IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 59, NO. 3, MARCH 2024

947

Amber: A 16-nm System-on-Chip With a Coarse-
Grained Reconfigurable Array for Flexible
Acceleration of Dense Linear Algebra

Kathleen Feng"™, Graduate Student Member, IEEE, Taecyoung Kong", Member, IEEE, Kalhan Koul,
Jackson Melchert™, Alex Carsello™, Qiaoyi Liu, Gedeon Nyengele, Maxwell Strange™, Keyi Zhang",
Ankita Nayak, Jeff Setter, James Thomas, Kavya Sreedhar™, Po-Han Chen™, Graduate Student Member, IEEE,
Nikhil Bhagdikar, Zach A. Myers™, Member, IEEE, Brandon D’ Agostino ™, Graduate Student Member, IEEE,
Pranil Joshi, Stephen Richardson, Christopher Torng™, Mark Horowitz", Fellow, IEEE,
and Priyanka Raina™, Life Fellow, IEEE

Abstract— Amber is a system-on-chip (SoC) with a coarse-
grained reconfigurable array (CGRA) for acceleration of dense
linear algebra applications, such as machine learning (ML),
image processing, and computer vision. It is designed using
an agile accelerator—compiler codesign flow; the compiler
updates automatically with hardware changes, enabling con-
tinuous application-level evaluation of the hardware-software
system. To increase hardware utilization and minimize recon-
figurability overhead, Amber features the following: 1) dynamic
partial reconfiguration (DPR) of the CGRA for higher resource
utilization by allowing fast switching between applications
and partitioning resources between simultaneous applications;
2) streaming memory controllers supporting affine access
patterns for efficient mapping of dense linear algebra; and 3) low-
overhead transcendental and complex arithmetic operations. The
physical design of Amber features a unique clock distribution
method and timing methodology to efficiently layout its hier-
archical and tile-based design. Amber achieves a peak energy
efficiency of 538 INT16 GOPS/W and 483 BFloat16 GFLOPS/W.
Compared with a CPU, a GPU, and a field-programmable gate
array (FPGA), Amber has up to 3902x, 152x, and 107 x better
energy-delay product (EDP), respectively.

Index Terms— Coarse-grained reconfigurable array (CGRA),
computer architecture, computer vision, image processing,
machine learning (ML), reconfigurable accelerators, system-on-
chip (SoC).

Manuscript received 9 February 2023; revised 5 July 2023 and 21 August
2023; accepted 26 August 2023. Date of publication 22 September 2023;
date of current version 27 February 2024. This article was approved by
Associate Editor Dennis Sylvester. This work was supported in part by
the DARPA DSSoC Grant, in part by the Stanford AHA Agile Hard-
ware Center and Affiliates Program, Intel’s Science and Technology Center
(ISTC), Stanford SystemX Alliance, SRC JUMP 2.0 PRISM Center, NSF
CAREER Award under Grant 2238006, Hellman Faculty Scholar Pro-
gram, and Apple Stanford EE Ph.D. Fellowship. The work of Kathleen
Feng was supported by the Department of Defense (DoD) through the
National Defense Science and Engineering Graduate (NDSEG) Fellow-
ship Program. (Kathleen Feng and Taeyoung Kong contributed equally to
this work.) (Corresponding author: Kathleen Feng.)

Kathleen Feng, Taeyoung Kong, Kalhan Koul, Jackson Melchert,
Alex Carsello, Qiaoyi Liu, Gedeon Nyengele, Maxwell Strange, Ankita
Nayak, Jeff Setter, Kavya Sreedhar, Po-Han Chen, Nikhil Bhagdikar,
Zach A. Myers, Brandon D’Agostino, Pranil Joshi, Stephen Richardson,
Christopher Torng, Mark Horowitz, and Priyanka Raina are with the Depart-
ment of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
(e-mail: kzf@stanford.edu).

Keyi Zhang and James Thomas are with the Department of Computer
Science, Stanford University, Stanford, CA 94305 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2023.3313116.

Digital Object Identifier 10.1109/JSSC.2023.3313116

I. INTRODUCTION

ARDWARE accelerators have emerged as the key

method to improve performance and energy efficiency
of applications, as Moore’s law slows down. However,
application changes quickly result in outdated accelerators.
Accelerators designed for specific image processing, computer
vision, and machine learning (ML) applications [1], [2], [3],
[4], [5], [6] demonstrate high performance and efficiency when
they are released but soon become obsolete, as new imaging
or ML applications emerge.

Reconfigurable accelerators present a solution to balance
the efficiency and performance offered by fixed-function,
dedicated accelerators and the adaptability needed to sup-
port application changes. Field-programmable gate arrays
(FPGAs) have demonstrated utility as reconfigurable acceler-
ators and have been used for accelerating various application
domains [7], [8], [9], [10], [11]. However, programmability
comes with energy, delay, and area overheads. Reconfigu-
ration speed affects how often the accelerator can switch
applications and repurpose resources that may be sitting idle.
In an FPGA, reconfiguration takes tens of milliseconds [12],
which prevents users from switching applications in real
time. Memory control logic is often implemented in the
reconfigurable fabric itself, which is inefficient relative to
specialized memory control logic. General purpose direct
memory access (DMA) engines can be used but are less
performant. Finally, reconfigurable accelerators have intro-
duced dedicated hardware, such as digital signal processors
and artificial intelligence engines [13] in order to close the
gap with application-specific integrated circuits (ASICs), but it
often goes underutilized for applications that do not need those
operations.

Amber [14] is a reconfigurable system-on-chip (SoC) that
overcomes the challenges faced by traditional reconfigurable
accelerators and targets dense linear algebra applications,
including image processing, computer vision, and ML. The
core of Amber is a coarse-grained reconfigurable array
(CGRA) of processing element (PE) and memory tiles for
application acceleration. To reduce area, energy, and the
complexity of running applications on a reconfigurable chip,
Amber features the following contributions.

0018-9200 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
Authorized licensed use limited X8 SEPTHIMURNSERPIBEMRESHaH I Rafitdesdsink o7 o088 UMEIAREE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9860-4942
https://orcid.org/0000-0001-6224-4690
https://orcid.org/0000-0002-8232-1603
https://orcid.org/0000-0003-2549-9525
https://orcid.org/0000-0001-5945-1349
https://orcid.org/0000-0002-8902-2518
https://orcid.org/0000-0002-8456-6313
https://orcid.org/0000-0001-9760-9565
https://orcid.org/0000-0002-4807-9550
https://orcid.org/0000-0001-5514-072X
https://orcid.org/0000-0002-2385-619X
https://orcid.org/0000-0003-3245-7542
https://orcid.org/0000-0002-8834-8663

948

1) Fast dynamic partial reconfiguration (DPR) that allows
the SoC to be reconfigured to run new applications very
quickly and run several independent kernels in parallel.

2) Efficient streaming memories to support affine access
patterns, common in dense linear algebra applications.

3) Low-overhead, distributed implementation of necessary,
but infrequently used, complex arithmetic operations.

4) Hierarchical physical design with low-overhead river
routing for the clock and other global signals.

5) Use of an agile accelerator—compiler design flow in
which the compiler updates automatically with hardware
changes, enabling continuous application-level evalua-
tion of the hardware—software system.

Section II provides background on CGRAs and agile
hardware design. The Amber architecture is described in
Section III. Section IV covers the global buffer (GLB) and
DPR. Section V describes the streaming memory controllers
for affine patterns. Section VI explains how Amber supports
complex operations with low overhead. Section VII covers
physical design of Amber, and Section VIII describes the hard-
ware design and compilation flow. Finally, Section IX shows
results and comparisons of Amber against other reconfigurable
platforms.

II. BACKGROUND

As accelerators have become increasingly common, research
into reconfigurable architectures, such as CGRAs, and agile
accelerator—compiler design techniques, has also become more
popular. CGRAs are a class of reconfigurable, programmable,
spatial-style architectures that serve as a midpoint between
the flexibility offered by FPGAs and the energy efficiency
of ASICs [15]. Instead of being configurable at the bit-
level-like FPGAs, which use lookup tables (LUTSs) to hold
configuration data, CGRAs are configurable at a word-level
granularity. They use coarse-grained processing and memory
elements with a word-level interconnect, typically arranged
in a tile-based manner [16], [17], [18]. While less efficient
compared with ASICs, CGRAs are more flexible due to the
built-in configurable nature of their different components.

Traditionally, designers use a waterfall approach to build
accelerators, in which they first study an application, cre-
ate a hardware specification, perform logical and physical
design, fabricate the hardware, and finally develop the soft-
ware compiler to map the application to the hardware.
However, a waterfall approach makes it hard for designers
to adapt to changing application requirements. In con-
trast, an agile accelerator—compiler design approach borrows
from agile software methodologies and allows the designer
to make incremental updates to the hardware and corre-
sponding software tool chain to create an accelerator [19].
Recently, an agile approach to designing CGRAs has been
introduced, which couples CGRA hardware generation with
automatic application compiler updates [20]. In this article,
we demonstrate a CGRA architecture designed with an agile
accelerator—compiler design flow.

III. AMBER ARCHITECTURE

Amber consists of a CGRA, a GLB, and an ARM Cortex-
M3 CPU [21] (Fig. 1). The CGRA has 384 PE tiles

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 59, NO. 3, MARCH 2024

Chip [DRAM [of DRAM Ctrl o
[Application Processor | (AccelenatoydSubsystem GLB
— Global Buffer (GLB Tiles
Processor Subsystem - TiIe’TiIe Tile|Tile| ... [Tile|Tile|Tile[Tile
[32-bit ARM M3 cPU | ¥ 8 ollal2ll9 12|19 |7
£ (Data/Configuration Network |
[32KB D$|[32KB I | 8L e dodd CGRA
‘ Peripheral Subsystem }0 E ¢ ¢) | PE
o 8 s
< A - |MEM
SoC _32KB SRAM f i oooooooo oooooood Tiles

Fig. 1. Amber SoC architecture. The accelerator consists of a GLB and
a CGRA. The processor subsystem controls application execution.

