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Summary

� Isogenic individuals can display seemingly stochastic phenotypic differences, limiting the

accuracy of genotype-to-phenotype predictions. The extent of this phenotypic variation

depends in part on genetic background, raising questions about the genes involved in control-

ling stochastic phenotypic variation.
� Focusing on early seedling traits in Arabidopsis thaliana, we found that hypomorphs of the

cuticle-related gene LIPID TRANSFER PROTEIN 2 (LTP2) greatly increased variation in seed-

ling phenotypes, including hypocotyl length, gravitropism and cuticle permeability. Many ltp2

hypocotyls were significantly shorter than wild-type hypocotyls while others resembled the

wild-type.
� Differences in epidermal properties and gene expression between ltp2 seedlings with long

and short hypocotyls suggest a loss of cuticle integrity as the primary determinant of the

observed phenotypic variation. We identified environmental conditions that reveal or mask

the increased variation in ltp2 hypomorphs and found that increased expression of its closest

paralog LTP1 is necessary for ltp2 phenotypes.
� Our results illustrate how decreased expression of a single gene can generate starkly

increased phenotypic variation in isogenic individuals in response to an environmental chal-

lenge.

Introduction

Genetically identical individuals can develop different pheno-
types. Understanding the mechanistic underpinnings of this non-
genetic phenotypic variation and the relative contributions of
environmental factors and stochasticity holds promise for more
accurate genotype–phenotype predictions. As early as 1920, Sew-
all Wright wrote that a sizable fraction of the environmental con-
tribution to phenotypic variation is likely missed experimentally
and suggested that stochasticity may play an important role in
shaping individual phenotypes (Wright, 1920). Individuals
sampled from an isogenic population can differ because of (1)
stochastic differences in gene expression (Elowitz et al., 2002;
Blake et al., 2003; Raser & O’Shea, 2004; Lomvardas et al.,
2006; Volfson et al., 2006; Gimelbrant et al., 2007), protein
levels (Feinerman et al., 2008) or metabolic states (Smith et al.,
2007; Heerden et al., 2014); (2) parental effects (Perez et al.,
2017); or (3) differences in microenvironments, relative position
or other contextual information (Eagle & Levine, 1967; Snijder
et al., 2009). None of these possible causes are mutually exclu-
sive. Even subtle differences can have large cumulative effects,
because the internal state of individuals affects how they respond
to environmental factors. A classic example of environmentally

induced heterogeneity is the behavior of a collection of
temperature-sensitive cell cycle mutants in yeast. When grown
asynchronously, these mutants show heterogeneous, nonheritable
phenotypes due to individual cells experiencing the restrictive
temperature treatment at different stages in the cell cycle (Hart-
well et al., 1974). A multitude of studies in animals and plants
have shown that the extent of nongenetic phenotypic variation
across individuals and populations depends in part on genotype,
with some genetic backgrounds of the same species showing
greater nongenetic variation (or less phenotypic robustness) than
others (Waddington, 1942; Whitlock & Fowler, 1999; Ros
et al., 2004; Hall et al., 2007; Hill et al., 2007; Ansel et al., 2008;
Sangster et al., 2008; Shen et al., 2012; Ayroles et al., 2015; Kat-
sanos et al., 2017).

The more that increased, nongenetic phenotypic variation
occurs in a particular genetic background, the lower will be our
ability to predict phenotype from genotype, because the same
genetic variants will show different expressivity in different indi-
viduals (Queitsch et al., 2002; Eldar et al., 2009; Raj et al., 2010;
Burga et al., 2011; Casanueva et al., 2012; Lachowiec et al.,
2016; Zabinsky et al., 2019). Therefore, nongenetic phenotypic
variation has wide-ranging implications, from cancer drug resis-
tance (Sharma et al., 2010; Shaffer et al., 2017; M�arquez-Jurado
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et al., 2018; Emert et al., 2021) to microbial bioproduction (Del-
vigne & Goffin, 2014; Xiao et al., 2016). In agriculture, trait uni-
formity is particularly highly prized (Finch-Savage & Bassel,
2016; Tran et al., 2017) and breeding programs rely on parental
performance. A better understanding of the genetic underpin-
nings of nongenetic phenotypic variation and their interplay with
environmental factors might inform targeted breeding of more
robustly performing varieties. In plants, several genes have been
identified that affect nongenetic variation of traits like growth
(Joseph et al., 2015; Illouz-Eliaz et al., 2019), organ size or num-
ber (Hall et al., 2007; Hong et al., 2016), germination (Abley
et al., 2021), early seedling phenotypes (Queitsch et al., 2002;
Mason et al., 2016; Lachowiec et al., 2018; Lemus et al., 2023)
and defense metabolites (Jimenez-Gomez et al., 2011; Joseph
et al., 2015).

Here, we focus on hypocotyl elongation in the dark, an adap-
tive trait relevant to seedling establishment. Hypocotyl elonga-
tion in the dark shows large nongenetic variation in Arabidopsis
thaliana (c. 10% coefficient of variation in hypocotyl length;
Maloof et al., 2001; Borevitz et al., 2002; Queitsch et al., 2002;
Sangster et al., 2008; Lachowiec et al., 2018). We found that
hypomorphs of LTP2 (LIPID TRANSFER PROTEIN 2/
AT2G38530), a highly expressed gene in dark-grown seedlings,
show increased phenotypic variation under specific environmen-
tal conditions. Plant lipid transfer proteins (LTPs) are a family of
small (c. 9 kDa) lipid-binding, cysteine-rich proteins that are
commonly found in the shoot epidermis (Kader, 1996; Yeats &
Rose, 2008). While structurally similar, LTPs have different
expression patterns, suggesting functional specialization (Arondel
et al., 2000; Chae et al., 2010). Lipid transfer proteins have been
associated with antimicrobial activity and cuticle physiology and
are implicated in a wide variety of biological processes (Molina &
Garc�ıa-Olmedo, 1993; Buhot et al., 2001; Maldonado
et al., 2002; Nieuwland et al., 2005; Cameron et al., 2006; Chae
et al., 2009; Debono et al., 2009; Potocka et al., 2012; Finkina
et al., 2016; Gao et al., 2016).

