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Spiking Neural Networks (SNN) can model biological neural networks with different levels of details. There are 

trade-offs between model fidelity and computation efficiency. Which model is the most appropriate one to use 

depends on the goal and the computation task. Temporal learning is an important feature of the brain, which requires 

neural networks to integrate information from the past to solve present computation tasks. Prior work has proposed 

different SNN models for temporal learning, which includes the Leaky-Integrate-and-Fire (LIF), the Adaptive 

Leaky-Integrate-and-Fire (ALIF), and the Exponential Adaptive Leaky-Integrate-and-Fire (AdEx). These models 

capture different biological details and exhibit different learning properties.  

This work aims to compare the model fidelity and learning performance of these three SNN models. Experimental 

data for in vitro living neural networks is used to first fit parameters of these three models. An automatic fitting tool 

is used to match the precise spike timing of the in vitro neurons and the modeled neurons. ALIF and AdEX can 

match with the spiking timing of the biological neuron better than the LIF does. The fitted models are then 

compared on a delay task, where the network needs to output values that were input into the network in the recent 

past. To compute the delay task, the Neural Engineering Framework (NEF) is used to implement a Legendre 

Memory Unit. Good performance is demonstrated on the delay task using ALIF, which suggests the possibility of 

implementing the algorithm on in vitro living neural networks. This work proposes a new neuron parameter fitting 
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approach, compares three SNN models, and is the first to use detailed adaptive neurons on the delay task with the 

NEF approach. 

CCS Concepts: • Networks → Network performance modeling; • Networks → Network experimentation;  
 

Keywords: spiking neural networks, living neural networks, spike frequency adaptation, precise spike timing, 

temporal learning, neural engineer framework, legendre memory unit  
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1 INTRODUCTION 

Figure 1: SNN 

model comparison.  

Spiking Neural Networks (SNN), which are thought to be the next generation of neural 

networks [15], mimic biological neural networks more closely than traditional non-spiking 

Artificial Neural Networks (ANN) do. SNNs not only model neuronal and synaptic dynamics but 

also incorporate the concept of time. They are widely used in the area of computational 

neuroscience to study brain functions [13] [8], as well as in the area of artificial intelligence to 

explore new learning algorithms and energy-efficient neuromorphic implementations in solving 

real-world problems [9] [5] [14]. 

There are many kinds of SNN models [18] [22] [11] [17] [23] [10], which capture different 

levels of details of a biological neural network using one or several differential equations. These 

equations represent the electrical properties of neurons, synapses, dendrites, and axons, and aim 

to match some observed behaviors captured by experimental data [16]. The most commonly used 

one is the Leaky Integrate-and-Fire (LIF) model [18], which represents the lipid bilayer of a cell 

membrane as capacitance and the leaky channel across that membrane, mostly made up of 

chloride ions, as conductance. The Hodgkin-Huxley (HH) [11] model further simulates the 

sodium current and potassium current. Unlike the LIF model, where a spike happens when the 

membrane potential crosses a pre-defined threshold, a spike in the HH model is implicitly 

generated through the dynamics of the model. Furthermore, the HH model describes how the 

membrane potential changes with time when an action potential occurs more precisely. More 
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complicated models, such as the Pinsky-Rinzel (PR) [26] model, add calcium current and 

calcium-dependent potassium current. This allows the model to represent more realistic and 

more complex neuron properties, which includes the spike frequency adaptation behavior, where 

the firing rate of a specific neuron reduces through the time when a constant injection current is 

given. The PR model also describes the soma and the dendrite as two compartments interacting 

through a coupling conductance. By increasing the number of compartments, more complicated 

dendritic and axonal morphology can be captured [29]. 

There are trade-offs between “biologically realistic” and “computationally inexpensive” among 

different SNN models. Solving differential equations can be time-consuming through computer 

simulations and the time increases dramatically when more state variables and parameters are 

added into the model. The Pinsky-Rinzel model has eight state variables and more than 20 

parameters, while the leaky integrate and fire model has only one state variable and five 

parameters. Many prior works attempt to reduce the model complexity while keeping the 

important feature. For instance, the Adaptive Leaky-Integrate-and-Fire (ALIF) model [23] 

captures the spike frequency adaptation behavior; the Adaptive Exponential Leaky-Integrate-

and-Fire (AdEx) model takes account of the membrane potential changes when an activation 

happens [10]. All these models reduce the computational complexity as compared to the PR and 

the HH model. 

