This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3361388

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Generalization Bounds for Neural Belief
Propagation Decoders

Sudarshan Adiga, Xin Xiao, Ravi Tandon, Bane Vasi¢, Tamal Bose

Abstract—Machine learning based approaches are being
increasingly used for designing decoders for next genera-
tion communication systems. One widely used framework is
neural belief propagation (NBP), which unfolds the belief prop-
agation (BP) iterations into a deep neural network and the
parameters are trained in a data-driven manner. NBP decoders
have been shown to improve upon classical decoding algorithms.
In this paper, we investigate the generalization capabilities of
NBP decoders. Specifically, the generalization gap of a decoder is
the difference between empirical and expected bit-error-rate(s).
We present new theoretical results which bound this gap and
show the dependence on the decoder complexity, in terms of
code parameters (blocklength, message length, variable/check
node degrees), decoding iterations, and the training dataset size.
Results are presented for both regular and irregular parity-
check matrices. To the best of our knowledge, this is the first
set of theoretical results on generalization performance of neural
network based decoders. We present experimental results to show
the dependence of generalization gap on the training dataset size,
and decoding iterations for different codes.

Index Terms—Machine Learning, neural belief propagation,
generalization gap, decoder complexity, code parameters, regular
and irregular parity-check matrices.

I. INTRODUCTION

EEP neural networks have emerged as an important tool

in 5G and beyond for hybrid beamforming [2]-[4], chan-
nel encoding, decoding, and estimation [5]-[19], modulation
classification [20]-[22], and physical layer algorithms [23]-
[25]. Within the context of channel decoding, prior works
have demonstrated that deep neural network based decoders
achieve lower bit/frame error rates than conventional iterative
decoding algorithms such as belief propagation in several
signal-to-noise ratio (SNR) regimes [5], [6], [9], [14]-[16].
In another line of works [26]—-[28], deep neural networks have
been used to jointly design both encoder and decoder. Given
the expansive applicability of deep neural networks for channel
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encoding and decoding, we note here that determining neural
network architectures that generalize well to large block length
codewords is an active area of research.

Iterative decoding algorithms (such as belief propagation
(BP)) are commonly deployed for decoding linear codes; and
are known to be equivalent to maximum aposteriori (MAP)
decoding when the Tanner graph does not contain short cycles
[29]. However, if the Tanner graph contains short cycles, then
BP can be sub-optimal i.e., the messages passed between the
variable nodes and parity check nodes cannot correctly recover
the transmitted codeword [5], [30], [31]. One approach to
mitigate the effect of short cycles is by generalizing the BP
algorithm by means of a deep learning based approach [5]-
[13]. It is shown that the weights learnt by optimizing over
the training data ensure that any message repetition between
the variable nodes and parity check nodes do not adversely
impact the performance of BP based decoders [5], [6]. We
refer to this class of belief propagation decoders as Neural
Belief Propagation (NBP) decoders. The salient aspect of
NBP decoders is that its structure is determined from the
corresponding Tanner graph, and therefore its architecture is a
function of the code parameters itself. Several variants of NBP
decoders have been a subject of recent study [7]-[13]. In [7],
the authors propose a hardware efficient implementation of the
NBP decoder by reducing the number of matrix multiplica-
tions. The authors in [9] implement message passing on graph
neural networks wherein the output of each variable node is
computed using a sub-network. An interesting variant of NBP
decoder was proposed in [11] in which the unimportant check
nodes were pruned in each decoding iteration thereby resulting
in a architecture that corresponds to a different parity check
matrix at each iteration. The authors in [12] propose correcting
the output of conventional decoding algorithms using a NBP
decoder thereby combining the desirable features of both
conventional and NBP decoders. A knowledge distillation
based technique to learn the node activations in NBP decoder
was proposed in [13].

Post-training, it is important that the NBP decoder achieves
low bit-error-rate (BER) on unseen noisy codewords. Prior
works on NBP decoders [7]-[13] are empirical; to the best of
our knowledge there are no theoretical guarantees on the per-
formance of NBP decoders on unseen data. To this end, given
a NBP decoder, our goal is to understand how its architecture
impacts its generalization gap [32], defined as the difference
between empirical and expected BER(s). Motivated by the
above discussion, we ask the following fundamental question:
Given a NBP decoder, what is the expected performance on
unseen noisy codewords? And how is the generalization gap

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:42:36 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3361388

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

related to code parameters, neural decoder architecture and
training dataset size?

There are several approaches to obtaining generalization
gap bounds in the theoretical machine learning literature,
which can be classified into two primary categories. The first
category comprises data-independent approaches, such as VC-
dimension, Rademacher complexity of the function class, and
PAC-Bayes [32]-[41]. The second category focuses on data-
dependent approaches, which analyze the mutual information
between the input dataset and the algorithm output [42], [43].
VC-dimension is a measure of the number of samples required
to find a probably approximately correct (PAC) hypothesis
from the entire hypothesis class [44]-[46]. Rademacher com-
plexity measures the correlation between the function class
and the random labels [32]; it is known that generalization
bounds obtained via Rademacher complexity (and it’s variants)
are tighter than the bounds obtained using the VC-dimension
approach [37]. Another method is the PAC-Bayes analysis,
where generalization gap is bounded by the Kullback-Leibler
divergence between the prior and the posterior on the learned
weights. The prior is chosen to be a multi-variate normal
distribution centred around the initial weights [35], [47]-[49].
In [50], the authors propose the measuring the change in
the training error with respect to perturbations in the model
weights as a measure of its generalizability. Recent literature
has increasingly focused on analyzing machine learning-based
communication systems, particularly in terms of the gener-
alization gap. For instance, [51] investigates generalization
bounds in the context of codebook design and decoder se-
lection in both uncoded and coded communication systems.
This paper specifically examines a setting where the encoder
and decoder are learned in a data-driven manner. In uncoded
systems, the authors consider minimum distance decoders,
while in coded systems, they focus on learning decoders by
maximizing the mutual information between the input and the
channel output. The study highlights how the generalization
gap scales with codebook size, the number of noise samples,
and input dimensionality. Additionally, [52] addresses the
learning of decoders for predetermined codebooks. Drawing
inspiration from the support vector machine paradigm, the
authors propose a nearest neighbor decoder, the parameters
of which are learned in a data-driven manner. The paper
also derives bounds for the generalization gap of this learned
decoder. For the scope of this paper, we adopt the PAC learning
framework and use Rademacher Complexity to understand the
generalization gap of NBP decoders. The notations introduced
throughout the paper are summarized in Table I. We next
summarize our main contributions.

Main Contributions:

1) Generalization gap as a function of the covering number
of the NBP decoder: In this paper, we first upper bound
the generalization gap of a generic deep learning decoder
as a function of the Rademacher complexity of the
individual bits of the decoder output (which we denote as
the bit-wise Rademacher complexity). We next consider
NBP decoders which belong to the class of belief
propagation decoders whose architecture is a function
of the code parameters. We upper bound the bit-wise

Rademacher complexity as a function of the covering
number of the NBP decoder, which is the cardinality of
the set of all decoders that can closely approximate the
NBP decoder. The covering number analysis provides
an upper bound with a linear dependence of the gener-
alization gap on spectral norm of the weight matrices
and polynomial dependence on the decoding iterations.
The bound we obtain is tighter than the other approaches
such as VC-dimension and PAC-Bayes approaches in
which the upper bound exponentially depends on the
decoding iterations.

2) Upper bounds on bit-wise Rademacher complexity for
regular and irregular parity check matrices: We upper
bound the covering number of NBP decoder in terms of
the code-parameters (blocklength, variable node degree,
check node degree), and the training dataset size for
both regular and irregular parity check matrices. From
our results, we show that the generalization gap scales
with the inverse of the square root of the dataset size,
linearly with the variable node degree and the decoding
iterations, and the square-root of the blocklength. To
the best of our knowledge, this is the first result that
determines upper bounds on the generalization gap as a
function of the code-parameters.

