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Machine learning approaches for the optimization
of packing densities in granular matter

Adrian Baule, *a Esma Kurban, a Kuang Liub and Hernán A. Makseb

The fundamental question of how densely granular matter can pack and how this density depends on

the shape of the constituent particles has been a longstanding scientific problem. Previous work has

mainly focused on empirical approaches based on simulations or mean-field theory to investigate the

effect of shape variation on the resulting packing densities, focusing on a small set of pre-defined

shapes like dimers, ellipsoids, and spherocylinders. Here we discuss how machine learning methods can

support the search for optimally dense packing shapes in a high-dimensional shape space. We apply

dimensional reduction and regression techniques based on random forests and neural networks to find

novel dense packing shapes by numerical optimization. Moreover, an investigation of the regression

function in the dimensionally reduced shape representation allows us to identify directions in the

packing density landscape that lead to a strongly non-monotonic variation of the packing density. The

predictions obtained by machine learning are compared with packing simulations. Our approach can be

more widely applied to optimize the properties of granular matter by varying the shape of its constituent

particles.

1. Introduction

Granular matter is ubiquitous in science and nature represent-

ing one of the most common states of matter. While granular

matter seems conceptually simple, consisting of hard particles

interacting solely by steric repulsion and friction, understanding

its properties from first principles has been a major challenge.1,2

Already the fundamental and seemingly simple question of how

densely granular matter can pack has a long and illustrious

history in mathematics and the sciences.3 Considering a bulk

region away from any confining boundaries and a large number of

hard particles, the packing density of the aggregate depends

sensitively on (i) particle shape; (ii) friction; and (iii) details of

the preparation protocol which could lead to (partial) structural

order. Much work has been devoted to the study of packings of

hard spheres, for which the effect of (ii and iii) has been

investigated in great detail.1,4–6 On the other hand, the effect of

particle shape on packing densities is still only relatively poorly

understood, owing to the complexity and high-dimensionality

of the shape space, which makes any empirical work based on

simulations computationally costly.

Systematic explorations of the mapping between particle

shape and the associated packing density are usually constrained

to a specific category of shapes with high symmetry so that the

shape parameter space is limited and can be fully explored. One

then finds, for example, that disordered monodisperse packings

of hard frictionless particles in the shape of ellipsoids, sphero-

cylinders, and dimers, can pack considerably denser than spheres,

achieving packing densities f 4 0.7, while spheres pack up to

f E 0.64.7 Moreover, for these shapes one observes a charac-

teristic peak in the packing density for aspect ratios of around

1.5 upon deforming from the spherical shape indicating the

existence of particular optimally dense packings for these shape

categories.8–19 The densest disordered packings that have been

reported for these shapes have fE 0.740 (ellipsoids20), fE 0.722

(spherocylinders16), and f E 0.707 (dimers19). Regular polyhedra

such as tetrahedra and other platonic solids also pack denser than

spheres21,22 and can reach densities as high as f E 0.78 in

disordered arrangements.21

In order to go beyond the constraint of a specific shape

category, a much larger parameter-space of shapes has been

considered by introducing a shape representation consisting of

overlapping spheres of varying diameters.17,23–25 Applying

black-box optimization methods based on evolutionary algo-

rithms in this high-dimensional shape space has identified a

symmetric trimer, see Fig. 1 as densest packing shape25 achieving

f = 0.729 � 0.003, above the density of the densest packing

ellipsoid20 packed with the same protocol.

For comparison, crystalline packings of non-spherical parti-

cles typically achieve higher packing densities than in dis-

ordered arrangements with maximal densities of f = 0.770. . . for
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ellipsoids,26 f ! p

2
ffiffiffi

3
p ¼ 0:906 . . . for spherocylinders,27 f ¼

p

3
ffiffiffi

2
p ¼ 0:740 . . . for dimers,27 and f = 0.856. . . for tetrahedra.28

Here, we revisit the question of ‘‘which shape packs the

densest’’ in a disordered arrangement. Instead of using simula-

tions or mean-field theory,2,17 we employ an approach based on

machine learning to identify novel dense packing shapes.