Which model is appropriate to use depends on the purpose. For SNN learning algorithm designs, 

the early works are mostly focusing on capturing the spike activity to achieve a more energy-

efficient neuromorphic implementation. Therefore, LIF is the most popular choice [33] [27]. 

Some recent works [25] [3] have shown that more detailed neuron features, such as spike 

frequency adaptation, play an important role in capturing the long-term temporal information and 

improves the capability of the algorithm. In these works, ALIF is used for algorithm exploration. 

In addition, there are also attempts to use in vitro living neural networks to perform the learning 

tasks instead of the silicon implementation [34] [35] [19]. Dissociated animal cortex maintained 

in physiological conditions within an adhesive dish could make random synaptic connections 

with each other. The in vitro neural cultures could respond to stimuli delivered through 

microelectrode arrays or optogenetics interface [4] [12] [21] [28] [32], which can be used to 

perform learning tasks. Prior works [34] [35] in this direction simulate detailed SNN models 

such as HH and PR for living neural network algorithm design before conducting experiments on 

the in vitro neural cultures. 

This paper studies learning algorithms that would be suitable for living neural networks. In 

contrast with earlier attempts in this direction, this work focuses on exploring the temporal 

learning property for recurrent networks, with the consideration of the precise spike timing. For 

temporal learning tasks, the neuron networks need to integrate information from the recent past 

into current computational processing, which is an important feature of the brain. There are some 

existing learning algorithms proposed for recurrent spiking neural network on temporal 

tasks [3] [31] [36], however, those algorithms are designed for silicon implementations and the 

model parameters are chosen either for computational simplicity (e.g., setting the resting 

potential to zero) or algorithm performance (e.g., setting the membrane or synapse constant 

based on the task requirement). It is not clear whether these algorithms still perform well with 

realistic neuron parameters. On the other hand, previous works [34] [35] simulate detailed 
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neuron models such as HH and PR to capture more realistic biological properties to explore 

learning algorithms for living neural networks, which are not scalable due to the computational 

complexity of these models. Since the temporal learning task focuses only on the spike timing 

instead of other detailed neuron features, this work uses simplified spiking neuron models in the 

study. 

In this paper, we fitted three existing simplified neuron models (LIF, ALIF, and AdEx) to 

biological neuron data at a given current. The goal of the task is to find the best parameters in 

these models to match the exact timing of each spike between the experimental recording and the 

simulation. A machine learning based parameter tuning tool is used [1]. Results show that 

without adaptation, the models (e.g., LIF) cannot capture the spike timing when multiple spikes 

happen. ALIF and AdEx models can both match the spike timing well. The AdEx model has a 

better fit on the neuron's after-hyperpolarization voltage, but the ALIF model is more 

computationally efficient, which is a better choice for the temporal learning task. 

We then test whether a network of ALIF neurons with the fitted parameters can be trained to 

perform learning tasks. A temporal delay task is considered in particular, where the output of the 

network should be the input to the network at some point in the past. This requires building a 

recurrent neural network, and the Neural Engineering Framework is used [7] [30] to implement a 

Legendre Memory Unit [31]. That is, we construct a differential equation that converts a scalar 

input into an internal state representation that uses shifted Legendre polynomials to represent 

some window of the past history of the input. We then train a single-hidden-layer feed-forward 

neural network and then connect it back to itself to produce the final recurrent model. This task 

has previously been done with LIF neurons [31] and with physical analog neurons [20], but not 

with adaptive spiking neuron models such as ALIF. Results in this paper suggest that, by taking 

the exact spike timing into account in the algorithm design process, the ALIF model with fitted 

parameters performs well in the delay task. This suggests the possibility of implementing the 

same algorithm with living neural networks in the future. 

Contributions of this work are: 1) This paper proposes a general approach for fitting neuron 

parameters by utilizing an existing machine learning based hyper-parameters tuning tool. 2) An 

error function is proposed for the parameter fitting to achieve a good matching on spike timing. 

And 3) This paper is the first to show that the fitted adaptive neuron could achieve a good 

performance on a delay task using the Neural Engineering Framework approach, especially at a 

low firing rate. 

