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Abstract—In this letter, we propose a novel iterative decoding
algorithm that exploits the degenerate nature of three different
families of quantum low-density parity-check codes, i.e., surface,
toric, and row-degree-4 bicycle codes. Such families of codes share
harmful trapping sets that constitute symmetric stabilizers, making
it impossible for any parallel-scheduled iterative message-passing
decoder to converge even for error patterns of weight as low as
two. By biasing subsets of nodes in the symmetric stabilizers, the
decoder is able to converge to a valid error pattern. Furthermore,
the proposed decoder has low decoding complexity - linear in the
code’s blocklength - and a fully parallel schedule, making it suitable
for low-latency efficient implementation.

Index Terms—QLDPC codes, belief propagation decoding, topo-
logical codes, degeneracy, symmetric stabilizers.

I. INTRODUCTION

UANTUM states are intrinsically fragile, and quantum

error correction is needed for realizing fault-tolerant quan-
tum information processing. A stabilizer code can be used
to protect information stored in a quantum state, such that
measurement of the syndrome is used to detect and correct
errors without disturbing the information stored in that state [1].
Many quantum stabilizer codes, such as topological codes, can
be represented using sparse graphs; in this letter, we consider
surface and toric codes [2] and bicycle codes [3].

The quantum decoding problem is finding the most prob-
able coset of degenerate errors with a given error syndrome.
Although message-passing iterative algorithms, such as belief
propagation (BP), work extremely well for classical error-
correcting codes with almost linear complexity, it is well known
that, in principle, their performance on quantum codes remains
poor. This is true, especially for degenerate codes that contain
many low-weight stabilizers compared to their minimum dis-
tance [4]. The best-performing decoding algorithms for quantum
codes are belief propagation with ordered statistics decoding
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(BP-OSD) [5] and minimum weight perfect matching (MWPM)
[6] for topological codes. However, their high complexity makes
them unsuitable for large-scale implementation. There have been
many attempts to design improved message-passing decoders for
quantum codes, e.g., in [7] Poulin and Chung proposed heuristic
modifications to BP, called freezing, random perturbation and
collision, which improved the performance of highly degenerate
codes. However, these approaches are not deterministic and
do not fully exploit the code structure. Also, in [8] and [9],
variants of BP are shown to provide good performance if
paired with serial scheduling; nevertheless, serial scheduling is
poorly matched to the tight latency requirements of fault-tolerant
quantum systems. The decoding approach of [9], in contrast
to other BP-based approaches, modifies the variable-to-check
update rule by optimizing the “inhibition” term, which allows
the decoder to avoid propagation of incorrect beliefs in short
cycles. Targeting topological codes, the authors in [10] pro-
posed branch-assisted sign-flipping belief propagation (BSFBP)
decoding. Their approach improves BP by introducing new
decoding paths branched from BP combined with a syndrome
residual obtained from the syndrome-pruning process. However,
significant improvements are achieved only when BSFBP is
combined with OSD, thus not solving the latency issue.

The main problem that prevents BP from performing well
on quantum codes is that of error degeneracy, i.e., given a
syndrome, there can be multiple equally likely error patterns
that can match it. This phenomenon can be studied considering
harmful structures in the code’s graph called trapping sets (TSs).

In this letter, we propose a novel decoder called BP with
bias using oscillating trapping sets (BP-OTS), that retains the
critical advantages of BP such as low complexity (O(n)) and
low latency due to a fully parallel schedule, and is also able
to escape trapping sets, thus achieving much better decoding
performance than BP.

The letter is organized as follows: Section II provides the
preliminaries regarding quantum error correcting codes and
decoders. In Section III, we present the algorithm and explain
the rationale behind the proposed decoder. In Section IV, we
provide an analysis of the oscillatory dynamics of a TS and
how this can be exploited while decoding. Section VI provides
decoding results of BP-OTS versus BP and the other BP-
based decoders mentioned above. Finally, conclusions and future
research directions are provided in Section VII.

II. PRELIMINARIES
Consider the n-fold Pauli group,
Gn2{cB1® - ®cB, :ce{+l,+i},B; € {I,X,Y, Z}},

where I, X, Y and Z are called Pauli operators. Every element
in G, has eigenvalues 1, and any two elements in G, either
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commute or anticommute with each other. A stabilizer group
S is an Abelian subgroup in G,. If S is generated by n — k
independent generators, it defines a [n, k, d] stabilizer code C
that encodes k logical qubits into n physical qubits, with d being
its minimum distance. The elements of S are called stabilizers.
The set of generators of S can be represented by the stabilizer
matrix H, whose (i, 7)™ element is given by the Pauli operator
corresponding to the j qubit in the ™ stabilizer.