LIPID TRANSFER PROTEIN 2 is abundant in the epidermal
cell wall of dark-grown hypocotyls (Irshad et al., 2008; Jacq
et al., 2017), where it promotes cuticle integrity and desiccation
tolerance (Jacq et al., 2017). We found that under certain envir-
onmental conditions, LTP2 is necessary for full hypocotyl elon-
gation in the dark, and that a decrease in LTP2 expression
increases variation in hypocotyl length, gravitropism and cuticle
permeability in isogenic seedlings. Differences in epidermal mor-
phology and cuticle permeability between long and short ltp2
hypocotyls and between growth conditions that promote or mask
trait variation suggest that loss of cuticle integrity in ltp2 hypoco-
tyls is the main determinant of this background’s increased non-
genetic phenotypic variation.

Materials and Methods

Plant material

Arabidopsis thaliana (L.) Heynh., all lines are in the Col-0 back-
ground. ltp2-1 is SALK_026257 (ABRC) described previously

(Jacq et al., 2017). ltp2-1 plants homozygous for the T-DNA inser-
tion (Chr2:16,128,007 SALK project) were confirmed by PCR
analysis with primer pairs CA340 (Chr2:16,128,062) + CA103
(Chr2:16,128,340) and CA249 (Chr2:16,127,7702) + CA103
(primer sequences in Supporting Information Table S1). ltp2-2 is
line DT7-3 (Marjorie Matzke lab, Taipei, Taiwan) described pre-
viously (Kanno et al., 2004) and contains a transgene insertion
located upstream of LTP2, mapped in Kanno et al., (2004).
Approximate location is Chr2:16,128,261, determined by sequen-
cing the PCR fragment CA340 +CA103. ltp2-2 plants were con-
firmed homozygous for the transgene insertion by PCR genotyping
with the same primers as ltp2-1. The ltp1ltp2 double knockdown
line was generated by Agrobacterium-mediated (GV3101) co-
transformation of Col-0 plants with the helper plasmid pSOUP
(CD3-1124, ABRC) and the plasmid CSHL_0103F2 (ABRC),
containing an artificial microRNA against both LTP2 and LTP1.
T0 seeds were selected on 15mgml�1 phosphinotricin (PPT/
BASTA); PPT-resistant T1 plants were then propagated on
25mgml�1 PPT; only generations T3 and above, homozygous for
the transgene, were used in hypocotyl assays.

Hypocotyl assays

Hypocotyl and root length Unless otherwise stated, all seed
batches were single-seed descent. Seeds were sterilized, resuspended
in 0.1% (w/v) Bacto agar (BD, Diagnostics, Franklin Lakes, NJ,
USA) and spotted in a well-spaced fashion onto square plates con-
taining 19 Murashige & Skoog media (MS Basal Salt Mixture)
pH 5.8, with 0.5 g l�1 MES (Sigma-Aldrich), 0.3% Phytagel
(Sigma-Aldrich) and 1% sucrose (w/v). Plates were double-sealed
with Micropore surgical tape (3M Center, St Paul, MN, USA) and
stratified in the dark for 4 d at 4°C. After stratification, plates were
exposed to 3 h of light, then placed in vertical racks, wrapped in
aluminum foil and kept at 22°C in a Conviron chamber (50%
RH; 16 h : 8 h, light : dark; c. 100 lmolm�2 s�1) for 7 d. For cer-
tain experiments, the age and media composition varied as indi-
cated elsewhere. Genotype placement was randomized across racks,
and each genotype was distributed over multiple plates per experi-
ment. At 7 d after stratification, plates were opened and imaged on
a fixed stand. IMAGEJ was used to trace and measure hypocotyl and
root length for every seedling. The hypocotyl was scored from the
collet (hypocotyl : root transition zone) till the shoot apical meris-
tem. Root length was used to infer late germination; outlier hypo-
cotyls with < 5mm (at 7 d) were removed from the analysis.
Despite our best efforts, hypocotyl elongation proved highly sensi-
tive to random environmental effects, and differences in a few
millimeters in mean were not uncommon between replicates, even
when controlling for seed batch.

Hypocotyl-negative gravitropism The angle between the shoot
apical meristem and an imaginary vertical line, drawn starting at
the base of the hypocotyl, was used to quantify the negative gravi-
tropic response in dark-grown hypocotyls at 7 d poststratifica-
tion. Data were expressed as deviations off vertical (in degrees),
with vertical representing perfect negative gravitropism. Measure-
ments were done on IMAGEJ, as described for hypocotyl length.
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Hypocotyl epidermal imaging The epidermal surface of dark-
grown hypocotyls was imaged at 7 d poststratification. Whole
seedlings were placed directly on a glass slide and the hypocotyl
imaged using a Zeiss Axioplan microscope at 950 magnification.

Toluidine blue assay Toluidine blue assay protocol based on
Tanaka et al. (2004) but with a lower concentration of dye to
avoid saturation in ltp2. Whole dark-grown seedlings were
immersed in an aqueous solution of 0.02% (w/v) toluidine blue
(Sigma) for 2 min with gentle shaking, then washed 39 with dis-
tilled water and left in water until imaging. IMAGEJ was used to
determine hypocotyl length and the fraction of the total length
stained with toluidine blue.

Seed size

Matched datasets of seed size and hypocotyl length were obtained
by imaging the same plate twice: (1) after stratification, when seeds
were fully imbibed, and (2) after 7 d of growth in the dark. The
position of the seed and the hypocotyl are the same in both pictures.
Between 10 and 20 seeds were spotted per plate and several plates
were employed per genotype. For imaging seeds, pictures were
taken under a stereomicroscope, at 95 magnification. Seed area was
measured in IMAGEJ using > 8-bit >Threshold (auto) >Analyze Par-
ticles, with settings: area, 5000-infinity; circularity ≥ 0.7.

qRT-PCR

Seedling samples were either single individuals or pools of c. 30
individuals. Unless otherwise stated, only the shoot was harvested
(including hypocotyl, cotyledons and shoot apical meristem). For
roots, rosette leaves and flowers, all samples were pools; roots
were excised from 7-d-old seedlings; rosette leaves; and flowers
from mature plants. RNA was extracted from LN2-frozen mate-
rial using TRIzol (Invitrogen) and DNase I treated. cDNA was
synthesized from 250 to 500 mg of total RNA with the RevertAid
First Strand cDNA Synthesis Kit (Thermo Scientific, Waltham,
MA, USA). qRT-PCR was performed with LightCycler 480
SYBR Green I Master Mix (Roche). Relative gene expression was
calculated as 2�(Ct target – Ct reference), with either AP2M/
AT5G46630, UBC21/AT5G25760 or PP2A/AT1G13320 as
reference genes. Primers are listed in Table S1.

