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Canal: A Flexible Interconnect Generator for Coarse-Grained
Reconfigurable Arrays
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Abstract—The architecture of a coarse-grained reconfigurable
array (CGRA) interconnect has a significant effect on not only the
flexibility of the resulting accelerator, but also its power, perfor-
mance, and area. Design decisions that have complex trade-offs
need to be explored to maintain efficiency and performance across
a variety of evolving applications. This paper presents Canal, a
Python-embedded domain-specific language (eDSL) and compiler
for specifying and generating reconfigurable interconnects for
CGRAs. Canal uses a graph-based intermediate representation
(IR) that allows for easy hardware generation and tight integration
with place and route tools. We evaluate Canal by constructing both
a fully static interconnect and a hybrid interconnect with ready-
valid signaling, and by conducting design space exploration of the
interconnect architecture by modifying the switch box topology, the
number of routing tracks, and the interconnect tile connections.
Through the use of a graph-based IR for CGRA interconnects, the
eDSL, and the interconnect generation system, Canal enables fast
design space exploration and creation of CGRA interconnects.

Index Terms—Accelerator architectures, data flow computing,
hardware acceleration, high performance computing,
reconfigurable architectures.

1. INTRODUCTION

OARSE-GRAINED reconfigurable arrays (CGRAs) have been
C studied heavily in recent years as a promising configurable
accelerator architecture [4], [7], [8], [13]. The end of Moore’s law
necessitates the creation of specialized hardware accelerators to enable
running increasingly complex image processing and machine learning
applications. While a variety of hardware accelerator architectures
exist, CGRAs have emerged as an interesting midpoint between the
flexibility of an FPGA and the performance and energy-efficiency of
an application-specific accelerator. A CGRA can achieve high energy-
efficiency and performance due to word-level arithmetic operations and
interconnect, while maintaining enough flexibility to run a variety of
applications that evolve over time [2].

CGRAs, as well as other spatial accelerator architectures, often have
hundreds of compute cores and memory cores. These compute cores
(called processing elements or PEs) and memory (MEM) cores are laid
out spatially in a grid of tiles and are connected through a configurable
interconnect. An example is shown in Fig. 1. The reconfigurable in-
terconnect contains switch boxes (SBs), which connect the PE'/MEM
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Fig. 1.  Architecture of a CGRA with PE tiles, memory tiles, connection boxes,
and switch boxes.

outputs to the tracks in the interconnect, and connection boxes (CBs),
which connect the interconnect tracks to the inputs of the cores. While
having a large number of compute cores enables very high performance,
the reconfigurable interconnect connecting these cores can constitute
over 50% of the CGRA area and 25% of the CGRA energy [13].
Design space exploration of the interconnect is necessary to achieve
high performance with lower energy and area costs.

There are many interconnect design choices that directly impact the
power, performance, and area of the resulting accelerator, including the
number and bitwidth of tracks in the interconnect, how the processing
elements and memories are arranged in the array, how those elements
are connected, and how the interconnect is configured. An agile ap-
proach for specifying and generating the interconnect is needed for
efficient design space exploration.

In this paper, we present Canal, a Python-embedded domain-specific
language (eDSL) and compiler for specifying and generating recon-
figurable interconnects for CGRAs using a graph-based intermediate
representation. The major contributions of our paper are:

1) We describe a graph-based intermediate representation (IR) for
CGRA interconnects that is capable of representing and gener-
ating a variety of topologies.

2) We propose an embedded domain-specific language (eDSL)
called Canal that can compile an interconnect architecture spec-
ification into the graph-based IR.

3) We propose an interconnect generator system that can take the IR
and automatically produce hardware, place and route collateral,
and a bitstream generator.

4) We explore various design space choices using Canal and demon-
strate its effectiveness in generating an efficient CGRA design.

II. RELATED WORK

Previous attempts have been made to create an interconnect generator
for CGRAs, but new demands in CGRA design necessitate a more
flexible and powerful system. VPR is one of the most established FPGA
architecture research tools [1]. It allows users to adjust various design
aspects of the FPGA and observe the effects on final application per-
formance, such as timing and area usage. However, VPR does not offer
an RTL generator and users have to design their FPGA independently
and hand-write the VPR architecture file accordingly.

