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Abstract— Simplified models of neurons are widely used in
computational investigations of large networks. One of the most
important performance metrics of simplified models is their
accuracy in reproducing action potential (spike) timing. In this
article, we developed a simple, computationally efficient neuron
model by modifying the adaptive exponential integrate and fire
(AdEx) model [1] with sigmoid afterhyperpolarization current
(Sigmoid AHP). Our model can precisely match the spike times
and spike frequency adaptation of cortical pyramidal neurons.
The accuracy was similar to a more complex two compartment
biophysically realistic model of the same neurons. This work
provides a simplified neuronal model with improved spike
timing accuracy for use in modeling of large neural networks.

Clinical Relevance— Accurate and computationally efficient
single neuron model will enable large network modeling of brain
regions involved in neurological and psychiatric disorders and
may lead to a better understanding of the disorder mechanisms.

I. INTRODUCTION

Development of neuron models to explain neuronal
dynamics has a long history. Biophysically accurate models
such as the Traub model [2] and the Pinsky-Rinzel model [3]
were based on Hodgkin-Huxley model and explained
membrane potential dynamics of a hippocampal neuron using
numerous gated ion channels. In this framework, multiple
differential equations are required to model a single gated ion
channel, and due to fast dynamics of sodium and potassium
voltage gated channels, small time steps are required for
simulation stability. These disadvantages make modeling of
large networks with biophysically accurate neuronal models
prohibitively computationally expensive. At the other end of
the complexity spectrum is the simple integrate-and-fire (IF)
model which models action potentials with a threshold
function. IF model is able to produce spikes in response to
stimulation, but spike timing is determined only by membrane
resistance, capacitance, and the magnitude of the injected
current, and is not accurate. Other models such as Exponential
Integrate and Fire [4] and Quadratic Integrate and Fire model
[5] incorporated more complex action potential generation into
the base IF model but lacked spike frequency adaptation found
in pyramidal neurons of the cortex. Adaptation was
incorporated into /Izhikevich [6] and the AdEx [7] models
which could replicate general firing patterns of fast spiking
interneurons and thalamo-cortical neurons. However, these
models were not shown to accurately match timing of spikes
evoked by a wide range of current inputs, particularly in
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cortical pyramidal cells. In the AdEx model, the membrane
voltage has an exponential upswing at the threshold to spike
followed by a numerical reset after each spike. Additionally,
each spike increases the after hyperpolarization (AHP) current
by a constant amount to explain spike-triggered adaptation
(described in methods). In this work, we replaced the
activation of the AHP current in the existing AdEx model by a
sigmoid function to match timing of spikes evoked by varying
levels of current injection.

Precise spike timing is of paramount importance to studies
of spike time dependent synaptic plasticity [8], formation of
memory engrams [9], understanding of spatiotemporal
memory processes [10], among many others. Fitz et al. 2020
[11] showed that semantic information may be stored in the
AHP variable of a neuron for sequential language processing.
Thus, development of a simplified neuronal model that can
accurately predict spike timing based on current input may
contribute to computational studies of brain networks and their
disorders.

In this work, we recorded the membrane potential of
cortical excitatory neurons after different levels of current
injection (25 pA to 275 pA with a Astep of 25 pA) at a
frequency of 5 Hz, which is in the range of activating long term
plasticity. We then determined whether our new Sigmoid AHP
model can match experimentally obtained spike times better
than the established AdEx model. We also compared the
performance of the Sigmoid AHP model to the biophysically
accurate Pinsky-Rinzel model in matching the spike timing.