Machine learning is increasingly used in materials dis-

covery29–31 and has the particular benefit that insight can be

gained from ‘‘failures’’, since such data is still useful as training

data.32 In the context of granular matter, machine learning has,

e.g., helped to identify flow defects from structural data,33 to

optimally characterize permeability,34 to predict the formation

of crystalline phases,35 and to identify force chains.36 In our

approach, we first employ principal component analysis to

reduce the high-dimensional shape space to a lower-

dimensional representation and then apply random forests

and neural networks to construct regression functions on this

space. Optimizing the regression functions yields predictions

of new shapes, which we test using the same protocol used for

the training data. All shapes predicted by this approach are

different from the symmetric trimer, but pack slightly denser

with f E 0.733. We also investigate the packing density land-

scape that results from the regression in the dimensionally

reduced space and identify directions with strongly non-

monotonic variation of the packing density.

2. Methods

The optimization of packing densities in the space of particle

shapes requires the following steps:

1. A suitable representation model of particle shapes cap-

tured in a vector a

2. A method to determine the (protocol-specific) packing

density f for a given a

3. An optimization method to find the maximum of f(a)

a* = argmax
a
f(a).

Clearly, exploring a sufficiently general shape space a

requires a high-dimensional representation, which, in turn,

makes the optimization step 3 challenging, since f(a) is not

guaranteed to be a convex function. In terms of computational

cost, step 2 is the main problem, because for every query of a

new function value f(a) a whole simulation of the packing

needs to be performed, which requires a sufficiently large

number of particles to reduce any effects due to boundaries

and initial conditions. The fact that the function to be opti-

mized is in itself a complex ‘‘procedure’’ limits the choice of

possible optimization algorithms to gradient-free black-box

optimizers. An additional challenge is to constrain the optimi-

zation to physical shapes only. For example, if we consider the

space of shapes consisting of two overlapping spheres with

different diameters (dimers), a is two-dimensional, but valid

shapes are constrained to the range of values for which the two

spheres overlap, imposing a nonlinear constraint. In higher

dimensions, this becomes increasingly difficult to implement.

In order to improve on this approach, we use machine

learning including dimensional reduction and regression to

replace step 2. Since we now optimize the regression function

instead of the actual f, we also need to verify the predicted

packing density at the end. Overall, our optimization approach

thus requires the following:

1. A set of training data (f1, a1), . . ., (fN, aN) based on the

real-space shape representation a

2. A suitable dimensional reduction method a - ~a to

simplify both regression and optimization

3. A regression function f̂(~a) fitted to the training data

4. An optimization method to find the maximum of f̂(~a)

~a* = argmax~af̂(~a). (1)

5. The inverse dimensional reduction ~a*- a*

6. A test of the new shape with the same simulation algo-

rithm as the training data

Further details on the different steps are given below.

Machine learning algorithms are implemented with the soft-

ware platform Mathematica, while packing simulations are

performed with the molecular dynamics solver LAMMPS.37,38

All code and data generated for this work are publicly available.39

2.1 Shape representation model

We represent shapes in terms of a large number of overlapping

spheres (the upper limit of components is essentially set by

computational tractability), as used in the mean-field theory of

ref. 17 and the optimization approaches of ref. 23–25 It is

natural that the first sphere sets both the origin of the coordinate

system and the length scale of the shape representation. The

vector a thus contains the positions and radii of all other spheres

relative to the first sphere. For a trimer consisting of three spheres

as an example, a is expressed as a ¼ r1 � r0; r2 � r0;
a1

a0
;
a2

a0

� �

,

where ri and ai denote the position and radius of the ith sphere. In

3D, the trimer is thus represented by an 8-dimensional vector a

and for a general shape consisting of n spheres, the dimension-

ality of a is p = 4(n� 1). We note that the mapping between such a

vector and a shape is not unique: the same trimer shape can be

parametrized, e.g., aligned with the x̂ -axis or with the ŷ-axis,

leading to different vectors a even though the shape is the same.

In fact, three degrees of freedom can in principle be further

reduced by rotation of each shape such that their vectors r1 � r0
are all parallel (reducing dimensionality by two) and the vectors

r2 � r0 are all in the same plane (reducing dimensionality by one).