3) Experimental evaluation of the generalization gap
bounds: We also present simulation results to validate
our theoretical findings. To the best of our knowledge,
this is the first work that empirically studies the gen-
eralization gap of NBP decoders. In the experimental
results, we consider binary phase shift keying (BPSK)
modulation and additive white Gaussian noise (AWGN)
channel. We use Tanner code to illustrate the dependence
of the generalization gap on the decoding iterations, and
training dataset size. To study the dependence of the
generalization gap on the blocklength, we consider two
QC-LDPC parent codes, and generate descendent codes
with smaller blocklengths by puncturing the parent code.
We assume that all-zero codewords are transmitted, and
the NBP decoder is trained on the noisy realizations gen-
erated for a given channel signal-to-noise ratio (SNR). In
our empirical results, we observe that the generalization
gap has a linear dependence on the decoding iterations,
and it increases with the blocklength, thereby agreeing
with the theoretically derived bounds.

II. PRELIMINARIES AND PROBLEM STATEMENT

In Fig. 1, we consider a linear block code denoted by C of
blocklength n and message length k. Let the code C be charac-
terized by a regular parity check matrix H € {0, 1}(»—F)xn
and we denote the Tanner graph as G = (V, P, £); where V =
{v1,- - ,v,} is the set of variable nodes, P = {p1, - ,Dn_k}
is the set of parity check nodes, and £ = {e1, - ,end,}
is the set of edges. Here, d, represents the variable node
degree, i.e., the number of parity checks a variable node
participates in. Let {v;,p,;} denote the edge in the Tanner
graph G connecting variable node v; to parity check node
pj. V(v;) = {p;|H[i, j] = 1} denote the set of parity check
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Fig. 1: (a) End-to-End block diagram for communication using neural belief propagation (NBP) decoders for linear block
codes; (b) Architecture of the NBP decoder for 7' decoding iterations where each decoding iteration corresponds to 2 hidden

layers: (1) variable node layer, (2) parity check node layer.

nodes adjacent to the variable node v; in the Tanner graph G.
Similarly, P (p;) = {v,;|H[i, j] = 1} denote the set of variable
nodes adjacent to the parity check node p; in G.

Let Y C R™ be the space of n dimensional channel outputs,
X C {0,1}" be the space of n dimensional codewords, U C
{0,1}* be the space of k dimensional messages, and Z C R"
be the space of n dimensional channel noise. The message
u = [ufl],---,ufk]]T € U is encoded to the codeword
x = [x[1],---,x[n]]" € X. The channel is assumed to be
memoryless, described by Pr(y|x) = [[;_, Pr(yli]|x[i]). The
receiver receives the channel output y = [y[1],--- ,y[n]]" €
Y; which is the codeword x modulated, and corrupted with
independently and identically distributed (i.i.d.) additive noise
[z[1],---,z[n]]T € Z. The goal of the decoder is
to recover the message u from the channel output y. The
input to the decoder is the log-likelihood ratio (LLR) of the
posterior probabilities denoted by A € R™*! and is given as
Alf] = log% for 1 < i < n. Denote the output
of the NBP decoder with T' decoding iterations as X = f(\),
where f(-) denotes the decoding function.

The architecture of the NBP decoder is derived from the
trellis representation of G and illustrated in Fig. 1(b). Each
decoding iteration ¢ (where, 1 < ¢t < T') corresponds to two
hidden layers each of width || = nd,, namely: (1) variable
layer vy, (2) parity check layer pi. The hidden nodes in layers
v and p correspond to the messages passed along the edges
of the Tanner graph G. For instance, the output of the node
v¢[{l,m}] in the NBP decoder corresponds to the message
passed from variable node v; to parity check node p,, in the
t-th iteration, and is given as,

ve[{l,m}] = W [{1,m}, [A[]
+ > WYHLmY {Lm Y peal{tm'Y, (D)

m’eV(l)\m

7z =

where, pg—1[{l, m'}] corresponds to the message passed from
the parity check node p,, to the variable node v; in the (t—1)-
th iteration. For ¢ = 1, we have po = [0,---,0] . Wgt) €
Rrdoxnand W € Rndoxnds are sparse weight matrices
trained using backpropagation in the ¢-th decoding iteration.
Wgt) is strictly a lower triangular matrix with exactly d,, non-
zero entries in every column, and one non-zero entry in every
TOW. Wét) has exactly d,, —1 non-zero entries in every row, and

d,—1 non-zero entries in every column. We consider that the ¢-
th decoding iteration is characterized by weight matrices W§t) ,
and Wét), where ¢ can take integer values ¢ € {1,---,T}.
The output of the parity check node layer in the ¢-th decoding
iteration for the NBP decoder is,

[T o (“570) )

U'eP(m)\l

pe[{l,m}] = 2tanh ™!

Implementing (2) is computationally expensive in hardware
due to the multiplicative operations and hyperbolic functions.
For practical implementation, (2) can be made computationally
feasible by using the min-sum operation, which is described
as follows:

pel{l,m}] = ve[{I',m}]l. 3)

min
eP(m)\l

H sign(ve[{l',m}])

rreP(m)\l

We note that learnable parameters can be incorporated into
the min-sum operations. Specifically, the output of the parity
check node layer can be scaled with weights as follows:

pel{l,m}] = Bel{l,m}] [ sign(vel{l',m}]) Bel{l, m}).
reP(m)\l
4)

The parameter vector 3 is learned in a data-driven manner.
Alternatively, the output of the parity check node layer can be
offset using the parameter 3; as follows:

pe[{l.m}] = T sign(ve[{’, m}])
VeP(m)\l
x ReLu (pg[{l,m}] — Be[{l,m}]). (5)
In this paper, we concentrate on the scenario where the
learnable parameters are used solely for computing the output
of the variable node layer. The estimated codeword after 7'
decoding iterations in the NBP decoder is given as,

&[1) = s(W" LU + > WD (L m' Y pr({Lm}) (©)
m’eV(l)

where, W3 € R?*"dv W, € R"*", and s(-) is the sigmoid

activation. W3 is strictly an upper triangular matrix with

exactly d, non-zero entries in every row, while Wy is a

diagonal matrix.
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y[i] = i-th index in y

n — Blocklength

k — Dimension of the code
d, — Variable node degree
k — Message vector

K — Code rate

T — Decoding iterations
ZBER(‘) — BER loss

Fr,r — Hypothesis class
H — Parity check matrix
G — Tanner graph

V — Variable nodes set

P — Parity check nodes set
& — Edge set in graph G
W, — Weight matrices

B — Norm bounds

b — Absolute value bound
by — Bit-wise bound on A
w — Bound on weights

|| - |]2 = Spectral norm

|| - || — Frobenius norm

| - ]l1 = Max. column sum
| - |lco = Max. row sum
Byw, — Bound on ||[W;]|2

HJi, j] — i-th row and j-th column entry in H

C — Linear block code of length n and dimension k

Ff(N)[j] — j-th output bit of NBP decoder for input A

S = {(N\j,x;)}L; — Dataset to train NBP decoder f

X, y, z — Channel input, output, and noise, respectively

A, X — Decoder input, decoder output, respectively

JFr — Function class of NBP decoders with 1" iterations

N(Fr,e, || - ||x) — Covering number of Fr with respect to k'* norm
M(Fr, ¢ - ||x) — Packing number of Fr with respect to k*" norm
P(Fr, ¢ || - |[x) — Packing of Fr with respect to the k' norm
Reer(f) — True risk of NBP decoder f

Reer(f) — Empirical risk of NBP decoder f

R (Fr.7) — Empirical Rademacher complexity

R, (Frlj]) — Bit-wise Rademacher complexity

{vi,p;} — Edge connecting variable node v;, parity check node p;
v¢ — Output of variable node hidden layer in ¢-th iteration

Pt — Output of parity-check node hidden layer in ¢-th iteration
vi[{l,m}] — Message from variable node v; to parity node p,,
pt[{l,m}] — Message from parity node p,, to variable node v;

W [{l,m},l] — Weight between [-th input A[{] and node v¢[{l,m}]
Wy l{l,m}, {l,m'}] — Weight between nodes v¢[{l, m}],p¢[{l,m'}]
W3ll, {I,m}] — Weight between vr[{l,m}] and I-th output X[]
Wy, 1] — Weight between A[l] and X[!]