2 NEURON MODEL PARAMETERS FITTING 

τmdu(t)dt=−(u(t)−Vrest)+ΔTexp(du(t)−VTΔT)+R(Iinject(t)+Isyn(t))−RadpRIw(t) 
 

(1)  

τwdIw(t)dt=−a(u(t)−Vrest)−Iw(t)+bτwδ(t−t0) 
 

(2)  

τsynIsyn(t)dt=−Isyn(t)+∑jWjiδ(t−t0) 
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(3)  

u(t)={Vahp,if u(t−1)>Vthor in refractory periodu(t)otherwise 

 

(4)  

To closely capture the biological neural activity, parameters of the neuron model need to be 

carefully fitted. The adaptive exponential neuron model (AdEx) is described by Eq. 1-Eq. 4. 

Eq. 1 models how membrane potential changes with time. In this equation, u, Vrest, and VT 

represent a neuron's membrane potential, resting potential, and depolarization threshold 

respectively. Iinject is the injection current. Isyn is the synaptic current that comes from other 

connected neurons. R and τm represents the membrane resistance and membrane time constant 

respectively. ΔT is the slope factor, which determines the sharpness of spike initiation. The term 

ΔTexp(du(t)−VTΔT) 

models an additional current that dependence on the exponential of the voltage. The term 

RadpIw(t) models the adaptation behavior. Iw(t) is the adaptation current and Radp is the adaptation 

resistance. The dynamics of the adaptation current are described in Eq. 2. In this equation, τw is 

the adaptation time constant and a is an adaptation coupling parameter. The term bδ(t − t0) means 

that, while a neuron is firing, the adaptation current is increased by an amount b when each spike 

happens. Synapse dynamics are represented by Eq. 3, where τsyn is the synapse time constant and 

Wji is the synapse weight between the modeled neuron i and its neighboring neurons j. The 

membrane potential resets when it reaches a pre-defined numerical threshold Vth. Unlike standard 

neuron models, the membrane potential resets to a pre-defined value Vahp rather than the resting 

potential, to better capture the living neuron properties. A refractory period is also implemented: 

after a neuron fires, it will enter a period where no other spike can happen. These are described 

by Eq. 4. The simulation results shown in this paper use a sampling rate of 1ms, and the discrete-

time implementation is based on the forward Euler method. Eq. 1 and Eq. 2 can be modified and 

changed to other models. If the ΔTexp(du(t)−VTΔT) 

is removed, then the model will become the Adaptive Leaky-Integrate-and-Fire (ALIF) model. If 

the entire adaptation term RadpIw(t) is removed, then the model will become the Leaky-Integrate-

and-Fire (LIF) model. 

Finding parameter settings that cause this model to produce behavior that matches a particular 

neuron by hand-tuning is not an easy task. There are some previous attempts to make an efficient 

automatic tuning tool [6] [24]. In recent years, machine learning plays a more and more 

important role in solving such problems, including efficient hyperparameter optimization. Since 

Python and Python-based software libraries such as Tensorflow and Pytorch have become 

standard in the machine learning community, there is a trend to do SNN learning algorithm 

studies with these tools. Therefore, it is also a natural step to bring the advanced machine 

learning approach to the SNN model fitting area.  
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Figure 2: OPTUNA interface for error 

optimization [1].  

 

In this work, Optuna [1] is used for parameter fitting, which is an open-source automatic 

hyperparameter optimization framework based on python. It could efficiently search large spaces 

and prune unpromising trials for faster results. It is also easy to parallelize. Fig. 2 shows an 

example Optuna tuning interface. By defining the error function, setting the number of trials, 

parameter tuning range, and optimization direction, the tool could return the optimized fitting 

result for each trail. Table 1 shows all the tunable parameters and the range set for Optuna 

tuning. 

Table 1: Tunable parameter settings and fitting results for OPTUNA tuning.  
 Tunable parameters setting Single-current fitting 

Num Name Range Step AdEx ALIF LIF 

1 Vahp(mV) [-60, -15] 0.5 -23.5 -43.5 -30.5 

2 VT(mV) [-60, -15] 0.5 -23.5 -41 -23.5 

3 Vth(mV) [10, 40] 0.5 27 18.5 12 

4 tref(ms) [0.5, 20] 0.5 6 8 17.5 

5 R(mΩ) [0.1, 1] 0.1 0.4 0.3 0.6 

6 taum(ms) [0.5, 100] 0.5 28 62.5 60 

7 Radp(mΩ) [0.1, 1] 0.1 0.8 0.9 / 

8 tauw(ms) [0.5, 100] 0.5 38 57.5 / 

9 b [0.5, 100] 0.5 70 42.5 / 

10 ΔT(ms) [0.5, 10] 0.5 1.5 / / 

Peak Error 2 2 82 
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Figure 3: Neuron model 

fitting results.  