RNA-Seq data

Setup and sequencing For each replicate of Col-0 and ltp2-1,
seven hypocotyl assays were set up in parallel, each containing
64–70 seedlings. At Day 7 after stratification, hypocotyl length
was scored for each of the seven assays, and from each, only the
shoots of the 10 most extreme seedlings at either tail of the distri-
bution (bottom and top 15th percentile) were collected as ‘short’
and ‘long’ samples, respectively. Each sample contained a total of
70 shoots and corresponds to one replicate. The process was
repeated to obtain a second biological replicate, in a total of eight
samples (Col-L1, Col-L2, Col-S1, Col-S2, ltp2-L1, ltp2-L2, ltp2-

S1 and ltp2-S2). RNA was extracted from all samples in parallel
using the SV Promega Total RNA System followed by NaCl/
EtOH precipitation. Generation of RNA-Seq libraries, multi-
plexing and sequencing was outsourced to Genewiz Inc. (South
Plainfield, NJ, USA). Each library was sequenced on four lanes
and two flowcells of an Illumina HiSeq2500 (San Diego, CA,
USA) in a 19 50-bp SE format.

Pseudoalignment of reads and estimation of transcript abun-
dance Pseudoalignment of reads and estimation of transcript
abundance was done using KALLISTO (Bray et al., 2016). The
KALLISTO index was built with Arabidopsis thaliana TAIR10
cDNA models ftp://ftp.ensemblgenomes.org/pub/plants/release-
50/fasta/arabidopsis_thaliana/cdna/Arabidopsis_thaliana.TAIR10.
cdna.all.fa.gz. Transcript abundances were quantified with para-
meters –single -l 200 -s 20. KALLISTO abundance files were parsed
into R (v.3.6.1) using tximport(). The tx2gene file and the TxDb
object used TAIR10 annotations ftp://ftp.arabidopsis.org/home/
tair/Genes/TAIR10_genome_release/TAIR10_gff3/TAIR10_
GFF3_genes_transposons.gff.

The output was a matrix of estimated counts with 26 923 rows
(genes) and 8 columns (samples).

Differentially expressed genes After nonspecific filtering to
remove all nonexpressed genes (zero counts across all samples;
2917 genes), and all genes which did not have at least one count
in all samples (4023), a filtered matrix of 19 983 genes9 8 sam-
ples was converted to integers and used as input for DESEQ2
(Love et al., 2014), with parameters: condition = genotype9
hypocotyl length, with two biological replicates per condition.
Only genes with a log2FC ≥ 1 and adjusted P-value ≤ 0.01 were
called as differentially expressed genes (DEGs). As high fold
changes are more frequent in genes with low baseline expression,
we specifically chose a less stringent fold-change cutoff to avoid
discarding genes with very high expression like LTP2. Differen-
tially expressed genes were obtained for four different pairwise
comparisons: (1) Col-L vs Col-S, (2) Col-L vs ltp2-L, (3) Col-S
vs ltp2-S and (4) ltp2-L vs ltp2-S (Tables S2–S5).

Principal component analysis prcomp() was applied to a trans-
posed standardized matrix of log10(counts) with 19 983 rows9 8
columns.

Gene Ontology enrichments Gene Ontology (GO) enrich-
ments were obtained with G:PROFILER (Raudvere et al., 2019)
https://biit.cs.ut.ee/gprofiler/gost, with the input to DESEQ2 (a
list of 19 983 genes) as background. Significant GO terms
were shortlisted if fold enrichment ≥ 2 and Bonferroni-corrected
P-value < 0.05. Query genesets were (1) the list of 584 DEGs
between ltp2-L and ltp2-S and (2) the list of 1164 DEGs unique
to the comparison Col-S and ltp2-S.

Cuticle genes From the dataset in Li-Beisson et al. (2013), we
selected only genes with annotated roles in cutin or wax biosynth-
esis and/or deposition (groups Cuticle Synthesis and Transport
1, Fatty Acid Elongation & Wax Biosynthesis and Fatty Acid
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Synthesis). The curated list contained 224 genes (Table S6), of
which 160 were present in our RNA-Seq dataset (Table S6), and
21 were differentially expressed between Col-0 and ltp2 (union
set between Col-L vs ltp2-L and Col-S vs ltp2-S, 1717 DEGs);
the hypergeometric test indicates this is a modest overrepresenta-
tion (P = 0.019).

Protein sequence tree of PR-14/LTP Type I proteins

Protein sequences for PR-14/Type I LTP proteins (Arondel
et al., 2000) were retrieved from NCBI: NP_181388.1 LTP1,
NP_181387.1 LTP2, NP_568905.1 LTP3, NP_568904.1 LT
P4, NP_190728.1 LTP5, NP_187489.1 LTP6, NP_973466.1
LTP7, NP_179428.1 LTP8, NP_179135.2 LTP9, NP_195807.
1 LTP10, NP_680758.3 LTP11, NP_190727.1 LTP12, NP_
001078707.1 LTP13, NP_001078780.1 LTP14 and NP_
192593.3 LTP15. Multiple sequence alignment was done with
CLUSTALW in the MSA package (Bodenhofer et al., 2015) and the
neighbor-joining tree with the APE package (Paradis et al., 2004).

LTP1 and LTP2 global expression pattern

We used the Digital Expression Explorer 2 repository (Ziemann
et al., 2019) https://dee2.io/ to retrieve uniformly processed
RNA-Seq data from A. thaliana. We curated a dataset of 56 sam-
ples, spanning several organs, contexts and developmental stages
(Table S7), and kept only genes with at least three counts in one
sample out of the 56 (26 372 genes9 56 samples).

