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Abstract— Amber is a system-on-chip (SoC) with a coarse-
grained reconfigurable array (CGRA) for acceleration of dense
linear algebra applications, such as machine learning (ML),
image processing, and computer vision. It is designed using
an agile accelerator—compiler codesign flow; the compiler
updates automatically with hardware changes, enabling con-
tinuous application-level evaluation of the hardware-software
system. To increase hardware utilization and minimize recon-
figurability overhead, Amber features the following: 1) dynamic
partial reconfiguration (DPR) of the CGRA for higher resource
utilization by allowing fast switching between applications
and partitioning resources between simultaneous applications;
2) streaming memory controllers supporting affine access
patterns for efficient mapping of dense linear algebra; and 3) low-
overhead transcendental and complex arithmetic operations. The
physical design of Amber features a unique clock distribution
method and timing methodology to efficiently layout its hier-
archical and tile-based design. Amber achieves a peak energy
efficiency of 538 INT16 GOPS/W and 483 BFloat16 GFLOPS/W.
Compared with a CPU, a GPU, and a field-programmable gate
array (FPGA), Amber has up to 3902x, 152x, and 107 x better
energy-delay product (EDP), respectively.

Index Terms— Coarse-grained reconfigurable array (CGRA),
computer architecture, computer vision, image processing,
machine learning (ML), reconfigurable accelerators, system-on-
chip (SoC).
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I. INTRODUCTION

ARDWARE accelerators have emerged as the key

method to improve performance and energy efficiency
of applications, as Moore’s law slows down. However,
application changes quickly result in outdated accelerators.
Accelerators designed for specific image processing, computer
vision, and machine learning (ML) applications [1], [2], [3],
[4], [5], [6] demonstrate high performance and efficiency when
they are released but soon become obsolete, as new imaging
or ML applications emerge.

Reconfigurable accelerators present a solution to balance
the efficiency and performance offered by fixed-function,
dedicated accelerators and the adaptability needed to sup-
port application changes. Field-programmable gate arrays
(FPGAs) have demonstrated utility as reconfigurable acceler-
ators and have been used for accelerating various application
domains [7], [8], [9], [10], [11]. However, programmability
comes with energy, delay, and area overheads. Reconfigu-
ration speed affects how often the accelerator can switch
applications and repurpose resources that may be sitting idle.
In an FPGA, reconfiguration takes tens of milliseconds [12],
which prevents users from switching applications in real
time. Memory control logic is often implemented in the
reconfigurable fabric itself, which is inefficient relative to
specialized memory control logic. General purpose direct
memory access (DMA) engines can be used but are less
performant. Finally, reconfigurable accelerators have intro-
duced dedicated hardware, such as digital signal processors
and artificial intelligence engines [13] in order to close the
gap with application-specific integrated circuits (ASICs), but it
often goes underutilized for applications that do not need those
operations.

Amber [14] is a reconfigurable system-on-chip (SoC) that
overcomes the challenges faced by traditional reconfigurable
accelerators and targets dense linear algebra applications,
including image processing, computer vision, and ML. The
core of Amber is a coarse-grained reconfigurable array
(CGRA) of processing element (PE) and memory tiles for
application acceleration. To reduce area, energy, and the
complexity of running applications on a reconfigurable chip,
Amber features the following contributions.
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1) Fast dynamic partial reconfiguration (DPR) that allows
the SoC to be reconfigured to run new applications very
quickly and run several independent kernels in parallel.

2) Efficient streaming memories to support affine access
patterns, common in dense linear algebra applications.

3) Low-overhead, distributed implementation of necessary,
but infrequently used, complex arithmetic operations.

4) Hierarchical physical design with low-overhead river
routing for the clock and other global signals.

5) Use of an agile accelerator—compiler design flow in
which the compiler updates automatically with hardware
changes, enabling continuous application-level evalua-
tion of the hardware—software system.

Section II provides background on CGRAs and agile
hardware design. The Amber architecture is described in
Section III. Section IV covers the global buffer (GLB) and
DPR. Section V describes the streaming memory controllers
for affine patterns. Section VI explains how Amber supports
complex operations with low overhead. Section VII covers
physical design of Amber, and Section VIII describes the hard-
ware design and compilation flow. Finally, Section IX shows
results and comparisons of Amber against other reconfigurable
platforms.

II. BACKGROUND

As accelerators have become increasingly common, research
into reconfigurable architectures, such as CGRAs, and agile
accelerator—compiler design techniques, has also become more
popular. CGRAs are a class of reconfigurable, programmable,
spatial-style architectures that serve as a midpoint between
the flexibility offered by FPGAs and the energy efficiency
of ASICs [15]. Instead of being configurable at the bit-
level-like FPGAs, which use lookup tables (LUTSs) to hold
configuration data, CGRAs are configurable at a word-level
granularity. They use coarse-grained processing and memory
elements with a word-level interconnect, typically arranged
in a tile-based manner [16], [17], [18]. While less efficient
compared with ASICs, CGRAs are more flexible due to the
built-in configurable nature of their different components.

