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Spiking Neural Networks (SNN) can model biological neural networks with different levels of details. There are
trade-offs between model fidelity and computation efficiency. Which model is the most appropriate one to use
depends on the goal and the computation task. Temporal learning is an important feature of the brain, which requires
neural networks to integrate information from the past to solve present computation tasks. Prior work has proposed
different SNN models for temporal learning, which includes the Leaky-Integrate-and-Fire (LIF), the Adaptive
Leaky-Integrate-and-Fire (ALIF), and the Exponential Adaptive Leaky-Integrate-and-Fire (AdEx). These models
capture different biological details and exhibit different learning properties.

This work aims to compare the model fidelity and learning performance of these three SNN models. Experimental
data for in vitro living neural networks is used to first fit parameters of these three models. An automatic fitting tool
is used to match the precise spike timing of the in vitro neurons and the modeled neurons. ALIF and AdEX can
match with the spiking timing of the biological neuron better than the LIF does. The fitted models are then
compared on a delay task, where the network needs to output values that were input into the network in the recent
past. To compute the delay task, the Neural Engineering Framework (NEF) is used to implement a Legendre
Memory Unit. Good performance is demonstrated on the delay task using ALIF, which suggests the possibility of
implementing the algorithm on in vitro living neural networks. This work proposes a new neuron parameter fitting
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approach, compares three SNN models, and is the first to use detailed adaptive neurons on the delay task with the
NEF approach.
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1 INTRODUCTION

Leaky-Integrate Adaptive Exponential
-and-Fire Leaky-Integrate-and-Fire Pinsky-Rinzel
(LIF) (AdEX) (PR)
Computationally  Adaptive Leaky- Hodgkin-Huxley  Biologically
Inexpensive Integrate-and-Fire (HH) Realistic
(ALIF) Figure 1: SNN

model comparison.

Spiking Neural Networks (SNN), which are thought to be the next generation of neural

networks [15], mimic biological neural networks more closely than traditional non-spiking
Artificial Neural Networks (ANN) do. SNNs not only model neuronal and synaptic dynamics but
also incorporate the concept of time. They are widely used in the area of computational
neuroscience to study brain functions [13] [8], as well as in the area of artificial intelligence to
explore new learning algorithms and energy-efficient neuromorphic implementations in solving
real-world problems [9] [5] [14].

There are many kinds of SNN models [18] [22] [11] [17] [23] [10], which capture different
levels of details of a biological neural network using one or several differential equations. These
equations represent the electrical properties of neurons, synapses, dendrites, and axons, and aim
to match some observed behaviors captured by experimental data [16]. The most commonly used
one is the Leaky Integrate-and-Fire (LIF) model [18], which represents the lipid bilayer of a cell
membrane as capacitance and the leaky channel across that membrane, mostly made up of
chloride ions, as conductance. The Hodgkin-Huxley (HH) [11] model further simulates the
sodium current and potassium current. Unlike the LIF model, where a spike happens when the
membrane potential crosses a pre-defined threshold, a spike in the HH model is implicitly
generated through the dynamics of the model. Furthermore, the HH model describes how the
membrane potential changes with time when an action potential occurs more precisely. More
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complicated models, such as the Pinsky-Rinzel (PR) [26] model, add calcium current and
calcium-dependent potassium current. This allows the model to represent more realistic and
more complex neuron properties, which includes the spike frequency adaptation behavior, where
the firing rate of a specific neuron reduces through the time when a constant injection current is
given. The PR model also describes the soma and the dendrite as two compartments interacting
through a coupling conductance. By increasing the number of compartments, more complicated
dendritic and axonal morphology can be captured [29].

There are trade-offs between “biologically realistic” and “computationally inexpensive” among
different SNN models. Solving differential equations can be time-consuming through computer
simulations and the time increases dramatically when more state variables and parameters are
added into the model. The Pinsky-Rinzel model has eight state variables and more than 20
parameters, while the leaky integrate and fire model has only one state variable and five
parameters. Many prior works attempt to reduce the model complexity while keeping the
important feature. For instance, the Adaptive Leaky-Integrate-and-Fire (ALIF) model [23]
captures the spike frequency adaptation behavior; the Adaptive Exponential Leaky-Integrate-
and-Fire (AdEx) model takes account of the membrane potential changes when an activation
happens [10]. All these models reduce the computational complexity as compared to the PR and
the HH model.