We consider a depolarizing channel characterized by channel
parameter ¢ (depolarizing error rate), which induces error pattern
e e {I,X,Z,Y}" on the n qubits. In the depolarizing channel,
every qubit goes through either a bit-flip (X), phase-flip (2),
or both (Y), each with probability €/3. The probability of no
error (I) on the same qubit is then equal to 1 — e. The weight
of e is defined as the number of non-identity operators in e.
Unlike classical error correction, the decoder cannot estimate
the codeword without perturbing the codeword state. This issue
can be circumvented by measuring the syndrome. In this letter,
we assume a noise-free syndrome measurement.

Given the binary syndrome vector s and the stabilizer matrix
H, a quantum error-correcting decoder estimates the most likely
error pattern € € {I, X, Z,Y'}". The decoding process succeeds
when the estimated error pattern € is equal to the actual
error pattern, or one of the equivalent error patterns that lead
to the same syndrome (this is known as error degeneracy);
otherwise a logical error occurs. Based on the Pauli-to-binary
isomorphism [11], e can be modeled as a binary vector of length
2n, i.e., e = (ex,ez). Both ex and ey are length-n binary
vectors representing X and Z errors, respectively. For instance,
an X error on the j™ qubit will be represented by 1 and 0 at
the j™ and (n + 7)™ index of e, respectively.

In this letter, we address topological and bicycle codes, which
constitute classes of Calderbank-Shor-Steane (CSS) codes. A
[n,kx — kz,d] CSS code [12] is a stabilizer code constructed
using two classical codes, C'x[[n, kx,dx] and Cz[n,kz,dz],
where d > min{dx,dz} and Cz C Cx. Given the stabilizer
matrix Hy of Cx and Hy of C% , the CSS code constructed
from Cx and C has the form H = [{7 Hy |- Where Hy -
H7 = 0 (unless specified otherwise, we assume all operations
on binary matrices and vectors are performed on the binary
field). CSS codes facilitate binary decoding because of their
structure, i.e., X errors are decoded using Hz, and Z errors
are decoded using H x. The corresponding input syndromes are
obtained as sy = ex-HZ and sz = ez -HZ, respectively. The
Hy and H stabilizer matrices can each be represented as a
Tanner graph T = T (V, C, ), which is a bipartite graph where
V = {v1,...,u,} is the set of n variable (qubit) nodes, C' =
{c1, ..., cm } is the set of m check nodes, and £ is the set of edges
(non-identity entries of the stabilizer matrix) connecting them.
We denote by M (v;) the indices of the neighboring check nodes
of v;, and by N(c;) the indices of the neighboring variable
nodes of the check node ¢;. For the rest of this letter, only one
type of error (X or Z) and its decoding will be considered;
without loss of generality, the notation H will refer to H, e
will refer to ey, and s will refer to sx.

A message-passing decoder is an iterative algorithm that op-
erates on the Tanner graph of the code. Variable-to-check mes-
sages VJ(QZ» and check-to-variable messages NEQ ; are computed
in each iteration ¢ at variable and check nodes respectively, as

functions of the incoming messages, and propagated via the
edges of the graph. The output of the decoder is an estimate
of Pr(els), i.e., the conditional probability of the error e given
the observed syndrome s. For this letter, we consider BP as the
reference message-passing decoder whose performance we wish
to improve.

III. BP WITH BIAS USING OSCILLATING TRAPPING SETS

In this section, we describe BP-OTS, an iterative message-
passing decoder which is also illustrated in Algorithm 1.
Variable-to-check and check-to-variable messages are computed
using the following equations, respectively:

0 0
Vj('li =+ ) Ng/)—w ey
i EM(v;)\{ci}
and
4 S — 1 -1
“E—)m' = (=1)% - 2tanh™! H tanh{2u§,ﬁi)} ;
JEN (ei)\{v;}
2
where (); is a real number defined as
0, = I1;, %f vj ?S n?t biased 3)
—C,if v; is biased
1—(2¢/3)

with II; = log{ 55 } being the a priori log-likelihood-
ratio value for v;, and C a positive constant whose value needs
to be designed. We will introduce the notion of biasing later
in this section, as none of the variable nodes are biased in
the first 7" — 1 iterations which are equivalent to the classical
BP iterations. After the computation of the messages, the a
posteriori log-likelihood ratio (LLR) for the ;" qubit at the
/™ iteration is computed using the following equation:
¢ =0+ > 4)
i EM(v;)
Then, the hard decision estimate ég-z) for the j™ qubit is
computed as follows:
(o _ [0, ifg” >0
9T\ i <o
; g~ <
In addition, for each variable node, we count how many times its
hard decision estimate éy) changes during the 7' — 1 iterations;

this can be done by summing (modulo-2) éy) ;271)

each variable node. If é(.g) = é§e—1)’ their sum will be zero,
meaning that the hard decision estimate remained the same in
the two iterations; vice versa, if ége) #* é;eil), their sum will
be one, meaning that the hard decision estimate changed in the
two iterations. This leads us to introduce the oscillation vector
o, a counter that increments every time the hard decision of
a variable node changes during the iterations. These operations
are summarized in lines 8-12 of Algorithm 1.

