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Machine learning approaches for the optimization
of packing densities in granular matter

Adrian Baule, 12 *® Esma Kurban, (¢ Kuang Liu® and Hernan A. Makse®

The fundamental question of how densely granular matter can pack and how this density depends on
the shape of the constituent particles has been a longstanding scientific problem. Previous work has
mainly focused on empirical approaches based on simulations or mean-field theory to investigate the
effect of shape variation on the resulting packing densities, focusing on a small set of pre-defined
shapes like dimers, ellipsoids, and spherocylinders. Here we discuss how machine learning methods can
support the search for optimally dense packing shapes in a high-dimensional shape space. We apply
dimensional reduction and regression techniques based on random forests and neural networks to find
novel dense packing shapes by numerical optimization. Moreover, an investigation of the regression
function in the dimensionally reduced shape representation allows us to identify directions in the
packing density landscape that lead to a strongly non-monotonic variation of the packing density. The
predictions obtained by machine learning are compared with packing simulations. Our approach can be
more widely applied to optimize the properties of granular matter by varying the shape of its constituent

rsc.li/soft-matter-journal particles.

1. Introduction

Granular matter is ubiquitous in science and nature represent-
ing one of the most common states of matter. While granular
matter seems conceptually simple, consisting of hard particles
interacting solely by steric repulsion and friction, understanding
its properties from first principles has been a major challenge.">
Already the fundamental and seemingly simple question of how
densely granular matter can pack has a long and illustrious
history in mathematics and the sciences.’> Considering a bulk
region away from any confining boundaries and a large number of
hard particles, the packing density of the aggregate depends
sensitively on (i) particle shape; (ii) friction; and (iii) details of
the preparation protocol which could lead to (partial) structural
order. Much work has been devoted to the study of packings of
hard spheres, for which the effect of (ii and iii) has been
investigated in great detail.»*® On the other hand, the effect of
particle shape on packing densities is still only relatively poorly
understood, owing to the complexity and high-dimensionality
of the shape space, which makes any empirical work based on
simulations computationally costly.

Systematic explorations of the mapping between particle
shape and the associated packing density are usually constrained
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to a specific category of shapes with high symmetry so that the
shape parameter space is limited and can be fully explored. One
then finds, for example, that disordered monodisperse packings
of hard frictionless particles in the shape of ellipsoids, sphero-
cylinders, and dimers, can pack considerably denser than spheres,
achieving packing densities ¢ > 0.7, while spheres pack up to
¢ ~ 0.64.” Moreover, for these shapes one observes a charac-
teristic peak in the packing density for aspect ratios of around
1.5 upon deforming from the spherical shape indicating the
existence of particular optimally dense packings for these shape
categories.®* ' The densest disordered packings that have been
reported for these shapes have ¢ &~ 0.740 (ellipsoids®’), ¢ ~ 0.722
(spherocylinders'®), and ¢ ~ 0.707 (dimers"®). Regular polyhedra
such as tetrahedra and other platonic solids also pack denser than
spheres®*” and can reach densities as high as ¢ ~ 0.78 in
disordered arrangements.>"

In order to go beyond the constraint of a specific shape
category, a much larger parameter-space of shapes has been
considered by introducing a shape representation consisting of
overlapping spheres of varying diameters.'”>*>* Applying
black-box optimization methods based on evolutionary algo-
rithms in this high-dimensional shape space has identified a
symmetric trimer, see Fig. 1 as densest packing shape® achieving
¢ = 0.729 £ 0.003, above the density of the densest packing
ellipsoid*® packed with the same protocol.