B, — L2 norm bounds of rows in W;, where ¢ € {1,2, 3,4}

TABLE I: Notations used in the paper.

The NBP decoder (denoted by f(+)) is characterized by the
following four sparse weight matrices: (a) Wgt), where t =
1,---,T,(b) Wg’), wheret =1,--- ,T, (c) W3, and (d) Wy.
The weight matrices are learnt by training the NBP decoder
to minimize the bit error rate (BER) loss that is defined as,

(fN),x) 25 LU # x[))
n B n '
(7
Here, dy (-, -) denotes the Hamming distance, and 1(-) denotes
the indicator function. In practice, we train the NBP decoder
to minimize the BER loss over the dataset S = {(A;,x;)}7,

comprising of pairs of log-likelihood ratio and its correspond-
ing codeword. Then, we define the empirical risk of f as

ﬁBER(f) = % i lBER(f(Aj),Xj). The true risk of f is
j=1
defined as RBER(jf) = EA,x[lBER(f(A)a X)]

Problem Statement. The generalization gap is defined as
the difference Rger(f) — ﬁBER( f). The main goal of this
paper is to understand the behavior of the generalization gap
(specifically upper bounds) as a function of a) training dataset
size, m, b) the complexity of the NBP decoder, in terms of the
number of decoding iterations 7" and c¢) code parameters, such
as message length k, blocklength n, variable node degree d,,
parity check node degree d..

e (f(A), %) = 222

IIT. MAIN RESULTS

In this section, we present our main results on the general-
ization gap for NBP decoders. Let S = {(A;,x;)}]L; be

the training dataset, and we assume that the dataset is i.i.d
from a fixed distribution. Let F7 be a class of NBP decoders
with T' decoding iterations. For the scope of this paper, we
focus on the family of NBP decoders whose non-zero weight
entries are bounded by a constant w. Specifically, we assume
that for every (i,7) and 1 < ¢t < T, |W§t [i,7]] < w,
(Wil < w. Wil < w and [Walij]| < w, ie.,
the maximum absolute value of the (7, ) coordinates for all
the weight matrices are bounded by a non-negative constant
w. In addition, we also assume that input log-likelihood ratio
IA[i]| < by foralli=1,...,n.

We define the hypothesis class F;, 7, derived from the class
Fr of NBP decoders as follows:

Frr ={(Ax) = lr(f(A),x) : f € Fr}. ®)

Intuitively, for each f € Fr, the output of the corresponding
function in Fp 1 is the BER loss of the decoder f. We next
define the empirical Rademacher complexity of Fp, 7.

Definition 1. (Rademacher complexity of Fr, t) The empirical
Rademacher complexity of Fr r is defined as

1 m
Rpn(Frr) £ E supagoilm(f(m,xi) SO

feFyp

where o;’s are i.i.d. Rademacher random variables, i.e.,
Pr(o; =1) =Pr(o; = —1) = 1.

We note that the loss function [ggr takes the values between
[0,1]; and consequently using a standard result from PAC
learning literature (Theorem 3.3 in [32]), one can bound the
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generalization gap in terms of R,,,(FL r). Specifically, for any
d € (0,1), with probability at least 1 — ¢, the generalization
gap for any f € Fp is bounded as follows:

log(1/9)

Reer(f) — Reer(f) < 2R (Fr 1) + (10)

To proceed further, we introduce bit-wise Rademacher com-
plexity of F7; which is a new notion and captures the
correlation between j-th channel output of the NBP decoder
and a random decision (Rademacher random variable).

Definition 2. (Bit-wise Rademacher complexity of Fr) For a
NBP decoder class Fr, the empirical bit-wise Rademacher
complexity corresponding to its j-th output bit is defined as:

R Frli) 2 E | sup — S o F(A)J]

7 feFe S

(1)

We next present Proposition 1 in which we upper bound
the generalization gap as a function of the empirical bit-wise
Rademacher complexity R, (Fr[j]).

Proposition 1. For any 6 € (0, 1), with probability at least
1 — 6, the generalization gap for any NBP decoder [ € Fr
can be upper bounded as follows,

log(1/9)

Roex(f) — Rosx(f) < jllemGTmH P LNN(E
<

where R, (Fr[j]) denotes the bit-wise Rademacher complex-
ity for the jth output bit.

The proof of Proposition 1 is presented in Appendix A.
We now present Theorem 1 which is the main result of
this paper. The main technical challenge is to bound the bit-
wise Rademacher complexity R,,(Fr[j]) as a function of the
number of decoding iterations 7, training dataset size m and
code parameters (blocklength n and variable node degree d,,).

Theorem 1. For any 6 € (0, 1), with probability at least 1— 0,
the generalization gap for any NBP decoder f € Fr can be
upper bounded as follows,

)

log (8\/mnwdvb,\) , (13)

where n denotes the blocklength, d, is the variable node
degree, T is the number of decoding iterations (number of
layers in NBP), m is the training dataset size; w and by are
upper bounds on the weights in the NBP decoder and input
log-likelihood ratio, respectively.

Proof-sketch of Theorem 1: The detailed proof of Theorem
1 is presented in Appendix B and here we briefly describe the
main ideas. We first upper bound the bit-wise Rademacher
complexity in terms of Dudley entropy integral (specifically,
leveraging Massart’s Lemma in [39] and adapting it to our
problem). The resulting bound is expressed in terms of the
covering number of the NBP decoder class, i.e., the smallest

cardinality of the set of functions in JFr that can closely
approximate the NBP decoding function f. To further bound
the covering number, we first show that the NBP decoder is
Lipschitz in its weight matrices which is proved in Lemma 1
(see Appendix B). In other words, for a given input, the output
of the NBP decoder remains invariant to small perturbations
in its weight matrices. Using this fact, we obtain a bound on
the covering number of the NBP decoder class in terms of a
product of covering numbers (each corresponding to a weight
matrix). We then observe that the weight matrices for the NBP
decoder are sparse, where the structure and number of non-
zero entries is determined by the parity check matrix and the
code parameters (such as blocklength n, variable node degree
d, etc.). We then use the fact that the covering number of
a sparse weight matrix is always smaller than that of a non-
sparse vector (of the same size as the total non-zero entries in
the original sparse matrix). Using our result in Lemma 3, we
can finally upper bound the bit-wise Rademacher complexity
as a function of the code parameters to deduce the result in
Theorem 1.

Remark 1 (Representation in Terms of Code-rate and
Parity Check Node Degree). The result in Theorem 1 can
also be expressed as follows:

5 4 log(1/9)
Rper(f) — Reer(f) < o + TJF
12\/(nd3(1 — f<;)2nj; +1)(T+1) log (Sy/mmwd,by). (14)

We use the fact that the blocklength, message length, variable
node degree, and parity check node degree are related as
nd, = (n — k)d.. Using this relation in Theorem 1 we obtain
(14). From the result in (14) we note that the generalization
gap reduces for codes with a high code-rate k.

Remark 2 (Impact of the Code-parameters). We plot the
generalization gap bound obtained in Theorem 1 in Fig. 2
for blocklength n = 100, variable node degree d, = 10,
decoding iterations T = 10, and dataset size m = 10°. To
understand the dependence of the generalization gap on a
parameter, we vary that parameter while keeping the values of
the remaining parameters fixed. Smaller training dataset size
results in overfitting, and therefore corresponds to a larger
generalization gap. We observe this in Fig. 2(a), wherein the
generalization gap decays as O( ﬁ) While more decoding
iterations (i.e., more hidden layers) are expected to improve
decoding performance, it can also overfit the training data.
Therefore, we expect the generalization gap to increase with
the number of decoding iterations. As seen from Fig. 2(b), we
note that the generalization gap of the NBP decoder scales
linearly as O(T). Our theoretical result in Theorem 1 tells
us that the generalization gap scales with the blocklength as
O(v/n) as shown in Fig. 2(c). However, the generalization
gap scales linearly with the variable node degree as O(d,)
as shown in Fig. 2(d).