The biasing step is triggered every T iterations, where T
is the biasing period, based on two criteria. First, we define

F = arg max o; to be the indices of those variable nodes with
j€ln]
maximum oscillations. Let j; be the index of a variable node

with maximum oscillations and minimum a posteriori LLR such
that j; = arg min |q§€) |. We choose to bias that particular node
jeF

(&)

and é for

Je
by setting ;, = —C. Additionally, we reset its oscillations
counter o, to zero to prevent it from being biased again in
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subsequent iterations. Secondly, we also choose to bias another
variable node jy, which has the minimum |q§€)| among all the
nodes (note that j; and j» may coincide). The procedure is
summarized in lines 14-23 of Algorithm 1. Biasing is performed
recursively once every T iterations and is followed by 7' — 1
standard BP iterations until the syndrome has been matched, or
the maximum number of iterations has been reached.

A. Motivation

In classical error correction, BP (like any message-passing
decoder) fails to correct certain error patterns when they appear
inside particular structures of the Tanner graph. These harmful
structures are referred to as Trapping Sets (TSs) and are defined
as follows:

Definition 1. [I3] A trapping set for a syndrome-based itera-
tive decoder is a non-empty set of variable nodes in a Tanner
graph G that are not eventually converged or are neighbors of
the check nodes that are not eventually satisfied.

If the sub-graph induced by such a set of variable nodes has
a variable nodes and b unsatisfied (odd degree) check nodes,
then the TS is referred to as an (a,b) TS [13].

The structure of surface and toric codes [14] is given by
the well-known lattice representation, where edges are qubits,
vertices are X checks, and faces are Z checks (or vice versa).
The Tanner graphs of the X and Z stabilizers reflect the
same structure, with the difference that edges are replaced by
variable nodes, meaning that Tanner graphs of surface codes are
composed of a series of juxtaposed 8-cycles (i.e., closed loops
formed by four variable nodes and four check nodes) arranged
to form a lattice. Note that row-degree-4 bicycle codes [3]
share the same type of Tanner graph. This symmetric structure
prevents BP from correcting any two erroneous variable nodes
inside an 8-cycle because of error degeneracy (shown in Fig. 1).
Therefore, from now on, we will refer to 8-cycles in the
aforementioned codes as (4, 0) TSs; note that in literature, these
are also known as symmetric stabilizers [13].

Notice that the (4,0) TSs (or 8-cycles) correspond to single
tiles in the lattice graph of the code. Joining two adjacent (4, 0)
TSs forms a (7,2) TS. Generally, bigger TSs are obtained by
combining adjacent (4,0) TSs, which can then be considered
the building block of every TS of the code. It is then natural to
think that a decoder able to deal with (4,0) TSs would also be
able to deal with larger structures.

We observed that when a weight-2 error pattern lies inside
a (4,0) TS, the decoder’s hard decision é oscillates back and
forth between all four variable nodes of TS and the all-zero
vector. Decoding can be, in principle, improved if we can detect
such oscillating variable nodes. This observation led us to define
the length-n oscillation vector o which can detect the variable
nodes belonging to problematic TSs.

After the highest oscillating variable nodes have been detected
by o, the method of variable node biasing is utilized. The
highest oscillating variable node (with minimum a posteriori
LLR) j; is assumed to be erroneous by the decoder. In other
words, in (1) and (4), we modify the a priori information
associated to j; to bias the decoder towards estimating that
node as erroneous. In this way, BP can converge to one of the
degenerate pairs in the (4,0) TS due to the induced asymmetry.

Note that (2) remains the same as BP’s standard check to
variable update rule. As mentioned before, the variable node
J2 is also biased. We observed that by biasing two nodes, BP-
OTS can converge faster to degenerate error patterns.