II. MgTHOD

A. Culture preparation and Experimental procedure

Cultures of dissociated cortical neurons were prepared
from post-natal day 0—1 Sprague-Dawley rat pups (Charles
River Laboratories) as described earlier [12]. On day in vitro
(DIV) 11 to 20, we replaced the culture medium with an
artificial cerebrospinal fluid (ACSF) solution (at 37°C) for
performing whole cell current clamp recordings. The ACSF
solution contained (in mM): 140 NaCl, 2.4 KCI, 10 HEPES,
10 glucose, 2 CaCl,, 1 MgCl,, 1 Na,HPO4 (p H 7.4) [13].
Recording electrodes had 5-10 MQ resistance when filled with
internal solution containing (in mM): 130 k-gluconate, 10
HEPES, 10 phosphocreatine, 5 KCl, 1 MgCl,, 4 ATP-Mg and
0.3 mM GTP [14]. Recordings were acquired at 10 kHz.
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B. Pinsky-Rinzel Model

We adapted a two compartmental Pinsky-Rinzel model
[3]. Briefly, the model consists of one soma and one dendritic
compartment with ionic currents for each compartment, the
coupling conductance between compartments, and Ca®"
concentration in the dendritic compartment. The soma
compartment has one Na' transient channel (Iy,) and one
delayed rectifier K" channel (Ix_pg). The dendritic
compartment has one slow after hyperpolarization K* channel
(Ix—anp), one rapid voltage and Ca?" dependent K* channel
(Ix—¢), and one high-threshold voltage dependent Ca*"
channel (I;,). Keeping the governing equations same as the
existing model [3], we modified the maximum conductance of
each ionic channel and its gating variables (activation and
inactivation parameters) to fit the experimental results of our
dissociated cortical neurons. All simulations were performed
in NEURON at 0.025 ms time step. The neuron model [3] was
obtained from ModelDB (accession number 35358).

C. AdEx and Sigmoid AHP Model
The governing equations for AdEx model [1] are,
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Here, u is the absolute membrane potential with resting
potential of u,.;; and w is the AHP current. 7, and 7, are the
time constants. The AHP current is fed back to the voltage
equation with resistance, R. The sharpness of the action
potential is controlled by Ay and threshold voltage 9,,. I is the
input current injection. The voltage, u is reset if the membrane
potential reaches the numerical threshold 6,,4.¢. After firing,
integration of the voltage restarts at u = u,.. a is the coupling
of voltage to adaptation. t/represents timing of spikes
indicating each spike will increase the AHP current by a
constant b. We modified the AdEx model by introducing a
sigmoid function in the AHP variable to resemble the dynamic
behavior of the intracellular Ca?* gated K* channel:

TS = W b3, 5(— )+ <p + —1+exp(i(w_s>))

In sigmoid AHP, each spike will increase the AHP current by
b multiplied by a sigmoid function of the previous value of
AHP. p, q,r, and s are tunable parameters that determine how
the change in adaptive current will be influenced by its
previous level. All simulations were performed in MATLAB
at 1 ms time step. Parameters of Sigmoid AHP and Pinsky-
Rinzel model were optimized for neuron properties measured
at 37°C (Data shared at doi.org/10.6084/m9.figshare.148384
02.v7).

D. Evaluation Metric

To evaluate the model fitting for 10 neurons, we measured
the relative error of time to first and second spikes (Tjp and
T2, respectively) and adaptivity index (A.Index) for each
current injection (25 pA to 275 pA with a Astep of 25 pA).
Adaptivity index was defined as the ratio of the final inter-
spike interval (ISI) over the first inter-spike interval,
ISItina1/1SIsirse. Relative error of each metric for each
injected current was expressed as |exp — model|/exp.
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Figure 1: Selection of 10 excitatory neurons for model fitting. Resting
potential (V,..s;, mV), Input resistance (R;y, MQ), Time constant (7,,,
ms), Spike half-width (AP — W, ;,, ms), Adaptivity Index (4.index) of
10 neurons (shown in red circles). Mean and standard deviation of 10
excitatory neurons are shown in black horizontal and vertical lines,
respectively.