CGRA
Routing
Tracks)

- Switch
Connection goxt(SB):
Box (CB): outes
Brings outputs
inputs

Fig. 2. PE and memory tiles in the CGRA, connected in an island-style

architecture.

and 128 memory tiles, with every fourth column composed
of memory tiles (Fig. 2). Each PE supports INT16 and
BFloat16 [22], [23] operations and contains a 64-byte register
file (RF) (Section VI). Each memory tile has a 4-KB SRAM
(Section V). Each PE and memory tile has switch boxes
(SBs) and connection boxes (CBs) to connect to the array
interconnect. The GLB sits between off-chip DRAM and the
CGRA and streams input, output, and intermediate data to
and from the CGRA. Each of the 16 GLB tiles contains two
128-KB SRAM banks, load and store units, a configuration
network, and a data network (Section IV). The ARM Cortex
M3 processor subsystem manages application execution by
sending bitstreams to the CGRA and directing data movement.
It contains 128-KB of SRAM and DMA units that transfer data
to and from off-chip DRAM through an ARM Thin Links
interface [24].

CGRA tiles communicate through statically configured
16- and 1-bit data interconnects (Fig. 3). SBs and CBs connect
a tile core to the data interconnect. SBs have multiplexers
that route data over five incoming and five outgoing 16-/1-bit
routing tracks in each direction, and SB muxes optionally
pipeline data. Adding more than five incoming or outgoing
tracks to the SBs does not significantly improve application
performance. However, decreasing the number of tracks from
five hurts performance, because the router creates longer paths
in the design due to the increased difficulty in routing the
application [20]. Internally, SBs use the Wilton topology [25].
The Wilton topology rotates track numbers, meaning, for
example, input west 2 (IW2) links to output north three (ON3).
The Wilton topology increases routability, because it does not
impose a restriction that a route from one side of the SB to the
other side must use the same track number. Other topologies,
such as disjoint [26], fail to route the targeted applications for
this reason. CBs contain a 20:1 multiplexer that brings data
from the interconnect tracks to the PE or memory core; one
CB is instantiated for each input.

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2024 at 07:19:05 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: AMBER: A 16-nm SOC WITH A CGRA FOR FLEXIBLE ACCELERATION OF DENSE LINEAR ALGEBRA 949

Low-Overhead |

PE/MEM o0zZ0z0zZ0z0u North
Output SCE2EENELER (N) Boundary
2 £ 14 14 14 14 | Protection for
g g l l l l Fine-Grained
~ Power Gating
W4 —1—*> > OE4
OW4] | IE4 | DO D1 D2 D3
W3 > 2000 20 2
ow3 " | SEL| S In S8/CE7
W2 | > vitc ™ OE2 out
OW2+ 30X 1E2 ‘ SEL
Wil > e OE1 ;
OW1 IE1 ‘
IWO0] > OEO
owo<| L Teo ‘
my
N s
o Adididi T e Y
wnos SZERERLRLYL Registers vour
AN J
Fig. 3. CGRA SB features the Wilton topology to route data between tiles

(left). Boundary protection logic for power-gating resides in the SB and CB
multiplexers (right).

Word Size=¢ _ GLB Tile GLB Tile GLB Tile
| Bank 0 || Bank 1 | l Banks U l Banks u
[f64 Ring Interconnect [1” - &
y Load Unit Store Unit A
Addr Gen Addr Gen \
\
Serializer Deserializer
16f 16}
(7y jj a
| -
" A i i
No resdy/vaiid CGRA | [Load/Store Unit]J [Load/Store Unit]J
/\. Mux N Demux —> Request <— Response
Fig. 4. GLB tile microarchitecture (left). By default, a load/store unit only

accesses banks in the same GLB tile, bypassing the ring interconnect. Two
GLB tiles connected via a ring interconnect (right). Fixed latency is guaranteed
when a load unit accesses any bank in the two tiles as the request path (red)
and the response path (blue) form a circle. Pipelining registers are not shown.

The CGRA supports tile-level power gating to turn unused
tiles off. Each tile has power switches controlled by a con-
figuration register. Instead of dedicated isolation cells, which
add area and timing overheads, the multiplexers within the
SBs and CBs contain boundary protection logic to prevent
propagation of floating signals from an “off” domain into an

on” domain. The boundary protection multiplexers are based

n [27] and [28] and have three stages: one-hot encoding,
clamping, and an OR tree. One-hot encoding ensures that only
one data port is selected, clamping all non-selected ports to
zero. The OR tree produces the final output of the multiplexer.
The boundary protection logic adds less than 1% area overhead
and only 30 ps of delay.

V. GLB ARCHITECTURE SUPPORTING DPR

Many workloads in imaging, vision, and ML domains are
composed of multiple tasks that run concurrently or in a
pipelined manner. For example, a computing system in an
autonomous vehicle runs a camera pipeline to generate an
RGB image, followed by several perception tasks, such as
object detection. The GLB in Amber is designed to support
concurrent streaming tasks with several input—output chan-
nels by splitting the GLB into 16 independent stream units
called GLB tiles. It supports DPR, which can reconfigure up
to 16 CGRA regions in parallel.

A. GLB Tile Microarchitecture

The GLB is a shared memory that streams data to and from
the CGRA. Each of the 16 GLB tiles serves as an independent
stream unit with its own memory (Fig. 4). Each GLB tile
communicates with fixed columns of the CGRA, which avoids
using an expensive crossbar between the GLB and the CGRA.
This does not cause any limitations, since data can be routed to
any part of the CGRA through its interconnect. A GLB tile has
two 128-KB 64-bit wide (four-word wide) single-port SRAM
banks, a load/store unit with an address generator (AG), and
a serializer/deserializer to stream 16-bit CGRA words.

To run applications on Amber, the application compiler stat-
ically schedules data movement at compile time and extracts
affine memory access patterns (Section V). The number of
GLB tiles needed and configuration of the AGs are determined
by the number of input—output channels and the access pattern
of each channel, respectively. The compiler guarantees syn-
chronization of data movement at the word level, eliminating
the need for a handshaking interface between GLB tiles and
the CGRA and saving area and energy.

Some channels in an application may need more memory
than what one GLB tile can provide. In such cases, a GLB tile
needs to access banks in other GLB tiles, which can introduce
variable latency, as there are pipelining registers on the path to
other tiles. However, the application compiler needs to know
the memory access latency a priori to statically schedule data
movement. To solve this, the GLB uses a configurable ring
interconnect to enable a load/store unit to communicate with
any bank in the neighboring GLB tiles while guaranteeing a
fixed latency. When a request from a load unit enters the ring,
it flows to the destination bank, and the bank then injects the
response back into the ring to flow to the source load unit in
a full circle with fixed latency (Fig. 4).

B. Dynamic Partial Reconfiguration

Amber can spatially map multiple tasks or temporally
switch one task to another to maximize hardware utilization.
This is done by DPR, which reconfigures part of the CGRA
without affecting the rest. Amber uses the GLB to support
high-throughput and parallel DPR with low hardware over-
head. Amber shares GLB storage between application and
configuration data and uses the GLB’s parallel data ports to
drive a high-speed, pipelined configuration network. Reusing
the GLB for reconfiguration eliminates the need for dedicated
storage and control logic for the reconfiguration system, reduc-
ing hardware overhead.

The CGRA has 22656 32-bit configuration registers
(90.6 KB), addressed by a 32-bit configuration address
channel. Within the 32-bit configuration address, the most
significant 16 bits indicate the file_id, while the least sig-
nificant 16 bits indicate the specific register within each
tile. The configuration process in the CGRA operates on a
columnwise basis, with each column having its own dedi-
cated configuration channel. The channel comprises a 32-bit
configuration address and the 32-bit configuration data. The
configuration flows down the column, broadcasting to the tiles
within it. Every tile in the column compares its tile_id to
the most significant 16 bits of the configuration address, and

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2024 at 07:19:05 UTC from IEEE Xplore. Restrictions apply.

950

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 59, NO. 3, MARCH 2024

GLB Tile 0 GLB Tile 1 GLB Tile 2 copa e Baseline (no DPR) I :
| Banks 1 Banks || Banks I Region1| #1 | #2 | #3 [#a [#5 [#6 [#7 [#8 | |[[#29] #30
A A Recgﬁgﬁz IDLE ResNet (frame #1) IDLE IDLE
Load UnitwA Load Unity ~ Load Unity (a) § DPR , L (ms) 903
Addr Demux Addr | / Demux Addr CGRA Hervn
| Gen 64 Gen 64 Gen Region 1| #| #2 | #3 | #4 [#5 | #6 | #7 [4]4 ’ # | # :
Serializer [serializer RSoio 2 ! ResNed(@ramerieD) 1 Egﬁ,gier:: on'
16 64 16 64 o ! DPR . ” ', Frame #1 |
Switch~__ Y, Switch~.._ Switch ~. _ 0 Time (ms) 511
Icrgc';?gg:ﬁgg{‘ M ICotnfiguratiotn ;Zotnﬁguratiotn M| Fig. 6. Execution timeline of running a camera pipeline and ResNet-18 on
{ ntercofnec e) the CGRA (a) without DPR and (b) with DPR.
(- N
(CGRA yC0l0 AgiColl yCol2 ycol-3 yCol4 C¢5) example, in Fig. 5, the load unit in GLB tile 1 injects
Config flows ./ —=Tile0 —Tile1l Inactive — Data :
down column DPR Path _ DPR Path DPR Path path the bitstream into a switch in the configuration interconnect,

Fig. 5. DPR using GLB tiles and the configuration interconnect. GLB
tile O only reconfigures the first two columns (blue), while GLB tile 1 can
broadcast a bitstream to four columns through the configuration interconnect
(red). Configuration flows down CGRA columns.

only tiles with a matching tile_id store configuration data
in corresponding registers. Therefore, even when the GLB
broadcasts a bitstream to multiple columns (and ultimately
multiple PE/memorys in the columns), only a single PE with
a matching tile_id accepts the configuration data, while the
remaining PEs disregard the bitstream. This simplifies the
configuration network, as complex routers are not needed.
Amber does not support configuring multiple PEs with the
same bitstream in a single cycle.