Fig. 1 The symmetric trimer identified in ref. 25 as densest packing shape.
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Such a shape representation is able to approximate a large

variety of convex and non-convex shapes.17,23–25 In addition, the

representation model has the advantages: (i) it simplifies over-

lap detection in simulations; (ii) it can be easily implemented

in LAMMPS to simulate granular aggregates of such particles;

and (iii) it allows for the fully analytical description of the

Voronoi boundary between two particles, which facilitates a

structure and void analysis in terms of a Voronoi tessellation.2,17,40

Even though this model does not strictly reproduce shapes with

flat sides or smooth non-spherical surfaces, it can provide good

approximations with large sphere numbers. In the following,

we also refer to particles consisting of overlapping spheres as

‘‘molecules’’.

2.2 Dataset of Roth & Jaeger

As underlying dataset for our machine learning approach, we

use the data generated by Roth & Jaeger in ref. 25 for particle

shapes consisting of n = 5 overlapping spheres. The dataset

consists of N = 5800 distinct packings, i.e., {fi, ai} pairs,

whereby the dimensionality of a is p = 4(n � 1) = 16 (the global

rotations are ignored). While ref. 25 also considered shapes

consisting of 10 and 25 spheres, their result of the optimization

did not vary significantly. Moreover, the number of packings

generated for 5, 10, 25 spheres is of the same order, thus the

5-sphere data is the least sparse, while still not ideal for the

high dimensionality of a. We further improve on the ‘‘curse

of dimensionality’’ problem by using dimensional reduction

techniques based on principal component analysis, see below.

Ref. 25 used a pouring protocol under gravity implemented

in LAMMPS to generate dense disordered packings of each

shape. For the symmetric trimer of Fig. 1, which has been

identified as the densest packing shape, it was further con-

firmed that the high packing density is not related to signifi-

cantly increased positional or orientational ordering in the

packing. For further details on the data generation and their

analysis, we refer to ref. 25.

A caveat of the dataset is that it is itself the output of an

optimization algorithm (covariance matrix adaptive evolutionary

strategy or CMA-ES), which means that shapes in the training

data are not uniformly distributed in a space, but already

clustered in the region of high f values. As we will see below,

our machine learning approach thus leads to different but quite

similar shapes as those identified in ref. 25.

2.3 Machine learning implementations

We apply principal component analysis in order to reduce the

dimensionality of the shape space a. We then perform regres-

sion in the reduced ~a space using two common machine

learning techniques: random forests as a non-parametric

regression method and artificial neural networks as a para-

metric method.41 The regression functions are subsequently

numerically optimized and the maxima mapped back to the full

shape space to identify novel dense packing shapes.

2.3.1 Principal component analysis. Principal component

analysis (PCA) is a common unsupervised learning technique,

which performs a linear transformation of the data feature

space to obtain a new basis with the properties41 1. The new

basis vectors, called principal components (PC), are eigen-

vectors of the covariance matrix and all orthogonal to each

other. 2. The PCs are ranked such that the projection of the

data onto the first PC has the largest variance, the projection on

the second PC the second-largest, etc. While the PC space has

the same dimensionality as the original data, we are now able

to select a smaller set of basis vectors, which still capture a large

proportion of the variance. Denoting by M a matrix that

contains as columns the first m PCs, we can transform every

original shape in the p-dimensional representation ai into a

new m-dimensional representation ~ai

~ai = aiM, (2)

whereM is a p � m matrix. For example, for our dataset p = 16,

but the first 6 PCs already contain around 80% of the total

variance in the data. We will separately perform the analysis

considering a reduced feature space ~a of m = 2,3, . . ., 6

dimensions corresponding to the number of PCs used.

Due to the linearity of the transformation, any new data

point in the reduced space can be easily transformed back

to the original space by inverting eqn (2), which allows us

to determine the corresponding shape in the original repre-

sentation. We implement PCA in Mathematica with the

DimensionalReduction[] routine using the option Method -

‘‘PrincipalComponentsAnalysis’’.

2.3.2 Random forest regression. Random forests (RFs)

produce an ensemble of decision trees which are trained

independently on random variations of the data. For regres-

sion, the prediction is obtained as the average value of the tree

ensemble for the given input. Overfitting is controlled by boot-

strap aggregation, which involves randomly selecting a subset

of the feature space for the training of each decision tree and by

performing an ensemble average over the predictions of each

tree. We implement RF regression in Mathematica with the

Predict[] routine using the option Method- ‘‘RandomForest’’.