Traditionally, designers use a waterfall approach to build
accelerators, in which they first study an application, cre-
ate a hardware specification, perform logical and physical
design, fabricate the hardware, and finally develop the soft-
ware compiler to map the application to the hardware.
However, a waterfall approach makes it hard for designers
to adapt to changing application requirements. In con-
trast, an agile accelerator—compiler design approach borrows
from agile software methodologies and allows the designer
to make incremental updates to the hardware and corre-
sponding software tool chain to create an accelerator [19].
Recently, an agile approach to designing CGRAs has been
introduced, which couples CGRA hardware generation with
automatic application compiler updates [20]. In this article,
we demonstrate a CGRA architecture designed with an agile
accelerator—compiler design flow.

III. AMBER ARCHITECTURE

Amber consists of a CGRA, a GLB, and an ARM Cortex-
M3 CPU [21] (Fig. 1). The CGRA has 384 PE tiles
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Fig. 1.  Amber SoC architecture. The accelerator consists of a GLB and
a CGRA. The processor subsystem controls application execution.
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Fig. 2. PE and memory tiles in the CGRA, connected in an island-style

architecture.

and 128 memory tiles, with every fourth column composed
of memory tiles (Fig. 2). Each PE supports INT16 and
BFloat16 [22], [23] operations and contains a 64-byte register
file (RF) (Section VI). Each memory tile has a 4-KB SRAM
(Section V). Each PE and memory tile has switch boxes
(SBs) and connection boxes (CBs) to connect to the array
interconnect. The GLB sits between off-chip DRAM and the
CGRA and streams input, output, and intermediate data to
and from the CGRA. Each of the 16 GLB tiles contains two
128-KB SRAM banks, load and store units, a configuration
network, and a data network (Section IV). The ARM Cortex
M3 processor subsystem manages application execution by
sending bitstreams to the CGRA and directing data movement.
It contains 128-KB of SRAM and DMA units that transfer data
to and from off-chip DRAM through an ARM Thin Links
interface [24].

CGRA tiles communicate through statically configured
16- and 1-bit data interconnects (Fig. 3). SBs and CBs connect
a tile core to the data interconnect. SBs have multiplexers
that route data over five incoming and five outgoing 16-/1-bit
routing tracks in each direction, and SB muxes optionally
pipeline data. Adding more than five incoming or outgoing
tracks to the SBs does not significantly improve application
performance. However, decreasing the number of tracks from
five hurts performance, because the router creates longer paths
in the design due to the increased difficulty in routing the
application [20]. Internally, SBs use the Wilton topology [25].
The Wilton topology rotates track numbers, meaning, for
example, input west 2 (IW2) links to output north three (ON3).
The Wilton topology increases routability, because it does not
impose a restriction that a route from one side of the SB to the
other side must use the same track number. Other topologies,
such as disjoint [26], fail to route the targeted applications for
this reason. CBs contain a 20:1 multiplexer that brings data
from the interconnect tracks to the PE or memory core; one
CB is instantiated for each input.
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Fig. 3. CGRA SB features the Wilton topology to route data between tiles

(left). Boundary protection logic for power-gating resides in the SB and CB
multiplexers (right).
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Fig. 4. GLB tile microarchitecture (left). By default, a load/store unit only

accesses banks in the same GLB tile, bypassing the ring interconnect. Two
GLB tiles connected via a ring interconnect (right). Fixed latency is guaranteed
when a load unit accesses any bank in the two tiles as the request path (red)
and the response path (blue) form a circle. Pipelining registers are not shown.

The CGRA supports tile-level power gating to turn unused
tiles off. Each tile has power switches controlled by a con-
figuration register. Instead of dedicated isolation cells, which
add area and timing overheads, the multiplexers within the
SBs and CBs contain boundary protection logic to prevent
propagation of floating signals from an “off” domain into an

on” domain. The boundary protection multiplexers are based

n [27] and [28] and have three stages: one-hot encoding,
clamping, and an OR tree. One-hot encoding ensures that only
one data port is selected, clamping all non-selected ports to
zero. The OR tree produces the final output of the multiplexer.
The boundary protection logic adds less than 1% area overhead
and only 30 ps of delay.

V. GLB ARCHITECTURE SUPPORTING DPR

Many workloads in imaging, vision, and ML domains are
composed of multiple tasks that run concurrently or in a
pipelined manner. For example, a computing system in an
autonomous vehicle runs a camera pipeline to generate an
RGB image, followed by several perception tasks, such as
object detection. The GLB in Amber is designed to support
concurrent streaming tasks with several input—output chan-
nels by splitting the GLB into 16 independent stream units
called GLB tiles. It supports DPR, which can reconfigure up
to 16 CGRA regions in parallel.

A. GLB Tile Microarchitecture

The GLB is a shared memory that streams data to and from
the CGRA. Each of the 16 GLB tiles serves as an independent
stream unit with its own memory (Fig. 4). Each GLB tile
communicates with fixed columns of the CGRA, which avoids
using an expensive crossbar between the GLB and the CGRA.
This does not cause any limitations, since data can be routed to
any part of the CGRA through its interconnect. A GLB tile has
two 128-KB 64-bit wide (four-word wide) single-port SRAM
banks, a load/store unit with an address generator (AG), and
a serializer/deserializer to stream 16-bit CGRA words.