For comparison, crystalline packings of non-spherical parti-
cles typically achieve higher packing densities than in dis-
ordered arrangements with maximal densities of ¢ = 0.770... for
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Fig. 1 The symmetric trimer identified in ref. 25 as densest packing shape.

ellipsoids,2° T 0.906..
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Here, we revisit the question of “which shape packs the
densest” in a disordered arrangement. Instead of using simula-
tions or mean-field theory,>"” we employ an approach based on
machine learning to identify novel dense packing shapes.
Machine learning is increasingly used in materials dis-
covery®*™' and has the particular benefit that insight can be
gained from “failures”, since such data is still useful as training
data.** In the context of granular matter, machine learning has,
e.g., helped to identify flow defects from structural data,*’ to
optimally characterize permeability,* to predict the formation
of crystalline phases,*® and to identify force chains.?® In our
approach, we first employ principal component analysis to
reduce the high-dimensional shape space to a lower-
dimensional representation and then apply random forests
and neural networks to construct regression functions on this
space. Optimizing the regression functions yields predictions
of new shapes, which we test using the same protocol used for
the training data. All shapes predicted by this approach are
different from the symmetric trimer, but pack slightly denser
with ¢ ~ 0.733. We also investigate the packing density land-
scape that results from the regression in the dimensionally
reduced space and identify directions with strongly non-
monotonic variation of the packing density.

. for spherocylinders,” ¢ =

2. Methods

The optimization of packing densities in the space of particle
shapes requires the following steps:

1. A suitable representation model of particle shapes cap-
tured in a vector a

2. A method to determine the (protocol-specific) packing
density ¢ for a given a

3. An optimization method to find the maximum of ¢(«)

a* = argmax,¢p(a).

Clearly, exploring a sufficiently general shape space a
requires a high-dimensional representation, which, in turn,
makes the optimization step 3 challenging, since ¢(«) is not
guaranteed to be a convex function. In terms of computational
cost, step 2 is the main problem, because for every query of a
new function value ¢(«) a whole simulation of the packing
needs to be performed, which requires a sufficiently large
number of particles to reduce any effects due to boundaries
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and initial conditions. The fact that the function to be opti-
mized is in itself a complex “procedure” limits the choice of
possible optimization algorithms to gradient-free black-box
optimizers. An additional challenge is to constrain the optimi-
zation to physical shapes only. For example, if we consider the
space of shapes consisting of two overlapping spheres with
different diameters (dimers), « is two-dimensional, but valid
shapes are constrained to the range of values for which the two
spheres overlap, imposing a nonlinear constraint. In higher
dimensions, this becomes increasingly difficult to implement.

In order to improve on this approach, we use machine
learning including dimensional reduction and regression to
replace step 2. Since we now optimize the regression function
instead of the actual ¢, we also need to verify the predicted
packing density at the end. Overall, our optimization approach
thus requires the following:

1. A set of training data (¢, a4), ..
real-space shape representation o

2. A suitable dimensional reduction method « — a to
simplify both regression and optimization

3. A regression function ¢(%) fitted to the training data

4. An optimization method to find the maximum of ¢(&)

. (¢n, an) based on the

&* = argmaxz(a). (1)

5. The inverse dimensional reduction a* — a*

6. A test of the new shape with the same simulation algo-
rithm as the training data

Further details on the different steps are given below.
Machine learning algorithms are implemented with the soft-
ware platform Mathematica, while packing simulations are
performed with the molecular dynamics solver LAMMPS.?”5
All code and data generated for this work are publicly available.*

2.1 Shape representation model

We represent shapes in terms of a large number of overlapping
spheres (the upper limit of components is essentially set by
computational tractability), as used in the mean-field theory of
ref. 17 and the optimization approaches of ref. 23-25 It is
natural that the first sphere sets both the origin of the coordinate
system and the length scale of the shape representation. The
vector a thus contains the positions and radii of all other spheres
relative to the first sphere. For a trimer consisting of three spheres

ay’ ag
where r; and a; denote the position and radius of the ith sphere. In
3D, the trimer is thus represented by an 8-dimensional vector a
and for a general shape consisting of n spheres, the dimension-
ality of @ is p = 4(n — 1). We note that the mapping between such a
vector and a shape is not unique: the same trimer shape can be
parametrized, e.g., aligned with the x -axis or with the y-axis,
leading to different vectors a even though the shape is the same.
In fact, three degrees of freedom can in principle be further
reduced by rotation of each shape such that their vectors r; — r,
are all parallel (reducing dimensionality by two) and the vectors
1, — Iy are all in the same plane (reducing dimensionality by one).

