neurons, and ten output neurons are used for the sequential MNIST task as shown in

Fig. 1. Hidden layer neurons are recurrently connected, input to hidden and hidden to output

neurons are fully connected. For a specific neuron (e.g., neuron i in Fig. 1), the red line

represents the input spike train coming to the neuron, the green line represents the recurrent spike

train coming to the neuron, and the blue line represent the spike train going out of the neuron.

The membrane and adaptation time constants are internal parameters of a neuron cell, synapse

time constant is a property of the connection and the output time constant is related to the output

of this neuron.

2.2.2 Ti46-Digits Speech Dataset. Ti46-Digits [25] is the digits subset of the TI46 speech dataset.

It contains read utterances from 8 males and 8 females each speaking digits zero through nine,

with total 1594 training samples and 2542 testing samples. The corpus was collected at Texas

Instruments in a quiet acoustic enclosure using an Electro-Voice RE-16 Dynamic Cardiod

microphone at 12.5kHz sample rate with 12-bit quantization. The waveform is pre-processed by

LyonPassiveEar model [16], which calculates the probability of firing along the auditory nerve.

Then the analog data is encoded to 78 spike trains using Bens spiker algorithm (BSA) [27]. For

this Ti46-Digits dataset, 78 input neurons are fully connected with the hidden layer neurons. The

other parts of the network structure is the same as the MNIST task.

2.3 Learning Algorithm

τpidIqi(t)dt=−Iqi(t)+δ(t−t0)

(6)

Outputq=∑iWiqIqi(tend)

(7)

dzi(t)dvi(t):=γmax{0,1−|vi(t)|}

(8)

2.3.1 Inference. For temporal tasks, output of the hidden layer neurons are spike trains that span

multiple time steps. In this paper, the effect of the spike trains is described by an output current Iq

through Eq. 6. τp is named output time constant and controls how fast the output current decays.

After all the inputs are given, the output current observed at time step tend is used to calculate

network output (Eq. 7) and then passed through a softmax function for classification.

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0013
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#fig1
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#fig1
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0025
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0016
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0027
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq6
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq7

2.3.2 Training. Backpropagation through time (BPTT) algorithm is used in this paper. Similar as

earlier spiking neural network works that adopt the BPTT algorithm, gradient is estimated for the

non-differentiable function between a neuron's spiking output (dzi(t)) and its membrane potential

(dui(t)). As described in Eq. 8, dvi(t)=dui(t)−ww

is the normalized membrane potential and γ is the damping factor. This is also known as a linear

surrogate gradient function as illustrated in Fig. 2.

Figure 2: Illustration of the surrogate

gradient function.

2.4 Hyper-Parameters Tuning

There are many parameters in the neuron model as well as in the learning algorithm. These

parameters can be classified into two categories. One is hyper-parameters that are pre-defined

before the learning process starts, another is the parameters learned during the training process,

such as input, recurrent, and output weights. In this paper, there are 11 hyper-parameters realted

to the neuron model: τm, τsyn, τadp, τp, Rm, Rsyn, Radp, b, Vrest, Vth, w. There are also parameters

related to the learning algorithm such as learning rate and damping factor. Based on the

experimental results, it is observed that these hyper-parameters can directly influence the

learning ability and needs to be optimized. Finding a good set of hyper-parameters by hand-

tuning or grid search is unfeasible. In this work, Optuna [2] is used for hyper-parameter tuning.

Optuna is an open-source automatic hyperparameter optimization framework written in Python.

It can efficiently search large optimization spaces and prune unpromising trials for faster results.

The program is also easy to parallelize. By defining the error function, setting the number of

trials, parameter tuning range, and optimization direction, Optuna can return the optimized

tuning result for each trail.

3 EXPERIMENTS AND RESULTS

3.1 Method

In this work, the influence of each neuron and network component is evaluated with the

experiments listed in Table 1: 1). Use leaky integrate and fire (LIF) neuron without dynamic

synapse and adaptation in a network without recurrent connections in the hidden layer.

Therefore, this network is a feedforward spiking neural network. 2). Add recurrent connections

for the hidden layer based on setting 1. The network is a recurrent spiking neural network. 3).

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq8
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#fig2
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0002
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#tab1

Add synapse dynamics to the neuron model based on setting 2. 4). Add adaptation to the neuron

model based on setting 2. 5). Add both synapse dynamics and adaptation to the neuron model

based on setting 2. 6). Constrain the synapse time constant based on setting 3 to be within 50ms.