Unlike other CGRA architectures [2], [29] that use a DMA
or a serialized interface to configure the CGRA, Amber reuses
the GLB to store bitstreams and stream them to CGRA
columns. Multiple sets of bitstreams can be preloaded into
the ample GLB memory and subsequently reused multiple
times, eliminating the need for fetching them from off-chip
DRAM for every reconfiguration. By default, each GLB tile
is responsible for reconfiguring PE/memory tiles within the
two columns positioned below the corresponding GLB tile.
During the reconfiguration process, the GLB tiles assigned
to reconfigure the corresponding subregion work in unison to
stream their respective bitstreams. The load unit in each GLB
tile reads the bitstream in four-CGRA-word (64 bit) chunks
(32-bit configuration address and 32-bit configuration data)
and sends it to a switch in the configuration interconnect every
cycle, bypassing the serializer (Fig. 5), which then multicasts
bitstreams to the two CGRA columns below. For instance,
bitstreams from GLB tile 0 in Fig. 5 (blue) flow down to
columns O and 1. In this default setting, bitstreams have to
be sorted by their destination CGRA tiles and preloaded into
corresponding GLB tiles before reconfiguration. While this
preprocessing incurs some overhead in the processor, it can be
amortized when the same bitstream is used for reconfiguration
several times once preloaded into the GLB.

Using multiple GLB tiles for reconfiguration enables high-
throughput, parallel DPR, where multiple regions of the
CGRA can be reconfigured concurrently. However, some GLB
tiles may not be available or may not have enough empty
space to store bitstreams at runtime. In this case, a single GLB
tile can deliver a bitstream to more than two CGRA columns
by configuring switches in the configuration interconnect to
chain GLB tiles and forward bitstreams to the right. For

which is configured to broadcast to columns 2-5 (red). The
circuit-switched configuration interconnect provides flexibility
in multicasting the bitstream to a varying number of CGRA
columns with low hardware overhead: one multiplexer and one
set of pipeline registers per GLB tile.

Once the bitstream enters the CGRA, it flows down a con-
figuration channel along with the clock signal (Section VII).
This allows the bitstream to reach the bottom of the CGRA
at 1 GHz. Due to parallel streaming of bitstreams using
GLB tiles and a high-frequency configuration channel, Amber
achieves a maximum DPR throughput that is 80x higher than
DynPaC [29], which relies on a DMA controller, and 25 600 x
higher than Eyeriss [2], which utilizes a scan chain interface
(64 GB/s versus 800 MB/s versus 2.5 MB/s).

The CGRA operates on large tiles of an input image, and
Amber only allows reconfiguration when a kernel finishes the
execution of a tile. The intermediate output of the kernel is
stored in either memory tiles or GLB tiles, and reconfiguration
does not change the contents of data stored in the memories.
After reconfiguration, if a new kernel needs the outputs of
a previous kernel, it continues processing the data stored in
memory tiles or GLB tiles without saving it to temporary
memories. If a new kernel is from a distinct application and
needs memory space in memory tiles, data is temporarily saved
to GLB tiles (or DRAM) and are restored to memory tiles later.

We evaluate the benefits of dynamic resource allocation
on Amber using DPR with a synthetic autonomous system
workload. In this workload, an image sensor produces a
RAW image. A camera pipeline task processes every frame to
generate an RGB image, which then goes through ResNet-18
for object detection if it is a key frame (e.g., every ten
frames). In the baseline (no dynamic resource allocation),
we partition the CGRA into two regions with an equal
amount of hardware resources. For key frames, each CGRA
region executes camera pipeline and ResNet, while for non-
key frames, the ResNet-dedicated CGRA region sits idle
(Fig. 6(a)). In contrast, Amber exploits DPR to dynamically
reallocate hardware resources at runtime to minimize the
latency (Fig. 6(b)). Amber allocates the entire CGRA to run
a camera pipeline for frame 1. Once it finishes, as frame 1 is
a key frame, DPR rapidly switches half of the CGRA to
run ResNet. After ResNet finishes, the resources allocated for
ResNet are reconfigured to run camera pipeline again until the
next key frame. With DPR, the maximum frames per second
(frames/s) Amber can achieve is 58.7, which is 1.8x faster
than without DPR (33.3 frames/s).

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2024 at 07:19:05 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: AMBER: A 16-nm SOC WITH A CGRA FOR FLEXIBLE ACCELERATION OF DENSE LINEAR ALGEBRA

(a) (b) Basic affine function

951

Affine function as a
recurrence relation

Write Data implementation SX | SX | SX
Write v Read —m— #dx-*_dx-*_dx_t
Address Address addr 1o 7| offset = 0
incx|incy +- sy ,\ = a1
Write Read oW dy = 19 foilm[zs] MaNge: rx = 4
Enable MEM Enable \ ry =4
T. incx | d toop boundary | rige: o - 2
SG Aa SI 40|41|42|43|44|45|46|47 sy = 16
|nCy _‘1 48(49|50(51]52|53|54|55| delta: dx = 2
Read+Data L‘EIJ sx | sy | [offset | 56]57|58[59[60[61[62[63 dy = 10

addr = sx*x + sy*y + offset

Fig. 7.

addr(i+1) = addr(i) + (incy?dy:incx?dx:@)

(a) Example of a dual-port memory with streaming memory controllers for affine access patterns. The ID provides values to the AG and SG, which

generate addresses and enable signals, respectively. (b) Affine access patterns are implemented using recurrence relations, which eliminate the use of expensive

multipliers.

V. STREAMING MEMORIES FOR AFFINE PATTERNS

Accelerators often contain DMA engines to orchestrate
data movement to and from the accelerator [30]. However,
for the dense linear algebra applications that Amber targets,
DMA engines are too general and lead to unnecessary area
and energy overheads. Instead, because these applications
demonstrate highly regular affine access patterns, we spe-
cialize the memory controllers within Amber to match these
patterns. All on-chip memories (GLB, memorys, and RFs)
in Amber have optimized internal affine memory controllers,
whose parameters are extracted from the application by the
compiler [31].

Affine access patterns can be expressed in the form of nested
loops. For example, a two-level affine loop nest looks like

for y in range 0O:ry
for x in range 0O:rx
addr = sxx*x + syxy + offset

where the ranges (rx and ry) and strides (sx and sy) are
configurable parameters set from the application. The GLB,
memory, and PE RF support up to four-, six-, and two-level
loop nests, respectively. The GLB loops over batches of
images and the outer tiling loops, the memory is designed to
have the most flexibility and supports the most number of loop
configurations, and the PE RF supports only two levels due to
its small size (32 16-bit words) and use as a local scratchpad
inside the PE. We connect the affine memory controllers to
the read and write ports of foundry-provided SRAMs (Fig. 7).
Each controller consists of three components. The iteration
domain (ID) specifies the range of memory operations (0 : rx
and 0:ry). The ID is implemented by a set of counters, one
for each loop in the pattern. The AG computes the address as
an affine expression of strides and ID counter values. Finally,
the schedule generator (SG) produces the read or write enable
as an affine expression of a set of strides and ID counter values.

A. Streaming Memory Optimizations

Internal memory controllers in memory save area and
energy compared with using PEs for address generation and
eliminate sending memory requests across the interconnect.
The hardware implementation of the streaming memory con-
trollers contains a number of optimizations to further reduce
overhead. To eliminate the use of multipliers, the affine
patterns are calculated as recurrence relations, which use deltas
(dx and dy) calculated from the strides and ranges (Fig. 7(b)).
The deltas represent how much the output of the multiplier
increases with each update.

The GLB and memory contain additional optimizations.
They use wide-fetch SRAMs; each SRAM word is 64 bits

Parallel In
64 Serial Out 16

Serial In

16 Parallel Out 64 Memory (MEM)

8 Write Read .
aefy | L ;
2 abi DIt fa Chain &
E = T Singley T F|Data In =2
2 Port 5
. | |2 SRAM
=
Fode > Chain
N Encode Resource Data In

6-Level Iteration _ Sharing

Domain

Fig. 8. Memory tile with a wide-fetch SRAM, streaming memory controllers,
and SIPO and PISO buffers.

Camera Pipeline Harris NImeans
add ad
min @u Standard
mul an Operation
max t
'SSLT) asnr Complex
absd T Operation
| sle
0 10 20 0 20 40 0 20 40

% Total Ops % Total Ops % Total Ops

Fig. 9. Operations in camera pipeline, Harris corner detector, and non-local
means (nlmeans). The circled complex operations account for 15% of the total
operations in nlmeans.

wide, which fits four 16-bit CGRA words. A wide-fetch
SRAM has a lower access energy per byte, 0.81 versus 1.65 pJ
for single fetch (16 bits), for the same capacity 4-KB SRAM in
16-nm technology. Using a wide-fetch SRAM in memory
allows us to expose two input and two output ports by
aggregating inputs from the CGRA with serial in, parallel
out (SIPO) buffers and separating SRAM words into CGRA
words with parallel in, serial out (PISO) buffers. The memory
tile also shares streaming memory controllers when possible
across different internal modules. Reads from the SIPO buffers
are always followed by writes to the SRAM, and reads from
the SRAM are followed by writes to the PISO buffers, which
allows them to share the same ID. Fig. 8 shows the final
memory architecture.