To use the automatic platform for neuron model parameter tuning, defining the error function is 

critical. Algorithm 1 shows the steps to measure and calculate an error score, pError, to quantify 

the difference between biological experiment and computer simulation results. For the biological 

experiment, neural cultures were obtained by dissociating cortices of postnatal day 0 Sprague 

Dawley rats and plating neurons onto poly-D-lysine coated tissue culture dishes. On days in vitro 

(DIV) 12-19, neuron IV characteristics were obtained by injecting a 250pA current in current-

clamp mode. This method is not limited to a specific injection current and this value is chosen 

because a clear adaptation behavior could be observed under 250pA. Membrane potential of the 

neuron is recorded for 200ms and assigned to bioVlist in Algorithm 1 . The injection current is 

given between 50-150ms. In the computer simulation, a single neuron model with random 

parameters within the pre-defined range is initialized, then the same biological experiment is 

repeated in simulation. The recorded membrane potential of the SNN model is assigned to 

simVlist (line 5-15). 

Since the fitting goal in this paper is to match the precise spike timing, the absolute time 

difference for each pair of the spike peak is used for error measurement (line 24). For biological 

neurons, the adaptation behavior is more obvious when the injection current is just given to the 

neuron, and time to the first spike is more important as compared to the timing of the following 

spikes. Therefore, a weight parameter is added to each spike to give more emphasis on matching 

the timing of the first two spikes (line 19-22). There are cases when the number of spikes does 

not match between biological experiment results and computer simulation results. In these cases, 

a noPairPenalty is added to the error (line 26). The values of Weight and noPairPenalty shown in 

Algorithm 1 are chosen empirically. 

The auto-fitting approach is tested with LIF, ALIF, and AdEx model to compare their 

effectiveness in capturing the exact spike timing of the biological neurons. All of the fitting 



experiments were run three times, each time with Optuna tuning for 1000 trials. The best result 

among all of the runs and all of the trials are listed in Table 1 and the best-fitted curves are 

shown in Fig. 3. As shown in the result, the LIF model cannot capture the precise timing (peak 

error 82) because it lacks the adaptation mechanism. The ALIF and AdEx models can both 

reduce the peak error to 2, and thus accurately model the timing of the biological system. At a 

closer look of the fitting result, the exponential term in the AdEx model generates the spike 

shape, hence the after-hyperpolarization voltage could be matched better as compared to the 

ALIF model. However, since after-hyperpolarization voltage does not directly influence the 

temporal learning performance and ALIF is more computationally inexpensive, ALIF becomes a 

better-suited model in studying the temporal learning property of in vitro living neural networks. 

3 DELAY TASK WITH FITTED NEURON MODEL 

Figure 4: Delay network 

topology. Figure 5: Neuron 

tuning curve for 100 neurons.  
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In this section, we use a network of ALIF neurons with fitted parameters to compute a delay 

task: the output should be the same as the input one second in the past. To construct this network, 

we use the Neural Engineering Framework (NEF) [7] [30] approach, where we first train a feed-

forward neural network that approximates the identity function (i.e. an auto-encoder) and then 

connect the output back to the input such that the synapse dynamics and the transformed weight 

matrices will cause the overall system to approximate the differential equation that approximates 

the ideal delay function. This is known as a Legendre Memory Unit [31] and the learning 

algorithm is shown in Algorithm 2 . 

The training process contains two steps. In the representation phase, a feed-forward network with 

a single hidden layer of neurons is constructed (Fig. 4 (a)) with randomly generated input 

weights (encoder × gain) and bias, and no nonlinearities at the input or output. The goal is to 

compute the network output weights (decoder) so that the output of the network is exactly the 

same as the input. The input and output dimensionality is n_dim 

, so in this step the n_dim dimensional time-varying signal is represented by a population of 

n_hidden neurons. To maximize the neuron diversity and reach a better representation, the input 

weights are generated by randomly sampling n_hidden values on the surface of a n_dim hyper-

sphere (line 6). The gain and bias are generated following the same rule, which is to have each 

neuron respond differently to different values of the input signal. This kind of diversity is 

described by the neuron tuning curve (Fig. 5). In this curve, the x-axis describes the network 

input values, the y-axis is the spike frequency, and each color represents a neuron. After 

recording how spike frequency changes with the injection current in the propertyList (line 8-13), 

an intercept and maxFreq value will be randomly chosen for each neuron from the given range 