Remark 3 (Comparison with Other Approaches for Bound-
ing the Generalization Gap). Vapnik-Chervonenkis (VC)
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degree (d,).

dimension bounds [33], [34], PAC-Bayes analysis [35], [36],
[49] are other techniques to upper bound the generalization
gap. While VC-dimension approach yields a bound indepen-
dent of the data distribution, it is found that these bounds are
vacuous [35], [53] and scales exponentially with the number
of parameters of the neural network. To obtain tighter and
non vacuous generalization bounds, prior works [35], [54],
[55] have proposed the use of PAC-Bayes analysis. For any
d € (0,1), with probability at least 1 — ¢, the general-
ization gap using PAC-Bayes analysis is upper bounded as,

Reer(f) — Raer(f) < \/KL(CHF)HO%,‘,{EHO@;@/&). The PAC-
Bayes prior on the space of neural network decoders ( is
chosen independent of the training data [54], [56]. The KL
divergence term between the PAC-Bayes prior ( and posterior
T is typically the dominant term in the bound for the general-
ization gap. While the posterior I' achieves minimal empirical
risk, and is data-dependent; the KL divergence term can be
large as the data-independent priors are chosen arbitrarily
causing the bound to be vacuous [56]. In [49], the PAC-
Bayes framework is utilized to establish an upper bound on the
generalization gap as a function of the network’s sharpness,
where sharpness is defined as the change in network output
relative to the perturbation of the weight matrices. The result-
ing bound is a function of the spectral and Frobenius norms
of the weight matrices, assuming that both the perturbation
and the prior are from a Gaussian distribution. Exploring
PAC-Bayes analysis for the NBP (Neural Belief Propagation)
decoder paradigm, and understanding how the bound scales
with different priors, is an interesting future direction. PAC-
Learning approach used in this paper leads to a cleaner
analysis (inspired by recent results on generalization bounds
for graph neural networks and recurrent neural networks [57],
[58]), and the bound obtained has a closed-form expression
with explicit dependence on code parameters, decoding itera-
tions, and the training dataset size.

We next show that Theorem 1 can be readily generalized
to irregular parity check matrices. Specifically, consider an
irregular parity check matrix H € {0,1}("=%)x" where d,,
is the variable node degree of the ¢-th bit in the codeword,
and d.; is the parity check node degree of the j-th parity
check equation. The NBP decoder corresponding to such this
irregular parity check matrix is characterized by the weight
matrices {WY’)|1 <t<T}, {Wg")|1 <t <T}, W3, Wy.
Here, for every 1 < ¢t < T, and § = > d,,, we have that

i=1

Wi e R W € R9*?, W3 € R"™?, and W, € R™*",
For any value of ¢, the weight matrix Wgt) has one non-zero
entry in every row, and d,,, non-zero entries in the ¢-th column.
In the weight matrix Wét), the ¢-th bit in the codeword with
variable node degree d,, corresponds to d,, rows and d,,
columns, and these rows and columns each have exactly d,, —1
non-zero entries.

Theorem 2. For any 6 € (0,1), with probability at least
1 — 0, the generalization gap for any NBP decoder f € Fr
corresponding to irregular parity check matrix can be upper
bounded as follows,

. 4 log(1/6
Reer(f) — Reer(f) < — + M-f—
m 2m
d%j (T+1)2
124 = log <8\/mnw maxdvib,\). (15)

The proof of Theorem 2 follows similar steps used to prove
Theorem 1, and is presented in Appendix E.

In Theorem 1, we assumed that the log-likelihood ratios are
bounded and this result does not take the channel SNR into
account. We study the impact of the bound on input log-
likelihood ratios and the channel SNR in Theorem 3 which
is presented next.

Theorem 3. For any § € (0, 1), with probability at least 1—,
the generalization gap for any NBP decoder f € Fp with
unbounded log-likelihood ratios is upper bounded as follows,

Rier(f) — Raex(f) S% + %

+ Irblin o(n,dy, Tym,w,by). (16)
A

where, ¢p(n,d,, T,m,w,by) = Pr(3i € [n],s..|Ali]| > b)) +

12\/% log (8v/mnwd,by). Suppose the
symbols are modulated using binary phase shift keying
(BPSK) modulation, and the channel is AWGN with
variance 3%, then Pr(Jie Ln] st | A[E]] > ba) =

(1-e(75) -e("57))

The proof of Theorem 3 is presented in Appendix F. To
take the unbounded input log-likelihood ratio into account for
analysis, we use the law of total expectations, and condition
the true risk with the event that the input log-likelihood
ratio is not bounded, i.e., |[A[{]]] > by for any i € [n].
We bound the probability that log-likelihood ratio is un-
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bounded assuming BPSK modulation, and AWGN channel.
In addition, we have the true risk conditioned on the event
that the input log-likelihood ratio is bounded which directly
follows from Theorem 1 in this paper. In (16), the term
12\/("d‘2’T+mw log (84/mnwd,by) is an increasing func-
tion of by, and Pr (i € [n],s.t.|Ali]| > b)) is a decreasing
function of by. Therefore, minimizing the two terms over b
provides the upper bound on the generalization gap.

Remark 4 (Minimizing the generalization gap by selecting
the bound on LLR (b)) based on Channel SNR). The
generalization gap in Theorem 3 comprises of two terms: (a)

12\/("‘112’T+mw log (8y/mnwd,by), which increases with
by, (b) Pr(3i € [n],s.t|A[i]| > by), which is a decreasing
Sfunction of by, B. The choice of by to minimize the total
generalization gap is a function of (. To illustrate this, we
plot the generalization gap bound obtained in Theorem 3,
the generalization gap bound obtained in Theorem 1 for
bounded input LLR, and the probability that the input LLR
is unbounded in Fig. 3(a). We set blocklength n = 100,
variable node degree d, = 10, decoding iterations T = 10,
and dataset size m = 105. As seen in Fig. 3(a), the gen-
eralization gap terms obtained in Theorem 1 are minimized
in region Rl that corresponds to smaller values of [ (or
large channel SNR). This behavior is attributed to lower
values of by (i.e., by = 10) as observed in Fig. 3(b). As
the B is increased (or reducing the channel SNR) in region
R2 in Fig. 3(a), the minimum generalization gap is obtained
for larger values of by. The term Pr (3i € [n],s.|A[i]] > by)
also decreases with increase in [ (or lower channel
SNR values). In other words, there is a trade-off be-

tween the terms 12\/% log (8y/mnwd,by), and
Pr (3i € [n],s.|A[i]| > bx) based on the channel SNR. We
adopt this approach to establish a dependency on the channel
SNR, considering that our method for bounding the gener-
alization gap was previously data-independent. In contrast,
data-dependent bounds create a direct link between the gen-
eralization gap and the mutual information involving the input
dataset and the algorithm output [42], [43]. This methodology
implicitly accounts for various factors, including the dataset,
hypothesis set, learning algorithm, and the loss function em-
ployed. Consequently, the integration of mutual information-
based approaches could be crucial in demonstrating a direct
correlation between the generalization gap and the channel
SNR.