. ay a
as an example, a is expressed as « = {r; — Iy, I, — rg,—, —
) 0 05 )

This journal is © The Royal Society of Chemistry 2023



Soft Matter

Such a shape representation is able to approximate a large
variety of convex and non-convex shapes.'””**"** In addition, the
representation model has the advantages: (i) it simplifies over-
lap detection in simulations; (ii) it can be easily implemented
in LAMMPS to simulate granular aggregates of such particles;
and (iii) it allows for the fully analytical description of the
Voronoi boundary between two particles, which facilitates a
structure and void analysis in terms of a Voronoi tessellation,>'”*°
Even though this model does not strictly reproduce shapes with
flat sides or smooth non-spherical surfaces, it can provide good
approximations with large sphere numbers. In the following,
we also refer to particles consisting of overlapping spheres as
“molecules”.

2.2 Dataset of Roth & Jaeger

As underlying dataset for our machine learning approach, we
use the data generated by Roth & Jaeger in ref. 25 for particle
shapes consisting of n = 5 overlapping spheres. The dataset
consists of N = 5800 distinct packings, ie., {¢;, a;} pairs,
whereby the dimensionality of « is p = 4(n — 1) = 16 (the global
rotations are ignored). While ref. 25 also considered shapes
consisting of 10 and 25 spheres, their result of the optimization
did not vary significantly. Moreover, the number of packings
generated for 5, 10, 25 spheres is of the same order, thus the
5-sphere data is the least sparse, while still not ideal for the
high dimensionality of «. We further improve on the “curse
of dimensionality” problem by using dimensional reduction
techniques based on principal component analysis, see below.

Ref. 25 used a pouring protocol under gravity implemented
in LAMMPS to generate dense disordered packings of each
shape. For the symmetric trimer of Fig. 1, which has been
identified as the densest packing shape, it was further con-
firmed that the high packing density is not related to signifi-
cantly increased positional or orientational ordering in the
packing. For further details on the data generation and their
analysis, we refer to ref. 25.

A caveat of the dataset is that it is itself the output of an
optimization algorithm (covariance matrix adaptive evolutionary
strategy or CMA-ES), which means that shapes in the training
data are not uniformly distributed in a space, but already
clustered in the region of high ¢ values. As we will see below,
our machine learning approach thus leads to different but quite
similar shapes as those identified in ref. 25.

2.3 Machine learning implementations

We apply principal component analysis in order to reduce the
dimensionality of the shape space a. We then perform regres-
sion in the reduced & space using two common machine
learning techniques: random forests as a non-parametric
regression method and artificial neural networks as a para-
metric method.*’ The regression functions are subsequently
numerically optimized and the maxima mapped back to the full
shape space to identify novel dense packing shapes.

2.3.1 Principal component analysis. Principal component
analysis (PCA) is a common unsupervised learning technique,
which performs a linear transformation of the data feature
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space to obtain a new basis with the properties** 1. The new
basis vectors, called principal components (PC), are eigen-
vectors of the covariance matrix and all orthogonal to each
other. 2. The PCs are ranked such that the projection of the
data onto the first PC has the largest variance, the projection on
the second PC the second-largest, etc. While the PC space has
the same dimensionality as the original data, we are now able
to select a smaller set of basis vectors, which still capture a large
proportion of the variance. Denoting by .# a matrix that
contains as columns the first m PCs, we can transform every
original shape in the p-dimensional representation «; into a
new m-dimensional representation a;

&i = aiﬂ, (2)

where ./ is a p x m matrix. For example, for our dataset p = 16,
but the first 6 PCs already contain around 80% of the total
variance in the data. We will separately perform the analysis
considering a reduced feature space & of m = 2,3, ..., 6
dimensions corresponding to the number of PCs used.

Due to the linearity of the transformation, any new data
point in the reduced space can be easily transformed back
to the original space by inverting eqn (2), which allows us
to determine the corresponding shape in the original repre-
sentation. We implement PCA in Mathematica with the
DimensionalReduction[] routine using the option Method —
“PrincipalComponentsAnalysis”.

