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Abstract—Information theory, coding theory and signal pro-
cessing have significantly shaped magnetic read/write channels
engineering through a chronological sequence of innovations and
research advancements, cognizant of the underlying physical
processes. In this magazine article, we provide an overview
of magnetic recording technologies leading to the channels
engineering aspects, central to this article. We survey important
coding and signal processing algorithms along with some design
architectures that have made it to practice within hard disk drives
(HDDs) for magnetic recording channels. The push towards
realizing ultra-high densities (> 4Tb/ in?) on magnetic disks
with ultra-high throughput rates (> 10Gb/s) necessitates the
development of native two-dimensional (2D) coding and signal
processing algorithms and architectures within the framework
of two-dimensional magnetic recording (TDMR) along with
read head engineering and changes to the recording physics.
We also provide an overview of novel channels engineering
solutions covering all aspects of TDMR channels driven from
a systems science perspective. The innovations and research
advances described in this article may serve a broad engineering
audience in other areas as well.

Index Terms—magnetic recording technologies, read channels
engineering.

I. INTRODUCTION

HE advent of the computer age in the first half of

the 20th century has propelled data storage technolo-
gies to advance in an unparalleled manner, leading to the
birth, sustenance and exponential growth of technologies for
both on-chip and off-chip memories. Examples of on-chip
memories based on magnetics include ferroelectric random-
access memories (FERAMs), magnetoresistive random-access
memories (MRAMSs) etc. Hard disk drives (HDDs) are a
classic example of an off-chip physical memory. The term
data storage system refers to the entire system that interfaces
to this off-chip physical memory, i.e., from the operating
system, through the disk controller to the physical head/media
subsystem.

According to International Data Corporation (IDC), it is
expected that there will be more than 55 billion internet of
things (IoT)-connected devices by 2025 [1]. Further, with
cloud-based systems driven by datacenters and artificial in-
telligence (Al)-driven computing systems, several tens of
billions of devices will be connected through this data-driven
network. The 21st century will be the age of data storage
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technologies, mirroring how central processing unit (CPU)-
based technologies from computer manufacturers propelled in
the early part of the 20th century.

Since it is expected that nearly 175 zetta-bytes (ZB) of
data will be generated every day by 2025 [2], we need state-
of-the-art technologies to cater to this massive need. Along
with memories with higher storage capacities, it is expected
that these devices come with high throughput, shrinking form
factors and low power consumption. Thus, speed, area, power
and capacities ought to be within a ballpark for practical ap-
plicability of these devices. Though solid state devices (SSDs)
are now part of most computer systems within desktops and
enterprise solutions, catering to better read/write access times
and comparable HDD storage capacities etc., one cannot
ignore the role of HDDs in the data storage space since they
have the cost per bit advantage [3]. Hybrid memory systems
for handling cold and hot data will inevitably need HDDs.
Both HDDs and SSDs are part of today’s datastorage systems
within datacenters.

Today, we have a thriving multibillion-dollar magnetic stor-
age industry, which is ubiquitous and pushing itself continu-
ously, advancing towards reaching the physical limits of mag-
netic storage [4]. Sustained research and development in sev-
eral key multidisciplinary areas, such as magnetic materials,
recording physics, tribology, channels, and systems engineer-
ing, to name a few, have enabled magnetic recording systems
to reach capacities beyond 22 TB over multiple platters, using
multiple read heads. HDD technology has moved from a 1D
paradigm based on longitudinal and perpendicular recording to
shingled recording with improvements to head/media design
and recording physics. We are witnessing how with shingled
magnetic recording (SMR) technology, using two readers, one
could achieve storage densities beyond 1Tb/in? [5]. TDMR
with shingled writing and 2D signal processing and coding
can offer significant gains in areal densities [6] along with
the necessary read head engineering and recording physics to
work with TDMR.

In this magazine article, we will begin with the history
of magnetic storage technologies that dates back to more
than 140 years and describe how several innovations from
coding theory, information theory and signal processing are
continuing to shape its existence to remain competitive within
the storage world.
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A. History of Magnetic Recording: From a Technology Per-
spective

Magnetic recording research has witnessed a sustained
development of more than 144 years from the early works of
a magnetic recording apparatus conceived by Oberlin Smith
in 1878 [7]. In his concept, a coil of wire could magnetize
a medium, such as steel. By inducing a voltage, the same
coil could be used for playback of the recorded pattern on
the medium. This simple idea was demonstrated in practice
by Valdemar Poulsen, and was eventually made commercially
viable in the 1920s by Kurt Stille. Early advancements with
electronic amplification, alternating current (AC)-bias record-
ing, etc. helped in reducing the noise and distortion from the
recorded signals during playback. Way back in 1928, Pfleumer
developed a new recording medium using thin layers of metal
powder. Later, magnetite was developed for coating paper.
These simple ideas and further improvements to the recording
media led to the birth of the magnetic tape that fuelled the
entertainment industry. With subsequent media improvements,
HDDs were conceived to realize random access that ensured a
switch from the conventional sequential batch data processing
paradigm. For a comprehensive historical overview of this
celebrated technology, the reader is referred to [7].

The International Business Machine (IBM) 350 disk drive
was the first commercial HDD with a capacity of 5 MB,
weighing 500 lbs and having 50 24’ disks. The disks were
vertically stacked and rotated at 1200 rpm. A constant gap
separation with fluid bearing of 800 wpin was maintained
between the flying read head and the media to sense the
data from the medium. The data format was also very sim-
ple, using non-return-to-zero, inverted (NRZI) codes with
amplitude detection. The timing was ensured by having odd
parities augmented with the NRZI bit stream, ensuring the
synchronization of the open-loop oscillators. There was no
sophisticated signal processing or error control codes within
those systems. Several technical advancements led to the first
removable HDD, the IBM 1311.

Later versions of HDDs had self-clocking codes coupled
with peak detection circuits for sensing the magnetic tran-
sitions for decoding the data. A sequence of further tech-
nological innovations in the head designs, such as ferrite
heads, metal-in-gap (MIG) heads, thin film inductive heads,
etc. propelled an exponential growth in areal densities ~ 30%,
compounded annually. The introduction of (d, k) runlength-
limited (RLL) codes, such as the (2,7) RLL code by IBM in
1979 provided improved gains in areal densities (ADs) since
these codes could handle intersymbol-interference (ISI) and
synchronization issues directly via the encoded data stream.
The recording codes for magnetic storage were suited to
peak detection [8]. The most important advancement in head
technology was to switch from inductive heads to magneto-
resistive (MR) heads that provided higher signal strengths
independent of the linear velocity, making it ideal for smaller
disks that had lower linear velocities '. These MR heads were

The reader must note that the throughput is directly linked to the linear
velocities. To sustain a constant throughput, the spinning of the disk at the
inner diameter must be higher than at the outer diameter, irrespective of the
constant angular velocity on the solid disk.

commercially made available in 1985 [9]. For more details on
the theory behind magnetic recording, the reader is referred to
[10].

Trying to lower the gap between the head and the recording
medium, and having improved RLL codes within the peak
detection scheme could only saturate the AD gains. To stay
competitive, with the ever increasing demand for higher areal
densities, one required alternative strategies’>. The innovative
ideas from Kobayashi and Tang [11] on partial response
signaling conceived as early as 1975 were just ripe to be tested
out for a new generation of channels. Instead of finding ISI
baneful, the PRML scheme allowed controlled ISI that could
be tackled using Viterbi detection, which was already well-
known by then for decoding of convolutional codes. In 1990,
the first partial response maximum likelihood (PRML) detector
was introduced by IBM, replacing the peak detection circuits.
It was advantageous using MR heads, and the partial response
maximum-likelihood (PRML) scheme provided additive gains.
Very large scale integration (VLSI) technology was already
mature by then to build such read channel integrated circuits
(ICs) on a single chip. With low-cost and high-yielding chips
that could be integrated within the disk controller systems, the
PRML channel was a success along with MR heads. The use
of analog and digital equalization techniques, PRML detector,
RLL codes, and error correcting codes (ECCs) had HDDs
geared up towards realizing 1Gb/ in® areal densities. In fact,
during the early 1990s, only a few IBM drives were PRML-
based. The IBM 0681 drive with PRML technology achieved
a capacity of ~ 900MB. By early 1990s, the compounded
annual growth rate in the ADs were ~ 60% significantly
higher than the 30% growth rate seen for the past 3 decades
before 1990s. This further increased with the introduction of
giant magneto-resistive heads (GMRs) [12].

With the PRML in place, there were several notable in-
novations in the channels front, such as the noise-predictive
maximum likelihood (NPML) [13] engine that used whitening
filters to further improve the performance of Viterbi detectors
by overcoming the media noise due to transitions from the
magnetic domains. These ideas coupled with the design of
generalized partial response (GPR) equalization, i.e., a pre-
target selection and adaptive equalization techniques, helped
realize ADs beyond tens of Gb/in2. To achieve higher ADs,
one has to reduce the magnetic grain sizes for recording a
bit. Reducing the grain sizes cannot continue unabated since
recorded bits can be erased due to the superparamagnetic
effect [14]. Mindful of these physical constraints, recording
physics, head/media engineering and channels engineering had
to be conceived to advance the state-of-the-art. We will discuss
these technological aspects later in this section. Since a lot

2The reader must note that there has been a constant push for innovations in
the HDD industry towards achieving higher ADs. These are driven by innova-
tions in all the three major subsystems, namely (a) improved head design, (b)
improved media fabrication, and (c) improved channels engineering. Given a
head/media combination, efforts in the channels engineering side are pushed
towards achieving higher AD gain. When gains from innovations in channels
engineering tend to saturate, the head and media are pushed for improved
designs, leading to next-generation channels development suited for those
head/media designs. This constant push for innovations across all the three
major subsystems within the HDD technology has helped constantly improve
AD gains and stay competitive in the market.
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of channels engineering depends on the underlying recording
physics, we will next discuss the physics behind longitudinal
and perpendicular recording schemes.

B. Physics behind Magnetic Recording Channels

Hysteresis is the key physical property for magnetic memo-
ries to hold information. Coercivity of the medium determines
its stability against external magnetic fields and thermal issues.
Put in simple words, when the magnetic grain sizes are
small, they do not hold enough magnetic energy per unit
volume, leading to poor signal quality during readback. From
a physical perspective, an upper bound for the data storage
density is determined by the magnetic quadrilemma [4], which
we shall describe below:

Low bit error requires large ‘;(“—“”Ir‘
and maximum M

M; : Material saturation magnetization

V : Volume of magnetic grain
K : Isotropic constant

Kp : Boltzmann constant

4 : Permeability

H,, : Writing field

T : Writing temperature

High density requires
Thermal writability small grains
requires high Ho,

Thermal stability
requires KV/Kpr > 60

Figure 1. High ADs require smaller grain sizes. Thermal instability leads
to grains switching their magnetization since the magnetic energy per unit
volume is less. Further, write instability issues require high writing fields to
get the desired level of anisotropy. Providing high writing fields over small
grain sizes under high temperatures is not easy to realize. These conflicting
requirements lead to the magnetic quadrilemma that dictates the achievable
AD from a physics perspective. Adapted from [4].