The following hyperparameters are calibrated automatically by

Predict[] to our data:

� Fraction of features randomly selected to train each tree: 1/3

� Maximum number of data points in each leaf of the tree: 4

� Number of trees in the forest: 100

Overfitting is automatically controlled in random forests

since the trees in the ensemble are trained independently on

different subsets of the features and the data.

2.3.3 Artificial neural network regression. Artificial neural

networks (ANNs) currently achieve state-of-the-art performance

in industrial machine learning challenges such as speech and

image recognition. Due to their flexible architecture, ANNs

form a universal basis to capture nonlinear relationships, while

avoiding overfitting and generalizing well to out-of-sample

data. ANNs consist of a series of nonlinear transformations

applied to the input data in a sequence of layers, where each

layer contains a number of nodes which are connected to

nodes in the subsequent layer. Each node contains a nonlinear

activation function containing weight and threshold para-

meters, which are fitted to the training data by minimizing a

Soft Matter Paper
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suitable loss function. We implement ANN regression in

Mathematica with the Predict[] routine using the option

Method- ‘‘NeuralNetwork’’. Predict[] then performs an auto-

matic selection and optimization of the various hyperpara-

meters, which, for our data, are calibrated as follows:

� Size of training set: 4930 (85% of the dataset)

� Size of validation set: 870 (15% of the dataset)

� Number of layers: 8

� Nodes per layer: 50

� Activation function: scaled exponential linear units

(SELUs)

� Loss function: mean cross entropy

� Maximal training rounds: 10

The Predict[] routine with Method - ‘‘NeuralNetwork’’ is

able to control overfitting by (i) using a validation set; (ii) early

stopping of the training; (iii) regularization of the weights;

(iv) introducing dropout layers. For our data, Predict[] imple-

ments (i and ii).

2.3.4 Numerical optimization. The numerical optimization

of the regression function f̂(~a) in the case of non-parametric

RF requires gradient-free methods to find the maximum ~a*.

We use Mathematica’s NMaximize[] routine, which has built-in

gradient-free options Method - ‘‘NelderMead’’, ‘‘Random-

Search’’, ‘‘SimulatedAnnealing’’, ‘‘DifferentialEvolution’’. None

of these four methods is guaranteed to converge to a global

maximum, since the search landscape is non-convex, but the risk

of obtaining a local maximum is mitigated by starting from an

initial random configuration and due to the fact that we select the

maximum from the outputs of these distinct methods.

2.4 Packing simulations

We apply the same gravitational packing protocol as used in

ref. 25 to verify the predicted packing densities with simulations.

In this protocol, N monodisperse particles are poured under

gravity into a three-dimensional box of side length E20d, where

d = 1 is the diameter of the first sphere in the molecule that sets

the length scale. The box is constrained in the ẑ-direction by a

rough surface at the bottom and an open top with periodic

boundary conditions in the x̂–ŷ-plane. Initially the molecules are

placed at random positions and with random orientations

within a specified insertion region 30–40d above the bottom

and then released to settle in the box under gravity.

In order to perform the time-integration of the dynamical

evolution of the molecules, we use LAMMPS,37,38 which allows

the definition of rigid bodies consisting of overlapping spheres

(using the fix rigid/small command). Running a packing simu-

lation for a given molecule shape requires as input the posi-

tions and diameters of each sphere, molecule volume, molecule

mass (following directly from the volume since we consider a

mass density of 1), center of mass, and moment of inertia. The

molecule volume, center of mass, and moment of inertia are

calculated by Monte-Carlo integration. LAMMPS assumes that

the interaction between two rigid composite particles is equal

to the sum of the pairwise interactions between its constituent

spheres. The time-integration for a rigid molecule then proceeds

as follows:42 (1) the forces and torques acting on all constituent

spheres are computed. (2) Within each molecule, the forces and

torques on the constituent spheres are added. (3) For each

molecule the position, orientation, and translational/rotational

velocity are updated. (4) The position and velocity of each

constituent sphere are reset.