Which model is appropriate to use depends on the purpose. For SNN learning algorithm designs,
the early works are mostly focusing on capturing the spike activity to achieve a more energy-
efficient neuromorphic implementation. Therefore, LIF is the most popular choice [33] [27].
Some recent works [25] [3] have shown that more detailed neuron features, such as spike
frequency adaptation, play an important role in capturing the long-term temporal information and
improves the capability of the algorithm. In these works, ALIF is used for algorithm exploration.
In addition, there are also attempts to use in vitro living neural networks to perform the learning
tasks instead of the silicon implementation [34] [35] [19]. Dissociated animal cortex maintained
in physiological conditions within an adhesive dish could make random synaptic connections
with each other. The in vitro neural cultures could respond to stimuli delivered through
microelectrode arrays or optogenetics interface [4] [12] [21] [28] [32], which can be used to
perform learning tasks. Prior works [34] [35] in this direction simulate detailed SNN models
such as HH and PR for living neural network algorithm design before conducting experiments on
the in vitro neural cultures.

This paper studies learning algorithms that would be suitable for living neural networks. In
contrast with earlier attempts in this direction, this work focuses on exploring the temporal
learning property for recurrent networks, with the consideration of the precise spike timing. For
temporal learning tasks, the neuron networks need to integrate information from the recent past
into current computational processing, which is an important feature of the brain. There are some
existing learning algorithms proposed for recurrent spiking neural network on temporal

tasks [3] [31] [36], however, those algorithms are designed for silicon implementations and the
model parameters are chosen either for computational simplicity (e.g., setting the resting
potential to zero) or algorithm performance (e.g., setting the membrane or synapse constant
based on the task requirement). It is not clear whether these algorithms still perform well with
realistic neuron parameters. On the other hand, previous works [34] [35] simulate detailed
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neuron models such as HH and PR to capture more realistic biological properties to explore
learning algorithms for living neural networks, which are not scalable due to the computational
complexity of these models. Since the temporal learning task focuses only on the spike timing
instead of other detailed neuron features, this work uses simplified spiking neuron models in the
study.

In this paper, we fitted three existing simplified neuron models (LIF, ALIF, and AdEX) to
biological neuron data at a given current. The goal of the task is to find the best parameters in
these models to match the exact timing of each spike between the experimental recording and the
simulation. A machine learning based parameter tuning tool is used [1]. Results show that
without adaptation, the models (e.g., LIF) cannot capture the spike timing when multiple spikes
happen. ALIF and AdEx models can both match the spike timing well. The AdEx model has a
better fit on the neuron's after-hyperpolarization voltage, but the ALIF model is more
computationally efficient, which is a better choice for the temporal learning task.

We then test whether a network of ALIF neurons with the fitted parameters can be trained to
perform learning tasks. A temporal delay task is considered in particular, where the output of the
network should be the input to the network at some point in the past. This requires building a
recurrent neural network, and the Neural Engineering Framework is used [7] [30] to implement a
Legendre Memory Unit [31]. That is, we construct a differential equation that converts a scalar
input into an internal state representation that uses shifted Legendre polynomials to represent
some window of the past history of the input. We then train a single-hidden-layer feed-forward
neural network and then connect it back to itself to produce the final recurrent model. This task
has previously been done with LIF neurons [31] and with physical analog neurons [20], but not
with adaptive spiking neuron models such as ALIF. Results in this paper suggest that, by taking
the exact spike timing into account in the algorithm design process, the ALIF model with fitted
parameters performs well in the delay task. This suggests the possibility of implementing the
same algorithm with living neural networks in the future.

Contributions of this work are: 1) This paper proposes a general approach for fitting neuron
parameters by utilizing an existing machine learning based hyper-parameters tuning tool. 2) An
error function is proposed for the parameter fitting to achieve a good matching on spike timing.
And 3) This paper is the first to show that the fitted adaptive neuron could achieve a good
performance on a delay task using the Neural Engineering Framework approach, especially at a
low firing rate.