Results

Decreased LTP2 expression increases nongenetic
phenotypic variation in skotomorphogenesis

Young seedlings grown in the dark show common skotomorpho-
genic phenotypes with elongated hypocotyls, etiolated cotyledons
and short roots (Gendreau et al., 1997; Vandenbussche
et al., 2005). LIPID TRANSFER PROTEIN 2 is among the most
highly expressed genes in dark-grown shoots (99th percentile,
Fig. S1A,B), suggesting that its function is required during skoto-
morphogenesis. To measure the impact of LTP2 on the phenoty-
pic variation of elongating hypocotyls, we used two ltp2
hypomorphs, ltp2-1 and ltp2-2, harboring T-DNA insertions
< 500-bp upstream of the LTP2 transcriptional start site
(Fig. 1a). Both lines expressed < 25% of wild-type LTP2 RNA
levels in dark-grown shoots (Fig. 1b) and showed similar defects
in skotomorphogenesis. When grown in the dark, ltp2 hypocotyls
were shorter (Fig. 1c,d) and more variable than wild-type (Col-0;
Fig. 1c), in both length (Fig. 1e) and orientation (Fig. 1f). Hypo-
cotyl lengths were almost twice as variable in ltp2-1 as in Col-0
wild-type (merged coefficient of variation, CV, of 21% vs 13%),
with ltp2-2 being slightly less variable (merged CV 18%;
Fig. 1e). The higher variation in the hypomorphs was not due to
a bimodal distribution but to a continuous, wider distribution of
hypocotyl lengths (Fig. 1d). An even larger difference was mea-
sured for hypocotyl orientation (CV 34–37% vs 10%; Fig. 1f), a

proxy for reduced negative gravitropism. However, there was no
substantial correlation between hypocotyl length and orientation
of individual seedlings (Fig. S1C). Consistent with a nongenetic
origin for this increased variation in hypocotyl length, the selfed
offspring of ltp2 parents with either long or short hypocotyls
showed similar mean hypocotyl lengths (Fig. 1g). Other notable
ltp2 phenotypes included longer roots than hypocotyls, resulting
in a smaller hypocotyl : root ratio per individual seedling than in
Col-0 wild-type (Fig. 1h), and a tendency for open and expanded
cotyledons (Fig. 1c arrowhead, Fig. 1i). Taken together, reduced
levels of LTP2 globally affect nongenetic variation in skotomor-
phogenesis.

ltp2 phenotypes show strong gene-by-environment
interaction

Next, we explored internal and external factors that might be
associated with the hypocotyl length of individual seedlings or
modulate the extent of phenotypic variation in ltp2 hypomorphs.
We started by examining the influence of seed batch, seed germi-
nation and seed size on hypocotyl length. We found similar mean
hypocotyl lengths (Fig. S2A) and similarly high coefficients of
variation with different ltp2 seed batches (Fig. 1e). There was no
germination delay or increased heterogeneity in germination in
the ltp2 hypomorphs relative to Col-0 wild-type, as inferred from
the correlation of hypocotyl and root length and its time-
dependent drop in seedling development (Fig. S2B). Finally,
hypocotyl length of individual seedlings was not substantially
explained by seed size in either the ltp2 hypomorphs or Col-0
wild-type (Fig. S2C).

We continued by examining the impact of the growth med-
ium. In the dark, hypocotyls grow longer if provided with
sucrose. However, the presence of sucrose also modifies hypoco-
tyl and root growth kinetics (Kircher & Schopfer, 2012;
Fig. S3A) and is associated with a decrease in the hypocotyl : root
ratio compared with growth conditions without sucrose (Kircher
& Schopfer, 2012; Fig. S3B). We reasoned that the presence of
sucrose might affect variation in hypocotyl elongation. In our
typical experimental setup, seedlings grow in vertical plates, with
hypocotyls in direct contact with the medium, and sucrose-driven
hypocotyl elongation depends on shoot uptake (Fig. S3C). A
comparison between ltp2 seedlings grown on MS media,
MS + 1% sucrose or MS + 1% glucose revealed that ltp2 pheno-
types were strongly sucrose-dependent. Either removing sucrose
or replacing it with glucose was sufficient to rescue all ltp2 growth
phenotypes, including differences in mean length and coefficient
of variation (Fig. 2a,b), hypocotyl-negative gravitropism (Fig. 2c)
and hypocotyl length : root length ratio (Fig. 2d). Therefore, ltp2
hypocotyls can fully elongate under favorable conditions. Sucrose
did not cause an increase in the coefficient of variation of hypoco-
tyl length in wild-type Col-0, despite a noticeable increase in
mean length in this condition (Fig. 2a,b).

We wondered whether the effects of sucrose on ltp2 seedlings
involved osmotic stress. To test this possibility, we added manni-
tol to the growth medium. Mannitol causes strong osmotic stress
in Arabidopsis seedlings (Zwiewka et al., 2015; Kalve
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et al., 2020). Adding equimolar amounts of mannitol (29 mM)
and sucrose (1%) together improved, rather than aggravated, the
ltp2 phenotypic defects (Fig. S4). We also considered whether
ltp2 seedlings were deficient in sucrose uptake but concluded that
this scenario is unlikely because of the following results: The
hypocotyls of ltp2 seedlings remain sucrose-sensitive and show
similar sucrose-driven responses as those of wild-type (Fig. S5).
Furthermore, doubling the amount of sucrose inhibited hypoco-
tyl elongation to the same extent in ltp2 and wild-type seedlings
(Fig. S5D). Lastly, ltp2 hypocotyls were shorter when grown on
MS + 1% sucrose compared with MS alone (Fig. 2a), with a sig-
nificant difference in mean values (ltp2-1: 3.03 mm 95% CI
2.62–345, ltp2-2: 3.96 mm 95% CI 3.54–4.38, ltp2-1: t
(258.75) = 14.459; P < 2.2e-16, ltp2-2: t(274.64) = 18.5;
P < 2.2e-16), inconsistent with deficient sucrose uptake. We

conclude that neither osmotic stress nor sucrose uptake contri-
bute substantially to the ltp2 phenotypes.