Consider the extreme case of storing a bit over a magnetic
grain, which is the smallest magnetic domain. Figure 1 shows
the various conflicting physical requirements for storing data
on a magnetic grain. To obtain high storage densities, the grain
size must be small. Having smaller grains leads to thermal
instability since the magnetic energy per unit volume is less
and the magnetization of the grain is lost over time, governed
by the Neel relaxation time. Now, there are write instability
issues since the external write field must be very high to induce
the required anisotropy over the grain. Finally, there are write
errors since it is difficult to ensure write heads can provide
this field over small grain sizes and high temperatures. This
leads to the issue of thermal writeability since the magnetic
moment in the medium must be sufficiently large or the writing
temperature is not too high. These conflicting requirements
will lead to optimization of the physical parameters to assess
upper bounds on the achievable density within the classical
regime.

Composite media with exchange coupling using soft and
hard magnetic layers [15] is used to overcome limitations
of writability and thermal stability with conventional write
heads. With materials such as CoCrPt-alloys for hard magnetic

layers and a combination of multilayer media structures, the
medium has high anisotropy, allowing room for smaller grains.
Based on the thermal stability criterion, the areal density
of the medium depends on the grain volume and the areal
packing fraction of the storage islands. Also, from a thermal-
writeability perspective, based on the physical parameters,
such as the writing field, writing temperature, Curie tempera-
ture of the medium, etc. one can estimate the areal densities
in order to sustain the magnetization over a grain without
flipping the state under heat-assisted writing (ref. to equation
(6) in [4]). It is estimated that the achievable AD for magnetic
storage under heat-assisted recording is around 20Th/ in” [4].
The reader must note that this assumption is only over one
layer of the medium. By stacking layers of magnetic medium,
with appropriate recording physics, one can achieve higher
ADs.

At this stage, we have not discussed anything related
to the noise modeling or statistical description of the
read/write processes. Mapping the physical constraints to
a communication-theoretic framework will eventually lead
to achievable bounds on data storage densities from an
information-theoretic view point.

Ring type
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GMR
Reading head

GMR
reading head
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Writing head

Recording
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1
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Figure 2. (a) Longitudinal magnetic recording, where the magnets are aligned
in the east-west direction. (b) Perpendicular magnetic recording with a soft
under layer. The magnets are aligned in the north-south direction. Figure
source: Courtesy [16].

1) Longitudinal — Magnetic  Recording (LMR): In
longitudinal magnetic recording (LMR), the magnetic
anisotropy is oriented in the thin film plane i.e., in the
east-west direction. Figure 2(a) shows the alignment of the
magnetic grains. Around 140Gb/ in® ADs were demonstrated
in laboratory setups.

2) Perpendicular Magnetic Recording (PMR): The pio-
neering work of Iwasaki in 1975 [16] led to perpendicular
magnetic recording (PMR), where the magnetic anisotropy
is perpendicular to the thin film plane i.e., the magnetic
domains are oriented in the north-south direction as shown in
Figure 2(b). Present day HDDs are based on PMR technology,
which provides significantly higher ADs than LMR up to
1Tb/ in>. In PMR, there is a soft magnetic underlayer (SUL)
which provides a return flux path. Thus, there is a stronger
write field gradient using the same head material as the LMR,
allowing the medium coercivity to be higher. Larger write field
gradient results in smaller transition jitter, thereby improving
the signal-to-noise ratio (SNR).
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The read head design is the same irrespective of the record-
ing scheme.

C. New Technologies for Higher Areal Densities

Though PMR-based HDDs have been highly successful
since 2005, there is a saturation to the AD gains around
1Tb/ in®. This led towards research in alternative technologies
for furthering AD gains. There have been three major
promising technologies: (a) heat-assisted magnetic recording
(HAMR) [17] [20], which is driven through recording physics,
(b) bit-patterned media (BPM) [21], driven through media
innovations, and (c) two-dimensional magnetic recording
(TDMR) [22] with innovations from 2D signal processing
and coding i.e., from the channels engineering side. Figure 3
shows different magnetic recording technologies, early
versions of some of which are already into production.

In HAMR [20], the recording medium is heated above
the Curie temperature for a nano timescale. This makes the
medium lose its coercivity. Around the same time, the write
head writes on the medium. When the medium cools down,
it regains its coercivity, thereby retaining the bit written
onto it. The key challenge in HAMR drives is nanoscopic
guided heat delivery without burning up the write heads.
This is accomplished using nano-scale plasmonic waveguides
for directing the energy than a direct laser heating of the
medium. Sputtering effects over the neighboring cells must
be avoided. Figure 3(a) shows the schematic of HAMR.
Laboratory HAMR prototypes developed by Seagate have
showed areal densities as high as 2Tb/ in’ [23].

There are also works on other energy-assisted magnetic
recording (EAMR) schemes, such as microwave-assisted
magnetic recording (MAMR) with an eye towards 3D-
magnetic storage. In MAMR, the media is composed of
multiple layers, similar to layered media in optical discs.
Using high-frequency magnetic fields generated by spin
torque oscillators, selective switching of grains at a certain
depth in a layered medium is possible [24] [25] [26]. Data
is recorded in overlapping layers using selective microwave
resonant frequencies attuned to these layers (refer to Figure
3(b)). The success of MAMR depends on the strength of
the magnetic field and the head-media spacing (gap length).
It is envisaged that MAMR can provide ADs to 10Tb/ in®.
In HAMR, lower layers destroy the information in an upper
layer. This is circumvented in MAMR. However, MAMR is
also prone to similar challenges that HAMR faces.

In BPM, the medium is tessellated into magnetic islands
in an orderly manner. Each magnetic island is well-separated
with guard bands (shown in Figure 3(d)). Fabrication of such
media requires careful lithography, which could be costly. In
practice, one could have deleted or fused magnetic islands
as part of fabrication defects, requiring significant efforts
from channels engineering to work with such media. Write
synchronization issues and other aspects make this technology
a bit difficult for commercialization.

TDMR is a technology that works with random grains,
borrowing from the PMR media technology, unlike BPMR
with fixed island sizes. However, instead of writing bits on
tracks in the usual 1D manner, tracks are shingled, and data
is encoded in 2D. To ensure a sufficiently large magnetization
field capable of magnetizing materials with high coercivity,
the head is made larger than the track width. However, to
achieve a higher areal bit density, the tracks should be very
narrow. As a result of narrower tracks, each sweep of the
head during writing partially overlaps with the previous track,
i.e., writing is noisy.

Unlike traditional recording, where data is organized in
well-separated tracks (shown in Figure 3(c).a), in TDMR
systems, the data bits are arranged in a 2D array (see Figure
3(c).b). In traditional systems the intersymbol-interference
(ISI) is small and along the downtrack, which can be
controlled by a sequence detector. In a TDMR system, since
the head picks up magnetization from adjacent tracks, there is
severe ISI both along a track and across the tracks (inter-track
interference (ITI) as a wider head reads data larger than the
physical dimensions of a stored bit. Narrow read heads can
be fabricated (minimizing ITI) with a penalty in the noise
during reads.

2D offers many advantages over 1D. First, one can achieve
significantly higher ADs by packing more bits per unit area
by using clever 2D coding and signal processing techniques?.
Next, it is possible to have a relaxed 2D synchronization
since the read head is not confined to a narrow single track
to handle timing artifacts. Timing issues in the down-track
and cross-track directions can be handled as a whole through
multi-channel processing. Last, the throughput is significantly
higher since an entire array of bits can be read and processed.
However, all these advantages towards getting higher ADs
come at the cost of designing the array of read heads and
processing the signals. It is expected that processing these
array of signals requires sophisticated signal processing that
could be power and area intensive when implemented on a
read channel chip. With advancements in low-power VLSI
technologies, both at the device and circuit architectural levels,
it is possible to overcome these challenges in pursuit of
realizing the promise of TDMR gains. We will describe
the channels engineering aspects for TDMR in subsequent
sections. The reader must note that TDMR provides additive
AD gains over both HAMR/MAMR and BPMR technologies.
Thus, it is important to develop native 2D coding and signal
processing solutions for TDMR channels for increasing the
existing AD limits of HDDs.

D. Organization of the article

With this broad technological background in mind, we
describe the organization of this article. In Section II, we
provide an overview of the channel modeling aspects for
various magnetic recording technologies. This will help us

3The reader must recall that, unlike 1D traditional recording, we have 2D
ISI/crosstalk in the down-track and cross-track directions.
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Figure 3. (a) Schematic of a HAMR setup with guided LASER beams impinging on the medium. Courtesy: [17]. (b) Schematic of a MAMR setup. Using
spin torque oscillators with microwave resonant frequencies tuned to each layer, selective switching of grains in a layered media is possible (Adapted from
[18]). (c) Schematic of a TDMR writing and reading process. a) In conventional setup writing and reading is on a single track. b) In TDMR, the data is
organized as a 2D array. The 2D readback signal is due to sensing multiple tracks. Severe crosstalk in the readback signal has much of the information
required for decoding the original information. Adapted from [6]. (d) Illustration of a BPMR pattern. The medium is fabricated carefully with equally-spaced

islands, i.e., ordered grains. Courtesy: Source [19].

connect the physics to a communication-theoretic setup, useful
towards building algorithms in practice. In Section III, we
survey information-theoretic tools for assessing the mutual
information rates (MIR) of MR channels. These results are
important to get a feel for achievable ADs under noisy
conditions. In Section IV, we discuss the signal processing
innovations that had to be conceived with every generation
of the read channel. We will provide a summary of vari-
ous signal processing techniques such as analog pre-filtering,
equalization, timing recovery, signal detection, etc. applicable
to 1D and 2D channels. In Section V, we discuss the important
coding techniques that were practically applicable to HDDs.
Specifically, we will highlight the role of algebraic codes
and iterative codes that were implemented in practice, within
HDDs. We will also discuss modulation codes used in early
versions of practical HDDs. We will also highlight the circuit
architectural aspects towards realizing the coding algorithms in
practice by explaining the importance of algorithmic/system-
level tweaks that have had a significant impact in practice. In
Section VI, we conclude the article along with our perspectives
on the channels engineering aspects for next-generation HDDs.

II. MODELING FOR MAGNETIC RECORDING CHANNELS

From now onwards, we will focus on the channels engineer-
ing aspects of HDDs. Figures 4(a) and 4(b) (Adapted from

[27], Chapter 15) show the block diagram schematic of a read
channel architecture. Information bits are encoded through
an error correction coded and then modulated to satisfy the
constraints of the channels. These bits are then written on
to the medium through the write head after converting the
current pulses to flux changes on the medium. After sensing
the readback waveform, the signal is passed through a band-
limited filter and an adaptive finite impulse response (FIR)
equalizer to maintain a partial response (PR) target. Post
sampling, the samples are driven by a timing recovery loop
and signal detection. The detected bits are then decoded by
the modulation code and through the ECC decoder before
retrieving the information bits. The post-processor block in
Figure 4(a) indicates a turbo loop for soft-decision decoding
within the PRML setup. Thus, coding and signal processing
algorithms are part of read channel ICs that interface with
magnetic disk drives.

The act of storing and retrieving information reliably from
a storage device is an instance of a noisy communications
channel. With appropriate channel modeling, one can ab-
stract the physical processes within a communication-theoretic
framework so that tools from information theory, coding
theory and signal processing can be applied towards channels
development. A first step towards this effort is signal modeling.