2.3.2 Random forest regression. Random forests (RFs)
produce an ensemble of decision trees which are trained
independently on random variations of the data. For regres-
sion, the prediction is obtained as the average value of the tree
ensemble for the given input. Overfitting is controlled by boot-
strap aggregation, which involves randomly selecting a subset
of the feature space for the training of each decision tree and by
performing an ensemble average over the predictions of each
tree. We implement RF regression in Mathematica with the
Predict[] routine using the option Method — ‘“RandomForest”.
The following hyperparameters are calibrated automatically by
Predict[] to our data:

e Fraction of features randomly selected to train each tree: 1/3

e Maximum number of data points in each leaf of the tree: 4

e Number of trees in the forest: 100

Overfitting is automatically controlled in random forests
since the trees in the ensemble are trained independently on
different subsets of the features and the data.

2.3.3 Artificial neural network regression. Artificial neural
networks (ANNs) currently achieve state-of-the-art performance
in industrial machine learning challenges such as speech and
image recognition. Due to their flexible architecture, ANNs
form a universal basis to capture nonlinear relationships, while
avoiding overfitting and generalizing well to out-of-sample
data. ANNs consist of a series of nonlinear transformations
applied to the input data in a sequence of layers, where each
layer contains a number of nodes which are connected to
nodes in the subsequent layer. Each node contains a nonlinear
activation function containing weight and threshold para-
meters, which are fitted to the training data by minimizing a
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suitable loss function. We implement ANN regression in
Mathematica with the Predict]] routine using the option
Method — “NeuralNetwork”. Predict[] then performs an auto-
matic selection and optimization of the various hyperpara-
meters, which, for our data, are calibrated as follows:

e Size of training set: 4930 (85% of the dataset)

e Size of validation set: 870 (15% of the dataset)

e Number of layers: 8

e Nodes per layer: 50

e Activation function: scaled exponential linear units
(SELUs)

e Loss function: mean cross entropy

e Maximal training rounds: 10

The Predict[] routine with Method — ‘NeuralNetwork” is
able to control overfitting by (i) using a validation set; (ii) early
stopping of the training; (iii) regularization of the weights;
(iv) introducing dropout layers. For our data, Predict[] imple-
ments (i and ii).

2.3.4 Numerical optimization. The numerical optimization
of the regression function ¢(&) in the case of non-parametric
RF requires gradient-free methods to find the maximum a*.
We use Mathematica’s NMaximize[] routine, which has built-in
gradient-free options Method — “NelderMead”, “Random-
Search”, “SimulatedAnnealing”, “DifferentialEvolution”. None
of these four methods is guaranteed to converge to a global
maximum, since the search landscape is non-convex, but the risk
of obtaining a local maximum is mitigated by starting from an
initial random configuration and due to the fact that we select the
maximum from the outputs of these distinct methods.

2.4 Packing simulations

We apply the same gravitational packing protocol as used in
ref. 25 to verify the predicted packing densities with simulations.
In this protocol, N monodisperse particles are poured under
gravity into a three-dimensional box of side length ~20d, where
d =1 is the diameter of the first sphere in the molecule that sets
the length scale. The box is constrained in the Z-direction by a
rough surface at the bottom and an open top with periodic
boundary conditions in the x-y-plane. Initially the molecules are
placed at random positions and with random orientations
within a specified insertion region 30-40d above the bottom
and then released to settle in the box under gravity.

In order to perform the time-integration of the dynamical
evolution of the molecules, we use LAMMPS,*”*® which allows
the definition of rigid bodies consisting of overlapping spheres
(using the fix rigid/small command). Running a packing simu-
lation for a given molecule shape requires as input the posi-
tions and diameters of each sphere, molecule volume, molecule
mass (following directly from the volume since we consider a
mass density of 1), center of mass, and moment of inertia. The
molecule volume, center of mass, and moment of inertia are
calculated by Monte-Carlo integration. LAMMPS assumes that
the interaction between two rigid composite particles is equal
to the sum of the pairwise interactions between its constituent
spheres. The time-integration for a rigid molecule then proceeds
as follows:"* (1) the forces and torques acting on all constituent
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spheres are computed. (2) Within each molecule, the forces and
torques on the constituent spheres are added. (3) For each
molecule the position, orientation, and translational/rotational
velocity are updated. (4) The position and velocity of each
constituent sphere are reset.