A sucrose-dependent increase in cuticle permeability is
associated with short ltp2 hypocotyls

A comparison of ltp2 hypocotyls grown with and without sucrose
revealed epidermal features that were associated with short hypoco-
tyls. Compared with wild-type Col-0, the epidermal surface of ltp2
hypocotyls was not smooth and instead was fuzzy or wrinkled
(Fig. 2e); this ltp2 phenotype was sucrose-specific and much stron-
ger in short than in long ltp2 hypocotyls (Fig. 2e). Furthermore,
growth with sucrose greatly increased permeability to the water-
soluble dye toluidine blue, an indicator of cuticle integrity (Tanaka
et al., 2004), in ltp2 hypocotyls, but not in Col-0 hypocotyls,

Fig. 1 LIPID TRANSFER PROTEIN 2 (LTP2) hypomorphs increase phenotypic variation in skotomorphogenesis traits. (a) Approximate location of the T-
DNA insertion (LB) relative to the LTP2 gene in ltp2-1 and ltp2-2 lines. (b) LTP2 relative expression in the shoots of wild-type (Col-0), ltp2-1 and ltp2-2

seedlings grown in the dark for 7 d after stratification. In parenthesis are the % of Col-0 LTP2 transcript levels detected in the ltp2 lines. (c) Representative
image of Col-0 (top), ltp2-1 (middle) and ltp2-2 (bottom) dark-grown seedlings at 7 d after stratification; the roots were trimmed. (d) Density lines of the
distributions of hypocotyl length scored at 7 d poststratification in Col-0 and ltp2 seedlings grown in Murashige & Skoog (MS) media with 1% sucrose;
each line represents the merged distribution of five biological replicates (n = 78–210 each) per genotype. (e) Coefficient of variation (SD/mean) in hypoco-
tyl length, a measure of variation, for (1) five biological replicates (open circles) and (2) merged for all five replicates (filled circle, same data as in d). (f)
Hypocotyl-negative gravitropism measured as the deviation from vertical (in degrees) of the hypocotyl apex in 7 d dark-grown seedlings grown on
MS + 1% sucrose. The density distribution of measured angles for all genotypes is plotted. (g) Comparison between the hypocotyl length of individual ltp2
parents (five long and five short) and the mean hypocotyl length of their offspring; all lengths measured at 7 d poststratification on seedlings grown on
MS + 1% sucrose. (h) Beanplots of hypocotyl (left side) and root (right side) length from the merged dataset used in (d, e). (i) Percentage of dark-grown
seedlings with an open cotyledon phenotype, in wild-type (Col-0), ltp2-1 and ltp2-2 genotypes, at 7 d after stratification on MS + 1% sucrose. Two repli-
cates are shown (n = 79–208).
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compared with controls without sucrose. Most ltp2 hypocotyls
stained deeply, and over > 50% of their full length (Fig. 2f,g), con-
sistent with reduced cuticle integrity (Jacq et al., 2017). The extent
of staining varied widely in ltp2 hypocotyls, from 0% to 100%
(Fig. 2g). On average, heavily stained hypocotyls were smaller than
those not stained (Fig. 2g), and ltp2 seedlings with the wild-type-
like hypocotyl length : root length ratio > 1 were less stained overall
(Fig. 2g). By contrast, staining in Col-0 wild-type hypocotyls was
generally weak and spatially restricted (Fig. 2f,g). These results sug-
gest that altered cuticle integrity contributes to the sucrose-
dependent inhibition of hypocotyl elongation in ltp2 seedlings.

Hypocotyl length is associated with many transcriptional
differences in ltp2 seedlings

To identify what molecular functions are associated with nonge-
netic variation in hypocotyl length, we compared the transcrip-
tional profiles of Col-0 and ltp2-1 seedlings with short (S) and long
(L) hypocotyls (bottom and top 15th percentiles, respectively;
Fig. 3a). For each genotype by length combination, we performed
bulk RNA-Seq on two replicate pools of 70 shoots each (Fig. 3a,
see Fig. S6A–C for QC metrics). Principal component analysis
showed three clearly distinguishable clusters: one formed by Col-0
L and S samples, a second formed only by ltp2-1 L samples and a

third containing the ltp2-1 S samples (Fig. 3b). Nearly half of the
global variance in gene expression (47%, PC1) was correlated with
mean hypocotyl length (Fig. 3c). Over 20 times as many DEGs
(log2FC ≥ 1 and P-adj < 0.01) were found between the short and
long ltp2 samples (584, Table S3) compared with the Col-0 sam-
ples (24, Table S2). The DEGs associated with hypocotyl length in
ltp2 samples were enriched in GO terms related to cell wall modifi-
cation, response to stress and plant defense (Fig. 3d, fold enrich-
ment ≥ 2, P-adj < 0.05). ltp2 samples with short hypocotyls showed
downregulation of cell wall-related genes that promote growth, like
PGX1 and XTH20 (Miedes et al., 2013; Xiao et al., 2014), second-
ary cell wall biosynthesis genes, including the three main laccases
LAC4, LAC11 and LAC17, and several peroxidases and genes
related to Casparian strip deposition (Fig. 3e). Although Casparian
strip biology is not well studied outside of roots, the Casparian strip
is present in dark-grown hypocotyls (Karahara, 2012; Geld-
ner, 2013). None of the genes in the enriched term ‘Casparian
strip’ were differentially expressed between Col-0 wild-type and
ltp2 seedlings with long hypocotyls (Fig. 3e), suggesting that the
downregulation of these genes may contribute to the phenotype of
ltp2 seedlings with short hypocotyls.

We also observed the upregulation of a variety of stress and
defense-response genes related to hypoxia, response to fungus,
anthocyanin and jasmonate biosynthesis (Fig. 3f). A few of these