VI. Low-OVERHEAD COMPLEX ARITHMETIC

Image processing, computer vision, and ML applications
require, but infrequently use, complex arithmetic operations,
including BFloat16 division, natural logarithm, sine, and expo-
nential. For example, in non-local means (nlmeans), which is
used in image denoising, 15% of all operations are complex
(Fig. 9). However, Harris corner detector and camera pipeline
do not contain any complex operations. The CPU is able to
perform these operations, but going to the CPU incurs a high
performance penalty. On the other hand, including complex
operations in the ALU of the PE is very expensive in terms of
area. Amber takes a unique approach toward supporting com-

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2024 at 07:19:05 UTC from IEEE Xplore. Restrictions apply.

952

ALU y ¢ v 20x16-bit Processing
Output from SB Element
CB
CB From 1b CBs
Write Data 1
Write Read 16
Address Address
Write Read
32x16b
Enable Register Enable N\ / N\ /l(J_

AdEB File (RF) Seha (T |
TioP. HioP ALU { 3
16i 3

2-Level [R Output

i i ead Data
Iteration Domain ¥ RF Output J |¢ J
> Configuration Bits To 16b SB To 1b SB

INT/BIT ADD SUB ADC SBC ABS GTE LTE SEL MUL SHR SHL OR AND XOR

BFloat ADD SUB CMP MUL GETMAN* ADDIEXP* SUBEXP* EXP2F* F2INT*
GETFR* INT2F* (*Used in complex ops)

Fig. 10. PE architecture. Inputs come from other tiles or from the local RF.
The PE has INT16 and BFloat16 operations, as well as additional operations
to support complex arithmetic.

plex arithmetic operations and chains multiple tiles together
to approximately perform the equivalent operations with very
little area overhead.

The PE core within the PE tile has an ALU and a LUT
to perform arithmetic and bit operations, respectively. It also
contains a 64-byte RF as local memory (Fig. 10). The 16-bit
inputs to the ALU come from either the CBs or from the RF.
The outputs from the ALU go to the SB to be sent to another
tile or are written into the RF. The 1-bit inputs to the LUT are
taken from the 1-bit CB, and the outputs from the LUT are
sent to the 1-bit SB to send to other tiles. The PE supports
INT16 and bit operations, as well as BFloat16 operations.

In addition, the PE contains supplementary operations
that, with multiple chained PE and memory tiles, implement
complex arithmetic operations. The supplementary operations
manipulate the BFloat16 representation B = 1. f x 2%, where
B is the BFloatl6 number, with 7 bits for the mantissa, f,
and 8 bits for the exponent, x (the bias is not shown). The
PE has eight supplementary functions. GETMAN returns the
mantissa f. ADDIEXP adds an integer to the exponent x.
SUBEXP subtracts the exponents of two BFloatl6 values.
EXP2F returns the exponent x as a BFloatl6. F2INT converts
BFloat16 into INT16 by rounding the numeric value to the
nearest integer. GETFR returns the fractional part of the
BFloat16 numeric value. INT2F converts INT16 to BFloat16.
The supplementary operations add only 0.2% area in each PE
tile (8124- versus 8108-um? layout area).

Amber performs complex operations by using multiple PEs
and memorys together (Fig. 11). For example, division is
equivalent to multiplying, using one PE, the dividend by the
reciprocal of the divisor. The reciprocal is found using one
PE to get the mantissa, one memory to lookup the reciprocal
of the mantissa, and one PE to subtract the original exponent
from the reciprocal of the mantissa’s exponent. This method
of performing complex operations has minimal effect on
accuracy; for nlmeans, the output image from Amber has a
structural similarity index of 0.967 (with the maximum value
being 1) with the output image from a CPU. Applications
that use complex operations and operate in INT16 must first
convert to BFloatl6 and then convert back to INT16 after
performing the operation.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 59, NO. 3, MARCH 2024

Compared with a CGRA that supports these complex oper-
ations entirely in one PE, the Amber PE is 37.8% smaller
in area (13 056- versus 8124-um? layout area). However, the
area required to perform each complex operation is much
greater, since it requires using more than one PE. Fig. 12
shows the area trade-off between having a CGRA with dedi-
cated complex operations in each PE and the Amber CGRA,
analyzed across a variety of applications. For the majority of
applications, which do not have complex operations, up to
34.5% less area is used on the CGRA with the approach taken
by Amber. For nlmeans, which has exponentials and divisions,
Amber uses 148 more tiles and 64.7% more area. However,
Amber is still able to fully accelerate nlmeans on the CGRA,
which is 29.7x faster than offloading the complex operations
to the CPU.

VII. PHYSICAL DESIGN METHODOLOGY

Scaling the physical design of a CGRA from a small array
(4 x 4 and 4 x 8) [32], [33], [34] to the 16 x 32 array in
Amber requires taking a bottom-up hierarchical approach to
reduce physical design time. However, this is challenging,
because the physical design tools do not have complete
knowledge of the design. To address this, we perform special
handling of clock distribution, global signals, and timing
constraints, as described below.

The GLB, PE, and memory tiles are laid out independently
and converted into macros, which are then replicated and
repeated to create the CGRA and GLB. The PE and memory
tiles have the same height to make it easy to lay out the tiles
in the array, with the memory being wider than the PE. Each
column has the same tile type. In the CGRA, the tiles are fully
abutted to reduce area. The GLB and CGRA are connected to
the processor subsystem at the top level to form the SoC.

Replicating tiles creates challenges when each tile must
be treated differently. For example, each tile needs a tile ID
to uniquely address it for configuration, yet each replicated
macro is internally the same. Furthermore, abutment leaves
no space between tiles to assign tile IDs. Instead, we observe
that tile IDs are constants that do not switch and build
each tile with a set of output pins that drive constants with
a “GSVSG” pattern—signals (“S”) with alternating logic 0
(“G”) and logic 1 (“V”) constants. At the tile array level, the
tile ID is formed by drawing small metal strips to the correct
logic levels. Our approach for assigning tile IDs requires no
additional standard cells or area overhead and preserves tile
abutment.

Another consequence of tile abutment is that there is no
space between tiles to insert clock buffers. Rather than using
a balanced clock tree, Amber distributes clocks down each
CGRA column in clock rivers (Fig. 13). The naive clock river
approach sends the clock down both the PE and memory
columns, but clock skew accumulates between columns of
different tile types, a key challenge in the physical design
of heterogeneous spatial arrays. Even with a small skew
difference, e.g., 4 ps (20-ps PE delay versus 24-ps memory
delay), after many tiles, the clock will reach the bottom of
the PE columns before the memory columns. Instead, in our
design, the clock only travels down a single tile type, the PE

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2024 at 07:19:05 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: AMBER: A 16-nm SOC WITH A CGRA FOR FLEXIBLE ACCELERATION OF DENSE LINEAR ALGEBRA

953

Cplx
DIV LOG a ln(z)l MEM PE
out =a/b=a* (1/b) b—¢ l out = 1n(a) v ’ ‘ ‘ ‘ Op
Y ou E ‘ EXP FP SIN
o GET SUB }_, a=1.f*2% MAN 2F MUL out = sin(a)
b=1.f*2 MAN EXP MUL - * X .
1/b = (1/1.F) * 2 In(a) =In(1.f*2%) ¢ =sin(a% (2m))
~(1.g* oMy * Implemented =1n(1.f) 1n(1.) o Tout = sin(a - (2m) * int(a/2m))
=(1l.g*2" {g,h} i i * LUT
g% 20 Lyt 8211 using ROM in +x*1n(2) ADD
A et By MEM tile Exp a 2m a
a % FP FP H FP
pow out = ea/ln(z) DIV MUL SuB
out = a° l l out =2 al T a%(2m
= eln(a*) ‘ — }_}‘ }_}‘ P }_} 1/1In(2) T Fp ADD lout INTZ‘ ’ e }ﬂ,
= @b*In(a) MUL MUL INT IEXP INT
Fig. 11. Using multiple PE and memory tiles, Amber supports BFloat16 division (DIV), logarithm (LOG), exponential (EXP), sine (SIN), and power (POW).

I CGRA w/ dedlcated complex ops [Amber CGRA
-34.5%
-32.5%

5
4 -28.9%

MEM=>
3 +64.7%
2 29.7x slower
1 if using CPU
0 #

! BLUR UNSHARP CAMERA HARRIS NLMEANS
#MEM ! ! ! ! : | 25 1
#PE ! 280 ; 303 ; 240 194 106 235

Fig. 12. Area utilization trade-offs for complex arithmetic support. NImeans
contains complex operations, while the other applications do not. Without
complex arithmetic support on the CGRA, nlmeans would be 29.7x slower.

Top-Level Clock Tree Clock River Right-Angle

Clock River
77 lligah
® ndl
siqy
poly vty

DPE

D MEM — clock — config

Fig. 13. Clock and configuration signal distribution method (right). The clock
flows down the PE columns and travels right to the memory tiles, which helps
match pass-through delays between the PE and memory tiles compared with a
simple clock river approach (middle). A traditional clock tree does not allow
creating a fully abutted layout (left).

tiles, and the PE tiles pass the clock to the memory tiles on
the right. The right-angle clock river eliminates the need to
precisely match delays through the PE and memory tiles, and
we are able to send the CGRA configuration data together
with the clock, which enables low-overhead fast configuration.
However, the delay of the clock path through the PE to the
right-adjacent memory is around 50 ps, so if a memory to
PE path lies in the critical path through an application, the
right-angle clock river slows it down by that much.
Configuration data is a part of the CGRA’s global signals,
which also include a read path to read out configuration data.
To successfully meet timing at the CGRA level, each tile has
constraints to handle global signals and break combinational
loops that form across multiple tiles. A clock passing through a
PE tile is constrained with a max delay of 50 ps. Configuration
signals pass through each tile with a max delay of 30 ps after
the clock. With these tight constraints and the configuration
signals traveling with the clock, Amber only needs one set
of pipeline registers halfway down the rows to configure
at 1 GHz. The configuration readout path is more relaxed,
with a 300-ps pass-through delay, since it is designed to be

a multicycle debug path that does not need to meet high-
performance requirements.