To run applications on Amber, the application compiler stat-
ically schedules data movement at compile time and extracts
affine memory access patterns (Section V). The number of
GLB tiles needed and configuration of the AGs are determined
by the number of input—output channels and the access pattern
of each channel, respectively. The compiler guarantees syn-
chronization of data movement at the word level, eliminating
the need for a handshaking interface between GLB tiles and
the CGRA and saving area and energy.

Some channels in an application may need more memory
than what one GLB tile can provide. In such cases, a GLB tile
needs to access banks in other GLB tiles, which can introduce
variable latency, as there are pipelining registers on the path to
other tiles. However, the application compiler needs to know
the memory access latency a priori to statically schedule data
movement. To solve this, the GLB uses a configurable ring
interconnect to enable a load/store unit to communicate with
any bank in the neighboring GLB tiles while guaranteeing a
fixed latency. When a request from a load unit enters the ring,
it flows to the destination bank, and the bank then injects the
response back into the ring to flow to the source load unit in
a full circle with fixed latency (Fig. 4).

B. Dynamic Partial Reconfiguration

Amber can spatially map multiple tasks or temporally
switch one task to another to maximize hardware utilization.
This is done by DPR, which reconfigures part of the CGRA
without affecting the rest. Amber uses the GLB to support
high-throughput and parallel DPR with low hardware over-
head. Amber shares GLB storage between application and
configuration data and uses the GLB’s parallel data ports to
drive a high-speed, pipelined configuration network. Reusing
the GLB for reconfiguration eliminates the need for dedicated
storage and control logic for the reconfiguration system, reduc-
ing hardware overhead.

The CGRA has 22656 32-bit configuration registers
(90.6 KB), addressed by a 32-bit configuration address
channel. Within the 32-bit configuration address, the most
significant 16 bits indicate the file_id, while the least sig-
nificant 16 bits indicate the specific register within each
tile. The configuration process in the CGRA operates on a
columnwise basis, with each column having its own dedi-
cated configuration channel. The channel comprises a 32-bit
configuration address and the 32-bit configuration data. The
configuration flows down the column, broadcasting to the tiles
within it. Every tile in the column compares its tile_id to
the most significant 16 bits of the configuration address, and
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Fig. 5.  DPR using GLB tiles and the configuration interconnect. GLB
tile O only reconfigures the first two columns (blue), while GLB tile 1 can
broadcast a bitstream to four columns through the configuration interconnect
(red). Configuration flows down CGRA columns.

only tiles with a matching tile_id store configuration data
in corresponding registers. Therefore, even when the GLB
broadcasts a bitstream to multiple columns (and ultimately
multiple PE/memorys in the columns), only a single PE with
a matching tile_id accepts the configuration data, while the
remaining PEs disregard the bitstream. This simplifies the
configuration network, as complex routers are not needed.
Amber does not support configuring multiple PEs with the
same bitstream in a single cycle.

Unlike other CGRA architectures [2], [29] that use a DMA
or a serialized interface to configure the CGRA, Amber reuses
the GLB to store bitstreams and stream them to CGRA
columns. Multiple sets of bitstreams can be preloaded into
the ample GLB memory and subsequently reused multiple
times, eliminating the need for fetching them from off-chip
DRAM for every reconfiguration. By default, each GLB tile
is responsible for reconfiguring PE/memory tiles within the
two columns positioned below the corresponding GLB tile.
During the reconfiguration process, the GLB tiles assigned
to reconfigure the corresponding subregion work in unison to
stream their respective bitstreams. The load unit in each GLB
tile reads the bitstream in four-CGRA-word (64 bit) chunks
(32-bit configuration address and 32-bit configuration data)
and sends it to a switch in the configuration interconnect every
cycle, bypassing the serializer (Fig. 5), which then multicasts
bitstreams to the two CGRA columns below. For instance,
bitstreams from GLB tile 0 in Fig. 5 (blue) flow down to
columns O and 1. In this default setting, bitstreams have to
be sorted by their destination CGRA tiles and preloaded into
corresponding GLB tiles before reconfiguration. While this
preprocessing incurs some overhead in the processor, it can be
amortized when the same bitstream is used for reconfiguration
several times once preloaded into the GLB.

Using multiple GLB tiles for reconfiguration enables high-
throughput, parallel DPR, where multiple regions of the
CGRA can be reconfigured concurrently. However, some GLB
tiles may not be available or may not have enough empty
space to store bitstreams at runtime. In this case, a single GLB
tile can deliver a bitstream to more than two CGRA columns
by configuring switches in the configuration interconnect to
chain GLB tiles and forward bitstreams to the right. For

which is configured to broadcast to columns 2-5 (red). The
circuit-switched configuration interconnect provides flexibility
in multicasting the bitstream to a varying number of CGRA
columns with low hardware overhead: one multiplexer and one
set of pipeline registers per GLB tile.

Once the bitstream enters the CGRA, it flows down a con-
figuration channel along with the clock signal (Section VII).
This allows the bitstream to reach the bottom of the CGRA
at 1 GHz. Due to parallel streaming of bitstreams using
GLB tiles and a high-frequency configuration channel, Amber
achieves a maximum DPR throughput that is 80x higher than
DynPaC [29], which relies on a DMA controller, and 25 600 x
higher than Eyeriss [2], which utilizes a scan chain interface
(64 GB/s versus 800 MB/s versus 2.5 MB/s).