Fig. 2 Sucrose-dependent loss of cuticle integrity in ltp2 is associated with short hypocotyls. (a) Density lines of the distribution of hypocotyl length for
seedlings grown on plates containing Murashige & Skoog (MS) medium, MS + 1% glucose or MS + 1% sucrose for 7 d poststratification. Shown are the
merged distributions of two biological replicates per condition/per genotype. (b) Coefficient of variation in hypocotyl length for the distributions shown in
(a). (c) Representative shoots of 7 d dark-grown seedlings grown on plates containing MS medium, MS + 1% glucose or MS + 1% sucrose. Hypocotyl-
negative gravitropism is largely rescued in ltp2 seedlings grown without sucrose. (d) Boxplots comparing the hypocotyl : root ratio for every seedling in (a)
across different growth media. Within each boxplot, horizontal lines denote median values; boxes extend from the 25th to 75th percentiles; veritcal lines
represent values within 1.5 interquartile ranges of the 25th and 75th percentiles; circles are outside of these ranges. (e) Magnified images of the epidermal
surface of Col-0 and ltp2-1 hypocotyls at 7 d poststratification when grown with (left) or without (right) 1% sucrose. (f) Comparing the effects of 1%
sucrose on hypocotyl cuticle permeability: dark-grown seedlings of Col-0 and ltp2-1were stained with toluidine blue after growing for 5 d on MS + 1%
sucrose (left) or 7 d on MS alone (right). (g) Relationship between hypocotyl length at 7 d after stratification on MS + 1% sucrose and toluidine blue staining
coverage expressed in % of hypocotyl length. Filled dots represent seedlings with the wild-type developmental pattern of hypocotyl length > root length.
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genes (11), including several of the most highly upregulated
genes in ltp2 seedlings with short hypocotyls (Fig. S6E), were also
upregulated in Col-0 seedlings with short hypocotyls compared
with Col-0 seedlings with long hypocotyls (Fig. S6D). This result
supports the idea that the phenotypic impact of perceived stress
on hypocotyl length for a given individual can be genotype-
independent; however, ltp2 individuals experience this impact far
more frequently and far more severely.

The majority of the DEGs (474, 81%) between the long and
short ltp2 samples were also differentially expressed between the
short samples of ltp2 and Col-0. This result likely reflects that
the difference in mean hypocotyl length between the short ltp2
and the short wild-type samples is about as large as the difference
between the long and the short ltp2 samples (Fig. S6F). However,

we found more than twice as many DEGs (1638) in the compari-
son of the short ltp2 and short wild-type samples (Fig. S6G).
These DEGs showed similar GO enrichments as found for the
comparison of long and short ltp2 samples, related to hypoxia,
oxidative stress, plant defense and cell wall metabolism, with
additional growth-related terms such as response to auxin
(Fig. S6H). Indeed, we found that many auxin-responsive genes,
including some with known roles in hypocotyl elongation and/or
gravitropism like SAUR19/23/24/32 (Park et al., 2007; Spartz
et al., 2012), ARGOS (Rai et al., 2015), SHY2 (Reed et al., 1998;
Tian et al., 2002) and HAT2 (Sawa et al., 2002), were downregu-
lated in ltp2 seedlings with short hypocotyls compared with wild-
type seedlings with short hypocotyls, but not compared with ltp2
seedlings with long hypocotyls (Table S8). Most of the DEGs in

Fig. 3 Hypocotyl length is associated with many transcriptional differences in ltp2 but not Col-0 seedlings, mostly related to stress, defense and growth. (a)
Experimental setup for collecting RNA-Seq samples. For Col-0 and ltp2-1, the first boxplot shows the distribution of hypocotyl length from one out of
seven hypocotyl assays done per replicate; the second set of four boxplots (two replicates with short and two replicates with long hypocotyls) shows the
actual distribution of hypocotyl lengths (n = 70) from the selected individuals used to generate RNA-Seq libraries. Within each plot, horizontal lines denote
median values; boxes extend from the 25th to 75th percentiles; vertical lines denote adjacent values within 1.5 interquartile ranges from the 25th to 75th per-
centiles; circles are observations outside of these ranges. (b) Biplot of principal component analysis showing the first two PCs. The percentage of the total
variance explained by PC1 and PC2 is indicated on the top right corner. (c) Correlation between mean hypocotyl length for the eight RNA-Seq samples and
PC1 loadings; shown on the bottom left corner is the Spearman rho. (d) Shortlisted Gene Ontology (GO) enrichments (fold enrichment ≥ 2 and adjusted P-
value < 0.05) for the set of 584 differentially expressed genes (DEGs) between ltp2-L and ltp2-S, split by down- and upregulated genes. Shown are the
log10(fold-enrichment) and the number of DEGs per enriched term. (e, f) Row-scaled heatmap visualizations of a subset of DEGs downregulated (e) or
upregulated (f) in ltp2-S relative to ltp2-L. Pink dots indicate whether each gene was also a DEG on other pairwise comparisons.
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the short sample comparison (996/1164, 86%) did not overlap
with the DEGs in the long sample comparison. Because the ltp2
seedlings with long hypocotyls and Col-0 wild-type seedlings
with long hypocotyls differ in genotype but little in mean hypo-
cotyl length, we conclude that the gene expression differences
across samples are strongly associated with hypocotyl length, in
particular with the strongly reduced hypocotyl length of short
ltp2 seedlings.

ltp2 phenotypes depend on upregulation of its closest
paralog LTP1

Focusing on cuticle-related genes (see methods from Li-Beisson
et al., 2013), we found that 21 out of the 160 expressed in dark-
grown shoots were deregulated in ltp2 relative to Col-0 seedlings
(30% more than expected, P = 0.019; Table S6). Most of these
genes (19/21) were upregulated in ltp2, including six other LTP
paralogs (Fig. 4a). To explore to what extent close paralogs may
compensate for reduced LTP2 expression, we examined the role
of its nearest paralog, LTP1 (Figs 4b, S7A). Analysis of LTP1
and LTP2 expression in light- and dark-grown wild-type seed-
lings showed a reciprocal expression pattern that suggests

nonredundant roles during hypocotyl elongation: Whereas LTP1
was c. 100 times more abundant than LTP2 in the light, it was
1/10 times as abundant in the dark (Fig. 4c). In dark-grown
seedlings, LTP2 accounts for > 86% of global Type I LTP
expression compared with only 5% for LTP1 (Fig. S7B). By
stark contrast, LTP1 tends to be the more abundantly expressed
paralog in many other conditions, organs and developmental
stages (41/56 samples; Fig. S7C). Moreover, we found that
LTP1 expression was no longer repressed in the dark in ltp2
seedlings (Figs 4C, S7B). To rule out that this trend was an arti-
fact of bulk expression analysis, we measured LTP1 and LTP2
expression in individual wild-type Col-0 and ltp2-1 seedlings
and measured the length of their hypocotyls. LTP1 expression
levels in individual ltp2-1 seedlings recapitulated our bulk obser-
vations, and their hypocotyl lengths were negatively correlated
with LTP1 expression (Fig. S8; Spearman rho =�0.401;
P = 0.0108). We further found that LTP1 and LTP2 expression
levels were correlated across individual seedlings in both wild-
type and ltp2-1 seedlings (Fig. S8A; Col-0: 0.832; P < 2.2e-16;
ltp2-1: 0.933; P < 2.2e-16), suggesting that the LTP1/LTP2
expression ratio may matter for phenotype. Indeed, we observed
that LTP1/LTP2 expression ratios were weakly but significantly