There is no adaptation for the neuron. 7). Constrain the synapse and adaptation time constant to

be within 50ms based on setting 5. For the Ti46-Digit dataset, in order to better show the

influence of each component, an additional constraint is added to settings 1-7 to restrict the

output time constant to be within 20ms (Eq. 6). The reason behind this setting is introduced in

the next subsection. In order to compare the result with and without this constraint, this paper

includes a setting 0) for Ti46-Digit dataset, which is setting 1 without output time constant

restriction.

Table 1: Experiment List.* only apply to the Ti46-digit dataset.
 Recurrent Synapse Adaptation Constraints

0 ✕ ✕ ✕ /

1 ✕ ✕ ✕ *τp < 20

2 ✓ ✕ ✕ *τp < 20

3 ✓ ✕ ✓ *τp < 20

4 ✓ ✓ ✕ *τp < 20

5 ✓ ✓ ✓ *τp < 20

6 ✓ ✓ ✕ τsyn < 50, *τp < 20

7 ✓ ✓ ✓ τadp, τsyn < 50, *τp < 20

Table 2: OPTUNA Tuning parameters and search range.
 τm τsyn τadp Radp τp Vth

 (ms) (ms) (ms) mΩ (ms) (mv)

baseline [1,700] [1,700] [1,700] [1,100] [1,700] [0.01, 10]

constraint [1,700] [1,50] [1,50] [1,100] [1,20] [0.01, 10]

Table 3: Tuned parameters and Accuracy for sequential MNIST with Network Structure 1-200-

10.
 τm τsyn τadp Radp τp Vth TuneAcc FinalAcc
 (ms) (ms) (ms) (mΩ) (ms) (mv) (epoch 1) (epoch 100)

1 1 / / / 50 8.4 43% 42%

2 1 / / / 150 1.6 56% 72%

3 1 / 500 40 150 1.3 68% 80%

4 1 600 / / 350 0.2 67% 86%

5 1 50 350 40 100 5.8 73% 90%

6 1 25 / / 50 5.3 68% 79%

7 15 50 1 10 5 0.4 73% 95%

Table 4: Tuned parameters and Accuracy for Ti46-Digis with Network Structure 78-100-10.
 τm τsyn τadp Radp τp Vth TuneAcc FinalAcc
 (ms) (ms) (ms) (mΩ) (ms) (mv) (epoch 3) (epoch 100)

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#eq6

0 1 / / / 350 4 84% 97%

1 1 / / / 20 0.6 26% 33%

2 1 / / / 20 1.5 38% 37%

3 1 / 650 60 20 0.4 25% 50%

4 1 500 / / 10 1.2 89% 98%

5 1 500 350 1 10 2.2 85% 98%

6 1 50 / / 20 2 54% 94%

7 5 50 1 10 15 0.9 60% 97%

For all the model and network settings listed above, 10 output neurons are used to classify the

inputs to 10 classes. Sequential MNIST network has a single input neuron and 200 hidden layer

neurons. Ti46-digists network has 78 input neurons and 100 hidden layer neurons. For each

experiment setting, OPTUNA is used to find the network parameters that give the highest

accuracy. Parameters tuned by OPTUNA and the search range are listed in Table 2. Here the

maximum time constant is set to 700ms, which is close to the maximum input time steps for the

two datasets used in this paper. Range for Radp and Vth are set empirically. Vrest is set to 0, w is

set to Vth and Rm, Rsyn, b, refractory period are set to 1 constantly for simplicity. The network

learning rate is set to 0.1 and the damping factor is set to 0.3 based on experience. For each

setting, OPTUNA runs for 200 trials to do parameter search. In order to get the result faster, for

each trial, the sequential MNIST dataset runs for 1 epoch and the Ti46-digit dataset runs for 3

epoch. The best parameters and highest accuracy (TuneAcc) achieved by using this tool are

reported in Table 4 and Table 3. After the parameters are found, they are used for weight training

for a longer time, the accuracy at epoch 100 is reported as “FinalAcc” in Table 3 and Table 4.

Results are explained in the following sections.

3.2 Understanding the Impact of Recurrent Connections, Synapse Dynamics, and

Adaptation through Parameter Auto-Tuning

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#tab2
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#tab4
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#tab3
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#tab3
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#tab4

Figure 3: Examples of hidden layer spike raster plot after training with different inputs.