If a sphere is fully inside a molecule, then we exclude it

when defining the molecule before running the simulations.

Intramolecular forces and torques in the simulations are also

excluded, since they do not contribute to the external forces

and torques on the molecules. This prevents any possible

numerical issues due to the presence of large overlaps.

In order to compute the pairwise contact interaction

between spheres, we assume a spring-dashpot model, where

two contacting spheres i of radius ai and j of radius aj having

positions ri and rj, respectively experience a relative normal

compression with overlap d = ai + aj � rij, where rij = ri � rj and

rij= |rij|. The resulting force on sphere i is Fij = Fnij + Ftij, where

Fn,tij are the normal and tangential contact forces, respectively,

given as:43

Fn

ij ¼
ffiffiffi

d
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aiaj

ai þ aj

r

ðKndnij �meffgnvnÞ (3)

Ft

ij ¼
ffiffiffi

d
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aiaj

ai þ aj

r

ð�KtDst �meffgtvtÞ; (4)

where nij = rij/rij, vn,t are the normal and the tangential compo-

nents of the relative velocity of the spheres i and j, and meff

is the effective mass of the two spheres, calculated as

meff ¼
mimj

mi þmj

. We note that the masses of the constituent

spheres mi, mj are calculated from the sphere volumes and

the mass density. The quantities Dst, Kn,t and gn,t are the elastic

tangential displacement, and the elastic and viscoelastic con-

stants, respectively.43 In a gravitational field g = �gẑ, the total

force Ftoti and torque ttoti on sphere i is then given as:

Ftot

i ¼ migþ
X

iaj

Fn

ij þ
X

iaj

Ft

ij ; (5)

ttoti ¼ �1

2

X

iaj

rij � Ft

ij ; (6)

where the sum runs over all j spheres in contact with sphere i.

Simulations are run until a static equilibrium is achieved

when the kinetic energy per particle is less than 10�9mgd, where

m is the mass of the first sphere in the molecule. The number of

particles, material parameter values, and time step used in the

simulations are given in Table 1. We run 10 independent

simulations for each shape and average packing densities, with

error bars given as the standard deviation of the sample.

Table 1 The number of particles N, material parameter values, and time
step Dt used in the packing simulations

N Kn (mg/d) Kt/Kn gn
ffiffiffiffiffiffiffiffi

g=d
p

gt
ffiffiffiffiffiffiffiffi

g=d
p

Dt
ffiffiffiffiffiffiffiffi

d=g
p

� �

900 2 � 106 2/7 150 75 3 � 10�4
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2.5 Packing density calculation

Since our packing protocol can result in some crystallization at

the bottom of the box, depending on many factors such as the

box width, the time step and the pouring height, we define a

bulk region by excluding particles within 5d from the bound-

aries in the ẑ-direction. This definition of bulk region is

consistent with that used in ref. 25, where an investigation of

the radial distribution function and an orientational correla-

tion function of the trimer packing has confirmed that such a

distance from the boundaries ensures that no significant

ordering effects occur.

We then determine the packing density in the bulk, which is

generally given as the number of particles Nb within the bulk

times the volume of a single molecule, divided by the bulk

volume Vb:

f ¼ NbV0

Vb

; (7)

where the volume of a single molecule V0 is calculated using

Monte-Carlo integration. Two methods are used to determine

Vb and Nb: (1) A Voronoi method, which determines Vb as

superposition of the Voronoi cells Wl of the molecules in the

bulk within 5d of the boundaries: Vb ¼ P

Nb

l¼1

Wl . The superposi-

tion is due to the fact that the Voronoi cells of the molecules

provide a tessellation of the total volume. To consider a

molecule as part of the bulk, the centres of all constituent

spheres should be within the bulk, which leads to a straightfor-

ward calculation of Nb. The Voronoi cell of a molecule is given

as superposition of the Voronoi cells of the constituent spheres.

These in turn can be directly calculated in LAMMPS using the

Voro++ package, which implements a Voronoi tessellation,

i.e., it determines the Voronoi boundaries between all the

spheres in the packing and outputs the corresponding cell

volumes. Since spheres that are fully inside a molecule are

excluded, the tessellation is exact.