Fig. 4 ltp2 phenotype depends on the
expression ratio of LIPID TRANSFER

PROTEIN 2 (LTP2) and its close paralog
LTP1. (a) Row-scaled heatmap visualization
of cuticle-related genes differentially
expressed between Col-0 and ltp2 samples.
(b) Detail of a tree depicting amino acid
sequence similarity among PR14/Type I LTP
proteins (full tree in Supporting Information
Fig. S5A). (c) Relative expression of LTP1 and
LTP2 in the shoots of light or dark-grown
(gray box) Col-0 and ltp2 seedlings grown
for 7 d after stratification on Murashige &
Skoog (MS) media + 1% sucrose. (d)
Comparison of the LTP1/LTP2 expression
ratio between Col-0, ltp2-1 and an ltp1ltp2

double mutant. (e, g) Hypocotyl length
distribution (e), coefficient of variation of
hypocotyl length (f) and (g) hypocotyl : root
ratio for Col-0, ltp2-1 and an ltp1 ltp2

double knockdown; all seedlings were grown
in the dark for 7 d after stratification on
MS + 1% sucrose. Within each box,
horizontal lines represent median values;
boxes extend from the 25th to 75th

percentiles; vertical lines denote adjacent
values within 1.5 interquartile ranges; circles
are observations outside of these ranges. (h)
Representative images of toluidine blue
stained etiolated hypocotyls from Col-0,
ltp2-1 and an ltp1 ltp2 double mutant grown
for 7 d after stratification on MS + 1%
sucrose.
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correlated with hypocotyl length across individual ltp2-1 and
wild-type seedlings (Fig. S8E; Spearman’s rho = 0.484,
P = 0.0018 ltp2-1; Spearman’s rho = 0.437, P = 0.0059 Col-0).
We next tested whether the altered expression ratio of the para-

logs might contribute to the ltp2 phenotypes in transgenic lines.
We used an artificial microRNA to simultaneously knockdown
LTP1 and LTP2 gene expression while aiming for a similar LTP1/
LTP2 ratio as found in Col-0 wild-type (Fig. 4d). Indeed, the
mean value and variation of hypocotyl length of the ltp1 ltp2 dou-
ble knock-down seedlings closely resembled those of Col-0 wild-
type seedlings with both distributions largely overlapping (Fig. 4e,
f). The ltp1 ltp2 double knock-down seedlings were also similar to
Col-0 wild-type seedlings in hypocotyl : root ratio (Fig. 4g) and
hypocotyl cuticle integrity (Fig. 4h). This result is even more
remarkable considering that the expression levels of the individual
LTP1 and LTP2 genes differed substantially in the ltp1 ltp2 double
knock-down seedlings from those observed in wild-type Col-0
seedlings (Fig. S9), consistent with their expression ratio as a deter-
minant of the hypomorph phenotype. We conclude that the upre-
gulation of LTP1 compared with low expression levels of LTP2 in
dark-grown seedlings contributes to the variable skotomorphogen-
esis phenotypes of the ltp2 hypomorphs.

Discussion

Here, we show that the gene LTP2 plays an important role in
shaping skotomorphogenesis traits. Hypomorphs of LTP2 show
increased phenotypic variation in three hypocotyl traits: negative
gravitropism, length and cuticle permeability. For the latter two,
the increased variation was accompanied by altered mean values
relative to wild-type, with most ltp2 dark-grown seedlings having
short hypocotyls with highly permeable cuticles. Variation in
hypocotyl length increases in dark-grown hypocotyls upon per-
turbation of the chaperone Hsp90 (Queitsch et al., 2002; Sang-
ster et al., 2008), or its client protein BEH4 (Lachowiec et al.,
2018), as well as in AGO1 hypomorphs (Lemus et al., 2023). As
for the ltp2 hypomorphs described here, in these three cases, the
increased variation in hypocotyl length was also accompanied by
decreased length means. This concordance of changes in mean
and variation might be expected if wild-type hypocotyls reach
lengths close to their maximum physiological limit under these
experimental conditions.

In ltp2 hypocotyls, a strong defect in cuticle permeability was
associated with reduced elongation and increased phenotypic var-
iation compared with wild-type; however, these phenotypes
depended on exposure to sucrose. This remarkably strong gene-
by-environment effect is unlikely due to a higher requirement for
LTP2 function, as hypocotyls elongate more when provided with
an exogenous carbon source. LIPID TRANSFER PROTEIN 2 is
required in dark-grown hypocotyls to seal the cuticle and prevent
water loss (Jacq et al., 2017). Moreover, increased cuticle perme-
ability is linked to structural defects and poor adhesion between
the cuticle and the rest of the cell wall. Our finding that ltp2
hypocotyls were much more susceptible to sucrose-induced dye
uptake than wild-type is consistent with LTP2’s role in cuticle
sealing and suggests that sucrose acts as a cuticle stress. Sucrose

may trigger gene expression changes that modify cuticle composi-
tion or act directly to increase cuticle hydration, the mechanical
strain associated with water accumulating in the cuticle and in
gaps between the cuticle and the cell wall. This added strain
could lead to further cuticle detachment in sensitized ltp2 hypo-
cotyls, thus aggravating their documented cuticle integrity defect
(Jacq et al., 2017). The sucrose-induced loss of cuticle integrity is
likely the primary determinant of the shorter ltp2 hypocotyls and
their increased variation in length.