Our approach is comparable with that in [7], where the
authors propose the freezing technique, which consists of fixing
the a priori LLR of a random variable node connected to an
unsatisfied check. However, the method of [7] does not exploit
the structure of the code and might result in freezing variable
nodes that are not involved in any error pattern. In contrast, our
proposed approach detects a subset of variable nodes such that
they must be involved in one of the degenerate error patterns
(as they belong to some TS); therefore, biasing one (or more) of
identified variable nodes always helps the decoder to converge.

u O |

[ | O | [ | O
(a) (b)

Fig. 1: The two uncorrectable weight-2 error patterns inside
the (4,0) TS, observed in toric codes, surface codes and
row-degree-4 bicycle codes. The red and blue colored circles
(variable nodes) correspond to the equivalent error patterns.
Black squares indicate unsatisfied checks, while white square
nodes correspond to satisfied checks.

IV. DECODING OF WEIGHT-2 ERRORS

In this section, we analyze the oscillatory dynamics of the
(4,0) TS and show how it can be exploited to correct weight-2
degenerate errors.

Assume we have a weight-2 error pattern. If this is not a
degenerate error, i.e., both erroneous nodes belong to different
(4,0) TSs, BP will correct it before reaching the T™ iteration
(here, we assume that 7' is carefully designed not to let the
decoder bias too early; typically, 7' = 9 is a good choice). We
have observed that, for either of the error patterns shown in Fig.
1 (a), the oscillation vector for the variable nodes belonging to
the TS is always equal to T (the sign of their LLRs changes
at each iteration), while for the error patterns of Fig. 1 (b), the
oscillation vector of the nodes will always be equal to 7'/2 (the
sign of their LLRs changes every other iteration); on the other
hand, the oscillation vector for any variable node outside the TS
is always equal to 0. This can be intuitively explained by simply
looking at the sign of the messages propagating in the TS.
Consider two variable nodes v;,, v;, belonging to a (4,0) TS,
and the check nodes c;,, c;,, such that ¢;, and c;, are neighbors
of vj, and only c¢;, is also neighbor of v;,. Because of the
structure of the code (and assuming all the incoming variable-
to-check messages from outside the TS are positive), we have
sgn gug)_m) = (=1)%:2 - sgn (ugf;lj)l), where sgn(.) is the
sign function. Moreover, since variable nodes have degree 2, we
have uj(-fLQ = Ef;lj)l Since the amplitudes of the messages
are all equal (due to the symmetry of the Tanner graph), there
is a change in the sign of the LLR of a variable node only when
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Algorithm 1 BP with bias using Oscillating Trapping Sets (BP-
OTS)

Input: ¢, s, H, T, L

Qutput: é

1 £+ 1
II; + log { 172(3;?{3) }, Vi € [n]

Q (—Hj, v.] € [n]
éf” ~ 0,V €n]
oj < 0Vj € [n]
), 0V ieml, jen)
while ¢/ < L do

Variable node update (1)

Check node update (2)
10: A posteriori log-likelihood computation (4)
Hard decision (5)

> Initialization

R e A Sl i

—_

(1)

2 oo+ () @el V) > OVU
13:  if e H? = s then return é&

14: else if / = kT, k € N then

15: Qj — H]‘, V] S [n]

16: if max(o) > 0 then

17: F 4 argmaxep, 0;

18: J1 < argmin; » |qje |

19: oj, <0 > Reset oscillations
20: end if

21: Jo < argming,; |q§€)|

22: le R Qj2 + -C

23: end if

24: end while

both the incoming messages have the same sign. Fig. 2 depicts
one period of these dynamics, with reference to either of the
error patterns in Fig. 1 (a). The evolution of the hard decision
on the variable nodes ultimately impacts the oscillation vector
o, making the decoder aware of the TS. Fig. 3 demonstrates
the effect of biasing a variable node on the messages in the TS
and how it leads to correcting the error. A similar analysis can
be carried out for the error patterns in Fig. 1 (b).

- 1 - + 0 +

=1 ey
Fig. 2: Evolution (left to right) in two decoding iterations of the
signs of check-to-variable messages and of the hard decision on
the variable nodes for the error in Fig. 1 (a).

V. COMPLEXITY ANALYSIS

The standard iteration of the BP-OTS decoder is a BP
iteration and thus involves computing nd, variable-to-check
messages and md, check-to-variable messages, where d, and
d. are the variable and check node degrees of the code,
respectively. We assume that updating the oscillation vector o at
every iteration can be done in parallel for each variable node,
with a complexity of O(1). For every T standard iterations,
the biasing procedure is performed. It involves resetting the

+0 4 +0 -
=—=C—u i.i.—ﬁi
_ + } }
1 0 1 1
_ + -f $-

+0+ T()‘T

Fig. 3: Decoding iteration after biasing the leftmost variable
node for the case of Fig 2. On the left, the signs of variable-to-
check messages are illustrated; on the right, there are signs of
subsequent check-to-variable messages.