If a sphere is fully inside a molecule, then we exclude it
when defining the molecule before running the simulations.
Intramolecular forces and torques in the simulations are also
excluded, since they do not contribute to the external forces
and torques on the molecules. This prevents any possible
numerical issues due to the presence of large overlaps.

In order to compute the pairwise contact interaction
between spheres, we assume a spring-dashpot model, where
two contacting spheres i of radius a; and j of radius g; having
positions r; and r;, respectively experience a relative normal
compression with overlap 6 = a; + a; — r;, where r; = r; — r; and
ry= |ry|. The resulting force on sphere i is F; = Fj; + Fj;, where
Fji* are the normal and tangential contact forces, respectively,
given as:*

aidj
ai+ g

a;a;
FL=0 /m(—KtAs, — MefrPeVe), (4)
i J

where ny; = r;/ry;, v, . are the normal and the tangential compo-
nents of the relative velocity of the spheres i and j, and
is the effective mass of the two spheres, calculated as
m;m
m; + m;
spheres m;, m; are calculated from the sphere volumes and
the mass density. The quantities Asy, K,  and y,, ¢ are the elastic
tangential displacement, and the elastic and viscoelastic con-
stants, respectively.*® In a gravitational field g = —g2, the total

force Fi°* and torque 7{°" on sphere 7 is then given as:

R =gt YR YR, o

(Kndn;; — mefry, V) (3)

Meff = . We note that the masses of the constituent

i#j i#]
Tt = 1 rj X F! (6)
T i X K

i#]

where the sum runs over all j spheres in contact with sphere i.

Simulations are run until a static equilibrium is achieved
when the kinetic energy per particle is less than 10~ °mgd, where
m is the mass of the first sphere in the molecule. The number of
particles, material parameter values, and time step used in the
simulations are given in Table 1. We run 10 independent
simulations for each shape and average packing densities, with
error bars given as the standard deviation of the sample.

Table 1 The number of particles N, material parameter values, and time
step At used in the packing simulations

mveld  p/gld

150 75

N K, (mg/d)
900

KJ/K,

Az( d/g)

3 x10°*

2 x 10° 2/7
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2.5 Packing density calculation

Since our packing protocol can result in some crystallization at
the bottom of the box, depending on many factors such as the
box width, the time step and the pouring height, we define a
bulk region by excluding particles within 5d from the bound-
aries in the Z-direction. This definition of bulk region is
consistent with that used in ref. 25, where an investigation of
the radial distribution function and an orientational correla-
tion function of the trimer packing has confirmed that such a
distance from the boundaries ensures that no significant
ordering effects occur.

We then determine the packing density in the bulk, which is
generally given as the number of particles Ny, within the bulk
times the volume of a single molecule, divided by the bulk
volume Vi

_NbV()
= 2 ,

¢ )

where the volume of a single molecule Vj is calculated using
Monte-Carlo integration. Two methods are used to determine
Vp» and Np: (1) A Voronoi method, which determines V;, as
superposition of the Voronoi cells W; of the molecules in the

Ny
bulk within 5d of the boundaries: V', = Y W,. The superposi-
I=1

tion is due to the fact that the Voronoi cells of the molecules
provide a tessellation of the total volume. To consider a
molecule as part of the bulk, the centres of all constituent
spheres should be within the bulk, which leads to a straightfor-
ward calculation of Ny,. The Voronoi cell of a molecule is given
as superposition of the Voronoi cells of the constituent spheres.
These in turn can be directly calculated in LAMMPS using the
Vorot++ package, which implements a Voronoi tessellation,
ie., it determines the Voronoi boundaries between all the
spheres in the packing and outputs the corresponding cell
volumes. Since spheres that are fully inside a molecule are
excluded, the tessellation is exact.

We also employ (2) a centroid method, for which the bulk
region is fixed as a rectangular volume of height 84, i.e., V}, =
20d x 20d x 8d, which is at least 5d away from the boundaries
in Z-direction. The number N, is determined by counting all
molecules whose centroid is within the bulk region. Here, the
fact that molecules are overlapping at the boundaries generates
some uncertainty in the count of Ny, which varies depending
on the precise location of the bulk region in the packing.
In order to minimize the effect of this variation, we shift the
rectangular volume stepwise in the vertical direction starting at
5d from the bottom, determine for each step N, and the
packing density via eqn (7), and then average the packing
densities over all steps (which are taken as 50).