We also employ (2) a centroid method, for which the bulk

region is fixed as a rectangular volume of height 8d, i.e., Vb =

20d � 20d � 8d, which is at least 5d away from the boundaries

in ẑ-direction. The number Nb is determined by counting all

molecules whose centroid is within the bulk region. Here, the

fact that molecules are overlapping at the boundaries generates

some uncertainty in the count of Nb, which varies depending

on the precise location of the bulk region in the packing.

In order to minimize the effect of this variation, we shift the

rectangular volume stepwise in the vertical direction starting at

5d from the bottom, determine for each step Nb and the

packing density via eqn (7), and then average the packing

densities over all steps (which are taken as 50).

3. Results

We first confirm that our packing protocol is consistent with

that used in ref. 25 by comparing packing density measure-

ments for five randomly selected shapes across different

packing density regimes, see Fig. 2. For all shapes, our packing

density measurements using the two different methods of

Section 2.5 agree with that of the dataset within errorbars.

The results from the PCA dimensional reduction are shown

in Fig. 3. In Fig. 3(a) we plot the cumulative variance of the PCs

for all 20 dimensions. Of these, 4 dimensions are trivially

redundant, since the first sphere sets the origin of the coordi-

nate system and the length scale. There is no variance due to

these features, as evident in Fig. 3(a), but PCA is not able to pick

up the additional 3 redundant features that result from rota-

tions. Since we anyways only consider up to the first 6 PCs,

which capture 80.8% of the total variance, we do not impose a

further reduction by these 3 degrees of freedom by hand.

Fig. 3(b and c) then show scatter plots of f(~a(2)) (here the

superscript in ~a
(2) denotes that the first two PCs are considered

as reduced shape representation), which indicates that the

densest packings are clustered within a region of small PC1–

PC2 values.

Fig. 4 shows plots of the regression functions f̂(~a(2)) for RF

and ANN fitted to the data. We also fitted regression functions

to dimensionally reduced shape data with more PCs up to 6.

The accuracy of the regression functions is measured by

evaluating the root-mean-square error between the packing

density predictions and the true values of a 15% testset, see

Table 2. As the dimensionality increases, the accuracy also

slightly increases, but the error remains approximately twice

as large as the error measured in the simulations due to the

run-to-run variability.

Results from the optimization of the various regression

functions for different PCs, the resulting densest packing shapes

and the corresponding actual packing densities obtained from

LAMMPS simulations are summarized in Table 3 and displayed in

Fig. 5. We note that the numerical optimization in the reduced

Fig. 2 Comparison of our packing simulation with that of ref. 25.
We randomly select 5 shapes across different packing density regimes
from the dataset and use the packing protocol outlined in Section 2.4. For
all shapes, our packing density measurements using two different methods
(see Section 2.5) agree with that of the dataset within errorbars. Note that
the dashed line only serves to guide the eye.
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shape space does not require any additional constraint equivalent

to the overlap constraint in physical space and always leads to

overlapping molecules. The numerical optimization highlights

that, at every level of PC retained in the regression, the RF

regression function combined with the differential evolu-

tion optimization yields the densest predicted packing density,

which, if rounded to the third digit, is f = 0.734 throughout.

Comparing with the actual simulated values, the ML prediction is

Fig. 3 (a) Individual and cumulative proportion of the total variance explained by a principal component (PC). PCs 17–20 do not contribute any variance
because these degrees of freedom are redundant. (b) Scatterplot of f as a function of the first two PCs. (c) Scatterplot of f as a function of PC1.

Fig. 4 Regression surfaces f̂(~a(2)). (a) Random forest regression. (b) Arti-
ficial neural network regression leading to a smooth regression surface.