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:41:51 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE BITS the Information Theory Magazine. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MBITS.2023.3336213

JOURNAL OF KTEX CLASS FILES, VOL. XX, NO. Y, MONTH 2023

From read head
E———

A

Preamplifier Gain control

Variable gain
amplifier

Low Pass filter

Thermal asperity
compensation

A Quality

metrics

A
Y

Offset control <€

Servo Marker +

Burst detection

| Viterbi
o I i
| Analog
“|_FIR Y

Adaptive equalizer

blle Timing recovery gl

[Modulation -
decoder i

To disk controller ¥

. Timing
Continuous _X Analog DDNP + Soft
—> — > —>
time filter T FIR filter 22C recovery ) detector
unit
T Equalizer configuration 1
. _)( . Timing
+
antlnuous ADC D1g1tal. FIR N N DDNP + Soft
time filter T equalizer : detector .
unit
T Equalizer configuration 2
(b)

Figure 4. (a) Schematic of a conventional read channel architecture. The signal from the read head goes through a preamp circuit, followed by a continuous-
time filter to remove any out of band noise and an analog-to-digital converter (ADC). The signal chain includes an analog FIR equalizer based on the least
mean squares (LMS) adaptation engine, adaptive gain and timing loops, and the Viterbi detector with post-processing towards error recovery. (Adapted from
[27], Chapter 15). (b) Various configurations of analog and digital FIR equalizers within a PRML detector setup with noise whitening capability, such as

using data-dependent noise prediction (DDNP) filters.

A. Signal Modeling for LMR and PMR

The playback signal strength depends on the physical pa-
rameters specific to a recording scheme.

By considering the linear superposition of pulse amplitudes
of isolated transition magnetic responses that depend on the
written bits, we can abstract the signal model for the dibit re-
sponse p(t) for longitudinal recording over a pair of transitions
separated by interval T as

y(t) = by [h(t — kT) — h(t — (k — )T)] +n(t), (1)
b =p(t)

where h(t) is the Lorentzian model response given by

[AE, 1
h(t) = %W, 2

with w being the pulse width at half-maximum. The peak
amplitude of the pulse depends on the properties of the
magnetic medium such as the remanent magnetization, air
gap length, width of the free layer etc. For more details,
the interested reader can refer to [27] (see equation (2.31),
Chapter 2 in [27].). In equation (2) E; = [ |h(t)|?dt represents
the normalized energy of the isolated transition response.
The noise term n(t) in (1) represents both the media and
electronics noise sources.

Similarly, the transition response for the PMR channel is
simplified as

t.w) = v, ( 2V 3)

where V), is the peak value of the isolated transition response.
The pulse width w at half-maximum for PMR depends on the
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o5 Longitudinal recording
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(a)

Figure 5. LMR and PMR transition responses.

b € {0,1}

t=kT

Figure 6. Continuous-time signal model with jitter contributions upto a second
order. Adapted from [28].

air gap length, transition width, GMR free layer thickness, etc.
To normalize the energy under the impulse response to unity,
the peak value V), is given by

; (57)

Figure 5 shows the sketch of the transition response for
both longitudinal and perpendicular recording schemes. Noise
modeling from recorded waveforms is important for deriv-
ing channel models. Media noise, which is usually colored,
arises due to variations in the media magnetization across the
grains. The electronics noise, which is usually white, arises
due to sensing and preamplifier circuits. Media noise is a
consequence of stationary dc remanent noise due to random
in-plane anisotropy dispersion (Chapter 2, [27]), noise due to
transitions and modulation noise due to surface roughness. The
dc remanent noise is absent is perpendicular recording due to
loop squareness and the noise due to transitions is the only
noise since magnetic grains can fall across bit cell boundaries.

A simple way of obtaining the noise model towards sim-
ulations is to have noise perturbations in the position ¢ and
width w parameters within the transition response h(t,w) as
done in [28]. At a position k,

[N

Vo= “4)

hk(taw) :h(t_kT+.]kaw+wk)7 (5)

where j, and wj are random variables and assumed to be

Gaussian distributed with zero mean and variances 032- and
2 | respectively.

o5,

Perpendicular recording

10 -8 -6 -4 -2 o 2 4 6 8 10
Normalized spatial length

(d)

By doing a Taylor series approximation of equation (5)
using equations (2) and (3), we get the equivalent model
described in Figure 6.

With this in place, we are set to define the SNR. The SNR
for recording channels is given by

N+ M

where N is the electronics noise variance and M is the media
noise variance. The media noise variance is given by

M =2021; 4 207, L,

SNR (6)

)

where I; = [/ (22)? dt and I,, = I (22)* duw.
The linear density or channel bit density (cbd) is given by

PWiso

Dy = —5— ®)

Since the data is coded at a rate R, the user bit density
(ubd) is given by

ubd = cbd x R. 9)

In a practical setup, the systems are oversampled with a
factor O,. If the SNR is S dB and the energy in the transition

response is Ej;, then, for a given cbd and MLM = f, the
electronic noise variance is given by
Ei x cbd

o2 = (1— /)= 2%, 107015, (10)

Equation (10) is helpful for obtaining the required noise
parameters for generating the waveforms towards simulations.

With these details in place, we are now ready towards a
simulation model for assessing the performance of the signal
chain for LMR and PMR channels. Let us now discuss signal
models for advanced channels.

B. Signal Models for Advanced Channels: A TDMR Case
Study

TDMR achieves high AD gains by reducing the bit size in
both the directions within the bounds dictated by the magnetic
quadrilemma. With bit-sizes to the order of a magnetic grain
size, irregularities in the medium defined by the position
and geometry of the grains will influence the read and write
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processes.

Though there are many simple models for TDMR such as
the binary error and erasure model and the discrete grain
model [29] [30], we will focus specifically on the Voronoi-
based model and discuss the details of this channel model
(media model, read and write procedures, and noise char-
acteristics) in depth since it is the accepted model for read
channel simulations in the industry, and is used in [31] [32].
Figure 7 shows the Voronoi tiling model for TDMR. Each

uoI11Jalip >Jeul}-ssoi)

™

0 10 2 P A0 &0 60 0 80 90
<> . .
8P Down-track direction
—

Figure 7. An example of the Voronoi channel model. The bit cell width along
the track is BP=15 nm. In the cross-track direction, the track width is TW=30
nm. The center-to-center (CTC) spacing is 10 nm. Adapted from [6].

Voronoi region on the magnetic medium represents a grain.
The distribution of Voronoi centers is modeled using a point
process, typically a Poisson random process. The magnetic
domains are formed using the Voronoi regions whose centers
are the grain centers. Physics-based micromagnetic models
simulate the sizes, shapes, and distribution of the grains close
to an actual magnetic recording medium.

The micromagnetic recording model [33]-[35] assumes
a granular thin film medium in which grains are uniformly
magnetized. This model makes no prior assumptions of a
grain shape or location. The magnetostatic and exchange
interactions between nearest neighbors are calculated with
the knowledge of the grain shape, and the magnetostatic
interactions between more distant pairs of grains are computed
hierarchically. The time evolution of the magnetization is
computed by integrating the Landau-Lifshitz-Gilbert (LLG)
equation in spherical polar coordinates using a Krylov
ordinary differential equation (ODE) solver [36]. Head-field
distributions are precomputed for some direct currents (dc),
and the recording sequence is defined by the velocity of
the head over the medium and a head current waveform
represented by the random bit sequence to be recorded.
The field at each point of interest in the medium is then
computed by spatially interpolating the head-field distribution.
TDMR platform simulations were also done in [37] using
the micromagnetic model. Also, the micromagnetic model
has been used to predict AD limits in perpendicular

recording [38]. There are other intermediate models based
on quasi-micromagnetic simulations [39]. However, the high
complexity of micromagnetic model makes it difficult to run
simulations for the performance evaluation of coding and
signal processing algorithms [39], [40].

We shall now discuss more details about the Voronoi model.

1) Recording Media Model: The Voronoi tiles are used to
simulate the irregularities of magnetic grains. The distribution
of grains on the medium can be modeled using a Poisson-disk
process with boundary sampling, as proposed in [41]. Each
new grain is randomly generated such that it touches at least
one of the existing grains to achieve a close random packing
under the CTC constraint. Before a new grain is generated,
the boundary that is at a CTC distance from the existing grain
centers is identified. The position of a new grain is randomly
generated with a uniform probability density on the identified
boundary.

According to the Voronoi model, the storage medium com-
prises tiling of the shifted grain-centers with each region
representing the grains. With a rectangular grid over bit cells,
each cell of size BL x TW represents the size of the bit cell in
the downtrack and crosstrack directions. The bit aspect ratio
(BAR) which is defined as BAR = % governs the minimum
resolution of magnetization. The act of writing and reading an
information bit from a bit cell, i.e., from a rectangular cell with
a given bit length and bit aspect ratio, constitutes an instance of
a noisy communication process, i.e., a noisy channel. The bit
cell area is equivalent to the channel bandwidth. The channel
bit density is given by m bits/unit-area.

2) Write Process: During the writing process, the read head
writes the bipolar coded symbol x; ; by changing the magnetic
polarity of all grains whose centers lie within the (4,7)"" bit
cell according to the value of bit x; ;. Magnetic domains
are formed by the continuous regions of Voronoi cells with
the same polarity of magnetization. The channel input signal
x(t1,t2) is given by

ﬂi(tl,tg) = in,jHTW(tl — 1 X TW)HBL(tg —j X BL),

i

(In
where x; ; € {—1,+1} is the symbol which will be written
on the (i, 7)™ bit cell and

1 if0<t<T,

. (12)
0 otherwise.

r(t) =

The indices ¢; and ¢ refer to the spatial coordinates on the
magnetic disk.

3) Read Process: The readback signal depends on the
grain magnetization and read head geometry [42] along with
crosstalk received from neighboring cells that depends on
the grain distribution. Suppose that the read head picks up
magnetization only from m x n neighboring cells. As a result,
the read head output sample y; ; at the center of the (i, )™
cell depends only on the polarity of the grains in the m x n
neighborhood around the (i, )" cell, denoted as C; ;. We
use the 2D Gaussian pulse model for the read head sensitivity
function. The 2D Gaussian pulse is characterized by the pulse
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widths PW50, and PW50, at half-amplitude in the down-
track and cross-track directions.

In2 o (In2)z2  (In2)y
_ m2 _
TPW50,PW50, - F \ ~ PW502 PW502

with [ [*_h(z,y)dzdy =1 for normalization.

The read head sensitivity function is the contribution of each
grain towards the generation of a readback signal. Figure 8
shows the distribution of grains on the medium, magnetization
of the Voronoi regions on the medium and the continuous time
readback signal without electronic noise.

Let h; j[p,q] be the discrete-time read response of the bit
at position (4,7). The indices p,q are integers representing
samples on the 2D media after sampling. These response
coefficients are random and dependent on the position and
shape of grains within the bit area. We can compute the
average bit-response as

h(p,q) = Er s [hijlp,q]],

where I and J are random variables indicating the distribution
of the positions of grain centers in the down-track and cross-
track directions, respectively.