Dark-grown long hypocotyls have thick cuticles (Gendreau
et al., 1997), and shorter hypocotyls are associated with pharma-
cological or genetic disruptions in cuticular wax biosynthesis and
deposition (Narukawa et al., 2015). The greater need for cuticle
integrity during hypocotyl elongation in the dark may reflect a
seedling’s push upwards through the soil while minimizing abra-
sion and the need for structural reinforcement due to cell wall
thinning in very long cells (Derbyshire et al., 2007). Loss of cuti-
cle barrier function causes water loss and activates cuticle-
dependent defense priming (Bessire et al., 2007; Chassot et al.,
2007; L’Haridon et al., 2011; Serrano et al., 2014), which inhi-
bits growth, and is consistent with the GO enrichments observed
among upregulated genes in ltp2 seedlings with short hypocotyls
compared with those with long ones. However, the precise
mechanisms by which LPT2 facilitates the elongation of dark-
grown hypocotyls remain unknown.

In contrast to phenotypic buffers, which act on gene regulation
(Lachowiec et al., 2016, 2018; Lemus et al., 2023) or protein
folding (Queitsch et al., 2002; Sangster et al., 2008; Lachowiec
et al., 2016; Zabinsky et al., 2019), LTP2 appears to act structu-
rally by sealing the cuticle. The integrity of this seal determines
the effectiveness of the cuticle as an insulating barrier, thus pro-
viding a simple mechanism of phenotypic robustness against
environmental insults. Biophysical and regulatory complexity
makes plant cuticles liable to harbor considerable nongenetic var-
iation in their composition, ultra-structure and properties, in par-
ticular when considering the complexity of the environments
plants face. Upon damage or genetic perturbation, this intrinsic
variation is amplified as shown by the disorganized cuticles of
mutants with cutin defects or increased cuticle permeability
(Lolle et al., 1992; Sieber et al., 2000; Wellesen et al., 2001;
Chen et al., 2003; Schnurr et al., 2004; Kurdyukov et al., 2006;
Takahashi et al., 2009).

Loss of cuticle integrity may not fully explain the increased
phenotypic variation of ltp2 seedlings. We cannot rule out that
the increased phenotypic variation depends on another, yet
undiscovered LTP2- function. However, our results that show
genetic interaction between the close paralogs LTP1 and LTP2,
and that their expression ratio is a determinant of increased cuti-
cle permeability and phenotypic variation during skotomorpho-
genesis, strongly support our interpretation. In crown gall
tumors, the only other context outside of skotomorphogenesis
where ltp2 phenotypes have been identified (Jacq et al., 2017),
LTP1 is also highly upregulated (Deeken et al., 2016). This find-
ing is consistent with our result that the upregulation of LTP1
compared with LTP2 expression is predictive of the deleterious
ltp2 phenotypes.
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While paralogs with redundant or partially redundant func-
tions can confer genetic robustness (Gu et al., 2003; Kafri et al.,
2005; Dean et al., 2008; DeLuna et al., 2008, 2010; Diss et al.,
2013), this is not universally observed (Ihmels et al., 2007;
DeLuna et al., 2010; Diss et al., 2017; Dandage & Landry,
2019). In fact, incomplete functional compensation can be a
source of increased phenotypic variation (Burga et al., 2011;
Bauer et al., 2015). For example, BEH4, the earliest diverged
member of the BZR/BEH family of transcription factors, governs
phenotypic robustness of hypocotyl length by integrating regula-
tory cross-talk among the six gene family members (Lachowiec
et al., 2018). Thus, even among these closely related, partially
redundant paralogs, increased trait variation arises when the
activity of BEH4 is lost. The loss of properly integrated regula-
tory cross-talk as a cause of increased phenotypic variation is con-
sistent with our findings that upregulation of LTP1 in the dark is
associated with the ltp2 phenotypes.

Subtle changes in gene expression that percolate through gene
regulatory networks and amplify each other to affect expression of
certain core genes are thought to underlie complex diseases and
complex traits in humans (the omnigenic model; Boyle et al.,
2017; Liu et al., 2019). The genetic variants found to be associated
with complex diseases and traits in genome-wide association studies
(GWAS) typically reside in regulatory regions, likely resulting in
hypomorphs. The trait heritability explained by GWAS variants
tends to be small, and these variants have little power to predict the
disease risk of individuals (Manolio et al., 2009; Eichler et al.,
2010; Gibson, 2012; Khera et al., 2018). The low power to predict
phenotype from genotype is consistent with high nongenetic trait
variation (Queitsch et al., 2012). We speculate that this nongenetic
variation arises because regulatory variants cause small expression
changes that are integrated differently among individuals. In turn,
these differences in integrating expression changes will sensitize cer-
tain individuals but not others to environmental factors, resulting
in different phenotypes. At least for LTP2, this interpretation
holds: the upregulation of LTP1 is not sufficient for the observed
phenotypes as all ltp2 seedlings exhibit it. Likewise, all ltp2 seed-
lings experience exposure to sucrose; however, not all seedlings have
short hypocotyls and show loss of cuticle integrity. The loss of bar-
rier (i.e. cuticle) function in this plant example likely holds lessons
for studies of human traits and diseases and points to genotype-by-
environment effects as a major contributor to nongenetic variation.

Our study highlights that even highly inbred, de facto homozy-
gous genetic backgrounds maintain a physiologically relevant
reservoir of phenotypic variation, which can be exposed by stress.
While stress often increases phenotypic variation in isogenic and
inbred populations (Thattai & van Oudenaarden, 2004; New-
man et al., 2006; Braendle & F�elix, 2008; Tokatlidis et al., 2010;
Uyttewaal et al., 2012; Holland et al., 2013; Mitosch et al., 2017;
Sandner et al., 2021; de Groot et al., 2023), phenotypic robust-
ness (i.e. low nongenetic variation) is associated with stress toler-
ance and vigor in crops and lifestock (Tollenaar & Lee, 2002;
Blasco et al., 2017; Elgersma et al., 2018). A common strategy to
achieve phenotypic robustness coupled with high performance in
agricultural settings has been the use of F1 hybrids, which are
often more uniform in phenotype than their inbred parental lines

(Lewis, 1953; Smith et al., 1995; Phelan & Austad, 1994). A bet-
ter understanding of the mechanistic underpinnings of nonge-
netic phenotypic variation might lead to the development of
crops and livestock that combine uniformity of phenotype with
broad stress tolerance. This better understanding of nongenetic
phenotypic variation will also facilitate efforts to unravel the
complexity of non-Mendelian human traits and diseases.
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