Table 2 The accuracy of the regression functions measured as the root-
mean-square error (RMSE) of the residuals of a 15% test set

PCs RMSE (RF) (�10�3) RMSE (ANN) (�10�3)

2 8.13 7.88
3 6.95 6.81
4 6.64 6.29
5 6.43 6.31
6 6.47 6.76

Table 3 Results of the regression optimization in the dimensionally
reduced space, keeping only the indicated number of PCs. Algorithms
used in Mathematica’s NMaximize[] routine: Nelder-Mead (NM), random
search (RS), simulated annealing (SA), and differential evolution (DE). We
display the shape that corresponds to the overall maximum found (indi-
cated in boldface) and the corresponding f value from the LAMMPS
packing simulation measured with the Voronoi method. All f -values are
rounded to the third digit

PCs RF ANN Shape F

2

NM: 0.734 NM: 0.729

0.732 � 0.004

RS: 0.732 RS: 0.729
SA: 0.732 SA: 0.729
DE: 0.734 DE: 0.729

3

NM: 0.732 NM: 0.731

0.732 � 0.004

RS: 0.731 RS: 0.730
SA: 0.731 SA: 0.731
DE: 0.734 DE: 0.731

4

NM: 0.731 NM: 0.731

0.733 � 0.003

RS: 0.729 RS: 0.730
SA: 0.730 SA: 0.730
DE: 0.734 DE: 0.731

5

NM: 0.733 NM: 0.733

0.733 � 0.002

RS: 0.729 RS: 0.732
SA: 0.729 SA: 0.731
DE: 0.734 DE: 0.733

6

NM: 0.731 NM: 0.733

0.732 � 0.004

RS: 0.728 RS: 0.731
SA: 0.728 SA: 0.731
DE: 0.734 DE: 0.733
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systematically above the measured mean value, but well within

the error bars, see Fig. 5. The densest packingmolecule shape that

we find packs slightly denser than the symmetric trimer with up

to f = 0.733 � 0.003, while the symmetric trimer packs with

f = 0.729 � 0.003.25

The fact that the predictions do not improve with increasing

the number of PCs used indicates that already the first two PCs,

which capture around 40% of the variance in the data (see

Fig. 3a), provide a good representation of the densest packing

shapes. The PC1–PC2 representation of all the new shapes of

Table 3 is shown in Fig. 6a) together with the corresponding

PCs of all the molecules in the dataset that pack with f 4 0.73.

All these shapes occur in a narrow range of PC values with

approximately PC1 A [�2,0] and PC2 A [�1,1] and are also

visually very similar, see Table 3, forming a family of asym-

metric shapes that pack slightly denser than the symmetric

trimer.

We further investigate the packing density landscape of

the ANN regression function f̂(~a(2)), displayed in Fig. 6b). The

landscape clearly reveals the region of densest packing shapes,

but also indicates areas with non-monotonic behaviour. Focus-

ing on the PC1 = 4 path, indicated by a dashed line in Fig. 6b),

the packing density exhibits strongly non-monotonic behaviour

with a double peak structure, confirmed in the simulations,

see Fig. 6c). Visual inspection of the corresponding mole-

cule shapes reveals that the PC2 direction captures roughly

the elongation of the shapes, with the local minimum at

PC2 E 0 associated with a sphere-like molecule. The plot in

Fig. 6c) is thus reminiscent of the variation in packing density

of monodisperse ellipsoid packings when the shape is changed

from oblate to prolate ellipsoids, which also exhibits a double-

peak structure with the perfect sphere as local minimum.10

Varying the two PCs over a wider range shows that the inverse

mapping ~a
(2)
- a leads to a range of shapes from highly

asymmetric elongated ones to more symmetric compact ones,

see Fig. 7. In general, PC2 seems to be approximately associated

with the elongation of the shape, whereby for each PC1 the

most compact shapes occur in the regime PC2 E 0.

We note that the simulated f values in Fig. 6c) do not agree

well with the ANN regression function away from the central

region. We believe that the underlying reason is the sparsity of

datapoints for large PC1 and PC2 values, which leads to a

systematic error in the regression.

4. Conclusions

Using a combination of dimensional reduction, regression, and

numerical optimization we have identified shapes that pack

slightly denser than the symmetric trimer of ref. 25. We note

that these new shapes are only slight variations of shapes that

are already in the dataset and represent a family of asymmetric

shapes that pack with f E 0.733. Our results show that

reducing the shape representation to the first two PCs already

Fig. 5 Plot of the densest packing shapes found by numerical optimiza-
tion of the regression function for the indicated number of PCs. The f

values and molecule shapes are shown in Table 3. The shaded region
indicates the packing density of the symmetric trimer of ref. 25 with f =
0.729 � 0.003. Note that the displayed f-values for the ML prediction are
not rounded and thus slightly vary compared with Table 3.