The readback signal sample without considering the elec-
tronic noise is given by

Yij =YY Tipi—qhipjqlp,dl,
p q

where z;; is the symbol written on the (i,)"™ bit-cell.
Furthermore, the ideal read head output, s; ;, is obtained by
considering the average discrete-time output of the (i, 7)™ bit

area as
Sig =YY Tipj-qhlp.ql
P q

The mean squared value of the read-back signal is computed

9 9 . .
as Vy, =3, Zq'\h[ ,q]|*. The media noise comes from the
random perturbations of h; ;[p, ¢] around the average response

h[p, q]. Therefore, the energy of media noise o2, is computed

>3 Jhaglp.al = hip. gl

For TDMR channels, we have three different SNR notions:

h(z,y) =

(13)

(14)

15)

(16)

o2 =Er; (17)

VQ

SNR = 101log;, 027_1;02 ’ (18)
V2

SNRyfegia = 1010g;, 0—’2’ ; (19)
V2

SNREje. = 101og;, U—’; , (20)

SNR refers to the overall SNR, while SNRpeqia and
SNREjec are the SNRs corresponding to the media and elec-
tronic noise sources, respectively.

The noise distribution for different input patterns can be
obtained using the Voronoi model to study the impact of how
neighboring bit transitions lead to increased noise. Study of
the noise distribution is helpful in computing the symmetric
information rates and optimization of the TDMR system pa-
rameters under various channel conditions [43] [44]. The most
harmful patterns are those that have consecutive transitions
along the on-track and off-track directions, leading to degraded
performance during signal detection [44] [45].

C. Signal Models for HAMR and BPMR

The read channel model for BPMR can be described by a
2D ISI channel [46]. The contribution of a magnetic island
to the readback signal is determined by the integral of the
head potential function over that island. The 2D ISI channel is
parameterized by two parameters: (a) the down-track crosstalk
parameter that is determined by the distance between the
shields and the MR element, and (b) the cross-track crosstalk
parameter determined by the width of the read head. By
obtaining the 2D ISI channel in the form of a matrix, the
discrete model for readback signal is obtained using the
2D filter and amplitude coded bits within a linear systems
framework [47].

For the write process, since the head size can be more than
the spacing between the magnetic islands, there could be write
errors, with subsequent islands overwritten. The positioning
of the head requires synchronization during writing without
which one can have synchronization mismatch during writing
due to write clock offsets. Further, due to fused islands [21],
one can have insertions or deletions that need to be handled
through special codes. All these contribute to written-in errors,
which must be overcome through proper coding during the
write process [48].

n [49], the authors derived a channel model for HAMR
using the thermal Williams-Comstock model [50]. The authors
in [51], consider modeling the write and read portions using
HAMR over a bit-patterned media. In that model, during
writing a portion of the grains P can be flipped according
to a flip probability [51] along the reversing field that depends
on energy barrier required to flip the magnetization w.r.t the
switching field and the temperature.

dP A,
2 —a(1=P —
& = oo (-5,

where « is a constant. The energy barrier A, depends on the
magnetic energy M (T') per unit volume that in turn depends
on temperature, anisotropy constant K (7'), applied field H
and magnetization as a function of temperature 7' given by
[51]

1)

(22)

III. CAPACITY ESTIMATION FOR MAGNETIC RECORDING
CHANNELS FROM INFORMATION-THEORETIC TOOLS

The capacity of a data storage system under noisy conditions
is the upper limit on the number of bits per unit area that one
can store on the magnetic medium with an arbitrarily small
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Figure 8. Write/read model for the Voronoi medium: (a) Desired magnetization of an ideal medium. The grains with magnetization +1/-1 are shaded white
and black in each of the squares. (b) Magnetization of a non-ideal medium as per the Voronoi model. (c) Readback signal (before sampling). We assume the
readback impulse response is a truncated 2D Gaussian pulse of unit energy with half-maximum of 1 bit-period and a span of 3 bit-periods in both dimensions.

Adapted from [6].

probability of decoding error. From Shannon’s channel coding
theorem [52], if we choose a long enough code length n,
one can code the data bits at a rate R < C, where C is the
channel capacity with an arbitrarily small probability of error
pén) < €, and €, > 0. The evaluation of the channel capacity
C is difficult. In general, it is not possible to exactly obtain the
capacity for magnetic recording channels since the channel is
non-stationary as the error rates can vary across the tracks and
with device aging. Also, the stationarity/ergodicity conditions
in Shannon’s original theorem do not hold in practice for
magnetic recording channels. Thus, it is important to come up
with reasonable estimates for computing the channel capacity
under certain assumptions.

The capacity estimate of the recording channel can serve
as a performance benchmark for designing error correction
codes and for optimizing the physical parameters of data
storage systems [53]-[55]. The reader must also note that
a practical way of distilling the tightest coding rate for a
practical magnetic recording channel is to increase the coding
rate to such an extent that there are errors beyond a threshold*.
Using bit error rate as the comparison criterion encapsulates
the channel and the signal detector using a simple model,
such as a binary symmetric channel, which provides a loose
lower bound on the information rate. Based on physically
abstracted channel models, one could directly compute the
mutual information rate with different input distributions under
different bit aspect ratios to obtain a lower bound on the
achievable storage density as done in [55].

Chan et al. [56] use the grain-flipping probability model to
optimize the areal density using a signal chain that includes
the partial response equalizer, soft-output Viterbi detector, and
low-density parity check decoder. By varying the physical
parameters, such as the bit length, track pitch and code rate
in the simulations, areal density is evaluated empirically for

4This is one of the practical ways engineers fine-tune the coding param-
eters after an initial estimate of the capacity since the stationary/ergodicity
assumptions do not hold in a practical setup. Also, a wide range of coding
rates are distilled depending on the device aging properties and various stress
tests done in practice.

different head/media configurations. However, the detector is
still 1D, which could be still limiting.

The capacity of discrete channels is defined as the maximum
MIR over all discrete-input distributions. Various bounds on
the capacity of certain 1D discrete input channels with ISI
have been proposed [57]-[60]. The MIR or i.i.d. capacity
can be computed with reasonable accuracy using Monte Carlo
methods.

A. Computing Mutual Information Rates: Trellis-based Ap-
proach

Tne information rate for 1D additive white Gaussian noise
(AWGN) channels with memory can be computed using the
forward recursion of the sum-product (Bahl-Cocke-Jelinek-
Raviv, BCJR) algorithm [61].

1) Capacity Estimate for the 1D Framework: Post partial
response equalization with a pre-target and whitening of the
noise, the equivalent magnetic recording channel is approxi-
mately a linear ISI channel. We shall describe how to estimate
the MIR for an ISI channel. Consider the MIR for n-uses of
the channel, taking inputs x(™) and producing outputs y (™
given by:

1
I(X;Y) = lim ~1 (x<”); y<">) . 23)
n—oo N
Now, equation (23) can be computed as
(24)

I(X;Y) = h(Y) - h(Y]X),
——

=h(Z)

where h(Y) =
lim,, oo %h (z(”)).

After whitening through NPML [13], the noise statistics are
approximately Gaussian distributed A'(0,02); hence, h(Z) =
1 log,(2meo?). We are now left with the computation of 2(Y).

This is where the ideas behind the BCJR algorithm [62]
help us. For this, we need to bring in some parameters related
to the trellis formalism. Suppose the ISI memory is /V and the
input alphabet size is |X|. There are |X'|" states in the trellis.

limy oo 2h (y™) and h(Z)
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The forward probability of ending in a state j at time k can
be computed as

ar(j) = Py*, Sk = ).

The term ay(j) in can be obtained through the recursion

ag(j) = Zak—l(j)’Yk(iaj)a

(25)

(26)

where v (i,5) = P(Sx = j,yx|Sk—1 = i) is the branch
probability i.e., transitioning from state ¢ at time instant k£ — 1
to state j at time instant k.

The overall probability P (y*)) can be obtained as

P(y0) =D arli).

By initializing «(j) for all states j with the stationary dis-
tribution * of the inputs, one can efficiently compute P (y(*))
for a certain noise realization. By averaging the computation
P (y(")) over several runs, we can obtain

27)

h(Y)=— lim lE {1og2 (p (y(”)>)} .

n—oo N

(28)

From equations (24)-(28), one can estimate the MIR for
ISI channels post noise whitening. The reader must note that
when the noise is not fully whitened, one must account for
correlations in the noise while computing h(Z). Further, in
the case of data-dependent noise prediction (DDNP) [63] that
comprises a bank of noise whitening filters that depend on each
input pattern, the overall entropy rate conditioned to each input
pattern can be evaluated based on the local noise statistics from
DDNP filters using the MIR estimation ideas we discussed in
this subsection.

2) Capacity Estimate for the 2D Framework: Similar to
the 1D case, the overall 2D channel for TDMR systems can
be approximated to a 2D finite-state ISI channel with AWGN
after noise whitening, described by

M N

Yij = E E R @i j—1 + N g,

k=11=1

(29)

where z; ; € {—1,+1} indicates the magnetization of (i, j)'"

channel’s bit cell, y; ; is the (i,j)'" read-back sample, and
n; ; is the realization of noise under Gaussian statistics, i.e.,
N(0,X). The MIR of the TDMR channel with the proba-
bility distribution function P(y|x) is defined as the mutual
information between channel’s input x = [z; ;| and the output
v = [i,;]. We now compute MIR as follows:

1 1
MIR = —I(X;Y)= —H(Y)—- —H(Y|X
where H(-), H(:|]-), and I(-;-) in equation (30) are the

entropy, conditional entropy, and mutual information terms,
respectively. Knowing the channel P(y|x), H(Y|X) can be
computed. The problem of obtaining the MIR reduces to

5The reader must note that when input sequences are constrained (see
for example, RLL constraints) and represented through finite state transition
diagrams or equivalently constrained graphs, the stationary distribution of the
source can be used as the initial condition.

computing the entropy rate of the channel’s output H(Y).
From Shannon-McMillan-Breimann theorem [64], assuming
stationarity and ergodicity, the entropy rate is computed as

~~ logply) — H(Y),

as n — oo with probability 1. By adopting the trellis-based

strategy over multiple rows over the 2D array of inputs and
outputs, similar to how we outlined the procedure for the 1D
case, one could calculate the marginal output distribution p(y)
for large n for 2D arrays as well. For more details, the reader
is referred to [6].

In general, for 2D channels with memory, it is not known
whether a stationary ergodic random field will achieve the
capacity [65]. Recently, for a special class of 2D channels,
Li and Siegel [66] showed that the operational capacity and
information capacity (Shannon capacity) are equal and can
be achieved by a stationary ergodic random field with input
constraints.

€2y

B. GBP based Capacity Estimation Method

Probabilistic graphical models are important in a wide
variety of applications from solving combinatorial problems in
statistical physics to inference problems in signal processing
[67]. These problems can be reformulated equivalently as the
computation of marginal probabilities on factor graphs [68] us-
ing message passing algorithms, such as the belief propagation
(BP) algorithm used in coding theory [69] for decoding low-
density parity check (LDPC) codes and in artificial intelligence
[70]. Computing marginals of functions on a graphical model
has its roots in the broad class of Bayesian inference problems
[71].