3. Results

We first confirm that our packing protocol is consistent with
that used in ref. 25 by comparing packing density measure-
ments for five randomly selected shapes across different

This journal is © The Royal Society of Chemistry 2023
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Fig. 2 Comparison of our packing simulation with that of ref. 25.
We randomly select 5 shapes across different packing density regimes
from the dataset and use the packing protocol outlined in Section 2.4. For
all shapes, our packing density measurements using two different methods
(see Section 2.5) agree with that of the dataset within errorbars. Note that
the dashed line only serves to guide the eye.

packing density regimes, see Fig. 2. For all shapes, our packing
density measurements using the two different methods of
Section 2.5 agree with that of the dataset within errorbars.

The results from the PCA dimensional reduction are shown
in Fig. 3. In Fig. 3(a) we plot the cumulative variance of the PCs
for all 20 dimensions. Of these, 4 dimensions are trivially
redundant, since the first sphere sets the origin of the coordi-
nate system and the length scale. There is no variance due to
these features, as evident in Fig. 3(a), but PCA is not able to pick
up the additional 3 redundant features that result from rota-
tions. Since we anyways only consider up to the first 6 PCs,
which capture 80.8% of the total variance, we do not impose a
further reduction by these 3 degrees of freedom by hand.
Fig. 3(b and c) then show scatter plots of ¢(a@?) (here the
superscript in &? denotes that the first two PCs are considered
as reduced shape representation), which indicates that the
densest packings are clustered within a region of small PC1-
PC2 values.

Fig. 4 shows plots of the regression functions ¢(&?) for RF
and ANN fitted to the data. We also fitted regression functions
to dimensionally reduced shape data with more PCs up to 6.
The accuracy of the regression functions is measured by
evaluating the root-mean-square error between the packing
density predictions and the true values of a 15% testset, see
Table 2. As the dimensionality increases, the accuracy also
slightly increases, but the error remains approximately twice
as large as the error measured in the simulations due to the
run-to-run variability.

Results from the optimization of the various regression
functions for different PCs, the resulting densest packing shapes
and the corresponding actual packing densities obtained from
LAMMPS simulations are summarized in Table 3 and displayed in
Fig. 5. We note that the numerical optimization in the reduced
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(a) Individual and cumulative proportion of the total variance explained by a principal component (PC). PCs 17-20 do not contribute any variance

because these degrees of freedom are redundant. (b) Scatterplot of ¢ as a function of the first two PCs. (c) Scatterplot of ¢ as a function of PC1.

(a

(b)
Fig. 4 Regression surfaces ¢(@?). (a) Random forest regression. (b) Arti-
ficial neural network regression leading to a smooth regression surface.

Table 2 The accuracy of the regression functions measured as the root-
mean-square error (RMSE) of the residuals of a 15% test set

PCs RMSE (RF) (x107%) RMSE (ANN) (x1077)
2 8.13 7.88
3 6.95 6.81
4 6.64 6.29
5 6.43 6.31
6 6.47 6.76

shape space does not require any additional constraint equivalent
to the overlap constraint in physical space and always leads to
overlapping molecules. The numerical optimization highlights
that, at every level of PC retained in the regression, the RF
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Table 3 Results of the regression optimization in the dimensionally
reduced space, keeping only the indicated number of PCs. Algorithms
used in Mathematica's NMaximize[] routine: Nelder-Mead (NM), random
search (RS), simulated annealing (SA), and differential evolution (DE). We
display the shape that corresponds to the overall maximum found (indi-
cated in boldface) and the corresponding ¢ value from the LAMMPS
packing simulation measured with the Voronoi method. All ¢ -values are
rounded to the third digit