Finally, putting the tiles together in an array creates
combinational loops in the design, since the tiles have
purely combinational paths from input to output. Using the
set_case_analysis command, we activate the pipeline
registers in each tile’s SB to break the loops during liberty
(lib) file generation, a format that defines timing and power
properties for a generated macro. Using the customized lib
files, the timing tools will not see inter-tile combinational paths
when running top-level timing checks.

VIII. ACCELERATOR—COMPILER DESIGN FLOW

To design the CGRA, we use the open-source domain-
specific language (DSL)-based accelerator—compiler codesign
flow from [20], which uses high-level DSLs to design the hard-
ware. The flow generates the application compiler collateral
automatically from the hardware specification (Fig. 14). The
PE, memory, and interconnect in the CGRA are specified in
their own DSLs—PEak, Lake, and Canal, respectively. Each
DSL has its own compiler to generate both the hardware RTL
description and the collateral for the application compiler to
map applications onto the hardware. The collateral includes
PE rewrite rules, which dictate how to map operations onto
each PE tile, memory rewrite rules, which transform memory
accesses into memory tile access patterns, and the routing
graph, which describes how tiles are connected to each other.

The application compiler flow transforms a Halide program
into a bitstream that configures the CGRA. Halide [35] is a
DSL in C++ that divides a program into an algorithm and
a schedule. The algorithm describes how to compute each
output pixel as a function of the inputs, and the schedule
describes the order in which the intermediates and output
pixels are computed. Koul et al. [20] extend the Halide com-
piler to target CGRAs. Given an application, the polyhedral
scheduler first transforms the program into a dataflow graph
of operations. The mapper converts the dataflow graph into a
graph of PE/memory tiles, which is then placed and routed on
a physical CGRA. Pipelining activates registers in the intercon-
nect on long paths to increase the maximum clock frequency.
Finally, the bitstream generator produces the configuration
bitstream. The Halide compiler also produces the ARM M3
CPU code, enabling application execution on Amber.

IX. RESULTS

Amber is fabricated in Taiwan Semiconductor Manufac-
turing Company (TSMC) 16-nm FinFET technology with a

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2024 at 07:19:05 UTC from IEEE Xplore. Restrictions apply.

954 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 59, NO. 3, MARCH 2024
PEak PEak PE Lake Lake F MEM Canal Canal Routing ||| Integration|| Physical
Program| | Compiler | | Rewrite ||||Program | | Compiler | | Rewrite ||||Program [~ | Compiler || Graph ”"t°45°C Deilgn
17 / -
PERTL | Lhules MEM RTL | L Rues Interconnect RTL].” CGRA RTL |[SoC with
[— I _ | —— CGRA
Application Compiler | == ~ a= == ===—{ Application Processor Code W
v y
Application _’{ H H H L - }_} Bitstream CGRA
in Halide Polyhedral Scheduler Mapper Placer & Router Pipelining @ lor Bitstream
Fig. 14. Agile accelerator—compiler codesign flow that uses high-level DSLs to describe each of the components of the CGRA. The end-to-end flow for

compiling and mapping Halide applications onto Amber uses collateral from each of the hardware DSLs.

Fig. 15.
(right).

Amber die photograph (left) and measurement and testing setup

TABLE I
LAYOUT AND STANDARD CELL AREA (AFTER SIGNOFF) FOR AMBER

Layout Std Cell+SRAM Density
Area (mm?) Area (mm?)
Amber 20.1 - -

Global Buffer 491 4.69 95.3%
GLB Tile (x16) 0.292 0.251 85.9%
GLB Controller 0.007 0.004 47.1%

CGRA 7.24 6.14 84.7%
MEM (x128) 0.024 0.018 74.0%
PE (x384) 0.008 0.006 73.5%

Processor System 0.256 - -

Fill 7.69 - -

total area of 20.1 mm?. Fig. 15 shows the die photograph
and testing setup. The GLB closes timing at 1 GHz, while
the PE and memory are designed to run at a maximum
frequency of 909 MHz. In the testing setup, Amber is housed
in the socket in the middle of the board, and the application
configuration bitstreams are generated off chip. The Raspberry
Pi Pico programs on-board power supply modules to generate
the core and I/O voltage and controls the clock generator. The
nominal core voltage is 0.9 V, and all reported results are
measured at 0.9 V unless otherwise noted.

Table I shows the breakdown of the layout area and standard
cell area after signoff, with the CGRA and GLB comprising a
majority of the area. Fig. 16 shows the area breakdown of the
GLB tile, PE tile, and memory tile. Density is the percentage
of the total layout area that is comprised of standard cells
and macros, as opposed to fill cells. The densities of the
GLB and CGRA are high, because they consist mostly of
macros of GLB tiles and PE/memory tiles, respectively. The
GLB controller density is relatively low, because it is a small
module, and it was not necessary to make it very area efficient.
The streaming memory controllers take up 30% of the area in
the memory tiles. The area of the CGRA is 50% memory and
50% PE; the memory is 3x the size of the PE. The processor
subsystem is very small and makes up 1.3% of the total area.

A. Unrolling and Pipelining Applications

The schedule of an application, that is, how the applica-
tion is mapped onto the CGRA, affects its runtime, energy

GLB Tile — 0.251 mm? PE Tile — 5968 pm? MEM Tile — 18.0k pm?

SRAM ~ STADUnits - other
93.7%\ 4.1% nterconnec .
7~ 'Switches 29.7% S 20.4% 15.4% "2??0’}/'
{ 2.0% Y Inter- 3%
Other connect,

3.1%

<__PE Core
37.8%

Config ‘
Network \
0.1%

14.6%

Config
14.6%

Controllers
30.1%

Fig. 16. Standard cell area breakdown of the GLB, PE, and memory tiles.

TABLE 11
ENERGY BREAKDOWN FOR FULLY UNROLLED, PIPELINED BLUR

\ Energy (mJ/frame) Percentage
GLB (14 / 16) 1.52 56.2%
PE (280 / 384) 0.641 23.7%
MEM (56 / 128) 0.388 14.3%
Processor 0.0616 2.28%
Other 0.0946 3.49%
Total 2.71 100%

consumption, and energy-delay product (EDP). We employ
scheduling techniques, such as unrolling and pipelining,
to increase performance. Fig. 17 shows the effect of unrolling
and pipelining. Unrolling (or parallelizing) the outer loop
of an application kernel effectively replicates the kernel and
increases throughput. The maximum unrolling is limited by
the number of GLB tiles, the number of PE tiles, the number
of memory tiles, and/or routing resources. Fully unrolling
to the maximum unrolling/parallelization factor results in
2.0x-12.1x runtime improvement, 1.1x—7.1x lower energy
consumption, and 2.2x-86x EDP improvement.

Pipelining the application by using registers in the inter-
connect, PEs, and memorys further increases application
performance on Amber. The amount that each application
is pipelined varies, as it depends on how the application is
mapped onto the CGRA and the critical path through the
array [36]. Pipelining results in 6.4x-24.7x, 1.8x-9.1x, and
12x-221x improvements in performance, energy, and EDP,
respectively. Table II breaks down the energy consumed by
the unrolled and pipelined blur application, and Table III
shows the amount of resources used by all the unrolled and
pipelined applications. Temporal occupancy (utilization) is the
percentage of cycles for which the CGRA is active during the
execution of the entire application. The size of the input image
for each application is larger than the storage available in the
memory tiles, so the image is split into several tiles, and each
tile is streamed through the application mapped on the CGRA.
While we try to fully overlap computation time on the CGRA
with the data loading and storing time from/to the GLB in
steady state, the CGRA is idle during the time the first tile is
loaded and the last tile is stored. Furthermore, the CGRA is

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2024 at 07:19:05 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: AMBER: A 16-nm SOC WITH A CGRA FOR FLEXIBLE ACCELERATION OF DENSE LINEAR ALGEBRA

955

IlNo unrolling, no pipelining EEFully unrolled, not pipelined E&Fully unrolled, pipelined

2 0 g o) S o ™
g2 : N3 Qe 8 2100 8% S 28
0@ B £ o g © T oS ~ vy 4@ 280 22 83,
1S E102] S £ 3 = > < i &S —
=l 58 = = T2 g s o
€& ~ 2& o s 02 © = & -
S @ TTR] 0 i O 40 = =
S E £ = >0
=)
BLUR UNSHARP CAMERA HARRIS BLUR UNSHARP CAMERA HARRIS 2 w BLUR UNSHARP CAMERA HARRIS
]

Frame size (pixels): Blur: 6400x4800

Fig. 17. Effect of unrolling and pipelining on runtime, energy, and EDP.

TABLE III
APPLICATION RESOURCE UTILIZATION AND FREQUENCIES

Application \ Blur Unsharp Camera Harris ResNet-18
Output Rate 14 9 3 2 4
(pixels/cycle)
Temporal 72% 83% 73% 83% Table V
Occupancy
Frequency 415 260 320 425 200
(MHz)
PE / 384 | 280 303 294 194 272
#MEM /128 | 56 36 34 12 56
GLB / 16 | 14 9 12 6 12
1-bit Routing 560 296 417 348 450
Tracks / 10240
16-bit Routing ‘ 2128 1892 1410 2236 2684

Tracks / 10240

idle when we switch the bitstream in the case of DPR. These
lead to a temporal occupancy of less than 100%. In addition,
the frequency that each application runs at is dependent on how
the application is placed, routed, and pipelined on the CGRA,
which is similar to FPGAs, where applications rarely run at the
maximum achievable frequency of the FPGA. Routes between
sequential elements may span across multiple tiles, which
will decrease the frequency since our CGRA interconnect
allows for single-cycle multi-hop connections, as opposed to
interconnects that are single cycle single hop.