Figure 4: Heatmap for Synapse and Adaptaion Time Constant Change.

Figure 5: Synapse Time Constant Change with Network Accuracy.

Comparing the results between setting 1 and setting 2 for the MNIST dataset, one observation is

that the recurrent connection can significantly improve the network accuracy from 42% to 72%

for sequential MNIST. However, for Ti46-Digit dataset, result of setting 0 suggests that the

network can learn well even without the recurrent connection. This is because the speech dataset

is a spatial temporal dataset and the spatial information can provide a good accuracy when the

output layer integrates temporal information through a large time constant (i.e., τp=350ms). With

this large output layer time constant, no additional temporal processing through the recurrent

layer is required for the network in order to achieve a good accuracy. However, if the output time

constant is restricted to a small value, then the temporal processing capability is necessary in

order to hold information from earlier time steps. Therefore, to test the temporal processing

capability of the network based on the Ti46-Digit dataset, for experiment settings 1-7, the output

time constant is restricted to be less than 20ms. The result between setting 0 and setting 1 shows

that after adding the constraint, the network accuracy drops from 97% to 33%. This is because

the feed forward spiking neural network does not have the temporal processing capability.

Interestingly, when adding recurrent connections based on setting 1, the accuracy only improved

from 33% to 37%, this suggests that the LIF model without synapse dynamics and adaptation has

limited temporal processing capability on the Ti46-digit dataset.

Experiment setting 3-5 are designed to understand the impact of adding synapse and adaptation

model. For sequential MNIST dataset, adding adaptation only, adding synapse dynamics only,

and adding both achieve 80%, 86%, 90% accuracy respectively. For Ti46-Digit dataset the

corresponding experiment ends up with 50%, 98%, 98% accuracy respectively. The results

suggest that, adding synapse current or adaptation current on the LIF model can help to improve

the network's temporal processing capability. Among these two, synapse current shows greater

influence on the accuracy. Adding both mechanisms can help improve the accuracy further for

sequential MNIST. Another observation from the OPTUNA tuning results is that, the time

constant suggested by the tool always stays at a relatively high value, when only synapse or

adaptation current is modeled. The optimized time constant is > = 500ms. When both

mechanisms are included, one of the time constant can be smaller.

In order to understand the influence of synapse and adaptation current better, two additional

experiments are added with a constraint on the synapse and adaptation time constant. A smaller

time constant can lead to more efficient analog neuromorphic implementation with spiking

neurons. It is also interesting to check how accuracy changes with the reduction of the time

constant, which will be introduced in more details in the next subsection. When the time constant

is restricted to be within 50ms and the neuron only has synapse model, accuracy drops for both

datasets. Comparing setting 4 and setting 6, for sequential MNIST, accuracy reduced from 86%

to 79%. For Ti46-Digit, accuracy reduced from 98% to 94%. However, if adaptation current is

added together with the dynamic synapse, good accuracy can be reached. For setting 7,

sequential MNIST gets 95% accuracy and Ti46-Digit gets 97% accuracy with synapse time

constant at 50ms and adaptation time constant at 1ms. Result shows that, spiking neuron model

with dynamic synapse and adaptation current does not require large time constants to solve the

temporal tasks.

Figure 3 shows examples of the spike raster plots of hidden layer neurons under setting 7 with

different network inputs after training. It is observed that, after applying a certain input, some

specific neurons in the hidden layer continue to fire, which is enabled by the feedback loops in

the recurrent network. Training the weights allows a similar group of neurons to continue firing

in response to the same-label inputs, while different sets of neurons to continue firing in response

to inputs with different labels. This is why the output layer can make a good prediction for these

two tasks.

3.3 Sensitivity Study of Synapse and Adaptation Time Constants

To understand how accuracy changes with different synapse and adaptation time constants, grid

search experiment for synapse and adaptation time constant is conducted based on experiment

setting 7. In this experiment, both synapse and adaptation time constants are swept from 1ms to

700ms. In Fig.3, when the adaptation time constant is labeled as 0, the adaptation mechanism is

turned off. A total of 56 experimental results are reported for each dataset. Each result shows the

testing accuracy averaged from three trails. For the sequential MNIST, the accuracy is reported

at epoch 20. For the Ti46-Digit dataset, the accuracy is reported at epoch 50.