IV. EXPERIMENTAL RESULTS

In this section, we present some numerical results to com-
plement our theoretical bounds. We consider binary phase
shift keying (BPSK) modulation and AWGN channel, and
the received channel output for 1 < ¢ < n is given as
y[i] = (=1)*I) 4 z[i]. We focus on Tanner codes with: (i)
n =155, k =64, d, = 3, d. = 5; (ii) n = 310, k = 128,
d, = 3, d. = 5 and study the empirical generalization perfor-
mance of NBP decoders whose architecture was proposed in
[5], and also described in Section II of this paper. We adopt the

—O— Total generalization gap
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Fig. 3: (a) The total generalization gap from Theorem 3,
generalization gap from Theorem 1, and the generalization
gap due to unbounded log-likelihood ratio as a function of
the channel SNR, (b) Selecting the bound on LLR (b)) to
minimize the generalization gap.

software provided with the papers [6], [7] for our experiments.
We train the weights of the NBP decoder until convergence
by minimizing the cross-entropy loss between the true and
the predicted codeword. We use ADAM optimizer for training
with a learning rate of 0.01. We evaluate the NBP decoder by
measuring the generalization gap (difference between average
BER attained on the test and training datasets). We perform
each experiment for 10 trials, and the distribution of the
generalization gap over these 10 randomized runs are plotted
on a boxplot. We next discuss the impact of the dataset size
(m), and the decoding iterations (7") on the generalization gap.
a. Impact of training dataset size (m): We consider the NBP
decoder with T' = 3 decoding iterations (equivalently, 6 layers)
trained for channel SNR of 2 dB; we vary the training data
set size from m = 10 to m = 10* in steps of 1000. From the
results in Fig. 4(a), (b), we observe that the generalization gap
is the largest for m = 1000, and generally decays with m. For
a smaller dataset size, the overfitting on the training samples
is severe. Therefore, the NBP decoder fails to generalize on
unseen samples in the test data. We also repeated the above
experiment for various values of 71" as well as by changing
SNR. We found the inverse monotonic dependence on m to
be consistent across different values of 7" and SNR (plots are
omitted due to lack of space).

b. Impact of decoding iterations (7): In this experiment, we
study the impact of decoding iterations (which is proportional
to the number of hidden layers) in the NBP decoder on the
generalization gap. Here, we fixed channel SNR of 2 dB, train-
ing dataset size m = 10* and varied T from {2,3,...,10}.
As seen in Fig. 5 the generalization gap grows linearly with 7',
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Fig. 5: Generalization gap as a function of the decoding
iterations 7' (o< number of layers) at channel SNR = 2 dB
for (a) Tanner code with n = 155, and k£ = 93, (b) Tanner
code with n = 310, and k£ = 186.

which is consistent with Theorem 1 (which behaves as O(T")).
Increasing the number of parameters will cause overfitting of
the NBP decoder resulting in a larger generalization gap. We
note that this observation (i.e., linear dependence on 7") was
consistent for different dataset sizes, and channel SNR values.
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Fig. 6: Generalization gap as a function of the standard
deviation of the Gaussian noise ( for (a) Tanner code with
n = 155, and k = 93, (b) Tanner code with n = 310, and
k = 186.

c. Impact of standard deviation of the Gaussian noise
(5): In this experiment, we examine the effects of varying the
standard deviation of Gaussian noise, represented by [, on
the generalization gap of NBP decoders. We consider NBP
decoders with 7" = 3 iterations and trained on a dataset of
size m = 10*. According to the results depicted in Fig. 6(a)
and (b), we observe that the generalization gap exhibits non-
monotonic behavior in relation to 3. Specifically, for 5 < 1,
there is an increase in the generalization gap. Conversely, for
B > 1, the generalization gap begins to decrease. When [
is substantially large, the channel output becomes statistically
independent of the input due to the increased channel noise.
Consequently, this results in higher training and test BER,
which in turn leads to a reduced generalization gap.

d. Impact of blocklength (n): To study the impact of
blocklength keeping the variable node degree fixed, we use
Progressive Edge-Growth (PEG) algorithm [59], [60] to con-
struct two quasi-cyclic LDPC (QC-LDPC) parity check ma-
trices with: (i) n = 680, k = 340, d, = 3, d. = 6; (i)
n = 1000, &k = 500, d, = 3, d. = 7. We use the two codes
as the parent code, and derive the parity check matrices for
varying blocklengths keeping the variable node degree fixed
by masking the columns of the parity-check matrix of the
parent codes. Specifically, in Fig. 7 (a) we consider codes with
blocklengths n = 425, 510, 595 derived from QC-LDPC parity
check matrix with n = 680, k£ = 340; and in Fig. 7 (b) we con-
sider codes with blocklengths n = 600, 700, 800, 900 derived
from QC-LDPC parity check matrix with n = 1000, & = 500.
We note that in addition to the blocklength, the descendent
codes have different code-rates than the parent QC-LDPC
code. However, this method allows us to generate descendent
codes that have the same structure (or same nature) as that
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(a) n = 1000, and k& = 500, (b) n = 680, and k& = 340.
The descendent codes with shorter blocklengths are derived
by masking columns of parity check matrix in parent code.

of the parent code, thereby, eliminating the impact of varying
code structures on the generalization gap. To account for the
different training bit-errors for codes with varying code rates,
we normalize the generalization gap with the training bit-error-
rate (or the empirical risk). We also plot the theoretical bound
derived in Theorem 1 normalized with the training bit-error-

rate (i.e., 12\/% log (SWwdubA)/RBER(f)).
We consider NBP decoder with 7' = 3 decoding iterations
trained for channel SNR of 2 dB using dataset whose size
m = 10*. As seen in Fig. 7 the generalization gap grows with
n, which is consistent with Theorem 1. The implication of
this result is that for a fixed set of parity check equations, the
decoding complexity increases with the blocklength; and the
generalization gap is expected to increase with the blocklength
for the codes with same structure.

V. CONCLUSIONS

In this work, we presented results on the generalization gap of
NBP decoders as a function of training dataset size, decoding
iterations and code parameters (such as blocklength, message
length, variable node degree, and parity check node degree).
We utilize the PAC-learning theory to express the generaliza-
tion gap as a function of the Rademacher complexity of class
of NBP decoders. The sparse connections in the NBP decoder
architecture plays a critical role in further upper bounding
the Rademacher complexity term as a function of the code
parameters. Our bounds exhibit mild polynomial dependence
on the blocklength n and the decoding iterations (layers) 7.
To the best of our knowledge, our work is the first to provide
theoretical guarantees for NBP decoders corresponding to both
regular and irregular parity check matrices. We also present

generalizations of our theoretical result to account for different
channel characteristics. We also presented comprehensive set
of experiments using Tanner codes and Quasi-cyclic LDPC
codes to evaluate our theoretical bounds in this paper. In
our empirical results, we observe that the generalization gap
increases linearly with the decoding iterations, and grows with
the blocklength. In addition, we observe that the generalization
gap decays with the training dataset size, thereby support-
ing the theoretical results in this paper. There are several
interesting directions for future work, including a) obtaining
generalization gap bounds for NBP decoders when the decoder
is trained and tested over a range of SNR values; b) obtaining
generalization bounds for ML based decoders with practical
constraints (such as quantized weights); c) extending the ideas
for other type of ML based codes/decoders (i.e., beyond BP
type decoder architectures); d) a framework to select the code
parameters (i.e., blocklength and variable node degree pairs)
that minimize the generalization gap for a given channel SNR
is also an important research direction.

APPENDIX A
PROOF OF PROPOSITION 1

The proof of Proposition 1 directly follows from the Definition
1 of empirical Rademacher complexity.

sup — ZaleER ) )]

R, (-FL,T) =E
o | ferrm i—1

5[ wp . i ULE(0: m]

o f?gm;géC—fémm - 1—;43])2
9k fsg;Tn;iaiélf(Az)b] i)

—3E fglﬁﬂ,;ié(f“z”ﬂ (x| - (D

where, in step (a), we consider the mapping such that
x;[j] € {-1,1}, and f(A;[j]) € {-1,1}; and in step
(b), we express the Hamming distance dg(f(\;),x;) =
£ (1= F(A)[H] x xi[4]). In what follows, we take the
supremum over Fp inside the summation. We note that the
distribution of —o;x;[j] and o; is the same, and we obtain:

m

— Z (=f)lT - (o0 - xili]))

mn
fEJ:T i=1

1 n
(]:LT §§ Z sup
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1
= — E sup — o; ;
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In (18), the last step follows from the Definition 2.

(18)
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APPENDIX B
PROOF OF THEOREM 1

In this appendix, we present the proof of Theorem 1. We first
define the covering number and packing number of 77 which
is the set of all NBP decoders with 7' decoding iterations.

Definition 3. (Covering Number) The covering number
N(Fr,e,| - &) of the set Fr with respect to the k-th norm
for € > 0 is defined as

N(Fr,e |- k) = minl{gr, -+, gn}l, (19)
5.t @ignllf(k) —gi M)k <e (20)

(20) must be satisfied for any f € Fr and input log likelihood
ratio X; then the set {g1,- -+ ,gn} C Fr is the e-cover of Fr.