B. Comparison Against Other Platforms

We compare Amber against an ARM Cortex A57 CPU,
an Intel Xeon CPU, an NVIDIA Tesla K40 GPU, and a Xilinx
Virtex Ultrascale FPGA. The FPGA is in the same technology
node as our CGRA, 16-nm FinFET, and its properties are
summarized in Table IV. Applications running on the CPUs
and GPU use Halide’s autoscheduler [37] to find the best
application schedule for those platforms. Amber achieves
160x—-1200x, 678 x—3902x, 498 x—988x, 12x—-152x, and
20x—-107x better EDP over the Cortex A57, 1-core and 12-
core Xeon CPUs, GPU, and FPGA, respectively (Fig. 18). For
ResNet-18 layers in INT16 precision, Amber uses up to 9.4 x
less energy and has up to 10.3x lower EDP than the FPGA
(Table V).

Unsharp: 1536x2560x3

Camera: 25681928 Harris: 1530x2554x3

TABLE IV

XILINX VIRTEX ULTRASCALE+ VU9P FPGA
PROPERTIES COMPARED WITH AMBER

| FPGA | Amber

Processing | Logic Cells 2586 K 384 PEs

Flip-Flops 2364 K

DSP Slices 6840

LUTs 1182 K
Memory Block RAM 759 Mb | 4.5 MiB

UltraRAM 270 Mb

TABLE V

LATENCY AND ENERGY COMPARISON OF AMBER WITH
A XILINX VIRTEX FPGA ON RESNET-18 LAYERS

Latency (ms) Energy (mJ) Temporal

Occupancy
Layer | Amber FPGA | Amber FPGA | Amber
conv2_x 4.44 4.53 1.51 13.3 84.8%
conv3_1 2.24 2.27 0.75 6.7 84.9%
conv3_x 4.44 4.53 1.51 13.3 84.8%
conv4_1 2.28 2.27 0.78 6.7 82.4%
conv4_x 4.34 4.53 1.47 13.3 86.8%
conv5_1 2.33 2.27 0.79 6.7 80.6%
conv5_x 5.40 591 1.84 17.3 69.7%

X. RELATED WORK

Recently published, state-of-the-art, programmable accel-
erator chips include 2 x 2 dielets with CGRAs for signal
processing and linear algebra [38], an SoC with an embed-
ded FPGA [39], a RISC-V vector machine [40], and a
496-core RISC-V processor [41]. Rathore et al. [38] have
more than double the number of PEs, and their PEs are
denser and more specialized in precision and operations. Even
so, Amber shows comparable energy efficiency. Whatmough
et al. [39] see its efficiency determined by how much of
its resources can be utilized. Schmidt et al. [40] support a
variety of floating point and integer operations but latency
varies across functional units. Finally, Rovinski et al. [41]
send memory requests across the interconnect to the on-chip
SRAMs. With its DPR, internal streaming memory controllers,
and low-overhead complex arithmetic, Amber is 1.7x more
energy efficient with 36.7x better throughput (Table VI).

Prior work has also explored using CGRAs as pro-
grammable accelerators and an alternative to fixed-function
accelerators. Previously proposed CGRAs include Plas-
ticine [18], ultra-elastic CGRAs [32], CGRA-ME [42],
DySER [16], and ADRES [17]. While they are programmable

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2024 at 07:19:05 UTC from IEEE Xplore. Restrictions apply.

956

TABLE VI
SUMMARY OF ACHIEVED PERFORMANCE AND COMPARISON WITH STATE-OF-THE-ART RECONFIGURABLE ACCELERATORS

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 59, NO. 3, MARCH 2024

| This Work ISSCC 2022 [38] VLSI 2019 [39] ISSCC 2021 [40] VLSI 2019 [41]
Architecture SoC with CGRA 2x2 dielet with CGRA SoC with FPGA Multicore Vector CPU Multicore CPU
Node TSMC 16-nm 16-nm TSMC 16-nm TSMC 16-nm TSMC 16-nm
Area (mm?) 20.1 25 25 24.01 15.25
Precision BF16, INT16/32/64 Fixed 16 FP16/32/64, FP16/32/64, INT32/64 INT32
INT16/32/64
SRAM (MiB) 45 0.06 9.025 4.5 3.875
Voltage (V) 0.84-1.29 0.35-0.9 0.5-1.0 0.55-1.0 0.60-0.98
Frequency (MHz) 955 @ 1.29 V 1100 @ 0.8 V > 1000 1440 10-1400
Peak GOPS 367 @ 1.29 V 3449.6 10-56.2 368.4 695
GOPS/W 538 @ 0.84 V 568 @ 0.8 V 3124 209.5 93.04
Il ARM Cortex A57 (4 cores) [ElINvidia Tesla K40 GPU
Il Xeon CPU (1 core) [JVirtex Ultrascale+ VU9P FPGA REFERENCES

[l Xeon CPU (12 cores) [—JAmber SoC

o
™

@
]

N
o}

Runtime
(ms/frame)

Energy
(mJ/frame)

)

Jes/frame

) (

EDP

(

Energy-Delay Product

BLUR

UNSHARP CAMERA HARRIS

Fig. 18. Performance, energy, and EDP compared with CPU, GPU, and
FPGA for image processing and computer vision applications.

accelerators, they are evaluated in simulation or on FPGAs.
In addition, the application compilers for previous CGRAs
are designed manually, as opposed to the compiler for
Amber, which is automatically updated from the hardware
specification.

XI. CONCLUSION

Amber is a reconfigurable SoC for flexible and efficient
acceleration of imaging, vision, and ML applications. The
demonstrated techniques—DPR, efficient streaming memo-
ries, and low-overhead complex arithmetic—achieve efficient
domain (rather than single application) acceleration. In addi-
tion, due to its repetitive architecture, Amber employs
a hierarchical-based physical design approach and uses a
right-angle clock river to efficiently distribute the clock.
Amber is designed using an agile accelerator—compiler design
flow, which allows for continuous application-level evaluation
of the hardware design.

[1]

[2]

[3]

[4

flnar

[5]

[6]

[7

—

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

B. Zimmer et al., “A 0.32-128 TOPS, scalable multi-chip-module-
based deep neural network inference accelerator with ground-referenced
signaling in 16 nm,” IEEE J. Solid-State Circuits, vol. 55, no. 4,
pp. 920-932, Apr. 2020.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
Jan. 2017.

Y. Chen et al.,, “DaDianNao: A machine-learning supercomputer,” in
Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2014,
pp. 609-622.

Q. Zhang et al., “A 22 nm 3.5 TOPS/W flexible micro-robotic vision
SoC with 2 MB eMRAM for fully-on-chip intelligence,” in Proc. [EEE
Symp. VLSI Technol. Circuits, Jun. 2022, pp. 72-73.

S. Komatsu, M. Kimura, A. Okawa, and H. Miyashita, “Milbeaut image
signal processing LSI chip for mobile phones,” Fujitsu Sci. Tech. J.,
vol. 49, no. 1, pp. 17-22, Jan. 2013.

G. P. Stein, E. Rushinek, G. Hayun, and A. Shashua, “A computer
vision system on a chip: A case study from the automotive domain,” in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR)
Workshops, Sep. 2005, p. 130.

A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proc. ACM/IEEE 41st Int. Symp. Comput. Archit.
(ISCA), Jun. 2014, pp. 13-24.

C. Farabet et al., Large-Scale FPGA-Based Convolutional Networks.
Cambridge, U.K.: Cambridge Univ. Press, 2011.

S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-HD: Fast flexible
FPGA-based framework for refreshing hyperdimensional computing,” in
Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays. New York,
NY, USA: Association for Computing Machinery, Feb. 2019, pp. 53-62,
doi: 10.1145/3289602.3293913.

L. Wu et al., “FPGA accelerated INDEL realignment in the cloud,”
in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2019, pp. 277-290.

Y. Chen, R. Yin, B. Gao, L. Peng, and M. Gong, “Ray tracing on single
FPGA,” in Proc. IEEE Asia—Pacific Conf. Image Process., Electron.
Comput. (IPEC), Apr. 2021, pp. 1290-1294.

M. Nguyen, R. Tamburo, S. Narasimhan, and J. C. Hoe, “Quantifying
the benefits of dynamic partial reconfiguration for embedded vision
applications,” in Proc. 29th Int. Conf. Field Program. Log. Appl. (FPL),
Sep. 2019, pp. 129-135.

Xilinx. (2020). Versal: The First Adaptive Compute Acceleration
Platform (ACAP). [Online]. Available: https://docs.xilinx.com/v/u/en-
U.S./wp505-versal-acap

A. Carsello et al., “Amber: A 367 GOPS, 538 GOPS/W 16 nm SoC with
a coarse-grained reconfigurable array for flexible acceleration of dense
linear algebra,” in Proc. IEEE Symp. VLSI Technol. Circuits, Jun. 2022,
pp. 70-71.

A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatinsky,
and M. Horowitz, “Evaluating programmable architectures for imaging
and vision applications,” in Proc. 49th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Oct. 2016, pp. 1-13.

V. Govindaraju et al., “DySER: Unifying functionality and parallelism
specialization for energy-efficient computing,” IEEE Micro, vol. 32,
no. 5, pp. 38-51, Sep. 2012.

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2024 at 07:19:05 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3289602.3293913

FENG et al.: AMBER: A 16-nm SOC WITH A CGRA FOR FLEXIBLE ACCELERATION OF DENSE LINEAR ALGEBRA

(17]

[18]

(191

(20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

(351

[36]

(371

(38]

F.-J. Veredas, M. Scheppler, W. Moffat, and B. Mei, “Custom imple-
mentation of the coarse-grained reconfigurable ADRES architecture for
multimedia purposes,” in Proc. Int. Conf. Field Program. Log. Appl.,
Aug. 2005, pp. 106-111.