2 NEURON MODEL PARAMETERS FITTING
deu(t)dt:_(u(t)_Vrest)+ATeXp(du(t)_VTAT)+R(Iinject(t)+Isyn(t))_RadpRIw(t)

(1)
twdlw(t)dt=—a(u(t)—Vrest)~Iw(t) tbrwd(t—to)

(2)
Tsynlsyn (t) dt:—Isyn(t)‘i‘Zj Wii S(t—tO)


https://dl.acm.org/doi/fullHtml/10.1145/3477145.3477153#BibPLXBIB0001
https://dl.acm.org/doi/fullHtml/10.1145/3477145.3477153#BibPLXBIB0007
https://dl.acm.org/doi/fullHtml/10.1145/3477145.3477153#BibPLXBIB0030
https://dl.acm.org/doi/fullHtml/10.1145/3477145.3477153#BibPLXBIB0031
https://dl.acm.org/doi/fullHtml/10.1145/3477145.3477153#BibPLXBIB0031
https://dl.acm.org/doi/fullHtml/10.1145/3477145.3477153#BibPLXBIB0020

3)
u(t)={Vanp,if u(t—1)>Vmor in refractory periodu(t)otherwise

(4)

To closely capture the biological neural activity, parameters of the neuron model need to be
carefully fitted. The adaptive exponential neuron model (AdEX) is described by Eq. 1-Eq. 4.
Eq. 1 models how membrane potential changes with time. In this equation, u, Vs, and Vr
represent a neuron's membrane potential, resting potential, and depolarization threshold
respectively. Linjecr 1S the injection current. Iy, is the synaptic current that comes from other
connected neurons. R and 7,, represents the membrane resistance and membrane time constant
respectively. A7 is the slope factor, which determines the sharpness of spike initiation. The term
Arexp(du(t-vrar)

models an additional current that dependence on the exponential of the voltage. The term

Raapl () models the adaptation behavior. 7,(t) is the adaptation current and Ruqp is the adaptation
resistance. The dynamics of the adaptation current are described in Eq. 2. In this equation, 7, is
the adaptation time constant and a is an adaptation coupling parameter. The term bo(¢ — to) means
that, while a neuron is firing, the adaptation current is increased by an amount » when each spike
happens. Synapse dynamics are represented by Eq. 3, where 7y, is the synapse time constant and
Wi is the synapse weight between the modeled neuron i and its neighboring neurons j. The
membrane potential resets when it reaches a pre-defined numerical threshold V7. Unlike standard
neuron models, the membrane potential resets to a pre-defined value Ve, rather than the resting
potential, to better capture the living neuron properties. A refractory period is also implemented:
after a neuron fires, it will enter a period where no other spike can happen. These are described
by Eq. 4. The simulation results shown in this paper use a sampling rate of 1ms, and the discrete-
time implementation is based on the forward Euler method. Eq. 1 and Eq. 2 can be modified and
changed to other models. If the ATexp(du(t)-vrar)

is removed, then the model will become the Adaptive Leaky-Integrate-and-Fire (ALIF) model. If
the entire adaptation term Ruaply(?) is removed, then the model will become the Leaky-Integrate-
and-Fire (LIF) model.

Finding parameter settings that cause this model to produce behavior that matches a particular
neuron by hand-tuning is not an easy task. There are some previous attempts to make an efficient
automatic tuning tool [6] [24]. In recent years, machine learning plays a more and more
important role in solving such problems, including efficient hyperparameter optimization. Since
Python and Python-based software libraries such as Tensorflow and Pytorch have become
standard in the machine learning community, there is a trend to do SNN learning algorithm
studies with these tools. Therefore, it is also a natural step to bring the advanced machine
learning approach to the SNN model fitting area.
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import optuna
numTrial=1000
def optimization(trial):
set parameter tuning range
pError = CalcError()
return pError
study = optuna.create_study(direction="minimize"’)
study.optimize(optimization, n_trails=numTrial)  pigure 2: OPTUNA interface for error
optimization [1].

In this work, Optuna [1] is used for parameter fitting, which is an open-source automatic
hyperparameter optimization framework based on python. It could efficiently search large spaces
and prune unpromising trials for faster results. It is also easy to parallelize. Fig. 2 shows an
example Optuna tuning interface. By defining the error function, setting the number of trials,
parameter tuning range, and optimization direction, the tool could return the optimized fitting
result for each trail. Table 1 shows all the tunable parameters and the range set for Optuna
tuning.

Table 1: Tunable parameter settings and fitting results for OPTUNA tuning.