CGRA-ME [3]is a CGRA architecture research tool similar to Canal
in that it also offers integrated RTL generation and place and route
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Fig.2. The canal interconnect generator system. It takes an interconnect spec-
ification written as a program in the Canal eDSL and produces the interconnect
RTL implementation. Canal also takes an application and places and routes it on
a CGRA with the specified interconnect and generates a configuration bitstream.
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Fig.3. Left: Hardware interconnect. Right: Directed graph based intermediate
representation of the configurable interconnect. Not all connections between the
PE and SBs are shown for simplicity.

tools. One of the major differences is the architecture specification.
CGRA-ME opts for a more rigid XML-based input whereas Canal
takes in a Python eDSL program, which is more flexible and readable.

DSAGEN [14] uses a graph-based representation for the connectivity
information within an accelerator design, however Canal offers much
finer-grained representation of the interconnect. While DSAGEN pro-
vides a switch node that can be use within a CGRA architecture, Canal
provides the ability to construct switch boxes of different topologies
using individual connections between nodes.

FastCGRA [17] and OpenCGRA [10] are similar CGRA architecture
exploration tools that use eDSLs to construct the hardware. However,
users explicitly construct multiplexers and switches, from which RTL
is generated. Canal abstracts away the notion of hardware primitives
and lets the compiler backend choose how to generate the hardware.
In summary, Canal supports more tools, allows for higher flexibility,
and enables easier design space exploration than previous attempts at
an interconnect generator.

III. SYSTEM DESIGN

In this section, we introduce the design of the Canal system, including
the graph-based IR for representing interconnects, the Canal eDSL, the
static interconnect generation used to translate the IR into hardware, and
finally how that IR interfaces with the application place and route (PnR)
algorithms. Fig. 2 summarizes how the Canal interconnect generator
interfaces with the PE and memory core designs, application PnR, RTL
generation, and bitstream generation.

A. Graph-Based Intermediate Representation

The primitives in Canal’s intermediate representation (IR) are nodes,
which represent anything that can be connected in the underlying
hardware, and edges, which are wires connecting the nodes together.
An example of the IR for a switch box is shown in Fig. 3.

All edges are unidirectional so the IR represents a directed graph.
Nodes in the graph can have multiple incoming edges which, when
translated into hardware, transform into multiplexers. Each node also
has attributes that provide additional information for type checking and
hardware generation.

This intermediate representation is flexible enough to represent a
wide variety of interconnect topologies and handle an arbitrarily com-
plex set of CGRA cores. We will discuss a few design space exploration
experiments that exploit this flexibility in Section IV.
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B. The Canal Language

The Canal language is a Python-embedded domain-specific language
(eDSL) that constructs the interconnect intermediate representation
described in the previous section. The Canal language translates the
Python description of an interconnect into this IR, so at the lowest
level, a designer could instantiate nodes in the Canal language and wire
them together.

As Canal is embedded in Python, we have also built a layer on top of
the basic primitives of Canal, which simplifies the IR construction.
For instance, for creating a uniform interconnect (all switch boxes
have the same topology) with no diagonal connections, we provide a
simple helper function that produces different interconnect topologies
by varying function parameters such as height and width of the array,
switch box topology, number of tracks, bit width of tracks, and density
of pipeline registers.

The Canal eDSL allows designers to easily conduct de-
sign space exploration by varying the parameters in the helper
functions, or by generating an entirely new interconnect. Canal can
easily be integrated with other DSLs. For example, one could use a
DSL for specifying individual CGRA tiles and then integrate them
together using Canal to generate the interconnect.

C. Generating Interconnect Hardware

Because Canal’s IR only describes the connectivity among the
different nodes, it is up to the hardware compiler backend to decide
how to lower the IR. We implemented two different hardware compiler
backends that lower the IR into (1) a static mesh interconnect and
(2) a statically configured network-on-chip (NoC). This NoC has data
channels along with a ready-valid interface and routing is configured
statically before the application runs. We use magma [11] as our
hardware implementation language, but this could be extended to any
hardware generator framework.

To generate a static mesh interconnect, we adopt the following
principles to generate hardware:

1) Nodes with hardware attributes (e.g., a processing element core)

instantiate the specified hardware.

2) Directed edges are translated into wires.

3) Nodes with multiple incoming edges generate multiplexers.