R. Prabhakar et al., “Plasticine: A reconfigurable architecture for parallel
patterns,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2017, pp. 389-402.

R. Bahr et al., “Creating an agile hardware design flow,” in Proc. 57th
ACM/IEEE Design Autom. Conf. (DAC), Jul. 2020, pp. 1-6.

K. Koul et al., “AHA: An agile approach to the design of coarse-grained
reconfigurable accelerators and compilers,” ACM Trans. Embedded
Comput. Syst., vol. 22, no. 2, pp. 1-34, Jan. 2023, doi: 10.1145/3534933.
ARM Cortex-M3. Accessed: Feb. 9, 2023. [Online]. Available:
https://developer.arm.com/Processors/Cortex-M3

The BFLOATI16 Numerical Format. Accessed: Feb. 9, 2023. [Online].
Available: https://cloud.google.com/tpu/docs/bfloat16

BFLOATI16 Hardware Numerics Definition. Accessed:
Feb. 9, 2023. [Online]. Available: https://www.intel.com/content/
dam/develop/external/us/en/documents/bf16-hardware-numerics-
definition-white-paper.pdf

ARM CoreLink TLX-400 Network Interconnect Thin Links Supple-
ment to ARM CoreLink NIC-400 Network Interconnect Technical
Reference Manual. Accessed: Feb. 9, 2023. [Online]. Available:
https://developer.arm.com/documentation/dsu0028/f

M. 1. Masud and S. J. E. Wilton, “A new switch block for segmented
FPGAs,” in Field Programmable Logic and Applications, P. Lysaght,
J. Trvine, and R. Hartenstein, Eds. Berlin, Germany: Springer, 1999,
pp. 274-281.

N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design:
A Systems Perspective. Boston, MA, USA: Addison-Wesley, 1993.

A. Nayak et al., “A framework for adding low-overhead, fine-grained
power domains to CGRAs,” in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2020, pp. 846-851.

A. Nayak et al., “Improving energy efficiency of CGRAs with low-
overhead fine-grained power domains,” ACM Trans. Reconfigurable
Technol. Syst., vol. 16, no. 2, pp. 1-28, Jun. 2023, doi: 10.1145/3558394.
C. Tan et al., “DynPaC: Coarse-grained, dynamic, and partially recon-
figurable array for streaming applications,” in Proc. IEEE 39th Int. Conf.
Comput. Design (ICCD), Oct. 2021, pp. 33-40.

H. E. Sumbul et al., “System-level design and integration of a prototype
AR/VR hardware featuring a custom low-power DNN accelerator chip
in 7 nm technology for Codec Avatars,” in Proc. IEEE Custom Integr.
Circuits Conf. (CICC), Apr. 2022, pp. 1-8.

Q. Liu et al., “Unified buffer: Compiling image processing and machine
learning applications to push-memory accelerators,” ACM Trans. Archit.
Code Optim., vol. 20, no. 2, pp. 1-26, Mar. 2023, doi: 10.1145/3572908.
C. Torng, P. Pan, Y. Ou, C. Tan, and C. Batten, “Ultra-elastic CGRAs
for irregular loop specialization,” in Proc. IEEE Int. Symp. High-
Performance Comput. Archit. (HPCA), Feb. 2021, pp. 412-425.

M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “HyCUBE:
A CGRA with reconfigurable single-cycle multi-hop interconnect,” in
Proc. 54th ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2017,
pp. 1-6.

A. Parashar et al., “Triggered instructions: A control paradigm for
spatially-programmed architectures,” in Proc. 40th Annu. Int. Symp.
Comput. Archit. (ISCA). New York, NY, USA: Association for Comput-
ing Machinery, Jun. 2013, pp. 142-153, doi: 10.1145/2485922.2485935.
J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proc. 34th ACM SIGPLAN Conf. Program. Lang. Design Implement.
New York, NY, USA: Association for Computing Machinery, Jun. 2013,
pp. 519-530, doi: 10.1145/2491956.2462176.

J. Melchert, Y. Mei, K. Koul, Q. Liu, M. Horowitz, and P. Raina, “Cas-
cade: An application pipelining toolkit for coarse-grained reconfigurable
arrays,” 2022, arXiv:2211.13182.

R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and
K. Fatahalian, “Automatically scheduling Halide image processing
pipelines,” ACM Trans. Graph., vol. 35, no. 4, pp. 1-11, Jul. 2016, doi:
10.1145/2897824.2925952.

U. Rathore, S. S. Nagi, S. Iyer, and D. Markovic, “A 16 nm
785 GMACs/] 784-core digital signal processor array with a multilayer
switch box interconnect, assembled as a 2 x 2 dielet with 10 pm-pitch
inter-dielet I/O for runtime multi-program reconfiguration,” in /EEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 65, Feb. 2022,
pp. 52-54.

[39]

[40]

[41]

[42]

957

P. N. Whatmough et al., “A 16 nm 25 mm?> SoC with a 54.5x
flexibility-efficiency range from dual-core arm cortex-A53 to eFPGA and
cache-coherent accelerators,” in Proc. Symp. VLSI Circuits, Jun. 2019,
pp. 34-35.

C. Schmidt et al., “An eight-core 1.44 GHz RISC-V vector machine in
16 nm FinFET,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, vol. 64, Feb. 2021, pp. 58-60.

A. Rovinski et al., “A 1.4 GHz 695 Giga Risc-V Inst/s 496-core
manycore processor with mesh on-chip network and an all-digital syn-
thesized PLL in 16nm CMOS,” in Proc. Symp. VLSI Circuits, Jun. 2019,
pp. 30-31.

S. A. Chin et al, “CGRA-ME: A unified framework for CGRA
modelling and exploration,” in Proc. IEEE 28th Int. Conf. Appl.-Specific
Syst., Architectures Processors (ASAP), Jul. 2017, pp. 184—189.

Kathleen Feng (Graduate Student Member,
IEEE) received the B.S.E. degree in electrical
engineering from Princeton University, Princeton,
NJ, USA, in 2018, and the M.S. degree in electrical
engineering from Stanford University, Stanford,
CA, USA, in 2020, where she is currently pursuing
the Ph.D. degree in electrical engineering under the
supervision of Prof. Priyanka Raina.

Her current research focuses on domain-specific
hardware architectures and hardware—software
codesign.

Taeyoung Kong (Member, IEEE) received the B.S.
degree in electrical and computer engineering from
Seoul National University, Seoul, South Korea,
in 2017, and the M.S. degree in electrical engi-
neering from Stanford University, Stanford, CA,
USA, in 2020, where he is currently pursu-
ing the Ph.D. degree under the supervision of
Prof. Mark Horowitz.

Specifically, he is working on architecture and
runtime software for multi-tenancy support on
coarse-grained reconfigurable arrays (CGRAs) and

reconfigurable architectures. His current research focuses on domain-specific
architectures and reconfigurable architectures for machine learning and image
processing.

Kalhan Koul received the B.S. degree (Hons.) in
electrical engineering and the B.A. degree from the
Plan II Honors Program, College of Liberal Arts,
The University of Texas at Austin, Austin, TX, USA,
in 2018. He is currently pursuing the Ph.D. degree
in electrical engineering with Stanford University,
Stanford, CA, USA, under the supervision of Prof.
Priyanka Raina.

He was an Intern at Apple Inc., Cupertino, CA,
USA; Micron Inc., San Jose, CA, USA; and Sil-
icon Labs, Austin. Specifically, he is working on

automatically mapping applications, ranging from machine learning to image
processing, onto coarse-grained reconfigurable arrays (CGRAs) and reconfig-
urable logic devices. His current research focuses on domain-specific hardware
architectures and design methodology.

Jackson Melchert received the B.S. degree in
electrical and computer engineering and computer
science from the University of Wisconsin-Madison,
Madison, WI, USA, in 2019. He is currently pursu-
ing the Ph.D. degree in electrical engineering with
Stanford University, Stanford, CA, USA, under the
supervision of Prof. Priyanka Raina.

He is broadly interested in optimizing configurable
hardware to approach the performance and efficiency
of application-specific accelerators.

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2024 at 07:19:05 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3534933
http://dx.doi.org/10.1145/3558394
http://dx.doi.org/10.1145/3572908
http://dx.doi.org/10.1145/2485922.2485935
http://dx.doi.org/10.1145/2491956.2462176
http://dx.doi.org/10.1145/2897824.2925952

958

Alex Carsello received the B.S. degree in elec-
trical engineering and computer engineering from
Washington University in St. Louis, St. Louis, MO,
USA, in 2017, and the M.S. degree in electrical
engineering from Stanford University, Stanford, CA,
USA, in 2020, where he is currently pursuing the
Ph.D. degree in electrical engineering with the AHA!
Agile Hardware Center under the supervision of
Prof. Mark Horowitz.

He is interested in agile physical design tools
and methodologies, reconfigurable computing, and
domain-specific architectures for image processing and machine learning.

Qiaoyi Liu received the B.S. degree in electronic
engineering from Tsinghua University, Beijing,
China, in 2017, and the M.S. degree in electrical
engineering from Stanford University, Stanford, CA,
USA, in 2020, where he is currently pursuing the
Ph.D. degree in electrical engineering under the
supervision of Prof. Mark Horowitz.

His research focuses on computer architecture
and compilation for domain-specific accelerators,
with a particular interest in optimizing schedules
and memory mappings for compute-intensive tensor
applications, such as image processing and deep learning.