(line 16-17). minFreq, which is the minimum spike frequency above zero, will be found by 

checking the propertyList (line 18). Then two points: (intercept, minFreq) and (1, maxFreq) on 

the tuning curve for a given neuron are used to form the linear equation described in Algorithm 2 

line 19-21. Based on the equation, a unique gain and bias can be solved for this neuron. To find 

the output weights, n_hidden number of neurons with fitted parameters are initialed and ridge 

regression is used to compute the decoder and minimize the mean squared error between the 

network input and the output (line 23-24). When calculating the network output at each time 

step, the output of the hidden layer is represented with a vector of n_hidden 

, where a spike at this time step is represented as one and no spike is represented as zero for each 

neuron. With this representation, the exact timing of a spike is taking into account for training 

and prediction.  
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Figure 6: Delay task study with different hidden layer spike frequency. 

Figure 7: Delay task task with with different input band-limitation.  

To turn this feed-forward network into a system capable of computing a differential equation, 

recurrent connections are added to the network (fig. 4). The input, output, and recurrent weights 

https://dl.acm.org/doi/fullHtml/10.1145/3477145.3477153#fig4


of the recurrent network is calculated by equations described in line 26-29, where the A, B, D 

dynamic matrices are calculated according to the LMU's mathematical derivation with a pre-

defined window size. Here dot means dot product multiplication; × means element-wise 

multiplication. The window size represents the length of the past history this network could 

record. This specifies the particular differential equation that we want the recurrent neural 

network to approximate. As has been shown in general [7], the resulting neural network will 

approximate the desired differential equation ˙m=Am+Bx 

and y = Dm. As shown in specific [31], the particular A, B, and D matrices used here will 

approximate the desired delay function y(t) = x(t − θ). 

After the network is constructed, a randomly sampled continuous-time white noise process is 

given as the network input and the mean square error of the actual and desired network output is 

computed to indicate the performance of the constructed delay network (line 31-33). Note that 

only the hidden layer neurons are fitted spiking neurons, the input and output layers have no 

nonlinearity. 

Results of the delay task for fitted ALIF and LIF neurons with different hidden layer spike 

frequency are shown in Fig. 6. Different high_freq 

and low_freq 

values in Algorithm 2 are tested with both models to reach a different hidden layer spike 

frequency for a given input. Results show that both fitted ALIF and LIF neurons perform well 

even with a very low average spike frequency (12Hz), which is within the range of the spike 

frequency of a living neuron. To further explore the difference between using the ALIF and the 

LIF model for the delay task, different input band-limitations for the white noise process are 

tested and results are shown in Fig. 7. With an increase in the input frequency, the mean square 

error for both ALIF and LIF models increased. This is due to the limitation of the Padé 

approximation [2] approach which is used by the LMU. However, when comparing the ALIF 

and LIF results, an interesting finding is that, when the input band-limitation increases, the ALIF 

model tends to have a better mean square error as compared to the LIF model with a similar 

output spike frequency.  

https://dl.acm.org/doi/fullHtml/10.1145/3477145.3477153#BibPLXBIB0007
https://dl.acm.org/doi/fullHtml/10.1145/3477145.3477153#BibPLXBIB0031
https://dl.acm.org/doi/fullHtml/10.1145/3477145.3477153#fig6
https://dl.acm.org/doi/fullHtml/10.1145/3477145.3477153#fig7
https://dl.acm.org/doi/fullHtml/10.1145/3477145.3477153#BibPLXBIB0002


Figure 8: Mean Square 

Error at Different Input Band-limitation.  

4 DISCUSSION 

This paper shows a preliminary study on using a fitted neuron model to perform temporal tasks. 

A new automatic neuron parameter fitting approach is proposed and the delay task study 

suggests that the fitted neuron, with adaptation, can achieve good performance. Figure 8 shows 

that the fitted adaptive neuron achieves a lower means square error as compared to the neuron 

without adaption when input band-limitation increases. This result shows that the selection of the 

neuron model has a big impact on learning performance especially when the parameters are fitted 

to match with a realistic neuron. Neuron parameters typically can be tuned to achieve better 

learning performance in algorithm designs that are inspired by biological neural networks. This 

work aims to develop a tool chain to study algorithm designs for living neuron networks. Hence, 

tuning parameters would lost model fidelity. The code of this work can be found at: 

https://github.com/yuanzenggit/temporal_learning_with_fittedSNN  
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