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#fig3

For both tasks, accuracy drops with reduced synaptic time constant. This trend holds for different

adaptation time constant as shown in Fig. 5. When adaptation time constant is reduced, however,

the accuracy changes are not always monotonous. For most cases, the accuracy is significantly

higher when adaptation mechanism is included in the model. This trend is most obvious when

the synapse time constant is small. For example, when synapse time constant is 50ms, without

adaptation, the accuracy is 30% for sequential MNIST and 29% for Ti46-Digit. After adding

adaptation with time constant of 1ms, the accuracy improves significantly and reaches 85% and

93%.

Overall, experiment shows that synapse and adaptation time constant significantly influence

network accuracy and need to be carefully tuned. Specific combinations of the synapse and

adaptation time constant can significantly improve the performance.

3.4 Comparison with Related Work

Table 5: Comparison with Related works. R Means Recurrent Layer, three elements under the τ

column are τmembrane, τsynapse, τadaptation

Work Task Model Network τ (ms) Best Acc.

 [3] SMNIST LIF+adaptive Vth 80-R700 20/-/700 97.1%

 [30] SMNIST LIF+adaptive Vth 40-R256-R128 20/-/200 97.8%

 [31] SMNIST LIF+adaptive Vth 64-R256-R256 20/-/200 98.7%

 [32] Ti46-Digit LIF+synapse 78-200-R200-200 64/8/- 99.4%

 [33] Ti46-Digit LIF+synapse 78-100-100-100 16/8/- 99.7%

This SMNIST LIF+adaptive 1-R400 1/50/1 98%

work Ti46-Digit current+synapse 78-R100 1/50/1 98%

Prior work on spiking neural networks primarily focused on the spatial tasks such as MNIST and

CIFAR [20] [14] [26] [9]. Fewer studies have been published on temporal or spatial temporal

tasks. [3], [30] and [31] propose to train recurrent neural network with BPTT on temporal tasks.

In these works, an adaptation threshold mechanism is implemented and the network is tested

with sequential MNIST. Best accuracy and the corresponding network structure are listed in

Table 5. Here for sequential MNIST task, 400 neurons are used for hidden layer to get better

performance. In this paper, an adaptive current mechanism is used, which is thought to be closer

to a realistic conductance-based neuron model [4]. Dynamic synapse, which is an important

component of the biological neural network, is also added to the model together with the

adaptation mechanism. Results suggests that model proposed in this paper can achieve a similar

best accuracy as compared to prior SNN works with fewer number of neurons and only one

recurrent layer. Other SNN works [32] [33] incorporates synapse model and is tested on the

Ti46-Digit dataset, however, it does not take adaptive model into account. There is another

work [10] that considers both synaptic dynamic and adaptation mechanism. But it was not

evaluated on a long-term temporal task and did not study the impact of each dynamic

component. That work was evaluated on Ti-digit-short, which converted the audio files into

feature vectors through Mel-Frequency Cepstral Coefficients. After conversion, the length of the

sequence is 90, which is shorter than the sequence length evaluated in this paper.

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#fig5
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0003
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0030
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0031
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0032
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0033
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0020
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0014
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0026
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0009
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0003
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0030
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0031
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#tab5
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0004
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0032
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0033
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0010

In this work, we are not only trying to achieve best accuracy with proposed model, but also to

understand the influence of different component and parameters on the network accuracy. Based

on the model proposed in this paper, one finding is that, although synapse and adaptation model

can both help improving the network's temporal processing capability, when having either

synapse or adaption model, synapse model is more efficient. This might because synaptic current

is a global current which comes from neighboring neurons while adaptation current is local.

Another finding is that, when both synapse and adaptation mechanism are incorporated in the

network, a smaller synapse and adaptation time constants can be find to achieve a good accuracy.

This is beneficial because a smaller time constant may lead to more efficient analog

neuoromorphic implementation with spiking neurons. In [30], τadp = 700ms is used, which is

similar as the dataset input length in the time domain. In [3], τadp with mean 200 ms, standard

deviation 50 is used. In out work, a good accuracy can be achieved with synaptic time constant

50ms and adaptation time constant 1ms.

This work also shows that different neuron and network hyper-parameters can have significant

impact on the result and hyper-parameters tuning is necessary prior to training. Different

from [30], which takes the time constant as a trainable parameter, in this work, time constants are

considered as the hyper-parameters and pre-tuned before the training starts. This is inspired from

biological neurons, which have a fixed time constant.