PCs RF ANN Shape [
NM: 0.734 NM: 0.729
RS: 0.732 RS: 0.729
5 SA: 0.732 SA: 0.729 0.732 + 0.004
DE: 0.734 DE: 0.729
NM: 0.732 NM: 0.731
RS: 0.731 RS: 0.730
3 SA: 0.731 SA: 0.731 0.732 + 0.004
DE: 0.734 DE: 0.731
NM: 0.731 NM: 0.731
RS: 0.729 RS: 0.730
4 SA: 0.730 SA: 0.730 0.733 + 0.003
DE: 0.734 DE: 0.731
NM: 0.733 NM: 0.733
RS: 0.729 RS: 0.732
SA: 0.729 SA: 0.731
> DE: 0.734 DE: 0.733 0.733 £ 0.002
NM: 0.731 NM: 0.733
RS: 0.728 RS: 0.731
SA: 0.728 SA: 0.731
6 DE: 0.734 DE: 0.733 0.732 £ 0.004

regression function combined with the differential evolu-
tion optimization yields the densest predicted packing density,
which, if rounded to the third digit, is ¢ = 0.734 throughout.
Comparing with the actual simulated values, the ML prediction is

This journal is © The Royal Society of Chemistry 2023
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Fig. 5 Plot of the densest packing shapes found by numerical optimiza-
tion of the regression function for the indicated number of PCs. The ¢
values and molecule shapes are shown in Table 3. The shaded region
indicates the packing density of the symmetric trimer of ref. 25 with ¢ =
0.729 + 0.003. Note that the displayed ¢-values for the ML prediction are
not rounded and thus slightly vary compared with Table 3.

systematically above the measured mean value, but well within
the error bars, see Fig. 5. The densest packing molecule shape that
we find packs slightly denser than the symmetric trimer with up
to ¢ = 0.733 £ 0.003, while the symmetric trimer packs with
¢ =0.729 + 0.003.”

The fact that the predictions do not improve with increasing
the number of PCs used indicates that already the first two PCs,
which capture around 40% of the variance in the data (see
Fig. 3a), provide a good representation of the densest packing
shapes. The PC1-PC2 representation of all the new shapes of
Table 3 is shown in Fig. 6a) together with the corresponding
PCs of all the molecules in the dataset that pack with ¢ > 0.73.
All these shapes occur in a narrow range of PC values with
approximately PC1 € [—2,0] and PC2 € [—1,1] and are also
visually very similar, see Table 3, forming a family of asym-
metric shapes that pack slightly denser than the symmetric
trimer.

(a)

Paper

We further investigate the packing density landscape of
the ANN regression function ¢(@?), displayed in Fig. 6b). The
landscape clearly reveals the region of densest packing shapes,
but also indicates areas with non-monotonic behaviour. Focus-
ing on the PC1 = 4 path, indicated by a dashed line in Fig. 6b),
the packing density exhibits strongly non-monotonic behaviour
with a double peak structure, confirmed in the simulations,
see Fig. 6¢). Visual inspection of the corresponding mole-
cule shapes reveals that the PC2 direction captures roughly
the elongation of the shapes, with the local minimum at
PC2 = 0 associated with a sphere-like molecule. The plot in
Fig. 6¢) is thus reminiscent of the variation in packing density
of monodisperse ellipsoid packings when the shape is changed
from oblate to prolate ellipsoids, which also exhibits a double-
peak structure with the perfect sphere as local minimum."®
Varying the two PCs over a wider range shows that the inverse
mapping &? — « leads to a range of shapes from highly
asymmetric elongated ones to more symmetric compact ones,
see Fig. 7. In general, PC2 seems to be approximately associated
with the elongation of the shape, whereby for each PC1 the
most compact shapes occur in the regime PC2 = 0.

We note that the simulated ¢ values in Fig. 6c) do not agree
well with the ANN regression function away from the central
region. We believe that the underlying reason is the sparsity of
datapoints for large PC1 and PC2 values, which leads to a
systematic error in the regression.