The CGRA operates on large tiles of an input image, and
Amber only allows reconfiguration when a kernel finishes the
execution of a tile. The intermediate output of the kernel is
stored in either memory tiles or GLB tiles, and reconfiguration
does not change the contents of data stored in the memories.
After reconfiguration, if a new kernel needs the outputs of
a previous kernel, it continues processing the data stored in
memory tiles or GLB tiles without saving it to temporary
memories. If a new kernel is from a distinct application and
needs memory space in memory tiles, data is temporarily saved
to GLB tiles (or DRAM) and are restored to memory tiles later.

We evaluate the benefits of dynamic resource allocation
on Amber using DPR with a synthetic autonomous system
workload. In this workload, an image sensor produces a
RAW image. A camera pipeline task processes every frame to
generate an RGB image, which then goes through ResNet-18
for object detection if it is a key frame (e.g., every ten
frames). In the baseline (no dynamic resource allocation),
we partition the CGRA into two regions with an equal
amount of hardware resources. For key frames, each CGRA
region executes camera pipeline and ResNet, while for non-
key frames, the ResNet-dedicated CGRA region sits idle
(Fig. 6(a)). In contrast, Amber exploits DPR to dynamically
reallocate hardware resources at runtime to minimize the
latency (Fig. 6(b)). Amber allocates the entire CGRA to run
a camera pipeline for frame 1. Once it finishes, as frame 1 is
a key frame, DPR rapidly switches half of the CGRA to
run ResNet. After ResNet finishes, the resources allocated for
ResNet are reconfigured to run camera pipeline again until the
next key frame. With DPR, the maximum frames per second
(frames/s) Amber can achieve is 58.7, which is 1.8x faster
than without DPR (33.3 frames/s).
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V. STREAMING MEMORIES FOR AFFINE PATTERNS

Accelerators often contain DMA engines to orchestrate
data movement to and from the accelerator [30]. However,
for the dense linear algebra applications that Amber targets,
DMA engines are too general and lead to unnecessary area
and energy overheads. Instead, because these applications
demonstrate highly regular affine access patterns, we spe-
cialize the memory controllers within Amber to match these
patterns. All on-chip memories (GLB, memorys, and RFs)
in Amber have optimized internal affine memory controllers,
whose parameters are extracted from the application by the
compiler [31].

Affine access patterns can be expressed in the form of nested
loops. For example, a two-level affine loop nest looks like

for y in range 0O:ry
for x in range 0O:rx
addr = sxx*x + syxy + offset

where the ranges (rx and ry) and strides (sx and sy) are
configurable parameters set from the application. The GLB,
memory, and PE RF support up to four-, six-, and two-level
loop nests, respectively. The GLB loops over batches of
images and the outer tiling loops, the memory is designed to
have the most flexibility and supports the most number of loop
configurations, and the PE RF supports only two levels due to
its small size (32 16-bit words) and use as a local scratchpad
inside the PE. We connect the affine memory controllers to
the read and write ports of foundry-provided SRAMs (Fig. 7).
Each controller consists of three components. The iteration
domain (ID) specifies the range of memory operations (0 : rx
and 0:ry). The ID is implemented by a set of counters, one
for each loop in the pattern. The AG computes the address as
an affine expression of strides and ID counter values. Finally,
the schedule generator (SG) produces the read or write enable
as an affine expression of a set of strides and ID counter values.

A. Streaming Memory Optimizations

Internal memory controllers in memory save area and
energy compared with using PEs for address generation and
eliminate sending memory requests across the interconnect.
The hardware implementation of the streaming memory con-
trollers contains a number of optimizations to further reduce
overhead. To eliminate the use of multipliers, the affine
patterns are calculated as recurrence relations, which use deltas
(dx and dy) calculated from the strides and ranges (Fig. 7(b)).
The deltas represent how much the output of the multiplier
increases with each update.

The GLB and memory contain additional optimizations.
They use wide-fetch SRAMs; each SRAM word is 64 bits
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Fig. 8. Memory tile with a wide-fetch SRAM, streaming memory controllers,
and SIPO and PISO buffers.
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Fig. 9. Operations in camera pipeline, Harris corner detector, and non-local
means (nlmeans). The circled complex operations account for 15% of the total
operations in nlmeans.

wide, which fits four 16-bit CGRA words. A wide-fetch
SRAM has a lower access energy per byte, 0.81 versus 1.65 pJ
for single fetch (16 bits), for the same capacity 4-KB SRAM in
16-nm technology. Using a wide-fetch SRAM in memory
allows us to expose two input and two output ports by
aggregating inputs from the CGRA with serial in, parallel
out (SIPO) buffers and separating SRAM words into CGRA
words with parallel in, serial out (PISO) buffers. The memory
tile also shares streaming memory controllers when possible
across different internal modules. Reads from the SIPO buffers
are always followed by writes to the SRAM, and reads from
the SRAM are followed by writes to the PISO buffers, which
allows them to share the same ID. Fig. 8 shows the final
memory architecture.