4 CONCLUSION

This work studies how recurrent connections, adaptation model, and dynamic synapse model

influence a spiking neural network's learning capability for temporal tasks. An automatic hyper-

parameters tuning tool is used to find the best-achievable accuracy for different neuron and

network settings. Results suggests that dynamic synapse is more efficient in improving the

network's learning capability than adaptation. However, when incorporating both mechanisms

into the neuron model, a set of smaller time constants can be found to achieve a good accuracy.

This may help to simplify analog neuromorphic system implementations. This work achieves an

accuracy close to the state-of-the-art on the pixel-by-pixel MNIST and Ti46-Digit speech dataset

with fewer neurons and a single recurrent layer. Code of this work is avaliable at:

https://github.com/yuanzenggit/RSNN-SmallTimeConstants.

REFERENCES

• Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016.

{TensorFlow}: A System for {Large-Scale} Machine Learning. In 12th USENIX

symposium on operating systems design and implementation (OSDI 16). 265–283.

• Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019.

Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th

ACM SIGKDD international conference on knowledge discovery & data mining. 2623–2631.

https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0030
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0003
https://dl.acm.org/doi/fullHtml/10.1145/3546790.3546796#BibPLXBIB0030
https://github.com/yuanzenggit/RSNN-SmallTimeConstants.

• Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang

Maass. 2018. Long short-term memory and learning-to-learn in networks of spiking neurons.

Advances in neural information processing systems 31 (2018).

• Jan Benda, Leonard Maler, and André Longtin. 2010. Linear versus nonlinear signal

transmission in neuron models with adaptation currents or dynamic thresholds. Journal of

Neurophysiology 104, 5 (2010), 2806–2820.

• Sander M Bohte, Joost N Kok, and Johannes A La Poutré. 2000. SpikeProp: backpropagation

for networks of spiking neurons.. In ESANN, Vol. 48. Bruges, 419–424.

• Maxence Bouvier, Alexandre Valentian, Thomas Mesquida, Francois Rummens, Marina

Reyboz, Elisa Vianello, and Edith Beigne. 2019. Spiking neural networks hardware

implementations and challenges: A survey. ACM Journal on Emerging Technologies in

Computing Systems (JETC) 15, 2(2019), 1–35.

• Thomas Dalgaty, Melika Payvand, Filippo Moro, Denys RB Ly, Florian Pebay-Peyroula,

Jerome Casas, Giacomo Indiveri, and Elisa Vianello. 2019. Hybrid neuromorphic circuits

exploiting non-conventional properties of RRAM for massively parallel local plasticity

mechanisms. APL Materials 7, 8 (2019), 081125.

• Peter U Diehl, Guido Zarrella, Andrew Cassidy, Bruno U Pedroni, and Emre Neftci. 2016.

Conversion of artificial recurrent neural networks to spiking neural networks for low-power

neuromorphic hardware. In 2016 IEEE International Conference on Rebooting Computing

(ICRC). IEEE, 1–8.

• Steven K Esser, Paul A Merolla, John V Arthur, Andrew S Cassidy, Rathinakumar

Appuswamy, Alexander Andreopoulos, David J Berg, Jeffrey L McKinstry, Timothy Melano,

Davis R Barch, et al. 2016. From the cover: Convolutional networks for fast, energy-efficient

neuromorphic computing. Proceedings of the National Academy of Sciences of the United States

of America 113, 41 (2016), 11441.

• Haowen Fang, Amar Shrestha, Ziyi Zhao, and Qinru Qiu. 2020. Exploiting neuron and

synapse filter dynamics in spatial temporal learning of deep spiking neural network. arXiv

preprint arXiv:2003.02944(2020).

• Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. 2014. Neuronal

dynamics: From single neurons to networks and models of cognition. Cambridge University

Press.

• Umut Güçlü and Marcel AJ Van Gerven. 2017. Modeling the dynamics of human brain

activity with recurrent neural networks. Frontiers in computational neuroscience 11 (2017), 7.

• Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based

learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

• Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. 2016. Training deep spiking neural

networks using backpropagation. Frontiers in neuroscience 10 (2016), 508.

• Ying-Hui Liu and Xiao-Jing Wang. 2001. Spike-frequency adaptation of a generalized leaky

integrate-and-fire model neuron. Journal of computational neuroscience 10, 1 (2001), 25–45.