Definition 4. (Packing number) For a set of NBP decoders
Fr, its packing number M(Fr,¢€,| - ||x) with respect to the
k-th norm for € > 0 is defined as

M(Frs6 || - |[x) = max{{gr,---, g}, (21)
st [|gi(A) — g; (Al > €. (22)
(22) must be satisfied for any g;, g; € {g1,--- ,9n}; and the

set P(Fr,e, || - lk) = {91, ,9n} C Fr that satisfies (21),
(22) is called the e-packing of Fr.

From Proposition 1, we have that, Rpgr(f) < ﬁBER( f)+
ﬁZ}Ll R..(Frlj]) + %. Next, we use a PAC-

Learning approach to bound the bit-wise Rademacher com-
plexity term R, (Fr[j]) as a function of m, and spectral norm
of the weight matrices of the NBP decoder. We use similar
reasoning to that used in generalization bound results for graph
neural networks and recurrent neural networks in [57], [58];
and we can adopt Lemma A.5. in [39] to bound the bit-wise
Rademacher complexity as:

Rm(]:T[])<
inf —+—/\/10gNFT el Tayde | . @3

To further upper bound the bit-wise Rademacher complexity,
we make use of the upper bounds on the spectral norm of the
weight matrices. Recall our assumption made in Section III
that the maximum absolute value of the non-zero entries in the
weight matrices are bounded by a non-negative constant w. In
addition, we also use the result in [61] that the spectral norm
of any matrix A can be upper bounded as a function of its
maximum absolute column sum norm ||Al|;, and maximum
absolute row sum norm ||A|l, as [[Alls < v/[[AllcollAll1-
Using the assumption and the result in [61], the spectral norm
of the weight matrices Wgt), Wét) for any 1 <t < T can be
upper bounded as:

Bw, = ||W§“||2 < w(dv - 1>. (24)

Similarly, we obtain the Ly norm bounds on for any j—th row
vector in matrices W3 and W, as:

Bu, = [[Ws[j,
Bw4 = HW4[]7

:]HQ Sw d1)7

2 < w. (29)

We use these spectral norm bounds in Lemma 1 in which
we show that the NBP decoder is Lipschitz continuous with
respect to its weight matrices. That is, for the j-th bit we have,

T
PG = SNl <Y, W = WA
i=1 '
+Zp <>\W“ WO o, Wl = Wl
Wl = Wy ,.]HQ. 26)

In (26), py,» Pw,s Puy> P, are Lipschitz parameters that is a
function of the spectral norm bounds of the weight matrices,
the Lo norm bound of input A, and are given as,

T—1
pw(i) = nb}\ng (\/EBW2) )
(ViBw,)" ' —1
. =nTb\Bw, By,
pW2(z) n ADPW, 3 \/ﬁsz _ 1
72 (V)T -1
\/ﬁ -1’

Bw )t -1 _
P, = VnBw,by <( ws) + (Bw,)T 1),

+ le)\BI/V1 Bw3 (BW2)

Bw, — 1
27

As a result of (26), the covering number N (Fr[j],€, |- ||2) in
(23) can be upper bounded using the covering number of all
distinct weight matrices as follows,

Puy = b

N(Frlil.el-| <HN W arrn, )
(z)
(4) € .
x gN<W2 @)
N (Walji ) gyl )
N Walji ) ) 29

wy

We now upper bound the covering number of the set of
decoders Fr in (28) using Lemma 3, in which we derive an
upper bound on the covering number of sparse matrices as a
function of the number of rows, columns, number of non-zero
entries in the sparse matrix, and the spectral norm bound.

Bounding N (Fr[j],€, || -]|2): We know that the matrices W1,
Wy, W3, and W4 have 1, d, —1, d,,, and 1 non-zero entries in
each row, respectively. Using Lemma 3, the covering number
of the weight matrices of the NBP decoder f for 1 <: < T
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can be bounded as follows:
(1) €

N w ’ sl ° ||F) S
1
nd,,
(4T +2)\iBw,p,_,
1+ !
€
2
dy—1)nd,
(4T + 2)\/ndeW2pW(i) ( )
1+ 2
€
€
N(Wslj, ], —— || - lo) <
( 3[.] ] (2T+ 1)pw3 || ||2) >
dy
- (4T + 2)Bw3_pw3
€
€ (4T + 2) By, p )
NW4——--- )< 1+ ——
Wil 1, gy 19 < 6
(29)
Substituting (29) in (28), we obtain,
T (4T + 2)\/EBW“0W(“ nd,
> 1
N(‘FTDLQHHQ)SH 1+ c
T (4T + 2)\/ndUBW2pW(i) (dv—1)nd,
1 2
X I;E + -

AT + 2)B,, o AT + 2) By, p.
y <1+( ) spr> y (1+( )Buwip.,
€ €
(30)

Substituting the values of Lipschitz parameters obtained in
(27), and assuming nd,, > (n+1) , the term N (Fr[j], ¢, || ||2)
can be bounded as:

N(‘FTU]7€7 ” . ||2) <
(1 N (4T + 2)+/nd, (c1 + c2) ) (nd,T+1)

€

€2y

T—1
where, nT By, By, By, bAM, cy =

g VnBw,—1
TL.BV[/1 Bw3 b)\ (\/HBW2)

C1 =

! This value of c1, and co are
obtained for large enough n, T', and d,,, which is an assumption
that we make.

We now make use of the spectral norm bounds in (24) and
(25) in (31); and further upper bound the covering number
N(Frljl 6| - |l2) as,

N(]:T[j]ve’ H ’ ”2) <
<1+ (4T+§)M

- (nd2T+1)
(T + 1) (Vnwd,)' "

(32)

In (23), the integral can be further upper bounded using (32)

and we have that,

vm vm
/\/log/\/'(]-"T[j},e, T Ta)de < / T + Dtermyde

< V/m(nd2T + 1)termy (33)

where, term; :log<sivfd“b)\ (T +1)2 (\/ﬁde)Tﬂ); termp =

log(&/mndvbA(T +1)2 (\/ﬁde)TH). Substituting (33) in
(23) and assuming that the term (y/mby )T 1! is large enough
to approximate the term inside the logarithm, we have that,

mmm—mmmg%+ log(1/9)

2m

1 \/ (nd2T +;)(T+ Y log (8v/mmwd,by). (34)

APPENDIX C
LIPSCHITZNESS IN NBP DECODERS

Lemma 1. For n length codeword, the bit-wise output of
the NBP decoder f € Fr is Lipschitz in its weight matrices
Wi, Wy, W3, Wy such that,

AT = F N, <
Z:lpwl(i) 9 + ;pw;”

+ Py (Wil :] = Wali, lly + po, [Wald, ] = Wali ]l -
The coefficients p, , Py, P, and p

pw(i) = nb)\ng (\/EBWQ)T_’L7
1

(\/HBW2)T_1 —1

‘Wg) o W;(l) ,

are as follows:

wy

'sz(i) = 7’lT‘b,\Bm/le3 \/HBW2 1
7o (V)T -1
+ nb)\Bwl Bws (BWQ) W,
Bw,) ' -1 _
Puy = V1B, by <(V§1V)1 + (Bw,)" 1) ,
2

P, = ba- (35)
Proof. For outputs  f(A) and f'(\), respectively
we consider the following parameter  sets:  (a)
ng)v"' 7W§T)awél)a'“ 7W2T)7W37W4’ and (b)
w o WD Wi W) WY, W, For the j-th

output in the NBP decoder, we have that,

AT = S Nl = lls (Wald, JA[] + Wslj, :]pr)