III. REesuLts

We injected current at a frequency of 5 Hz with 100 ms
pulse-width (described in methods) to 10 excitatory neurons
and measured the membrane potential. Then we characterized
several neuron properties (Resting potential (V,.g), input
resistance (R;y), time constant 7,,, half-width of spike AP —
Wi/2, and adaptivity index (4.Index)) based on the current
clamp data. Mean and standard deviation of these properties
are shown in Fig. 1 (black horizontal and vertical lines,
respectively). To evaluate our sigmoid AHP model, we fitted
these 10 neurons using one set of parameters per neuron and
quantified the error for each current injection and the overall
relative error. We then compared these results with the results
obtained via the biophysical Pinsky-Rinzel model.

Optimization of the parameters to best fit the
experimental results was done in three steps for both AdEx and
sigmoid AHP models. First, membrane time constant 7, and
input resistance R were determined by matching the potential
response to the lowest negative input current (-25 pA). Second,
time to first spike (T4p) was only a function of the exponential
term in the first model equation. So, the absolute difference
between the experiment and model for the time of the first
spike (relative to the beginning of current injection) was
minimized by tuning A; and 9,,. Third, the two other
evaluation metrics (time to second spike (T2 ) and adaptivity
index) were controlled by the AHP current, w. Parameters
related to w were iteratively tuned until the average relative
errors to all current inputs of both time to second spike and
adaptivity index were below 20%.

Although AdEx model was able to match Tjp, it could not
provide a good fit for both T2 and adaptivity index (Fig. 2B
top and middle panel) for each current input. Since the AdEx
increases the AHP current by a constant amount after each
spike, it could either fit the experimental T2, (Fig. 2B top panel
when time constant of the AHP current, t,, is small) or
adaptivity index (Fig. 2B middle panel when 7, is large). We
hypothesized that the AHP current remains small after the first
spike but increases rapidly after the subsequent spikes due to
intracellular [Ca?"] dynamics. To implement this idea, we used
a sigmoid increase of AHP current in our model that could fit
the experimental data for all current inputs (Fig. 2B bottom
panel). As expected, the maximum amplitude of the AHP
current (shown as yellow traces in all panels of Fig. 2B) with
the AdEx was nearly uniform for small t,, and slowly
increasing for large 7, but it rapidly transitioned to a much
larger value with the sigmoid AHP following high frequency
firing. Average relative error for the neuron shown in Fig. 2B
with all current inputs with the sigmoid AHP model was 4%
for T1p, 8% for T2 and 10% for adaptivity index. Whereas the
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Figure 2: Model fitting of experimental I-V curves of one neuron. (A)
Traces of injected current (black line, right y axis) and membrane
potential (red dashed line, left y axis) from the experiment. (B)
Simulation of the experimental fits for three current injections (left:
150 pA, middle: 200 pA, right: 250 pA). The AdEx model with large
Ty, (blue line; top panel), The AdEx model with small 7,, (blue line;
middle panel) and the sigmoid AHP model (blue line; bottom panel).
Yellow line in all panels indicates the AHP variable (C) Fitting
Pinsky-Rinzel model to the experimental trace for the same three
current injections (left: 150 pA, middle: 200 pA, right: 250 pA) of the
same neuron. Yellow line represents the AHP current (Ix_ayp + Ix—¢)
from the Pinsky-Rinzel. Vertical scalebar at left in panel (B & C)
indicates 50 mV. Vertical scalebar at right indicates 200 pA in panel B
and 20 pA in panel C. Both panel B & C have the same horizontal
scalebar of 100 ms.

average relative error with the AdEx model (small t,,,), was for
4% T, 11% for T and 45% for adaptivity index and the
average relative error with the AdEx model (large 7,,), was for
10% Tip, 25% for T and 22% for adaptivity index.