VI. Low-OVERHEAD COMPLEX ARITHMETIC

Image processing, computer vision, and ML applications
require, but infrequently use, complex arithmetic operations,
including BFloat16 division, natural logarithm, sine, and expo-
nential. For example, in non-local means (nlmeans), which is
used in image denoising, 15% of all operations are complex
(Fig. 9). However, Harris corner detector and camera pipeline
do not contain any complex operations. The CPU is able to
perform these operations, but going to the CPU incurs a high
performance penalty. On the other hand, including complex
operations in the ALU of the PE is very expensive in terms of
area. Amber takes a unique approach toward supporting com-
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Fig. 10. PE architecture. Inputs come from other tiles or from the local RF.
The PE has INT16 and BFloat16 operations, as well as additional operations
to support complex arithmetic.

plex arithmetic operations and chains multiple tiles together
to approximately perform the equivalent operations with very
little area overhead.

The PE core within the PE tile has an ALU and a LUT
to perform arithmetic and bit operations, respectively. It also
contains a 64-byte RF as local memory (Fig. 10). The 16-bit
inputs to the ALU come from either the CBs or from the RF.
The outputs from the ALU go to the SB to be sent to another
tile or are written into the RF. The 1-bit inputs to the LUT are
taken from the 1-bit CB, and the outputs from the LUT are
sent to the 1-bit SB to send to other tiles. The PE supports
INT16 and bit operations, as well as BFloat16 operations.

In addition, the PE contains supplementary operations
that, with multiple chained PE and memory tiles, implement
complex arithmetic operations. The supplementary operations
manipulate the BFloat16 representation B = 1. f x 2%, where
B is the BFloatl6 number, with 7 bits for the mantissa, f,
and 8 bits for the exponent, x (the bias is not shown). The
PE has eight supplementary functions. GETMAN returns the
mantissa f. ADDIEXP adds an integer to the exponent x.
SUBEXP subtracts the exponents of two BFloatl6 values.
EXP2F returns the exponent x as a BFloatl6. F2INT converts
BFloat16 into INT16 by rounding the numeric value to the
nearest integer. GETFR returns the fractional part of the
BFloat16 numeric value. INT2F converts INT16 to BFloat16.
The supplementary operations add only 0.2% area in each PE
tile (8124- versus 8108-um? layout area).

Amber performs complex operations by using multiple PEs
and memorys together (Fig. 11). For example, division is
equivalent to multiplying, using one PE, the dividend by the
reciprocal of the divisor. The reciprocal is found using one
PE to get the mantissa, one memory to lookup the reciprocal
of the mantissa, and one PE to subtract the original exponent
from the reciprocal of the mantissa’s exponent. This method
of performing complex operations has minimal effect on
accuracy; for nlmeans, the output image from Amber has a
structural similarity index of 0.967 (with the maximum value
being 1) with the output image from a CPU. Applications
that use complex operations and operate in INT16 must first
convert to BFloatl6 and then convert back to INT16 after
performing the operation.
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Compared with a CGRA that supports these complex oper-
ations entirely in one PE, the Amber PE is 37.8% smaller
in area (13 056- versus 8124-um? layout area). However, the
area required to perform each complex operation is much
greater, since it requires using more than one PE. Fig. 12
shows the area trade-off between having a CGRA with dedi-
cated complex operations in each PE and the Amber CGRA,
analyzed across a variety of applications. For the majority of
applications, which do not have complex operations, up to
34.5% less area is used on the CGRA with the approach taken
by Amber. For nlmeans, which has exponentials and divisions,
Amber uses 148 more tiles and 64.7% more area. However,
Amber is still able to fully accelerate nlmeans on the CGRA,
which is 29.7x faster than offloading the complex operations
to the CPU.

VII. PHYSICAL DESIGN METHODOLOGY

Scaling the physical design of a CGRA from a small array
(4 x 4 and 4 x 8) [32], [33], [34] to the 16 x 32 array in
Amber requires taking a bottom-up hierarchical approach to
reduce physical design time. However, this is challenging,
because the physical design tools do not have complete
knowledge of the design. To address this, we perform special
handling of clock distribution, global signals, and timing
constraints, as described below.

The GLB, PE, and memory tiles are laid out independently
and converted into macros, which are then replicated and
repeated to create the CGRA and GLB. The PE and memory
tiles have the same height to make it easy to lay out the tiles
in the array, with the memory being wider than the PE. Each
column has the same tile type. In the CGRA, the tiles are fully
abutted to reduce area. The GLB and CGRA are connected to
the processor subsystem at the top level to form the SoC.

Replicating tiles creates challenges when each tile must
be treated differently. For example, each tile needs a tile ID
to uniquely address it for configuration, yet each replicated
macro is internally the same. Furthermore, abutment leaves
no space between tiles to assign tile IDs. Instead, we observe
that tile IDs are constants that do not switch and build
each tile with a set of output pins that drive constants with
a “GSVSG” pattern—signals (“S”) with alternating logic 0
(“G”) and logic 1 (“V”) constants. At the tile array level, the
tile ID is formed by drawing small metal strips to the correct
logic levels. Our approach for assigning tile IDs requires no
additional standard cells or area overhead and preserves tile
abutment.