— s (W4l IAl] + Wi :Ip)
< [(Wald, o] = Wil <)) Alj] + W[, Jpr — Whj, :Jpr

+ Walj, Jpr — Wil prll,

< [(Walj, ] = Wil 1) Alilll,
+ [(Wslj,:] = Wil prll, + [IW3[5, ] (P — pr)ll,
< [Walj, o] = Wil I, ba
+Iprlly [Wsld, ] = Wij,:]ll; + Bus, [PT — Prlly - (36)
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where, |[W5[7,:]||; < Buw,. We next find an upper bound
|lprll, as a function of the number of iterations 7", Lipschitz
constants of the activation functions, and spectral norm bounds
of the weight matrices of the NBP decoder. To further upper
bound ||pr||,, we know from Lemma 2 that ||pr|, < [[vr],,
and therefore we have

Iprls < [Ivells = [[WA+ W pp_y
2

< [WiPA, +[[wipra
< VnBw,bx + Bw, |lpT-1l, -

where, (a) follows from Talagrand’s concentration lemma [62].
Applying (37) recursively across 71" decoding iterations we
have,

(37

[Py < vl
T-2

< VnBuw, by Z (Bw,)" + (Bw,)" ™ (38)

vl

Also, we have vi = Wg )

bounded as

A. Therefore, ||v1]|, can be upper

Ivall, = |[WEOA|| < VB, ba. (39)

Substituting (39) in (38), we have

B
Iprll, < vnBuw,ba <( )
Wo —

T-1

To upper bound |pr — p7|,, we express |[pr — prp|, in
terms of ||[vp — vipl[, as follows:

HPT_p{er < \/ﬁHVT_V&“sz 41)

— vip|l, can be upper bounded as follows:
HVT - V’/I‘”Q = HWET))\ + WéT)pT_1
_ (VV/(T)A + W/(T) / ) H

<[ (Wi = Wi A W ey Wi e

< by | W — wi®
+HW§T

< /by

,
)PT—1—W/2(T)PT—1+W/2( )PT 1— W(T)I)T 1”

~

T T (T)
Wi = Wit pral, | W5
+ Bw, [[pr—1 — Pr1

T T
Flprall, [WED - Wi

+ VnBw, |[vo1—vp_q||,. 42)

_ W/(T) H
2 2

< /nby

T T

Applying (42) recursively across 1" decoding iterations we

12
have,
[ve —vill,
< \/nb, (Z (vVnBw,)' W —wi " >
o 2
T—1 . . ‘
T (Z (VnBw,) [villy HWSH)—WQ@H)HQ)
i=1
T-1 /
+ (VnBw,)  lva —vil, (43)
To upper bound ||vq — v}||,, we have that,
Iva = villy = [WiPx = WiA|
<Al [ Wi =W )

In addition, the term ZiT;ll (\/EBW2)T717i |vill, can be
upper bounded as follows,

T—1—1
Z fBWz HViHZ

i=1
T-1

(\/»BW2)T7171'

-1
(i — 1)v/nBw, by + V/nbxBw, (BWz)l 1)

X
=

\/>b)\BW1 BW2 T ZZ T 1—1

(IBWQ)T ! -1
/By, — 1
7o (yn)T ! — 1.

< T/ By, by

+ v/nbxBw, (Bw,) NS (45)
Substituting (44) and (45) in (43), we have
v — v,

T-1 4 _ _
< 4/nby (Z (\/ﬁsz)l Wngz) _ Wll(TfZ) 2)
(ViBw,)" ' —1
Tv/nb\B
+ ( VnbyBw, \/ﬁBWZ 3
7—2 (V1 (1) _
+ v/nbxBw,(Bw,) i1 ) Z HW ,
(46)
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Substituting (46) in (41) we have that,

Pt — Pl

T-1
con (S )

i=0

(VnBw,)" " —1
Tnb\B
! ( AT \/ﬁsz -1
T
2 (V)T -1 0 i
+nbxBw, (Bw,) T ; HWQ - W
47)
Using (40) and (47) in (36) we obtain
1F ] = F (N
T-1 4 ‘ A
< nbyBuy, ( (VnBw,)" Wi - wi T 2)
i=0
(VnBw,)" " ~1
baBw, Buw, | T
FoEw 3( VnBuw, — 1
72 (Vn) T -1 =11 i
+ (Bw.) vn—1 ZHW ~ W2 2
Bw,) ' -1 _
+ /nByw,bx <(W) + (Bw,)" 1)
Bw, — 1
x [[Ws[j,:] = W3[5, ][l
+ 0 [[Walg, ] = W45, ]l - (48)
This completes the proof of Lemma 1. O

Next, we state and prove Lemma 2 in which we show that
for any layer ¢, the value of ||p¢||2 is less than ||v¢||2. This
inequality was used to obtain the result in Lemma 1.

Lemma 2. Given the output of the parity check layer pt
defined by the min-sum operation as:

pt[{l, m}] H sign(v[{U', m}])

'eP(m)\l

vel{I', m}]| (49)

min

reP(m)\l

Then, the norm ||pt||2 is always bounded by the norm |
l[2 < lIvella:

Proof. 1t is straightforward to verify that for any decoding
iteration the norm of output of parity check layer is always
lower than the variable node layer. For n length code and
k length message, let us consider parity check matrix H €
{0,1}™*("=*) with variable node degree d,,, and parity check
node degree d..

We denote the corresponding Tanner graph as G € {V, P, £},
where V = {v1,...,un}, P = {p1,...,Pn—k}, and & =
{e1,...,€nqd, }. Without loss of generality, let us consider
parity check node p; in G such that P(p1) = {v1,v2,...,v4,}
where {v1,v9,...,04.} C V. Therefore, in the Tanner graph,
d. is the number of incoming messages to p;; which translates
to d. hidden nodes in the variable check layer vy for any
1 <t < T in the NBP decoder (whose architecture was
described in Section III). Similarly, d. is the number of

outgoing messages from p;; this translates to d. hidden nodes
in the parity check layer py in the NBP decoder.

The message passed p¢[{l,1}] from p; to v; in the NBP
decoder is given as,

pe[{1,1}] = H sign(v[{l',1}])
'eP(p1)\v1
=sign(ve[{2,1}]) - sign(ve[{3,1}]) - --
X min (|Vt[{27 1}”7 |Vt[{37 1}”7 T |Vt[{d6a 1}”)

Dsign(vel{2,11) - sign(vel(3, 1}) - sign(vi[{de, 1})
x |ve[{2,1}]]. (50)
where, step (a) follows from our assumption that |v¢[{1,1}]| <
[ve[{2,1}]] - |ve[{d., 1}]|, without loss of generality.

Following similar steps as in (50), for the set {v;|2 <14 < d.},
we have that,

pe[{i, 1}] =

AU

Hlln
'eP(p

sign(ve[{de, 1}])

H sign(ve[{l',1}]) x (51

I'e€P(p1)\vi

Ive[{1, 1}]]

This implies that outputs of d. — 1 nodes in py correspond to
the minimum absolute value of the d. incoming messages to
p1. Therefore, for the parity check equation p;, we have,

de 3
(Z Ipe[{7, 1}“2)

< ((de = DIvel{1, 12 + vel{2, 1}]2)

Following similar steps for parity checks po, - -
conclude that,

(52)

- Pn_k, WE can

[Pell2 < [[vell2, (53)

where, equality in (53) is satisfied when the output of the
hidden nodes in v¢ have same absolute values. This completes
the proof of Lemma 2. O

APPENDIX D
BOUND ON COVERING NUMBER OF SPARSE MATRICES

In this section, we derive an upper bound on the covering
number of sparse matrices as a function of its rows, columns,
and spectral norm bound.

Lemma 3. Let W = {W € R"*¢ W2 <
Bw and ||[W1i,:]|lo = ¢, 1 <i < r} be the space of matrices
with its spectral norm bounded by a constant By, and exactly
q non-zero entries in each row. Then, its covering number
N(W.e, | - ||F) with respect to the Frobenius norm can be
upper bounded as follows:

N, e -lIr) < (1 4 2min (/7 ﬁ)BWY

where, € > 0 is a constant.