Gedeon Nyengele received the B.S. degree in elec-
trical engineering from the Georgia Institute of
Technology, Atlanta, GA, USA, in 2017. He is
currently pursuing the Ph.D. degree in electrical
engineering with Stanford University, Stanford, CA,
USA, under the supervision of Prof. Mark Horowitz,
with a focus on novel methodologies for system-on-
chip design.

Maxwell Strange received the B.S. degree in com-
puter engineering and computer science from the
University of Wisconsin-Madison, Madison, WI,
USA, in 2017.

His research focuses on developing infrastruc-
ture and tools to facilitate agile hardware devel-
opment as part of the ongoing efforts by the
AHA! Agile Hardware Center, Stanford Univer-
sity, Stanford, CA, USA. His research interests
also include domain-specific hardware architectures,
hardware/software codesign, and embedded systems
design.

Keyi Zhang received the B.S. degree in computer
science and engineering from Bucknell University,
Lewisburg, PA, USA, in 2017, the M.S. degree
in computer science from Stanford University,
Stanford, CA, USA, in 2021, and the Ph.D. degree
in computer science from Stanford University in
2022 under the supervision of Prof. Mark Horowitz.

He is currently a Lead Systems Engineer at
EfficientAl, Santa Clara, CA, USA, a startup focus-
ing on designing highly efficient and ultralow-power
reconfigurable fabrics. His research interests include
software and hardware codesign, compiler optimization, hardware generator
frameworks, and debugging generated hardware systems.

Dr. Zhang was a recipient of the Apple Ph.D. Fellowship in integrated
systems.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 59, NO. 3, MARCH 2024

Ankita Nayak received the master’s degree in com-
puter engineering from Columbia University, New
York, NY, USA, in 2011, and the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, in 2023.

From 2011 to 2013, she worked at Intel,
Santa Clara, CA, USA, on developing low-power
design methodologies. In 2013, she joined Qual-
comm, Santa Clara, CA, USA, where she led
various research initiatives for enhancing power-
performance-area for Snapdragon IPs. She is cur-
rently with the Wireless Research and Development Group leading on-device
machine learning initiatives for 5G New Radio (NR) modems.

Jeff Setter received the B.S. degree in electrical
and computer engineering from Cornell Univer-
sity, Ithaca, NY, USA, in 2015, and the Ph.D.
degree in electrical engineering from Stanford Uni-
versity, Stanford, CA, USA, in 2023, with a focus
on compiling halide applications to reconfigurable
accelerators.

He is currently working at Google, Mountain View,
CA, USA, on the compiler team for the machine
learning accelerator on Pixel devices. His research
interests include machine learning, image process-
ing, compilers, software—hardware codesign, and domain-specific accelerators.

James Thomas received the S.B. in electrical
engineering and computer science from the Mas-
sachusetts Institute of Technology, Cambridge, MA,
USA, in 2016, and the Ph.D. degree in computer
science from Stanford University, Stanford, CA,
USA, in 2022, under the supervision of Prof. Pat
Hanrahan and Prof. Matei Zaharia in the AHA and
DAWN groups.

He was an Intern at Xilinx, San Jose, CA, USA,
and Databricks, San Francisco, CA, USA. He cur-
rently works at an artificial intelligence startup in
Palo Alto, CA, USA. His research was on building tools to simplify the
development of data processing applications on field-programmable gate
arrays (FPGAs).

Kavya Sreedhar received the B.S. degree in elec-
trical engineering and the B.S. degree in business,
economics, and management from the California
Institute of Technology, Pasadena, CA, USA,
in 2019, and the M.S. degree in electrical engineer-
ing from Stanford University, Stanford, CA, USA,
in 2021, where she is currently pursuing the Ph.D.
degree in electrical engineering under the supervi-
sion of Prof. Mark Horowitz.

She was an Intern with Meta, Menlo Park, CA,
USA; NVIDIA, Santa Clara, CA, USA; Apple,
Cupertino, CA, USA; Microsoft, Redmond, WA, USA; and Intel, Santa Clara.
Her research interests include hardware design for cryptography and machine
learning applications.

Ms. Sreedhar received the Stanford’s Knight-Hennessy Graduate Fellowship
from 2019 to 2022 and the Quad Fellowship from 2023 to 2024 for her
research.

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2024 at 07:19:05 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: AMBER: A 16-nm SOC WITH A CGRA FOR FLEXIBLE ACCELERATION OF DENSE LINEAR ALGEBRA 959

Po-Han Chen (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering and
computer science and the M.S. degree in electrical
engineering from National Tsing Hua University,
Hsinchu, Taiwan, in 2016 and 2018, respectively.
He is currently pursuing the Ph.D. degree in electri-
cal engineering with Stanford University, Stanford,
CA, USA, under the supervision of Prof. Priyanka
Raina.

He was a Digital Circuit Designer at MediaTek,
Hsinchu, Taiwan, where he worked on developing
hardware architectures for image processing pipelines. Most of his previous
works were related to computational photography algorithms, such as digital
refocusing. He is interested in designing hardware accelerators. He is focusing
on analyzing and designing the architecture of coarse-grained reconfigurable
arrays (CGRAs) to create high-performance, energy-efficient, and reconfig-
urable computing platforms.

Nikhil Bhagdikar received the M.S. degree in elec-
trical engineering from the University of Southern
California, Los Angeles, CA, USA, in 2009. He is
currently pursuing the Ph.D. degree in electrical
engineering with Stanford University, Stanford, CA,
USA, under the supervision of Prof. Mark Horowitz,
with a focus on optimizing energy and area effi-
ciency of coarse-grained reconfigurable arrays.

Zach A. Myers (Member, IEEE) received the B.S.
degree in electrical engineering from UC Davis,
Davis, CA, USA, and the M.S. degree in electrical
engineering from Stanford University, Stanford, CA,
USA, where he is currently pursuing the Ph.D.
degree, with a focus on the topic of sequence detec-
tion for high-speed links.

Outside research, he has a lot of experience in
board design for various projects ranging from
microfluidics to IC chip testing.

Brandon D’Agostino (Graduate Student Member,
IEEE) received the B.S. degree in electrical engi-
neering and computer engineering and the M.S.
degree in electrical engineering from the University
of Connecticut, Storrs, CT, USA, in 2020 and 2021,
respectively. He is currently pursuing the Ph.D.
degree in electrical engineering with Stanford Uni-
versity, Stanford, CA, USA.

His research interests include embedded systems,
reconfigurable computing platforms, and formal
hardware verification methods.

Pranil Joshi is currently pursuing the M.S. degree
in electrical engineering with Stanford University,
Stanford, CA, USA.

Stephen Richardson received the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, USA.

He has worked in industry at Weitek, San Jose,
CA, USA, and MIPS, San Jose, and at Sun
Microsystems, Santa Clara, CA, USA, and Hewlett-
Packard Research Labs, Palo Alto, CA, USA. He is
currently a Research Associate with the Electrical
Engineering Department, Stanford University.

Christopher Torng received the B.S., M.S., and
Ph.D. degrees from Cornell University, Ithaca, NY,
USA, in 2012, 2016, and 2019, respectively, all in
electrical and computer engineering.

From 2019 to 2022, he was a Post-Doctoral
Researcher with Stanford University, Stanford, CA,
USA, operating in the leadership of the AHA Agile
Hardware Project. Since 2023, he has been with the
University of Southern California, Los Angeles, CA,
USA, where he is currently an Assistant Professor
of electrical and computer engineering. His research
interests are in domain-specific hardware architectures and agile hardware
design methodologies.

Mark Horowitz (Fellow, IEEE) received the B.S.
and M.S. degrees in electrical engineering from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 1978, and the Ph.D. degree from
Stanford University, Stanford, CA, USA, in 1984.

He has worked on many processor designs,
from early RISC chips to distributed shared mem-
ory multiprocessors, and in 1990, he took leave
from Stanford University to help start Rambus
Inc., San Jose, CA, USA, a company designing
high-bandwidth memory interface technology. His
work at both Rambus Inc. and Stanford University drove high-speed link
designs for many decades. In the 2000s, he started a collaboration with Marc
Levoy in computational photography, which led to light-field photography
and microscopy. He is currently the Yahoo! Founders Professor at Stanford
University, where he is the Chair of the Electrical Engineering Department.
He remains interested in learning new things and building interdisciplinary
teams. His current research interests include updating both analog and digital
design methods, agile hardware design, and applying engineering to biology.

Dr. Horowitz is a fellow of the Association for Computing Machin-
ery (ACM). He is a member of the National Academy of Engineering and
the American Academy of Arts and Science.

Priyanka Raina (Life Fellow, IEEE) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology Delhi, New Delhi,
India, in 2011, and the M.S. and Ph.D. degrees in
electrical engineering and computer science from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2013 and 2018, respectively.

She was a Visiting Research Scientist with
NVIDIA Corporation, Santa Clara, CA, USA,
in 2018. She is currently an Assistant Professor
of electrical engineering with Stanford University,
Stanford, CA, USA, where she works on domain-specific hardware architec-
tures and agile hardware—software codesign methodology.

Dr. Raina is a 2018 Terman Faculty Fellow. She was a co-recipient of the
Best Demo Paper Award at VLSI 2022, the Best Student Paper Award at
VLSI 2021, the IEEE JOURNAL OF SOLID-STATE CIRCUITS (JSSC) Best
Paper Award in 2020, the Best Paper Award at MICRO 2019, and the Best
Young Scientist Paper Award at European Conference on Solid-State Cir-
cuits (ESSCIRC) 2016. She has won the National Science Foundation (NSF)
CAREER Award in 2023, the Intel Rising Star Faculty Award in 2021, and
the Hellman Faculty Scholar Award in 2019. She was the Program Chair of
the IEEE Hot Chips in 2020. She serves as an Associate Editor for the IEEE
SOLID-STATE CIRCUITS LETTERS.

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2024 at 07:19:05 UTC from IEEE Xplore. Restrictions apply.