Another consequence of tile abutment is that there is no
space between tiles to insert clock buffers. Rather than using
a balanced clock tree, Amber distributes clocks down each
CGRA column in clock rivers (Fig. 13). The naive clock river
approach sends the clock down both the PE and memory
columns, but clock skew accumulates between columns of
different tile types, a key challenge in the physical design
of heterogeneous spatial arrays. Even with a small skew
difference, e.g., 4 ps (20-ps PE delay versus 24-ps memory
delay), after many tiles, the clock will reach the bottom of
the PE columns before the memory columns. Instead, in our
design, the clock only travels down a single tile type, the PE
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Fig. 12.  Area utilization trade-offs for complex arithmetic support. NImeans
contains complex operations, while the other applications do not. Without
complex arithmetic support on the CGRA, nlmeans would be 29.7x slower.
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Fig. 13. Clock and configuration signal distribution method (right). The clock
flows down the PE columns and travels right to the memory tiles, which helps
match pass-through delays between the PE and memory tiles compared with a
simple clock river approach (middle). A traditional clock tree does not allow
creating a fully abutted layout (left).

tiles, and the PE tiles pass the clock to the memory tiles on
the right. The right-angle clock river eliminates the need to
precisely match delays through the PE and memory tiles, and
we are able to send the CGRA configuration data together
with the clock, which enables low-overhead fast configuration.
However, the delay of the clock path through the PE to the
right-adjacent memory is around 50 ps, so if a memory to
PE path lies in the critical path through an application, the
right-angle clock river slows it down by that much.
Configuration data is a part of the CGRA’s global signals,
which also include a read path to read out configuration data.
To successfully meet timing at the CGRA level, each tile has
constraints to handle global signals and break combinational
loops that form across multiple tiles. A clock passing through a
PE tile is constrained with a max delay of 50 ps. Configuration
signals pass through each tile with a max delay of 30 ps after
the clock. With these tight constraints and the configuration
signals traveling with the clock, Amber only needs one set
of pipeline registers halfway down the rows to configure
at 1 GHz. The configuration readout path is more relaxed,
with a 300-ps pass-through delay, since it is designed to be

a multicycle debug path that does not need to meet high-
performance requirements.

Finally, putting the tiles together in an array creates
combinational loops in the design, since the tiles have
purely combinational paths from input to output. Using the
set_case_analysis command, we activate the pipeline
registers in each tile’s SB to break the loops during liberty
(lib) file generation, a format that defines timing and power
properties for a generated macro. Using the customized lib
files, the timing tools will not see inter-tile combinational paths
when running top-level timing checks.

VIII. ACCELERATOR—COMPILER DESIGN FLOW

To design the CGRA, we use the open-source domain-
specific language (DSL)-based accelerator—compiler codesign
flow from [20], which uses high-level DSLs to design the hard-
ware. The flow generates the application compiler collateral
automatically from the hardware specification (Fig. 14). The
PE, memory, and interconnect in the CGRA are specified in
their own DSLs—PEak, Lake, and Canal, respectively. Each
DSL has its own compiler to generate both the hardware RTL
description and the collateral for the application compiler to
map applications onto the hardware. The collateral includes
PE rewrite rules, which dictate how to map operations onto
each PE tile, memory rewrite rules, which transform memory
accesses into memory tile access patterns, and the routing
graph, which describes how tiles are connected to each other.

The application compiler flow transforms a Halide program
into a bitstream that configures the CGRA. Halide [35] is a
DSL in C++ that divides a program into an algorithm and
a schedule. The algorithm describes how to compute each
output pixel as a function of the inputs, and the schedule
describes the order in which the intermediates and output
pixels are computed. Koul et al. [20] extend the Halide com-
piler to target CGRAs. Given an application, the polyhedral
scheduler first transforms the program into a dataflow graph
of operations. The mapper converts the dataflow graph into a
graph of PE/memory tiles, which is then placed and routed on
a physical CGRA. Pipelining activates registers in the intercon-
nect on long paths to increase the maximum clock frequency.
Finally, the bitstream generator produces the configuration
bitstream. The Halide compiler also produces the ARM M3
CPU code, enabling application execution on Amber.

IX. RESULTS

Amber is fabricated in Taiwan Semiconductor Manufac-
turing Company (TSMC) 16-nm FinFET technology with a
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compiling and mapping Halide applications onto Amber uses collateral from each of the hardware DSLs.

Fig. 15.
(right).

Amber die photograph (left) and measurement and testing setup

TABLE I
LAYOUT AND STANDARD CELL AREA (AFTER SIGNOFF) FOR AMBER

Layout Std Cell+SRAM Density
Area (mm?)  Area (mm?)
Amber 20.1 - -

Global Buffer 491 4.69 95.3%
GLB Tile (x16) 0.292 0.251 85.9%
GLB Controller 0.007 0.004 47.1%

CGRA 7.24 6.14 84.7%
MEM (x128) 0.024 0.018 74.0%
PE (x384) 0.008 0.006 73.5%

Processor System 0.256 - -

Fill 7.69 - -

total area of 20.1 mm?. Fig. 15 shows the die photograph
and testing setup. The GLB closes timing at 1 GHz, while
the PE and memory are designed to run at a maximum
frequency of 909 MHz. In the testing setup, Amber is housed
in the socket in the middle of the board, and the application
configuration bitstreams are generated off chip. The Raspberry
Pi Pico programs on-board power supply modules to generate
the core and I/O voltage and controls the clock generator. The
nominal core voltage is 0.9 V, and all reported results are
measured at 0.9 V unless otherwise noted.