We then fit the experimental data using Pinsky-Rinzel
model (Fig. 2C). Crosstalk of nearly 50 parameters in the
Pinsky-Rinzel equations lead to an iterative approach to match

the experimental data. Similar to the initial step applied with
the previous models, we tuned the capacitance and leakage
channel to fit the potential for the lowest negative current input
Na channel and K-DR channel from the soma compartment;
Ca channel, K-AHP channel and K-C channel from the
dendrite compartment were determined by matching T1p, T2
and adaptivity index with each positive current injection for
each neuron. Maximum conductances and some non-trivial
gating parameters were tuned for a tradeoff between
complexity and modeling accuracy. Parameter combinations
that achieved the smallest error metric were selected. The
equivalent AHP current (Iy_pp + Ix_c) from the Pinsky-
Rinzel (yellow trace in Fig. 2C) had the similar dynamics as
the AHP current from the sigmoid AHP (yellow trace in the
bottom panel of Fig. 2B). AHP current of the Pinsky-Rinzel
model have a different amplitude compared to AdEx and
sigmoid AHP, because the former also had a K" rectifier
current to repolarize the membrane voltage. Average relative
error for the neuron shown in Fig. 2 with all current inputs for
Pinsky-Rinzel was 3% for Tip, 4% for TZ and 16% for
adaptivity index. Both sigmoid AHP and Pinsky-Rinzel model
yielded close match with the experimental findings of this
neuron.

Next, we compared our evaluation metrics between 10
experimental neurons fitted by the sigmoid AHP and by the
Pinsky-Rinzel model (Fig. 3). Relative errors of Tjp, T2, and
adaptivity index were measured for each spike-evoking
current input (Fig. 3A top, middle, and bottom panel
respectively). No neuron had more than one spike with 100 pA
current input and more than two spikes with less than 175 pA
current input. Relative errors with any current input were not
over 15% for Tjp, 10% for T, and 20% for A.index with
sigmoid AHP (blue dots and blue boxplots in Fig. 3A).
Similarly, they were not over 8% for Tjp, 10% for T2, and
30% for A.index with Pinsky-Rinzel (green dots and green
boxplots in Fig. 3A). Finally, we drew an overall comparison
between the two models by taking the median of relative errors
for all current inputs per neuron (Fig. 3B). The upper range
(75" percentile) for [Tip, T2, A.index] was [3%, 5%, 15%]
with sigmoid AHP and [4%, 5%, 24%] with Pinsky-Rinzel
model.

IV. Discussion

In this work, we developed a fast computational model of
a single neuron that could generate realistic timing of
neuronal spiking due to input current. Sigmoid AHP model
achieved spike timing accuracy that was comparable to or
better than biophysically accurate Pinsky-Rinzel model. High
accuracy of the Sigmoid AHP model was achieved by
implementing an AHP current with sigmoid dynamics that
approximated Ca®" gating: spike triggered AHP current had a
rapid increase after the evocation of more than one spike. This
idea agrees with Andrade et al. 2012 [15] that demonstrated
Ca?" dependent afterpotential as a function of spike
frequency. Because of the smaller number of equations and
larger time steps compared to the Pinsky-Rinzel model, we
expect that Sigmoid AHP model will be substantially less
computationally expensive when used in large network
simulations. Due to its accuracy in matching spike timing, this
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Figure 3: Evaluation of modeling results as relative error (Rel. error) and
their comparison. (A) (Top panel) Relative error of time to 1st AP (Tp)
was measured for each current injection. Each dot (blue for sigmoid AHP
and green for Pinsky-Rinzel model, respectively) indicates one neuron that
evokes at least one spike during the input current pulse. Boxplot shows the
median (middle line), 25" (bottom line), and 75™ (top line) percentile of the
relative error for different current injection. (Middle panel) Same as top
panel, but for the relative error of time to 2nd AP (T%). (Bottom panel)
Same as top panel, but for the relative error of adaptivity index (A. Index).
(B) Each dot (blue for sigmoid AHP and green for Pinsky-Rinzel model,
respectively) here represents the median of relative errors for all input
current pulses for one neuron. Relative errors of each metric are shown in
the x axis. Boxplot shows the median (middle line), 25" (bottom line), and
75" (top line) percentile of the data.

model can be used in spiking neural network studies of
supervised learning algorithms [16] or drug application [17],
among many others.
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