Fig. 6 (a) The PC1–PC2 coordinates of all the shapes in the dataset with f4 0.73 and the new shapes of Table 3. Symbols correspond to PCs as follows:
circle (2 PCs), square (3 PCs), diamond (4 PCs), up triangle (5 PCs), down triangle (6 PCs). (b) Density plot of the ANN regression function f̂(~a(2)). (c) Plot of
the ANN regression function f̂(~a(2)) along the PC1 = 4 path (indicated by a dashed line in (b)), which exhibits strongly non-monotonic behaviour
confirmed in the simulations. The simulated f-values shown are determined by the Voronoi method.
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allows for a classification of these dense packing shapes, which

occur in a narrow range of PC1 A [�2,0] and PC2 A [�1,1].

Further investigation of the ANN regression function has iden-

tified a range of PC values, where a strong non-monotonic

variation of the packing density occurs, akin to that found in

the variation of ellipsoidal shapes.

One caveat of the dataset is that it does not provide a

uniform sampling of the shape space, but is the output of a

CMA-ES optimization algorithm. As a consequence, the data-

points are already clustered around the densest packing shapes

and our regression functions yield maxima within the same

region. It would thus be interesting to apply our methodology

to a less biased dataset.

A crucial question is of course why this particular class of

shapes (Table 3) packs the densest? At this point we can only

speculate. It seems that these shapes combine several features

that are empirically known to pack dense: 1. They are slightly

elongated. Approximating the aspect ratio by dividing the

longest axis by the next longest one perpendicular to it,

indicates an aspect ratio of E1.2. For comparison, the densest

packings of ellipsoids, spherocylinders, and dimers are found

at an aspect ratio of E1.4–1.5. 2. They are slightly tetrahedral.

The projection of these shapes onto the plane is triangular, but

the largest sphere in the shape gives it a tetrahedral appearance.

Tetrahedra with flat sides are the densest packing shapes known

so far21 with f E 0.78. 3. They are asymmetric. Leaving

polyhedral shapes aside, high symmetry of rounded shapes

seems to be associated with lower packing density. Examples

are: spheres represent a local minimum in the packing

density;44 asymmetric ellipsoids pack denser than rotationally

symmetric ones;10 cubic-like superellipsoids pack denser than

ellipsoid-like ones.46

Our approach could be extended to a variety of other

dimensional reduction and regression techniques. Conceptual

questions concern, e.g., whether one should a priori restrict the

choice of base representation used in the regression based on

physical constraints. After all, a non-parametric form like RF

leads to a piecewise functional form of f̂(a), which can not

represent the ‘‘true’’ (physical) f(a) relationship. On the other

hand the physical f(a) function is also not perfectly smooth,

since empirical studies indicate that shape variations around

the sphere point lead to a cusp singularity in the resulting f as

Fig. 7 Shapes obtained by performing the inverse mapping ~a
(2)
- a and varying PC1 and PC2 over a range of values.
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shown, e.g., for ellipsoids at the transition between oblate and

prolate ellipsoids of revolution.10 For ANNs this would actually

imply that the activation functions should not be chosen as

smooth functions like the widely used sigmoid form.

In ref. 7 a phase diagram of packings of non-spherical

particles has been suggested that provides a phase boundary

for disordered packings in the f–z plane, where z denotes the

average number of contacts of a particle in the packing. General

considerations of mechanical stability5 would suggest that the

asymmetric shapes found here have z = 12, which locates our

packings just inside the phase boundary. We note that evalua-

ting z in simulations can be challenging for molecules with

strongly overlapping constituent spheres. In this case, the

sphere that is partially inside another one can create an

unphysical contact signal due to the soft sphere model used.

This issue has been investigated in detail for packings of dimer-

shaped particles generated by the same packing protocol.19

We highlight that our machine learning approach to find

maximally dense packing shapes can be applied in a straight-

forward way to other observables of granular matter that

are tuned by varying particle shape such as stiffness or

diffusivity.23,45 ML can thus be an important tool to address

general tasks in granular materials design by identifying shapes

that yield aggregates with optimal or tailored properties.47
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