Table I shows the breakdown of the layout area and standard
cell area after signoff, with the CGRA and GLB comprising a
majority of the area. Fig. 16 shows the area breakdown of the
GLB tile, PE tile, and memory tile. Density is the percentage
of the total layout area that is comprised of standard cells
and macros, as opposed to fill cells. The densities of the
GLB and CGRA are high, because they consist mostly of
macros of GLB tiles and PE/memory tiles, respectively. The
GLB controller density is relatively low, because it is a small
module, and it was not necessary to make it very area efficient.
The streaming memory controllers take up 30% of the area in
the memory tiles. The area of the CGRA is 50% memory and
50% PE; the memory is 3x the size of the PE. The processor
subsystem is very small and makes up 1.3% of the total area.

A. Unrolling and Pipelining Applications

The schedule of an application, that is, how the applica-
tion is mapped onto the CGRA, affects its runtime, energy

GLB Tile — 0.251 mm? PE Tile — 5968 pm? MEM Tile — 18.0k pm?

SRAM ~ STADUnits - other
93.7%\ 4.1% nterconnec .
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\_Other connect_,
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<__PE Core
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Config
14.6%
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30.1%

Fig. 16. Standard cell area breakdown of the GLB, PE, and memory tiles.

TABLE 11
ENERGY BREAKDOWN FOR FULLY UNROLLED, PIPELINED BLUR

\ Energy (mJ/frame)  Percentage
GLB (14 / 16) 1.52 56.2%
PE (280 / 384) 0.641 23.7%
MEM (56 / 128) 0.388 14.3%
Processor 0.0616 2.28%
Other 0.0946 3.49%
Total 2.71 100%

consumption, and energy-delay product (EDP). We employ
scheduling techniques, such as unrolling and pipelining,
to increase performance. Fig. 17 shows the effect of unrolling
and pipelining. Unrolling (or parallelizing) the outer loop
of an application kernel effectively replicates the kernel and
increases throughput. The maximum unrolling is limited by
the number of GLB tiles, the number of PE tiles, the number
of memory tiles, and/or routing resources. Fully unrolling
to the maximum unrolling/parallelization factor results in
2.0x-12.1x runtime improvement, 1.1x—7.1x lower energy
consumption, and 2.2x-86x EDP improvement.

Pipelining the application by using registers in the inter-
connect, PEs, and memorys further increases application
performance on Amber. The amount that each application
is pipelined varies, as it depends on how the application is
mapped onto the CGRA and the critical path through the
array [36]. Pipelining results in 6.4x-24.7x, 1.8x-9.1x, and
12x-221x improvements in performance, energy, and EDP,
respectively. Table II breaks down the energy consumed by
the unrolled and pipelined blur application, and Table III
shows the amount of resources used by all the unrolled and
pipelined applications. Temporal occupancy (utilization) is the
percentage of cycles for which the CGRA is active during the
execution of the entire application. The size of the input image
for each application is larger than the storage available in the
memory tiles, so the image is split into several tiles, and each
tile is streamed through the application mapped on the CGRA.
While we try to fully overlap computation time on the CGRA
with the data loading and storing time from/to the GLB in
steady state, the CGRA is idle during the time the first tile is
loaded and the last tile is stored. Furthermore, the CGRA is
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Fig. 17. Effect of unrolling and pipelining on runtime, energy, and EDP.

TABLE III
APPLICATION RESOURCE UTILIZATION AND FREQUENCIES

Application \ Blur  Unsharp Camera Harris ResNet-18
Output Rate 14 9 3 2 4
(pixels/cycle)
Temporal 72% 83% 73% 83% Table V
Occupancy
Frequency 415 260 320 425 200
(MHz)
# PE / 384 | 280 303 294 194 272
#MEM /128 | 56 36 34 12 56
# GLB / 16 | 14 9 12 6 12
# 1-bit Routing 560 296 417 348 450
Tracks / 10240
# 16-bit Routing ‘ 2128 1892 1410 2236 2684

Tracks / 10240

idle when we switch the bitstream in the case of DPR. These
lead to a temporal occupancy of less than 100%. In addition,
the frequency that each application runs at is dependent on how
the application is placed, routed, and pipelined on the CGRA,
which is similar to FPGAs, where applications rarely run at the
maximum achievable frequency of the FPGA. Routes between
sequential elements may span across multiple tiles, which
will decrease the frequency since our CGRA interconnect
allows for single-cycle multi-hop connections, as opposed to
interconnects that are single cycle single hop.

B. Comparison Against Other Platforms

We compare Amber against an ARM Cortex A57 CPU,
an Intel Xeon CPU, an NVIDIA Tesla K40 GPU, and a Xilinx
Virtex Ultrascale FPGA. The FPGA is in the same technology
node as our CGRA, 16-nm FinFET, and its properties are
summarized in Table IV. Applications running on the CPUs
and GPU use Halide’s autoscheduler [37] to find the best
application schedule for those platforms. Amber achieves
160x—-1200x, 678 x—3902x, 498 x—988x, 12x—-152x, and
20x—-107x better EDP over the Cortex A57, 1-core and 12-
core Xeon CPUs, GPU, and FPGA, respectively (Fig. 18). For
ResNet-18 layers in INT16 precision, Amber uses up to 9.4 x
less energy and has up to 10.3x lower EDP than the FPGA
(Table V).