It is well-known that the BP algorithm gives exact inference
only on acyclic graphs, i.e., trees. Further, it is also well-
known that BP works poorly on graphs containing a large
number of short cycles (subgraphs with girth=4). The problem
of TDMR channel capacity estimation can considered as one
of the problems corresponding to a factor graph with many
short cycles. There are many cycles in a TDMR channel factor
graph, referring to Figure 9, which invalidates the tree-like
assumption used in BP, leading to poor performance of the
BP algorithm. A new class of message passing algorithms
called generalized belief propagation (GBP) was introduced by
Yedidia, Freeman and Weiss [72] to solve this problem6. The
GBP estimates are approximately close to the true estimate.

Since GBP benefits from region-to-region message passing
instead of the node-to-node message passing algorithm of
BP, GBP algorithm can often dramatically outperform the BP
algorithm in either accuracy or convergence properties. The
output probabilities from a 2D channel actually correspond
to a Boltzmann distribution of an Ising Hamiltonian, with
pairwise interactions and external random fields [73] [74].
The difficulty in estimating a posteriori probabilities lies in
estimating the partition function of factor graphs, or similarly,
the free energy in statistical physics. For the case of capacity

The reader must note that the estimate obtained through the GBP algorithm
is not exact in general.
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Y22 Y23

Y32 Cas Y33

Figure 9. Every 3 X 3 square within the lattice of 4 X 4 comprising variables
v;,; is controlled by a local function ¢; ;. The bi-indices (,7) indicate the
coordinates of the variable node on the lattice. Adapted from [6].

estimation of TDMR channels, the GBP algorithm can be
utilized to estimate the marginal distribution from the channel
outputs and consequently the channel capacity. GBP algorithm
can be used to estimate the MIR for TDMR channels [44].

The GBP algorithm as a message passing algorithm can
operate on the region graph of the TDMR channel to compute
the marginal probabilities. The belief of each region as an out-
put of the GBP algorithm is an approximation of the marginal
probability. As the GBP is a message passing algorithm, we
first introduce the graphical representation for the procedure.

The factor graph is a bipartite graph representing the factor-
ization of a function, comprising a set of random variables V
and a set of local functions (local constraints) F. In the factor
graph, random variables V; € V are represented by circles
(variable node) and local functions f; € F are illustrated by
squares (factor node). A variable node V; is connected to a
factor node f; if and only if V; is an argument of f;. Figure 9
depicts the factor graph corresponding to a 4 x 4 grid where
each 3 x 3 square region is locally constrained by a factor
node.

For a given graphical model, the region graph is generated
according to the cluster variation method [72] [75]-[77]. A
parent region R is specified by a set of variable nodes and
factor nodes such that if f; € R, then all the variable nodes
connected to f; must be in . Figure 10 shows the region
graph for the factor graph of 2D ISI constraint shown in
Figure 9. In this example, we choose each factor node to be
in a separate parent region for simplicity. The variable nodes
connected to the factor node also reside in that region. The
child regions of a region graph are then constructed by taking
the intersection of the parent regions, the intersections of the
intersections, and so on through the tree.

In the case of capacity estimation setup, the factor function
f(xc,;) = p(yijlxc, ;). and the local constraint is the same
for all the parent regions. The partition function Z and the

Vi1 Via Vi Vi1 Via Vi Vi Viz Vis Vi Viz Vi3
V1 Vaz Va3 Va1 Vaz Va3 Vo1 Vap Va3 Va1 Vaa Vg
V31 Vaz Vg Vi1 Vap Vg V31 Vap Va3 Vi1 Vag V33
023 C32
Va1 Vaa Vg Vo Vaz Vad
Vi1 Vag Vs Vs Vaz Vg
Vg Vaz
Vi Vi3

Figure 10. Region graph representation of the factor graph in Figure 9.
Adapted from [6].

Helmholtz free energy F'y are related as Fy = —In Z. For
the purpose of estimating the information rate, we define the
partition function as

2(y) = >_ I pwis

where f(xc, ;) is the factor function explained above.

As previously discussed, the main problem of estimating the
MIR reduces to estimating the entropy of the channel output
y. For this purpose, we use empirical averaging

(32)

XCi,j) = Zp(Y‘X)v

1

L
H(Y) = -Eylogp(y)  —— Y logp(y™),  (33)
=1

|

where L is the number of samples y drawn according to p(y).
Applying Bayes’ law and using the channel model distribution,
p(y) can be written as

p(y™) =Y px)py"¥x), (34)
where ) corresponds to a sum over all possible x € X
The output entropy term reduces to

1 & 1
HY) =73 o (ri20™)

1 L
=log(| X |) = 7 > _log(Z(y")),
=1
(35)

with uniform input distribution i.e., p(x) = ﬁ Therefore, the
problem of estimating the mutual information rate of a TDMR
channel reduces to the problem of estimating > p(yV|x) =
Z(y®) as in (32). The indicator function can be written as
the product of local kernels, each having some subset of x as
an argument i.e., f(x) = [[, fa(Xa), where the indices a of
the local kernels correspond, for example, to the set of all the

three adjacent bits in the horizontal and vertical directions.
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Computing Z can be done by the finding the region-
based free energy estimate. More precisely, the Helmholtz free
energy I can be estimated using the region-based free energy
approximation technique, giving the partition function Z. If the
GBP is used to compute the beliefs of each region br(xg),
using the estimated beliefs, an estimate of the free energy Fy
can be computed using

Fy = Z CRZbR(XR) <ln br(xg) —In H fa(xa)> ,

ReER XR a€EAR
(36)

where R is the set of all regions, cp is the counting number,
Xp is the set of variables in R and Ag is the set of local
kernels in region R. We use parent-to-child messaging with
one kind of message passed between regions. The belief of
any region is the product of all the local factors in the region,
multiplied by the messages coming into that region and to its
descendants from outside. Each region R has a belief br(xr)
given by [72]

br(xr) = [] fa(xa)

a€AR PeP(R)

=( I 10

DeD(R) P’'eP(D)\E(R)

H mp—r(Xg)

, 37)

mP’—>D(XD)

where Ap, is the set of elements in region R and the f,(x,) are
the local factors of region R. P(R) and D(R) are, respectively,
the parent and descendant regions of R. £(R) = R U D(R)
and P(D)\E(R) is the set of all regions that are parents of
region D except for R and descendants of R.

With the terms, Tp\p = Haer\R fa(x4) and Ty (p ) =
H(I,J)eN(P,R) my_y(xy), the message-update rule in the
parent-to-child algorithm is

Y oxpn TP\RTN(P.R)

m XR) = ,
Pr(xn) H(],J)eD(P,R) mr—.g(Xy)

where the set N (P, R) indicates all connected pairs of regions
(I,J) such that J € E(P)\E(R), while I ¢ E(P). D(P, R)
is the set of all connected pairs of regions (I,.J) such that
J € E(R), while I € E(P)\E(R). Fp\r is a set of factor
nodes in the region P\R.

Example 1: We estimate the MIR by using the GBP algo-
rithm for an M x N array over the Voronoi channel model.
We obtain lower and upper bounds on the GBP-based MIR
estimation for a Voronoi channel. The lower and upper bounds
merge to the actual value for the MIR estimation of the
Voronoi channel with increasing dimensions of the 2D array.

Obtaining the lower bound: In order to compute the beliefs
of the boundary regions, we assume that all the states of the
boundary regions are equiprobable. Under this assumption and
using the GBP algorithm as described before, we establish a
lower bound on the MIR of a TDMR system.

Obtaining the upper bound: The boundary information of
the medium is known to the MIR estimator. For boundary

Table 1
ALL THE PARAMETERS IN THE TABLE ARE IN NANOMETERS. WE DENOTE
n1:n2:n3={n1, ni1 +nz2,n1 + 2n2, ... ,ng}. CTC=10NM

T™W BL PW50x  PW50y
TDMR;  10:1:20 7 20 14
TDMR>  10:1:20  5:0.5:10 20 10

regions, the values of the boundary variable nodes are given
and treated as deterministic in the GBP algorithm. For this
case, we compute an upper bound on the MIR of the Voronoi
channel.

1 : :
-—@— Lower Bound 20%20
- —A—" Upper Bound 20*20
0.8 | - —B Lower Bound 40*40 —T
== Upper Bound 40*40
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Figure 11. Lower and upper bounds on the MIR for the TDMR; system.
Increased track width reduces media noise. Adapted from [6].

Figure 11 shows the empirically computed lower and upper
bounds for the MIR estimation of the Voronoi channel with
random 20 x 20 and 40 x 40 bit arrays generated according
to the uniform distribution. The parameters of the TDMR;
system simulated are given in Table I. It is worth noting
that the upper bound converges much faster than the lower
bound and both the bounds converge for larger array sizes. In
other words, for a large array size, the boundary bits can be
considered to be known.

IV. SIGNAL PROCESSING FOR RECORDING CHANNELS

The read channel is an interfacing circuit between the read
head and the HDD controller. Encoded data from the computer
or a network is converted to a bipolar current that passes
through electromagnet coils and written as flux changes over
the storage medium through the write head. Now, when a
read head senses the signal from the disk, the readback signal
comprising several artifacts due to timing offsets, ISI, thermal
asperities, noise etc. must be processed before the data is
decoded back.

Variations in the head-media spacing, variations in the mag-
netic, electrical and mechanical properties during the sensing
process all contribute to gains and offsets in the readback
signal, affecting the SNR from the read side. The readback
signal is first compensated w.r.t gains and offsets via analog
control loops. Also, when the read head hits dust particles on
the medium, the readback signal appears to be in the shadow of
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a low-frequency signal of higher energy. This is called thermal
asperity, which can be detected and compensated (refer to
Figure 4).

High-frequency noise is removed using a continuous-time
(CT) filter, typically a Butterworth or an equiripple linear-
phase filter so that the readback signal without aliasing of the
high-frequency noise spectrum can be sampled and processed
further. The CT filter has programmable cutoff frequencies.
Also, to process servo information towards handling timing,
the CT filter would have to be switched to allow low cutoff
frequencies. All these aspects are part of the analog front end.

Post-sampling, the readback signal is passed through a
timing recovery circuit. Post GPR equalization, the data is
processed through a sequence detector. In modern read chan-
nels, the sequence detector and the error correction decoder
are coupled via a turbo loop within the framework of iterative
detection and decoding [78]. We shall now discuss all the
details of the signal processing chain, covering both 1D and
2D techniques.

A. Channel Equalization

Early version of HDDs used analog equalization. With
the introduction of PRML channels, equalization is done
digitally. The sampled readback signal is first equalized
using a linear equalizer before the signal is detected using
a maximum-likelihood (ML) detector. The linear equalizer
reduces the extent of ISI and achieves a desired overall
response called the partial response that controls both the
complexity and performance of the ML sequence detector.
Additional regularization constraints can be forced on the
equalizer so that the pre-target is matched to the channel
spectrum.

User bits through

the dicode channel Gt i el

. . . +
- Wth ISI, medl@l N Adaj tl\{e FIR )

noise electronic ualizer
noise

Pre t//get GPR |«

/ 3

Figure 12. GPR equalization in 1D. The combined effects of the recording
channel and the equalizer are equivalent to a PR channel.

Error

PMR channels have used pre-targets [79] based on polyno-
mials of the form (1 — D)™ (1 + D)™. Since the parameters
m and n influence the choice of the polynomial’ in terms
of performance as well as the complexity of the sequence
detector, one could balance the extent of partial response ISI

THistorically, (1 + D) is referred to as PR1, (1 — D)(1 + D) is referred
to as PR4, (1 — D)(1 + D)2 is referred to as EPR4 etc. in the data storage
community.

and the overall system performance. One could also adapt the
FIR equalizer and the target as shown in Figure 12.