(54)

Proof. We consider W : R"*¢ — R9"*1 a bijective mapping
such that ¥(W) € R is a vector of all non-zero entries
in W € W. The vector space induced by the mapping ¥
is defined as ¢ such that (W) = {T(W) : W € W}
Therefore, we also have |[W||p = || ¥(W)||2.
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We construct C(¢(W), €, || - ||2), a e-covering of 1)(WW) under
the Lo norm, and denote the corresponding covering number
by N (W), €, ||+ ||2). Similarly, we construct COW., ¢, || - | 7),
a e-covering of W under || - ||, and its covering number is
denoted as N(W, ¢, || - ||r). In what follows, we have,
(@)
NW, e ll-llr) < N@OW), e - [2) < MW i
(

The inequality (a) in (55) follows from the fact that U is a
bijective map, and that W ~1C(1)(W), €, || - ||2) is also a e-cover
of the matrices in WW. The inequality (b) in (55) follows from
the definition of packing P(i)(W),€, || - ||2) and the packing
number M ()(W), €, || - ||2). In other words, let P(p(W), €, || -
|l2) be the maximal packing. Suppose for some W, € W there
exists U(U) e W\P(Y(W),¢, || - ||2) such that,

(W)~ T(U)[ > .

Then, P(yp(W), €, ] - ||2) being a maximal packing is a con-
tradiction. Therefore, P(1)(W), ¢, || - ||2) is also an e-cover of
(W) and it follows that its cardinality (i.e., packing number)
denoted by M(py(W), €, | - ||2) is greater than N (Y(W), €, || -
l2). In the next step, we upper bound M(yp(W), €, || - ||2)-
To this end, we make use of the definitions 3, 4 to determine
this upper bound; and it follows from these definitions that the
balls need not be disjoint for an e-cover C()(W), €, || -||2), and
it must be disjoint for e-packing P()(W), €, || - ||2). Therefore,
Vw; € P(Y(W), €| - |l2) we have that,

PpW),ell-ll2)
B(Wi,

(56)

e BO,R+ ). (57)
= 2 2
where, the radius R =

both sides in (57), we have that,

v . i
V%lai(v” (W)]|2. Taking volume on

PpW),ell-ll2) c c
vol U B(w;, 5) < vol (B(O7 R+ 5))
Pp(W),ell-ll2) c c
= 2 vol (B(Wi, 5)) < vol (B(O, R+ 5)) .

(58)
To find the value of the radius R, we bound the L norm of
U (W) in terms of the spectral norm of the sparse matrix W,
and we have that,
[T(W)l2 = [W]lr < min (v/r, Vo) [[W]|2
< min (7, VO)By.  (59)
By considering the Lo ball B(0,R), where radius R =
min (1/7, /¢)Bw, and from (58) we obtain an upper bound
on M(yp(W),e€, || - ||2) as follows,
(R+5)"
e)\4d"
(5)
2 mi By \ "
(1 4 2min (V7 v¢) W) . (60)

€

M(WW)’G, || ’ HQ)

IN

IN

26 - 1l2)-

14

Therefore, we have,

NW, e - le)sM@OV) €l - l2)
2 By \ "
< <1+ min (', v/c) w) 1)
€
This completes the proof of Lemma 3. O
APPENDIX E
PROOF OF THEOREM 2

We consider an irregular parity check matrix H € R(»—k)xn

where d,, is the variable node degree of the i-th bit in the
codeword, and d.; is the parity check node degree of the j-th
parity check equation. The NBP decoder corresponding to such
this irregular anty check matrix is characterized by the weight
matrices W1 , W1 ),-- W(T) W§2), W(2) 7W§T),
Wi, Wy

n
Here, for t € {1,--- > dy,;, we have that

W € RO, W € RO, Wy € RheV, and W, € Rvxn,
For any value of ¢, the weight matrix Wgt) has one non-zero
entry in every row, and d,, non-zero entries in the i-th column
for integer values ¢ € [n]. In the weight matrix Wét), the i-th
bit in the codeword with variable node degree d,, corresponds
to d,,, rows and d,,, columns, and these rows and columns each
have exactly d,, — 1 non-zero entries.

The i-th row in the weight matrix W3 corresponds to the -
th bit in the codeword, and has exactly d,, non-zero entries.
Lastly, the weight matrix W4 € R™*"™ is a a diagonal matrix.
If the weights in the NBP decoder are bounded in [—w,w],
then for any ¢ € {1,2,--- , T}, the spectral norm of the weight
matrices WY/), and Wgt) can be bounded as follows:

By, = HWY)H2 < w\/m;Tdvi,

Bw, = [|[W{ [ <w (maxdvi - 1)

,T}, and 6 =

(62)

The Lo norm bounds on the row vector in matrices W3 and
W, are as follows:

Buy = [Walj, ]2 < wy/d, < w, fmaxd,,
Bu, = [Walj ][> <w (63)

For irregular parity check matrices, the upper bound (30)
becomes,

N(fT[j]’€7 ” : ”2)

(4T +2)v/nBw,p_, \ ="

T
<IIl1+ -

=1

(4T + 2)mBW2PW<i) hz=:1(d"h —1du,,
2

€

xH 1+
i=2

max d,,
. (1+ (4T + 2) By, p 3) x duy,

)
€
(AT + 2) By, p
X (1 + 6). (64)
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We can further upper bound N (Fr[j],€, | - ||2) in (64) as
follows.

N(Frlil, el - 1l2)

n 2

(AT + 2)v/ndy (e + c2) \ T2 Don

<(1+ .
€

nB T-1_
o = nTBWlBWQBwsb,\%, c =

n By, By, b (\/ﬁBWQ)T_ Substituting the values of the
spectral norm bounds in (62) and (63) in (65) and assuming
n >> T, we obtain,

N(Frlile - 1l2)

(4T +2), /nmaxd,,
: ba(T 4 1)x

€

where,

<1+

n
T+1) 3 dy,
h=1

T+1\ (
(\/ﬁw max dvi) ) (66)
For the NBP decoder corresponding to an irregular parity
check matrices, the bit-wise Rademacher complexity is upper
bounded as,

Ron(Frlj]) < % + %/m‘(T D%

n T+1

Z dz, log(S mnmax d,,bx(T + 1)2(y/nw max d,, )

5 o T )
(67)

Subsequently, we have the upper bound on the true risk
Reer(f) as,

Reer(f) < ﬁBER(f) + % + %

> 4 (T +1)?
h=1

+ 12 log (8\/mnw max dvib,\). (68)

APPENDIX F
PROOF OF THEOREM 3

From law of total expectations, we have that,
Pr(lger(f(A), x) > 0)
~ & |l ().
x Pr (Vi € [n] s.t. |A[{]| < by)
prob. that input is bounded
o (10,
x Pr(3i € [n] s.t. |A[{]| > by)

prob. that input is unbounded

Vi € [n] s.t. |A[i]] < bA]

Ji € [n] s.t. |A[i]] > b,\}
(69)

We obtain the following inequality using the fact that
any probability is upper bounded by 1 for the term
Pr (Vi € [n] s.t. |A[i]| < by), and that the true risk conditioned

on the event that the log-likelihood ratios are unbounded is
also upper bounded by 1.

Pr(lBER(f()\), X) > O)
<E |:ZBER(f(>‘)vX)
+Pr(3i € [n] st. |Ali]] > by)

Vi € [n] s.t. |Ai]] < bA]
(70)

Using the fact that the channel outputs are i.i.d to compute
Pr (Vi € [n] s.t. |A[i]] < by) as,

Pr(vi € [n] st [A[i]] < by) = [[PrOAlll <)) (1)
i=1

We consider that the signal is modulated by binary phase shift

keying (BPSK) modulation such that Pr(+1) = Pr(—1) = %

The channel is AWGN channel with noise variance 32,

then Alf] 2y[i]/B%. We can upper bound the term

Pr (Iylil| < 232

using Q-function as follows.

9 2p, _
Pr (| A[i]| < by) = (1 -Q (B?f) R (“562» ’
(72)

Then, the term Pr (3¢ € [n] s.t. |A[§]] > by) is computed as,
Pr(3i € [n] s.t. |A[{]] > by)

2 2y n
:1_(1_62(“5;2)_@(“% 2)) 73)

Substituting the values of (73) in (70) completes the proof of
Theorem 3.
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