We also use attributes associated with each node to lower the node
to different hardware components. For instance, a register node will be
lowered into a physical register. A port node will be lowered to a CB
(with an internal multiplexer) where the output of the CB connects to
the port of the core.

Reusing the same IR to generate a statically configured NoC has
several challenges. First, the application graph may have fanouts, that s,
one output port of a node is connected to multiple input ports. While this
is simple to handle in a static interconnect, we now need an area-efficient
way to handle control signals. Since valid signals flow in the same
direction as the data, generating hardware for valid channels follows
the same strategy as that used for the data channels. However, since
ready signals flow in a direction opposite to that of the data channels,
we need a way to merge ready signals at the fan-in point. We and
the appropriate ready signals at every fan-in point, reusing the routing
configuration to minimize the overhead.

Another challenge is that a ready-valid NoC needs FIFOs present in
the interconnect to buffer data when a downstream tile is not yet ready.
While we can easily generate a fixed-size FIFO for a register IR node,
the area cost of those FIFOs can be quite high, as shown in Fig. 4.
To reduce the area overhead introduced by FIFOs while maintaining
backward compatibility with a static interconnect, we realize that we
can combine two registers from adjacent tiles into a single size-two
FIFO. We call this a split FIFO. The first register’s FIFO control signals
are passed from the first tile into the second tile and its register.

After the graph is translated into an RTL description, Canal verifies
structural correctness by comparing the connectivity of the hardware
with that of the IR by parsing the generated RTL. In addition, Canal
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Fig. 4.  Area comparison of a baseline fully static switch box, a switch box
that includes FIFOs for ready/valid applications, and an optimized switch box
with a split FIFO.

also has a built in configuration sweep test suite that exhaustively tests
every possible connection in IR on the CGRA. This ensures correctness
of the design.

The methodology described here also applies to generating dynamic
NoCs. Instead of lowering a node into a configurable multiplexer to
select among incoming data tracks, we can generate a router whose
routing table is computed based on the same connectivity information.

D. Place and Route Using Canal Interconnect

This section describes how the Canal system integrates with a
PnR backend (see Fig. 2) to enable running applications on a given
interconnect. During the translation from a Canal program into the
directed graph representation, information regarding important hard-
ware characteristics, like core or wire delays, can be embedded into the
graph. The Canal system then executes PnR in three stages: packing,
placement, and routing. The remainder of this section describes the PnR
backend we use in our results.

During the packing stage, constants and registers in the applica-
tion are placed directly into tiles when available. After packing, the
placement tool places the tiles in the application onto the interconnect
in two stages: global and detailed placement. Global placement uses
an analytical algorithm that leverages the standard conjugate gradient
method on the summation of the cost of each net [5]. The cost of a
net is the combination of its half-perimeter wire length (HPWL) and a
legalization term for memory tiles.

After global placement, we perform detailed placement based on
simulated annealing [12]. The cost function for simulated annealing
is the total wirelength of the application, calculated by summing the
HPWL cost for each net, and an additional term for penalizing pass-
through tiles (those that are only used for routing).

After placement, we route using an iteration-based routing algo-
rithm [9]. During each iteration, we compute the slack on a net and
determine how critical it is given global timing information. Then we
route using the A* algorithm on the weighted graph. The weights
for each edge are based on historical usage, net slack, and current
congestion. This allows us to balance both routing congestion and
timing criticality.

IV. EVALUATION

We evaluate the Canal system by first exploring the optimizations
of interconnect FIFOs described in Section III-C and then by using
the Canal system to conduct design space exploration of a CGRA
interconnect.

A. Interconnect FIFO Optimizations

We evaluate the effect of introducing FIFOs on switch box area. As
described in Section III-C, we need to include FIFOs in the configurable
routing when running applications with ready-valid signaling.

As abaseline, we compare against a fully static interconnect with five
16-bit routing tracks containing PEs with two outputs and four inputs,
synthesized in GlobalFoundries 12 nm technology. As shown in Fig. 4,
adding these depth two FIFOs to the baseline design introduces a 54%
area overhead. Splitting the FIFO between multiple switch boxes results
in 32% area overhead over the baseline. This optimization allows for

47

SB Area (pm?) CB Area (um?)
2000 600
1500 400

1000

500 200
0 0

3 4 5 6 7 3 4 5 6 7

# Tracks # Tracks

Fig. 5. Left: Area of a switch box as the number of tracks increases. Right:
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Fig. 6. Application run time comparison on CGRAs with switch boxes that
have different number of tracks.

a much more efficient implementation of an interconnect that supports
ready-valid signaling.