B. Timing Recovery for 1D channels

It is important to synchronize the discrete readback samples
so that signal detection can be accomplished post PR equal-
ization. The timing recovery module accomplishes this goal
by providing the samples at the desired time instants. Timing
errors in HDDs are due to accumulated phase errors, frequency
errors and jitter. Timing jitters can be modeled as a discrete
random process using random walks [80].

Timing recovery algorithms are of two classes: (a) PLL-
based [81] and (b) interpolative timing recovery (ITR)-based
[82] (Chapter 27 from [27]). We will first review both these
techniques for the 1D case before getting to the shingled case
and 2D.

A/D converter

Received signal | | To data detection

>
>

Yk

ltk—kT+Tk |

Symbol

detector

Tlmmg error
VCO Loop filter detector

Figure 13. A conventional VCO-based timing recovery. This is part of the
loop-Viterbi engine. The timing error estimates from the timing error detector
(TED) are passed through the loop filter and a VCO to feed the timing
estimates for resampling.

1) PLL-based Timing Error Detector: The noisy equalized
sample y(k) is fed to a PLL unit having a phase detector,
typically a second order loop filter and a voltage-controlled
oscillator (VCO) as shown in Figure 13. The other signal
inputs to the phase detector are the ideal/desired values (k)
obtained by filtering known data d(k) through the PR target.
The phase detector obtains the misalignment between the ideal
samples and the actual samples from the sampler output. Using
the Mueller and Muller estimate [83], the timing gradient is
computed as

é(k) = y(k)g(k — 1) —y(k = 1)g(k). (38)

The estimated timing error é(k) is now filtered through a
second order loop filter with additional delays 2z~ to handle
any timing loop latencies. The sampling offsets are updated
according to the following equations:

O = 0p_1 + Béy,
’7A'k+1 =T + aé, + Qk,

(39
(40)
where o and 3 are the PLL parameters for gain adjustment

and for controlling the loop bandwidth and convergence rate,
0y corresponds to the frequency error and 7 is the adjusted
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timing offset. The reader must note that a preamble is used
for training the PLL in the acquisition mode.

2) Interpolative Timing Recovery: The VCO unit of the
PLL-based timing recovery can be made digital using the ITR
scheme. In this method, received samples are resampled at a
higher rate ~ 2 —5% of the baud rate and interpolated using a
digital filter for obtaining the correct timing sample. The digi-
tal filter is obtained using the MMSE criterion that minimizes
the MSE between ideal and the interpolated samples.

A/D converter
Received — _—_  —

signal | )( Interpolation Yk

t =T, | filter

‘T o Tik = (mu + pi) T
1/T;

Interpolator
Fixed sampling frequency

To data detection

Symbol

4 detector
control unit

@l Timing error
detector

Digital
accumulator

Loop
filter

Figure 14. The interpolative timing recovery unit comprises an interpolation
filter which adjusts the timing instants in the oversampled domain based on
the sampling phase offsets.

Figure 14 shows the ITR architecture. The sampling time
instant t;, = kT + 7, = (my + pi)Ts. The integer my is a
multiple of Ts and py, is a fraction of the oversampled time
period. With 5% oversampling, the oversampling rate f, = %
is typically related as F(T') = 1.057 since T is non-ideal and
is a random variable due to clock jitters.

Without any timing error, binary sequence ay € {—1,1} is
filtered through the PR equalizer with PR target p(t) to yield
the samples y(kT') given by

o0

GRT) = " amp(kT —mT).

m=—0o0

(41)

Using the interpolating filter f,, for the phase py over a
span ni + ng + 1 samples, we have

y(kT) = Y L Dyip((mi = DT), 42)

l:*’rLQ
where the interpolated signal y;, (KT — uxTs — {T) is given
by

Yip (KT — Ty —1To) = Y aip (kT — pp T — 1T — iT)

+n (kT — peTs — iTy) . (43)

The optimal filter f,,, for the sampling phase py, is solved
using

i = min B [(§(KT) - y(KT))?].

Hi

(44)

The estimation of the initial sampling phase can be done
using a preamble and this process is called the digital zero
phase start. Further, the reader must note that the solution

of equation (44) can be obtained using adaptive algorithms
such as the LMS algorithm by estimating the coefficients of
the adaptive filter when the channel conditions change. In
practice, one could you simple interpolative methods, such as
a linear interpolator at the cost of performance degradation.
Since solving for optimal filters is not practical for high speed
circuits, one can design a bank of such filters under quantized
phase offsets and use an appropriate filter based on the timing
phase estimation.

C. Signal Detection for MR channels

Early versions of PRML channels used hard decision Viterbi
detectors [84] [85]. With the advent of turbo codes [86] and
turbo equalization [78], almost all HDDs use the soft-decision
Viterbi algorithm (SOVA) [87] [88] for signal detection. Post
equalization and timing, the Viterbi algorithm obtains the ML-
optimal sequence b of length NV from the noisy version of the
sequence y by finding

b :argn(lg)xP(y\b). (45)

Since the signal detection is over a PR target, using the
memory of the equivalent ISI channel i.e., corresponding to the
PR target, a trellis structure amenable to a desired level of the
computational complexity can be chosen. If I is the memory
of the channel ISI, we define the states S} := b’,z:} and
Sk—1 1= b_,,, corresponding to the memory of the Markov
process. Over the trellis stages, the conditional probability of
the received sequence given the input bit sequence is given by

N-1
P(y/b) = [] PurlSk, Sk-)-

k=0
The quantity P(yx|Sk, Sk—1) = P(ny) is the probability of
the noise sample at time instant k. Assuming that the noise
statistics are Gaussian N'(0,0?), given the received value y
and the ideal value oy, one could easily compute ng = y; — 0k
by plugging it in equation (46). For numerical stability, the

computations can be done in the logarithmic domain.

(46)

N—-1

log P(y|b) oc = Y (yx — 0x)”.
k=0

(47)

The state metric SMS) for a trellis state 7 at time & is related
by the recursion

sM{? = sM | 4+ BM;, (48)

where BM is the least among the branch metrics that connects
state ¢ at time k from any other state j at time k£ — 1. This is
commonly referred to as the add-compare-select (ACS) logic.
By doing the recursion over the entire length of the trellis
after picking up the state metric that is the least among all the
states, one could back trace the path, reading the labels of the
bits in the reverse order corresponding to the path with the
least state metric at time /N. This is the essence of the Viterbi
sequence detection.

The SOVA provides soft information by computing the
probability of a wrong/complementary decision through the
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Figure 15. Using a M step traceback, through the Viterbi algorithm ML path is determined. Using a M2 step traceback, the second best path is found using

the SOVA.

survivor paths on the trellis. Specifically, at any time instant k,
following a M -step traceback from the hard decision Viterbi
algorithm, the state metric of the survivor is obtained as SM,(f).
Now, with a Ms-step traceback further from the time instant
k, the loser path or the second best ML path yleldlnsg a
complementary decision has a state metric SM < SM

From the SOVA algorithm, the probability of choosmg the
second best path over the ML path is P,y = H%AT’ where
A, = SMj, — SMZ, corresponding to the log-likelihood ratio
or odds for the survivor decision to be correct. The soft
decisions that SOVA allows helps in the turbo-equalization
process while dealing with an iterative ECC decoder. At this
stage, we note that one could obtain the MAP decisions for
signal detection based on the elegant BCJR algorithm [61].
However, latencies on the order of the sequence length and
area/power complexities limit use of the BCJR in hardware.
For the aforementioned reasons, though the SOVA is sub-
optimal in performance, it is the state-of-the-art algorithm [89]
implemented in read channel ICs. Recently, the authors in [90]
have proposed an asynchronous version of the SOVA with an
eye towards low-power design.

Recording channel
with ISL media | | Adaftive FIR
noise electronic alizer
noise
Pre 7/ge:m>k

Figure 16. Post equalization and timing, noisy samples obtained as as
difference from the ideal samples and the equalized samples are whitened
using the NPML/DDNP. The noise statistics extracted is fed to the soft-
decision detector within a turbo detector/decoder setup.
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To further improve channel reliabilities, subsequent versions
of soft-decision-based signal detectors used NPML detection
[13]. Figure 16 shows the noise path after adaptive equalization

and timing recovery. Colored noise must be whitened and the
noise statistics are fed to the detector for branch metric com-
putation. With experimental evidence into pattern-dependent
noise arising due to magnetic transitions, the DDNP-detection
algorithm was conceived [63]. This is now the standard
algorithm residing in HDDs that we shall describe as follows:

For each data pattern b of length L, the noise observed at the
output of the detector can be modeled using an autoregressive
(AR) process. In other words, we group the noise samples
from the input data sequence specific to each data pattern b
and predict this using a linear predictor.

- (b)

) el (49)

E am

The filter coefficients al(b

the MMSE criterion:

) for 1 <1 < L are solved using

a*® — min B [(n;‘” - ﬁ,(j’))?] . (50)

The noise variance for each pattern b is its corresponding
prediction error F(e7). The noise is now whitened using this
data-dependent prediction filter referred to as DDNP while
computing the branch metric within the SOVA algorithm. The
reader must note that in practice, one can account for bipolar
symmetry in the data patterns to reduce the filterbank size by
half, amenable for hardware. For example, for a 4-bit pattern,
0101 and 1010 are bipolarly similar. These patterns can share
the same DDNP filter. DDNP filters can also be adapted
[91] using the LMS algorithm towards ease of hardware
implementation.

With this background, we are now set to discuss the signal
processing algorithms and architectures for shingled record-
ing and native 2-D signal processing algorithms for TDMR
channels.
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D. Signal processing for shingled systems

As described earlier, shingled systems work with overlapped
writes. With multiple read heads positioned over two or
more tracks, one can embrace handling crosstalk along and
across the tracks as well as synchronization issues in 2D
by processing the tracks jointly. These techniques are part
of shingled systems. We will discuss some signal processing
architectures for single-track as well as the multi-track cases.

1) Single-track case: In single-track detection, the read
heads are positioned over a single track of interest [92] [93]
to extract the timing information and to detect and recover the
bits.

In the signal processing architecture for single track de-
tection with multiple readers, each readback waveform is
separately equalized before being added together. The archi-
tecture is equivalent to a multiple-input single-output (MISO)
equalizer [6] within the GPR equalization framework [94]
with monic constraints that we discussed earlier. The equalizer
handles any crosstalk from the neighboring tracks during the
reads. Using 1D strategies, such as the interpolated timing
recovery (ITR), the timing offsets can be handled prior to
detection. The rest of the signal chain proceeds with a 1D
detector with DDNP capability post equalization and timing
recovery using the ideas that we discussed earlier. In this
architecture since the crosstalk is suppressed asynchronously
prior to synchronization, a 1D timing loop is sufficient post
equalizer, prior to detection.

2) Multi-track case: Additional SNR gains can be obtained
by doing multi-track detection [95] [96]. In [97], [98], the
authors proposed a detector that uses a different trellis struc-
ture whose output labels are independent of the inter track
interference (ITI) level, with ITI-dependence appearing only in
a scale factor for weighing the computed path metrics towards
retaining ML optimality. The detector formulation can track
the time-varying ITI and provide ITI estimates to adaptively
adjust the weights in the path metric evaluation. However,
these techniques assume that the tracks are synchronous.