4. Conclusions

Using a combination of dimensional reduction, regression, and
numerical optimization we have identified shapes that pack
slightly denser than the symmetric trimer of ref. 25. We note
that these new shapes are only slight variations of shapes that
are already in the dataset and represent a family of asymmetric
shapes that pack with ¢ =~ 0.733. Our results show that
reducing the shape representation to the first two PCs already

0.5

PC2

0.0

0.72

0.71

0.70

0.69

0.68 . —— DNNPC1=4
® Simulation

PC1

Fig. 6

-10 -5 0 5 10
PC2

(a) The PC1-PC2 coordinates of all the shapes in the dataset with ¢ > 0.73 and the new shapes of Table 3. Symbols correspond to PCs as follows:

circle (2 PCs), square (3 PCs), diamond (4 PCs), up triangle (5 PCs), down triangle (6 PCs). (b) Density plot of the ANN regression function ql;(&‘z’). (c) Plot of
the ANN regression function $@?) along the PC1 = 4 path (indicated by a dashed line in (b)), which exhibits strongly non-monotonic behaviour
confirmed in the simulations. The simulated ¢-values shown are determined by the Voronoi method.
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Fig. 7 Shapes obtained by performing the inverse mapping &? — « and varying PC1 and PC2 over a range of values.

allows for a classification of these dense packing shapes, which
occur in a narrow range of PC1 € [—2,0] and PC2 € [—1,1].
Further investigation of the ANN regression function has iden-
tified a range of PC values, where a strong non-monotonic
variation of the packing density occurs, akin to that found in
the variation of ellipsoidal shapes.

One caveat of the dataset is that it does not provide a
uniform sampling of the shape space, but is the output of a
CMA-ES optimization algorithm. As a consequence, the data-
points are already clustered around the densest packing shapes
and our regression functions yield maxima within the same
region. It would thus be interesting to apply our methodology
to a less biased dataset.

A crucial question is of course why this particular class of
shapes (Table 3) packs the densest? At this point we can only
speculate. It seems that these shapes combine several features
that are empirically known to pack dense: 1. They are slightly
elongated. Approximating the aspect ratio by dividing the
longest axis by the next longest one perpendicular to it,
indicates an aspect ratio of ~1.2. For comparison, the densest
packings of ellipsoids, spherocylinders, and dimers are found

6882 | Soft Matter, 2023, 19, 6875-6884

at an aspect ratio of ~1.4-1.5. 2. They are slightly tetrahedral.
The projection of these shapes onto the plane is triangular, but
the largest sphere in the shape gives it a tetrahedral appearance.
Tetrahedra with flat sides are the densest packing shapes known
so far’’ with ¢ ~ 0.78. 3. They are asymmetric. Leaving
polyhedral shapes aside, high symmetry of rounded shapes
seems to be associated with lower packing density. Examples
are: spheres represent a local minimum in the packing
density;** asymmetric ellipsoids pack denser than rotationally
symmetric ones;'® cubic-like superellipsoids pack denser than
ellipsoid-like ones.*®

Our approach could be extended to a variety of other
dimensional reduction and regression techniques. Conceptual
questions concern, e.g., whether one should a priori restrict the
choice of base representation used in the regression based on
physical constraints. After all, a non-parametric form like RF
leads to a piecewise functional form of ¢(«), which can not
represent the “true” (physical) ¢(a) relationship. On the other
hand the physical ¢(«) function is also not perfectly smooth,
since empirical studies indicate that shape variations around
the sphere point lead to a cusp singularity in the resulting ¢ as

This journal is © The Royal Society of Chemistry 2023
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shown, e.g., for ellipsoids at the transition between oblate and
prolate ellipsoids of revolution.'® For ANNs this would actually
imply that the activation functions should not be chosen as
smooth functions like the widely used sigmoid form.

In ref. 7 a phase diagram of packings of non-spherical
particles has been suggested that provides a phase boundary
for disordered packings in the ¢-z plane, where z denotes the
average number of contacts of a particle in the packing. General
considerations of mechanical stability® would suggest that the
asymmetric shapes found here have z = 12, which locates our
packings just inside the phase boundary. We note that evalua-
ting z in simulations can be challenging for molecules with
strongly overlapping constituent spheres. In this case, the
sphere that is partially inside another one can create an
unphysical contact signal due to the soft sphere model used.
This issue has been investigated in detail for packings of dimer-
shaped particles generated by the same packing protocol.™

We highlight that our machine learning approach to find
maximally dense packing shapes can be applied in a straight-
forward way to other observables of granular matter that
are tuned by varying particle shape such as stiffness or
diffusivity.”®*> ML can thus be an important tool to address
general tasks in granular materials design by identifying shapes
that yield aggregates with optimal or tailored properties.*’
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