Tunable parameters setting] Single-current fitting
Num| Name Range  Step| AdEx ALIF LIF
1 Vap(mV)  [-60, -15] 0.5 | -23.5 -43.5 -30.5
2 Vi(mV) [-60,-15] 0.5 ] -23.5 41 -235
3 Vi(mV)  [10,40] 0.5 27 18.5 12
4 tre(ms)  [0.5,20] 0.5 6 8 17.5
5 R(mQ) (0.1, 1] 0.1 0.4 0.3 0.6
6 | taunm(ms) [0.5,100] 0.5 28 62.5 60
7 | Raap(mQ) [0.1,1] 0.1 0.8 0.9 /
8 | taun(ms) [0.5,100] 0.5 38 57.5 /
9 b [0.5, 100] 0.5 70 425 /
10 | A1(ms) [0.5,10] 0.5 1.5 / /
Peak Error 2 2 82
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To use the automatic platform for neuron model parameter tuning, defining the error function is
critical. Algorithm 1 shows the steps to measure and calculate an error score, pError, to quantify
the difference between biological experiment and computer simulation results. For the biological
experiment, neural cultures were obtained by dissociating cortices of postnatal day 0 Sprague
Dawley rats and plating neurons onto poly-D-lysine coated tissue culture dishes. On days in vitro
(DIV) 12-19, neuron IV characteristics were obtained by injecting a 250pA current in current-
clamp mode. This method is not limited to a specific injection current and this value is chosen
because a clear adaptation behavior could be observed under 250pA. Membrane potential of the
neuron is recorded for 200ms and assigned to bioVlist in Algorithm 1 . The injection current is
given between 50-150ms. In the computer simulation, a single neuron model with random
parameters within the pre-defined range is initialized, then the same biological experiment is
repeated in simulation. The recorded membrane potential of the SNN model is assigned to
simVlist (line 5-15).

Since the fitting goal in this paper is to match the precise spike timing, the absolute time
difference for each pair of the spike peak is used for error measurement (line 24). For biological
neurons, the adaptation behavior is more obvious when the injection current is just given to the
neuron, and time to the first spike is more important as compared to the timing of the following
spikes. Therefore, a weight parameter is added to each spike to give more emphasis on matching
the timing of the first two spikes (line 19-22). There are cases when the number of spikes does
not match between biological experiment results and computer simulation results. In these cases,
a noPairPenalty is added to the error (line 26). The values of Weight and noPairPenalty shown in
Algorithm 1 are chosen empirically.

The auto-fitting approach is tested with LIF, ALIF, and AdEx model to compare their
effectiveness in capturing the exact spike timing of the biological neurons. All of the fitting



experiments were run three times, each time with Optuna tuning for 1000 trials. The best result
among all of the runs and all of the trials are listed in Table 1 and the best-fitted curves are
shown in Fig. 3. As shown in the result, the LIF model cannot capture the precise timing (peak
error 82) because it lacks the adaptation mechanism. The ALIF and AdEx models can both
reduce the peak error to 2, and thus accurately model the timing of the biological system. At a
closer look of the fitting result, the exponential term in the AdEx model generates the spike
shape, hence the after-hyperpolarization voltage could be matched better as compared to the
ALIF model. However, since after-hyperpolarization voltage does not directly influence the
temporal learning performance and ALIF is more computationally inexpensive, ALIF becomes a
better-suited model in studying the temporal learning property of in vitro living neural networks.

3 DELAY TASK WITH FITTED NEURON MODEL
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In this section, we use a network of ALIF neurons with fitted parameters to compute a delay
task: the output should be the same as the input one second in the past. To construct this network,
we use the Neural Engineering Framework (NEF) [7] [30] approach, where we first train a feed-
forward neural network that approximates the identity function (i.e. an auto-encoder) and then
connect the output back to the input such that the synapse dynamics and the transformed weight
matrices will cause the overall system to approximate the differential equation that approximates
the ideal delay function. This is known as a Legendre Memory Unit [31] and the learning
algorithm is shown in Algorithm 2 .