• Richard Lyon. 1982. A computational model of filtering, detection, and compression in the

cochlea. In ICASSP’82. IEEE International Conference on Acoustics, Speech, and Signal

Processing, Vol. 7. IEEE, 1282–1285.

• Wolfgang Maass. 1997. Networks of spiking neurons: the third generation of neural network

models. Neural networks 10, 9 (1997), 1659–1671.

https://arxiv.org/abs/2003.02944

• Christian Mayr, Johannes Partzsch, Marko Noack, Stefan Hänzsche, Stefan Scholze, Sebastian

Höppner, Georg Ellguth, and Rene Schüffny. 2015. A biological-realtime neuromorphic system

in 28 nm CMOS using low-leakage switched capacitor circuits. IEEE transactions on biomedical

circuits and systems 10, 1 (2015), 243–254.

• Alexander Neckar, Sam Fok, Ben V Benjamin, Terrence C Stewart, Nick N Oza, Aaron R

Voelker, Chris Eliasmith, Rajit Manohar, and Kwabena Boahen. 2018. Braindrop: A mixed-

signal neuromorphic architecture with a dynamical systems-based programming model. Proc.

IEEE 107, 1 (2018), 144–164.

• Emre O Neftci, Charles Augustine, Somnath Paul, and Georgios Detorakis. 2017. Event-

driven random back-propagation: Enabling neuromorphic deep learning machines. Frontiers in

neuroscience 11 (2017), 324.

• Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. 2019. Surrogate gradient learning in

spiking neural networks: Bringing the power of gradient-based optimization to spiking neural

networks. IEEE Signal Processing Magazine 36, 6 (2019), 51–63.

• Marko Noack, Johannes Partzsch, Christian G Mayr, Stefan Hänzsche, Stefan Scholze,

Sebastian Höppner, Georg Ellguth, and Rene Schüffny. 2015. Switched-capacitor realization of

presynaptic short-term-plasticity and stop-learning synapses in 28 nm CMOS. Frontiers in

neuroscience 9 (2015), 10.

• Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An

imperative style, high-performance deep learning library. Advances in neural information

processing systems 32 (2019).

• Michael Pfeiffer and Thomas Pfeil. 2018. Deep learning with spiking neurons: opportunities

and challenges. Frontiers in neuroscience(2018), 774.

• Leonard R. Gary and Doddington George. 1993. TIDIGITS LDC93S10.

https://catalog.ldc.upenn.edu/LDC93S10. Web Download, Philadelphia Linguistic Data

Consortium.

• Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu.

2017. Conversion of continuous-valued deep networks to efficient event-driven networks for

image classification. Frontiers in neuroscience 11 (2017), 682.

• Benjamin Schrauwen and Jan Van Campenhout. 2003. BSA, a fast and accurate spike train

encoding scheme. In Proceedings of the International Joint Conference on Neural Networks,

2003., Vol. 4. IEEE, 2825–2830.

• Han Wang, Shijie Zhao, Qinglin Dong, Yan Cui, Yaowu Chen, Junwei Han, Li Xie, and

Tianming Liu. 2018. Recognizing brain states using deep sparse recurrent neural network. IEEE

transactions on medical imaging 38, 4 (2018), 1058–1068.

• Paul J Werbos. 1990. Backpropagation through time: what it does and how to do it. Proc.

IEEE 78, 10 (1990), 1550–1560.

• Bojian Yin, Federico Corradi, and Sander M Bohté. 2020. Effective and efficient computation

with multiple-timescale spiking recurrent neural networks. In International Conference on

Neuromorphic Systems 2020. 1–8.

• Bojian Yin, Federico Corradi, and Sander M Bohté. 2021. Accurate and efficient time-domain

classification with adaptive spiking recurrent neural networks. Nature Machine Intelligence 3, 10

(2021), 905–913.

https://catalog.ldc.upenn.edu/LDC93S10

• Wenrui Zhang and Peng Li. 2019. Spike-train level backpropagation for training deep

recurrent spiking neural networks. Advances in neural information processing systems 32 (2019).

• Wenrui Zhang and Peng Li. 2021. Skip-connected self-recurrent spiking neural networks with

joint intrinsic parameter and synaptic weight training. Neural Computation 33, 7 (2021), 1886–

1913.

This work is licensed under a Creative Commons Attribution International 4.0 License.

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9789-6/22/07.

DOI: https://doi.org/10.1145/3546790.3546796

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3546790.3546796