Multiple tracks can be jointly processed for doing equaliza-
tion using the multiple-input multiple-output (MIMO) frame-
work® since 2D ISI contains significant energy that must
be processed to provide improved reliability. In the signal
processing architecture for multiple readers and multitrack
detection, the monic constraint for the single-track case is
extended to a 2 x 2 target with certain constraints [80]. By
minimizing the norm of the error vector, the equalizer and
the target filters are solved using the GPR framework. In
[99] [100], the authors proposed a remix strategy to handle
synchronization. In their approach, the cascade of the MIMO
channel and the equalizer is forced equivalent to a pair of
MISO equalizers i.e., in diagonal form, termed as ‘unmixing’
stage. Post the unmixing, the equalized streams are separately
processed using a timing recovery module, such as the ITR
algorithm. After this, a MIMO filter is used to ‘remix’ the
signals to restore the non-diagonal nature of the original
MIMO channel using a whitening filter. The remixed signal is
used subsequently for detection.

8The MIMO framework is suitable when the number of readers is small.

For jointly detecting asynchronous multiple tracks, the
rotating-target (ROTAR) algorithm in which a time-varying
target based on the per-survivor processing timing recovery
algorithm can jointly handle timing recovery and detection
[101]. This work is also recently extended towards a MIMO-
based PR equalization and multi-track detection, where de-
tected data is written asynchronously [102].

Except for equalization and pre-target selection, the modules
for rest of the signal chain are still 1D. Perfect equalization and
timing may not possible. There can be residual 2D crosstalk
which must be removed by the detector for improved deci-
sions. This necessitates the design of native 2D algorithms for
TDMR channels. Within a 2D framework, we could generalize
1D signal processing techniques to work with crosstalk and
timing errors in 2D.

E. Signal processing for 2D channels

With large rectangular array sizes, TDMR channels are
entirely 2D, requiring native 2D signal processing techniques.
We first discuss the GPR equalization strategy that can work
for both separable and non-separable 2D filters. This approach
does not impose any specific constraint on the PR target to be
in lower-triangular form as discussed in the shingled case [6].
This work generalizes the GPR equalization strategy done for
the 1D case directly to 2D.

Signal detector:

;i Channel + Yii

response hi Equalizer f; ;

Target response
9ij

Figure 17. Schematic of the 2D GPR equalization. The 2D GPR target could
be separable or non-separable, influencing the performance and complexity
of signal detection later in the signal chain.

1) GPR Equalization: Figure 17 shows the PR equalization
scheme for the 2D channel. The schematic for the 1D case
follows similarly. Let a; ; € {—1,1} be an array of 2D bits.
Let y; ; € R be the discrete readback samples. Let F := [f; ;]
and G := [g; ;] be the coefficients of the PR equalizer and
the target. Using a vector notation, we can raster ' and G
as f = vec(F) and g = vec(G). The samples at the output
of the equalizer corresponding to the local span of the input
samples are given by

zig = fTy @, (51)

Similarly, following the signal path in Figure 17, the output
of the pre-target is given by

(52)

— Z;,j, we setup the MMSE

N T . (i,
z; =g a".

With the error e; ;
criterion as follows:

= Zij

€:E(62).

(2]

(53)

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:41:51 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE BITS the Information Theory Magazine. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MBITS.2023.3336213

JOURNAL OF KTEX CLASS FILES, VOL. XX, NO. Y, MONTH 2023

Using equations (51) and (52) and expanding equation (53),
we have

E=f"Ry,f +g"Ruug — 28" Ry, f, (54)

where

Ru. = E (a(i’j) (a(i’j))T) ,
Ryy =E (y(i’j) (y(i’j))T> s
Ry = E (a(i’j) (y(i’j)>T) .

Rewriting equation (54), we have the quadratic form:

_ T _
&= (i - Ryyl Rayg) Ryy (£ - Ryleayg)

+8" (Raa — Ray Ry, RL,) &

) (55)

The equalizer f = R;?}R“?/Q is the solution for a chosen
pre-target. One can however enforce certain regulatory con-
straints to solve for the target as well.

We have the following two cases:
1) Unit energy constraint: With g”’g = 1, we can solve

g* to the eigenvector corresponding to the smallest
- —1pT

elger}value of Raa f’RayRyy Ray..

2) Monic constraint: With the constraint ng =1,

—1pT -
% Raa—Ray R, R,,u

8 = WTRe. Ruy Ry RIu

For 2D targets, one can also consider separable 1D filters.
For more details, the reader is referred to [103]. It is important
to note that under time-varying channel conditions, we could
adapt the targets and equalizers as well. This can be easily
handled within this GPR framework through adaptation based
on the LMS algorithm.

2) 2D Timing Recovery Techniques: Timing recovery for
2D is done using the (a) 2D PLLs, (b) 2D ITR recovery
schemes and (c) 2D joint timing detection schemes.

The servo mechanisms while reading are far from ideal
conditions due to mechanical vibrations and shocks on the read
heads. These are nanoscale events’. 2D timing recovery has
advantages since asynchronicity across multiple tracks can be
taken to our advantage to obtain synchronous tracks by jointly
processing these tracks using suitable algorithms as discussed
earlier. Within a linear approximation setup, readback signal is
modeled as filtering the written data dy through the 2D head
response h(t) along with timing offsets T as [104]:

r(t) =Y deh(t— k'T — 7(k)) + n(t),

kez?
where t = [z,y]7, k = [m,n]T, T = diag(T,,T,), T =
[Tz, 7,7, all in 2D. The terms 7}, and 7T}, represent the spatial
bit periods along the x and y directions. Similarly, 7, and 7,
represent the timing errors along the x and y directions. NRZ

(56)

%It is often remarked by practitioners in the industry that a flying read head
over a medium at nanoscales is equivalent to Boeing 747 flying several meters
above the ground. Alignment of the head on the right track is equivalent to a
flight landing carefully on a narrow air strip.

i + 7(i) l dmn
r(z)
Equalizer Detector
Received signal Tm,n
Tracking

(i)

é(0) Timing error
PLL update €<— ng

detector

Training

Preamble

Figure 18. Schematic architecture of the 2D PLL scheme. The timing
estimates from the PLL are used to adjust the sampling instants. Adapted
from [6].

coded binary data stored on the media is represented by dk,
where k € Z2. The term n(t) represents the electronic noise
associated with the readback process and can be assumed to
be normally distributed in two-dimensions. Whitening filters
can remove any noise coloration due to filtering or jitter.

Timing errors in TDMR can be a combination of both phase
and frequency errors on a 2D surface. Figure 18 shows the
2D PLL architecture for correcting these timing errors. Let
the phase errors along the x and y directions be ¢, and
¢, respectively. Similarly, let 5T and 6Tg§y) be the period
offsets along the = and y directions. The overall timing error
for separable frequency offsets due to a direction dependent
timing error can be modeled as

T(k) = ® + m” B + n(k), (57)
where ® = [¢,, ¢,]7. B = diag(6TS"), 6T).

Frequency drifts in 2D can result in non-separable timing
offsets that could be modeled by modifying B to allow
projections of the timing errors in the x and y directions as

5T T

B=sp00 sp

; (58)

where 6T;£y) and 6T1§z) represent the projections on the y and
z directions due to period offsets. Non-separable errors can
occur due to both direction and position dependent physical
errors in the servo system. We discuss several 2D timing
recovery schemes relevant to TDMR systems.

Upon sampling the readback signal with timing errors, using
the matrix T, we obtain

r(@"T) = dib(—7(i) + Y deh(i"T — k"T — 7(k))
k£icZ?

+n(i"T), (59)

where i = [m,n]T represents the 2D coordinates of the
samples. The first term in (59) represents the encoded bits
written on the medium, evidently distorted by the presence
of timing errors. The second term represents the 2D ISI that
needs to be mitigated by the equalizer. The third term is the
electronic noise component with Gaussian statistics.
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In a PLL driven timing recovery architecture, the timing
errors are corrected by changing the sampling instants 7T to
iTT+7 (i), where, 7 (i) are the estimated timing errors. These
timing estimates are generated prior to the sampling instant
iTT based on the past samples available from previously
sampled data of the readback signal. The corrected sampling
process is given by

r(3TT + 7(3)) = dsh(F(3) — 7(2))+

> dph(iTT - KT + #(k) — 7(k)) +
k#£icZ?

n(i" T + +(3)).
(60)

The PLL-based timing architecture shown in Figure 18
is a decision directed scheme. A loop Viterbi detector is
included to provide decision estimates on the individual bits.
The reader must note that this loop Viterbi is a data-aided
detector, and different from the signal detector before the
ECC decoder in typical turbo-equalization setup. The PLL
operates in two modes: a) the acquisition mode using
data from the preamble, and b) the tracking mode which
uses estimated decision information from the detector. The
estimated error components, é, and é, are filtered using a
loop filter. The sampling at the i instant is done using the
estimated timing offsets along x and y directions i.e., using
the components of 7(2). This timing module is entirely digital.

Timing Error Detector (TED):

Based on the current and past sampled values, 7, n, Tm—1,n
and 7, ,—1 and the corresponding decisions on these samples,
the TED can generate the phase error estimates. For this, we
bring in a bit of signal geometry into the update equations,
extending the ideas of [83] naturally to a 2D setting. Consider
a vector of received samples ﬁ, = rm’nf—krm,l’njﬂ'-i-rm’n,ll_é,
where, 7, j and k are unit orthonormal vectors in a 3D
space. Slmllarly, a correspondlng decision vector/ideal vector
D = dm nt+ dm 1.nd + dm n— 1k is formulated. To achieve
synchronization on a two dimensional grid, the angle between
the two vectors, R and D must be minimized. The angle
between the two vectors at the ' instant, 6; is given by

RiXDiﬂ

in(0;) = ——=—n (61)
1) | Ril| D

For small angles, sin(f;) = 6;. This assumption is valid
since the timing drifts are a small fraction of the sampling
times. Ignoring the denominator term in (61), we can minimize
the square of the numerator. The angle 6; can be written as

2 7 2
ei %(Tm,n m—1n — rmfl,ndm,n) +

(rm,ndm,nfl - Tm,nfldm,n)2+
(62)

7 2
- Tm,n—ldm—l,n) .

The minimization of # would involve minimizing each
individual term in (62). We now define the terms é,(¢), é,(%)
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Figure 19. Schematic architecture of the 2D ITR scheme. A 2D interpolating
filter provides the timing estimates in the oversampled domain.

and é,,(2) as

éz(’l,) = J n - T‘mfl,ndm ny (63)
éy(z) = Tm,n dA -1 — Tm,nfldm,n; (64)
e’ﬂy(z) =Tm-1 nCZ -1 — Tm,,n—ldAm,—lm,- (65)

The term é,,(%) can be expressed as a linear combination
of é,(¢) and é&,(4), simplifying the minimization of 62, since
it is now sufficient to minimize é, and é,.