The training process contains two steps. In the representation phase, a feed-forward network with
a single hidden layer of neurons is constructed (Fig. 4 (a)) with randomly generated input
weights (encoder x gain) and bias, and no nonlinearities at the input or output. The goal is to
compute the network output weights (decoder) so that the output of the network is exactly the
same as the input. The input and output dimensionality is n_dim

, 80 in this step the n_dim dimensional time-varying signal is represented by a population of
n_hidden neurons. To maximize the neuron diversity and reach a better representation, the input
weights are generated by randomly sampling n_hidden values on the surface of a n_dim hyper-
sphere (line 6). The gain and bias are generated following the same rule, which is to have each
neuron respond differently to different values of the input signal. This kind of diversity is
described by the neuron tuning curve (Fig. 5). In this curve, the x-axis describes the network
input values, the y-axis is the spike frequency, and each color represents a neuron. After
recording how spike frequency changes with the injection current in the propertyList (line 8-13),
an intercept and maxFreq value will be randomly chosen for each neuron from the given range
(line 16-17). minFreq, which is the minimum spike frequency above zero, will be found by
checking the propertyList (line 18). Then two points: (intercept, minFreq) and (1, maxFreq) on
the tuning curve for a given neuron are used to form the linear equation described in Algorithm 2
line 19-21. Based on the equation, a unique gain and bias can be solved for this neuron. To find
the output weights, n_hidden number of neurons with fitted parameters are initialed and ridge
regression is used to compute the decoder and minimize the mean squared error between the
network input and the output (line 23-24). When calculating the network output at each time
step, the output of the hidden layer is represented with a vector of n_hidden

, where a spike at this time step is represented as one and no spike is represented as zero for each
neuron. With this representation, the exact timing of a spike is taking into account for training
and prediction.
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Figure 7: Delay task task with with different input band-limitation.

To turn this feed-forward network into a system capable of computing a differential equation,
recurrent connections are added to the network (fig. 4). The input, output, and recurrent weights
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of the recurrent network is calculated by equations described in line 26-29, where the A, B, D
dynamic matrices are calculated according to the LMU's mathematical derivation with a pre-
defined window size. Here dot means dot product multiplication; x means element-wise
multiplication. The window size represents the length of the past history this network could
record. This specifies the particular differential equation that we want the recurrent neural
network to approximate. As has been shown in general [7], the resulting neural network will
approximate the desired differential equation ‘m=Am+Bx

and y = Dm. As shown in specific [31], the particular A, B, and D matrices used here will
approximate the desired delay function y(¢) = x(¢ — ).

After the network is constructed, a randomly sampled continuous-time white noise process is
given as the network input and the mean square error of the actual and desired network output is
computed to indicate the performance of the constructed delay network (line 31-33). Note that
only the hidden layer neurons are fitted spiking neurons, the input and output layers have no
nonlinearity.

Results of the delay task for fitted ALIF and LIF neurons with different hidden layer spike
frequency are shown in Fig. 6. Different high freq

and low_freq

values in Algorithm 2 are tested with both models to reach a different hidden layer spike
frequency for a given input. Results show that both fitted ALIF and LIF neurons perform well
even with a very low average spike frequency (12Hz), which is within the range of the spike
frequency of a living neuron. To further explore the difference between using the ALIF and the
LIF model for the delay task, different input band-limitations for the white noise process are
tested and results are shown in Fig. 7. With an increase in the input frequency, the mean square
error for both ALIF and LIF models increased. This is due to the limitation of the Padé
approximation [2] approach which is used by the LMU. However, when comparing the ALIF
and LIF results, an interesting finding is that, when the input band-limitation increases, the ALIF
model tends to have a better mean square error as compared to the LIF model with a similar
output spike frequency.
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4 DISCUSSION

This paper shows a preliminary study on using a fitted neuron model to perform temporal tasks.
A new automatic neuron parameter fitting approach is proposed and the delay task study
suggests that the fitted neuron, with adaptation, can achieve good performance. Figure 8 shows
that the fitted adaptive neuron achieves a lower means square error as compared to the neuron
without adaption when input band-limitation increases. This result shows that the selection of the
neuron model has a big impact on learning performance especially when the parameters are fitted
to match with a realistic neuron. Neuron parameters typically can be tuned to achieve better
learning performance in algorithm designs that are inspired by biological neural networks. This
work aims to develop a tool chain to study algorithm designs for living neuron networks. Hence,
tuning parameters would lost model fidelity. The code of this work can be found at:

https://github.com/yuanzenggit/temporal_learning_with_fittedSNN
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