Unsharp: 1536x2560x3

Camera: 25681928  Harris: 1530x2554x3

TABLE IV

XILINX VIRTEX ULTRASCALE+ VU9P FPGA
PROPERTIES COMPARED WITH AMBER

| FPGA | Amber

Processing | Logic Cells 2586 K 384 PEs

Flip-Flops 2364 K

DSP Slices 6840

LUTs 1182 K
Memory Block RAM 759 Mb | 4.5 MiB

UltraRAM 270 Mb

TABLE V

LATENCY AND ENERGY COMPARISON OF AMBER WITH
A XILINX VIRTEX FPGA ON RESNET-18 LAYERS

Latency (ms) Energy (mJ) Temporal

Occupancy
Layer | Amber FPGA | Amber FPGA | Amber
conv2_x 4.44 4.53 1.51 13.3 84.8%
conv3_1 2.24 2.27 0.75 6.7 84.9%
conv3_x 4.44 4.53 1.51 13.3 84.8%
conv4_1 2.28 2.27 0.78 6.7 82.4%
conv4_x 4.34 4.53 1.47 13.3 86.8%
conv5_1 2.33 2.27 0.79 6.7 80.6%
conv5_x 5.40 591 1.84 17.3 69.7%

X. RELATED WORK

Recently published, state-of-the-art, programmable accel-
erator chips include 2 x 2 dielets with CGRAs for signal
processing and linear algebra [38], an SoC with an embed-
ded FPGA [39], a RISC-V vector machine [40], and a
496-core RISC-V processor [41]. Rathore et al. [38] have
more than double the number of PEs, and their PEs are
denser and more specialized in precision and operations. Even
so, Amber shows comparable energy efficiency. Whatmough
et al. [39] see its efficiency determined by how much of
its resources can be utilized. Schmidt et al. [40] support a
variety of floating point and integer operations but latency
varies across functional units. Finally, Rovinski et al. [41]
send memory requests across the interconnect to the on-chip
SRAMs. With its DPR, internal streaming memory controllers,
and low-overhead complex arithmetic, Amber is 1.7x more
energy efficient with 36.7x better throughput (Table VI).

Prior work has also explored using CGRAs as pro-
grammable accelerators and an alternative to fixed-function
accelerators. Previously proposed CGRAs include Plas-
ticine [18], ultra-elastic CGRAs [32], CGRA-ME [42],
DySER [16], and ADRES [17]. While they are programmable
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TABLE VI
SUMMARY OF ACHIEVED PERFORMANCE AND COMPARISON WITH STATE-OF-THE-ART RECONFIGURABLE ACCELERATORS
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| This Work ISSCC 2022 [38] VLSI 2019 [39] ISSCC 2021 [40] VLSI 2019 [41]
Architecture SoC with CGRA 2x2 dielet with CGRA SoC with FPGA Multicore Vector CPU Multicore CPU
Node TSMC 16-nm 16-nm TSMC 16-nm TSMC 16-nm TSMC 16-nm
Area (mm?) 20.1 25 25 24.01 15.25
Precision BF16, INT16/32/64 Fixed 16 FP16/32/64, FP16/32/64, INT32/64 INT32
INT16/32/64
SRAM (MiB) 45 0.06 9.025 4.5 3.875
Voltage (V) 0.84-1.29 0.35-0.9 0.5-1.0 0.55-1.0 0.60-0.98
Frequency (MHz) 955 @ 1.29 V 1100 @ 0.8 V > 1000 1440 10-1400
Peak GOPS 367 @ 1.29 V 3449.6 10-56.2 368.4 695
GOPS/W 538 @ 0.84 V 568 @ 0.8 V 3124 209.5 93.04
Il ARM Cortex A57 (4 cores) [ElINvidia Tesla K40 GPU
Il Xeon CPU (1 core) [JVirtex Ultrascale+ VU9P FPGA REFERENCES

[l Xeon CPU (12 cores) [—JAmber SoC
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Fig. 18. Performance, energy, and EDP compared with CPU, GPU, and
FPGA for image processing and computer vision applications.

accelerators, they are evaluated in simulation or on FPGAs.
In addition, the application compilers for previous CGRAs
are designed manually, as opposed to the compiler for
Amber, which is automatically updated from the hardware
specification.

XI. CONCLUSION

Amber is a reconfigurable SoC for flexible and efficient
acceleration of imaging, vision, and ML applications. The
demonstrated techniques—DPR, efficient streaming memo-
ries, and low-overhead complex arithmetic—achieve efficient
domain (rather than single application) acceleration. In addi-
tion, due to its repetitive architecture, Amber employs
a hierarchical-based physical design approach and uses a
right-angle clock river to efficiently distribute the clock.
Amber is designed using an agile accelerator—compiler design
flow, which allows for continuous application-level evaluation
of the hardware design.
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