B. Interconnect Design Space Exploration

We use Canal to explore three important design space axes of a
configurable interconnect: switch box topology, number of routing
tracks, and number of switch box and connection box port connections.
We find that Canal’s automation greatly simplifies the procedure to
explore each option in the following subsections.

1) Exploring Switch Box Topologies and Routing Tracks: The
switch box topology defines how the tracks on each side of the switch
box connect to the tracks on the remaining sides of the switch box.
The topology affects how easily nets can be routed on the interconnect.
High routability corresponds to short routes and short critical paths in
applications, allowing the CGRA to be run at higher frequencies which
decreases application run time. For these experiments we investigate
two different switch box topologies: Wilton [16] and Disjoint [15].
These switch box topologies have the same area, they both connect
each input to the other sides once.

We found that the Wilton topology performs much better than the
Disjoint topology, which failed to route in all of our test cases. The
Disjoint topology is worse for routability because every incoming
connection on track ¢ has a connection only to track ¢ on the three other
sides of the SB. This imposes a restriction that if you want to route a
wire from any point on the array to any other point on the array starting
from a certain track number, you must only use that track number. In
comparison, the Wilton topology does not have this restriction resulting
in many more choices for the routing algorithm, and therefore much
higher routability [6].

We also vary the number of routing tracks in the interconnect. This
directly affects the size of both the connection box and the switch
box and the amount of routing congestion. For these experiments we
measure the area of the connection box and switch box as well as the
run time of applications running on the CGRA.

In this experiment we use an interconnect with five 16-bit tracks and
PE tiles that have 4 inputs and 2 outputs. As shown in Fig. 5, the area of
both the switch box and connection box scale with the number of tracks.
From Fig. 6, we can see that the run time of the applications generally
decreases as the number of tracks increases, although the benefits are
less than 25%.

Canal allows designers to easily perform this type of switch box
topology design space exploration and determine the trade-offs between
the number of tracks in the interconnect and the resulting run time of
the applications.
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Fig. 9. Run time comparison of a switch box and connection box that have
varying connections from the four sides of the tile.

2) Exploring Switch Box and Connection Box Port Connec-
tions: Finally, we explore how varying the number of switch box and
connection box port connections affects the area of the interconnect and
the run time of applications executing on the CGRA. In Canal, we have
the ability to specify how many of the incoming tracks from each side
of the tile are connected to the inputs/outputs of the PE/MEM cores.
Decreasing these connections should reduce the area of the intercon-
nect, but may decrease the number of options that the routing algorithm
has. For these experiments, we vary the number of connections from the
incoming routing tracks through the connection box to the inputs of the
PE/MEM core, and vary the number of connections from the outputs of
the core to the outgoing ports of the switch box. At maximum, we can
have 4 SB sides, with connections from the core output to the four sides
of the switch box. We then decrease this by removing the connections
facing east for a total of three sides with connections, and finally we
also remove the connections facing south for a total of two sides with
connections. This is shown in Fig. 7. We do the same for the connection
box.

As shown in Fig. 8, as the number of connections from the core to
the switch box decreases, we see a decrease in switch box area. From
Fig. 9, we can see that this generally has a small negative effect on the
run time of the applications. In this case, a designer could choose to
trade some performance for a decrease in switch box area. We see the
same trends with the connection boxes as well.

V. CONCLUSION

‘We have developed Canal, a domain-specific language and intercon-
nect generator for CGRAs. The Canal language allows a designer to
easily specify a complex configurable interconnect, while maintaining
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control over the low-level connections. The hardware generator, placer
and router, and bitstream generator help to facilitate design space
exploration of CGRA interconnects. We demonstrate the flexibility of
Canal by creating a hybrid ready-valid interconnect and demonstrate the
design space exploration capabilities of Canal by evaluating different
switch box topologies, number of interconnect routing tracks, and
number of SB and CB port connections. The power and flexibility that
Canal provides will enable more designers to create and explore diverse
and interesting CGRA architectures.
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