prior LLRs for each variable node, obtaining the indices j;
and jo, and changing the value of their a priori LLRs with
biased values. These operations can also be easily implemented
in parallel and have a negligible contribution to the overall
complexity. Therefore, in the asymptotic regime, our decoder
has a complexity comparable with the complexity of BP, i.e.,
linear in the code’s blocklength. On the other hand, the com-
plexity of MWPM is proportional to O(|s|?), where |s| is the
Hamming weight of the syndrome, and the complexity of BP-
OSD is proportional to O(nj) The decoders in [8], [9] also have
linear complexity, but they use a serial schedule in contrast to
the flooding schedule used by BP-OTS; thus, the latency of the
proposed algorithm is significantly lower. Finally, the decoder in
[10] achieves significative performance only when paired with
0SD, so its overall complexity is proportional to O(n?).

VI. PERFORMANCE EVALUATION

This section presents simulation results for the proposed BP-
OTS algorithm and compares its performance with that of BP,
MBP4 [9], and BSFBP [10] algorithms for surface, toric, and
row-degree-4 bicycle codes. Each data point in the figures is
obtained by simulating the corresponding decoder until we
observe 100 logical errors. BP-OTS runs for a maximum of 200
iterations under parallel scheduling unless stated otherwise. To
choose the optimal period 7" for each code, we fix the channel
parameter and obtain the logical error rate performance across
multiple periods T € {2,3,---,10}. We then choose the value
of T' that minimizes the logical error rate.

Fig. 4 demonstrates that BP-OTS can significantly improve
the logical error rate performance of surface codes compared
to BP. The main reason behind the poor performance of BP
is the presence of (4,0) (and larger) TS in the Tanner graph;
somewhat counter-intuitively, these TSs lead to a decrease in
the code’s error-correcting performance even as the code’s
minimum distance increases. We also compare our decoder with
MBP4 for surface codes of minimum distance d = 5,7, and
9; it can be observed that BP-OTS outperforms MBP4 for the
cases of d = 5 and d = 7, and approaches its performance
for d = 9; it is important to emphasize here that our decoder
implements a fully parallel schedule, while MBP4 uses a serial
message-passing schedule, meaning that BP-OTS introduce a
significantly smaller decoding latency than MBP4.

In Fig. 5, we compare the performance of our scheme versus
that of BSFBP and BP for toric codes with increasing minimum
distance. The BSFBP decoder proposed in [10] also uses a
parallel schedule. To be consistent with the work in [10],
we only consider bit-flip (X) errors applied through a binary
symmetric channel with crossover probability p. We observe
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Fig. 4: Performance of BP-OTS versus BP and serial MBP4 for
surface codes. The biasing period is set to 7' = 9. The plot for
quaternary BP and OSD is replicated based on [15].

that the proposed decoder significantly outperforms both BP
and BSFBP. Indeed, we can perform better on the distance 5
surface code than BSFBP on the distance 9 surface code, while
BP-OTS on the distance 9 surface code performs significantly
better. As claimed in [10], BSFBP is able to correct a fraction of
weight-2 and weight-3 error patterns, which are uncorrectable
by BP; however, in our simulations, we observed that BP-OTS
never failed to correct any error pattern of weight up to 4, which
explains its performance gain compared to BSFBP.
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Fig. 5: Performance of BP-OTS versus BP and BSFBP for toric
codes. The biasing period is set to 7' = 9. The plot for BSFBP
was obtained from [10].

Finally, Fig. 6 demonstrates that BP-OTS significantly out-
performs BP for various degree-4 bicycle codes as they share a
similar structure with surface and toric codes.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a new decoding scheme applicable to
topological codes and certain families of bicycle codes. Our
algorithm is able to deal with degeneracy by recognizing the
trapping sets responsible for the decoding failure and biasing

logical error rate
-
o
w

BP (d=7)
- @ BP (d=9)
- @ -BP (d=11)
BP-OTS (d=7) |3
—=—BP-OTS (d=9)
—®—BP-OTS (d=11)

107
depolarizing probability e

Fig. 6: Performance of BP-OTS versus BP for [58,2,7],
[106,2,9] and [134,2,11] bicycle codes. The biasing period
issetto T =17.

specific nodes in them to force the decoder to target one
among many possible degenerate error patterns. Our proposed
decoder has low complexity and a fully parallel schedule and
outperforms other BP-based decoding schemes in the literature.
Future work will involve the systematic study of degenerate
error patterns and trapping sets for these classes of codes, with
the goal of further improving our decoder.
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