PLL Update Equations:

We consider a second order 2D PLL for tracking. The
update equations are given by

%I(m—k 1, n—|— 1) = 7p(m,n) + KPé,(m,n)
n—1
l=—oc0 l=—oc0
and
Ty(m+1,n+1) = 7y(m,n) +K(p)ey(m n)
m—1 n—1
l=—00 [=—00

Here, K7 ),Kép ) are the proportional constants used to
scale the error estimates €, and é, respectively. KU and
Ké”) are the integral scaling factors associated with é, along
the = and y directions respectively. Similarly, K™ and Kz(,iy)
are the integral scaling factors associated with é, along the x
and y directions respectively. Real-time control of oscillators
in the timing loop is difficult to realize in practice. To
overcome these issues, a fully digital 2D interpolative timing
recovery architecture (ref. to Figure 19) is proposed in [105].
The 2D readback signal is oversampled by a small amount
along both the directions. The oversampling requirement in 1D
magnetic storage systems is ~ 5 — 10%. The specifications in
2D are similar. The interpolative timing recovery architecture
[104], [105], shown in Figure 19 is applicable for TDMR
systems. These ideas generalize the timing recovery techniques
going beyond those for shingled systems.

The interpolation scheme provides more refined estimates of
the desired sampling point instead of requiring an ADC or a
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Figure 20. Viterbi detector extended in 2D for soft-decision detection. The decisions are based on the scanning order of the 2D array confined to a local
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Figure 21. 2D pattern-dependent noise prediction and whitening filters are
used within the signal detector to improve the quality of soft-decisions.

servo to latch on to a sampling point [6]. The derivation of an
optimal interpolation filter towards timing recovery based on
the MMSE criterion is given in [105]. Adaptation algorithms
such as LMS can also be done to overcome the limitations of
the direct solution obtained through the MMSE criterion while
dealing with hardware.

The 2D ITR approach proposed in [104] shown in Figure
19 is demonstrated to provide superior gains in both timing
estimates and implementation complexity for a fixed filter or-
der compared to the sinc-based interpolation approach, paving
the way for possible circuit realizations of this architecture.

Now, we are set to discuss 2D signal detection techniques.
Though this topic is a detailed magazine article in itself,
we try to provide a gist of the ideas behind the signal
detection techniques. The detailed mathematical derivations
can be referred to in the cited papers.

3) 2D Signal Detection and Joint Signal Processing
Engines: The 2D SOVA algorithm is a generalization of the
1D SOVA detector developed in [31]. Among all possible 2D
arrays, the one that maximizes the likelihood probability is
to be chosen. Since computing the likelihood over an entire
array is computationally infeasible ', we can restrict the
search to a local region to make decisions for the individual
bits. Unlike the 1D case, decisions depend on the scanning
order of the 2D array when confined to a local search. Over
a local region M of the 2D array with the received samples

I0ML detection for 2D is NP-hard

ui”s
(i.9) L) )2
—_————
=T
where gj&’j) denotes the ideal samples (/) = gTag’j)

obtained by filtering the 2D data through the pre-target.

By minimizing the ML metric I', one can obtain the hard
decisions. These decisions are made by decomposing the
neighborhood around the point (¢, ) of interest into 3 parts,
comprising (a) regions where decisions are already made
P9 (b) the point (i, j) and (c) the region where decisions
are to be made S(*7), The decision at point (i, j) is made by
minimizing the ML metric over all possible choices of bits
in the region S(*7) as illustrated in the Figure 20. Compactly
put,

a5 = arg I(?.ln
2%

1,76 (0) ()

ML (4,5)

(68)
where MLy (4,7) the ML metric corresponding to the 2D
Viterbi hard decisions i.e., the least among all the I' metrics.

In 2D, it is non-trivial to identify the competing surfaces
that merge at a state given by (4, j) and a (S(7)). For each
decision, we consider a single competing surface correspond-
ing to a wrong decision at the current position (¢,7). The
corresponding ML metric for this second best path is given
by:

MLy(i, ) =

min min I (& (’P(i’j)> L0 G, 0 (S(i’j)))
@i, j 7015 | a(S6D)
(69)
Using equations (68) and (69), we can obtain the soft
decisions as

Figure 21 shows the signal chain for the bank of 2D DDNP
filters along with the 2D signal detector. For a choice of
the current state specific to each data pattern, ideal samples
are computed, the noise is predicted and whitened using
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Figure 22. (a) Schematic of the multi-row/multi-column detector configured
in a turbo setup. The detectors are based on the 1D BCJR extension. (b)
Schematic of a 2D self-iterating soft-equalizer. (c) Schematic of the overall
joint 2D self-iterating equalizer and the 2D detector coupled in a turbo setup.

the 2D prediction and whitening filters. The whitened noise
along with its error variance forms the branch metric to be
used with the 2D detector, mirroring the 1D DDNP-detection
engine. However, the reader must note that the 2D engine uses
feedback along a neighborhood of 2D samples since handling
the entire array for inference on a bit is computationally
prohibitive. For more details on the TDMR models and signal
processing algorithms, the reader is referred to [106].

In [107], the authors developed an iterative multi-row/multi-
column detector. The multi-row detector acts row-wise, while
the multi-column detector acts column-wise. Both these detec-
tors are trellis-based and use feedback information from neigh-
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boring pixels for making decisions, as shown in Figure 22(a).
These coupled detectors exchange soft-information within a
turbo setup towards obtaining near-MAP performance.
Further, in the same work, the authors developed a 2D self-
iterating equalizer, whose schematic is shown in Figure 22(b).
The 2D self-iterating soft equalizer brings in additional SNR
gains. This engine is further coupled to the 2D row/column
detector in a turbo setup in a fully iterative equalizer-detection
setup. The architecture of the JTED engine is illustrated in
Figure 22(c). The combined engine provided ~ 8dB signifi-
cant coded SNR gain compared to the uncoded 2D equalizer-
detector system over 64 x 64 coded LDPC arrays. The reader
must note that the ideas behind JTED can be explored for
other combinations, such as using a 2D SOVA detector etc.
The GBP detector that we discussed for estimating MIR
has also been used for 2D detection [108]. Though the GBP
algorithm provides near ML performance, it is computationally
intensive and is not scalable for handling large arrays that
are practically relevant to 2D data storage. Recently, deep
neural networks based architectures are being explored for
the equalizers and detectors [109] [110] towards TDMR.
Complexity and performance trade-offs can be realized using
various JTED detector/equalizer configurations [107]. Further,
the JTED engine is scalable for large arrays and could be
used in practice. The turbo setup has also been used to obtain
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Figure 23. (a) Timing offsets are discretized according to a desired level of
timing error resolution. (b) The discrete set of timing offsets can be modeled
as a 2D random walk process to be folded within the joint state space of the
timing-recovery and detector algorithm.

additional SNR gains when the 2D detector is coupled with

a timing recovery algorithm. In the joint 2D timing recovery
and signal detection scheme, [111], the timing errors are first
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discretized as shown in Figure 23, and the frequency offsets
are estimated using a preamble. For each possible timing error,
the ideal sample is obtained using an interpolation filter. The
timing offsets are included within the definition of a trellis
that operates over the joint state space of timing errors and the
2D channel ISI. This approach has the advantage to naturally
handle correlated timing errors along with signal detection
since it is within a Markov framework. The likelihood prob-
ability is computed over a local span of readback samples.
The timing errors are estimated along with the bit decisions
by maximizing the likelihood probability as derived in [111].
Due to the rastering, the timing error estimates of future
samples may not available to estimate the timing error at a
desired location for the first pass. However, these estimates
are available and get refined over the subsequent iterations
during the turbo iterative process.

It was reported that nearly 10% areal density gains can
be realized using the iterative joint timing detector engine
around the 1 Tb/in?> regime with grain sizes ~ 10 nm and
bit sizes of 25x25 nm using the 2D SOVA compared to a
standalone timing loop coupled to a 2D detector in an open-
loop configuration for TDMR systems [111] comprising a 2D
generalized partial response (GPR) equalization along the 2D
SOVA with DDNP capability over the Voronoi media model.

FPGA implementations of a high-throughput 2D separable
iterative soft-output Viterbi detector are also done in [112]
by building over the algorithm proposed in [113]. These
efforts are a step towards hardware realizations of the signal
processing algorithms. During TMRC conferences, TDMR
has been often dubbed as ‘terribly difficult magnetic record-
ing’ due to several challenges in building advanced signal
processing and coding techniques. By innovating native 2D
algorithms meeting the challenges for handling equalization,
timing recovery and signal detection along with ECCs, ADs
in TDMR systems can be more than doubled.

We will now discuss coding techniques relevant to HDDs.

V. CODING TECHNIQUES FOR RECORDING CHANNELS
A. Modulation Coding for HDDs

Figure 24. Constrained graph of RLL (2,7) code used in early version of
HDDs with peak detection circuits for signal detection.

HDDs using peak detection circuits for signal detection
used binary (d, k) constrained codes. In early developments
of channels efforts for HDDs, these codes played a critical
role in dealing with channel ISI and timing issues. In the con-
ventional setup, post error correction encoding and modulation
encoding, such constrained codes were written on the magnetic
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medium. With the introduction of reverse order coding (ROC)
by Bliss [114], the data is first modulation encoded and then
error correction encoded using a systematic error correction
code before being written onto the disk. This scheme avoids
channel errors propagating through the modulation decoder in
the conventional setup, particularly while dealing with high-
rate codes with long block lengths. Since systematic encoders
are used in practice, parity portion of the data payload may
weakly satisfy the modulation constraints. This may not be
much of a concern dealing with high-rate large block length
codes typically used in magnetic recording. Binary (d,k)
constrained codes have a minimum of d zeros and a maximum
of k zeros between any two ones. These constrained sequences
can be represented as digraphs. The combinatorial entropy or
equivalently the noiseless capacity of a channel admitting such
constrained sequences is given by C' = logy (Amax), Where
Amax 18 the largest eigenvalue of the adjacency matrix of
the graph representing the (d, k) constraints. For a thorough
treatment on constrained coding, the reader is referred to
the book by Lind and Marcus [115]. For a comprehensive
discussion on code construction methods, the reader is referred
to the online lecture notes by Marcus, Roth and Siegel [116].

Figure 24 shows the example of a (2,7) constrained code
used in IBM drives that we discussed in the Introduction. A
lot of research effort was done in the construction of efficient
encoders and decoders for such (d, k) constrained codes. The
state splitting algorithm, also called the ACH algorithm named
after its inventors Adler, Coppersmith and Hassner [117] was
one of the key techniques used for constructing these codes.
The state splitting algorithm yields fixed-length encoders.
Table II shows the encoder states for the fixed-length RLL
(1,7) code. There are totally 5 states in the state machine.
Each state takes in 2 input bits of information and outputs 3
coded bits. The output bits and the corresponding outgoing
states are described in each entry corresponding to each set of
input bits and the input state.

Table 11
RATE % FIXED-LENGTH CODES FOR RLL (1,7) [118] (SHANNON
CAPACITY IS 0.6793.).

Input\ State 1 2 3 4 5
00 10174 | 100/4 | 001/4 | 010/4 | 000/4
01 101/3 | 100/3 | 001/3 | 010/3 | 000/3
10 101/5 | 100/2 | 001/5 | 010/2 | 000/2
11 100/5 | 100/1 | 010/5 | 010/1 | 000/1

There has also been work on variable-length encoders using
ideas such as bit-stuffing etc. [119] [120]. Table IIT shows
the encoding lookup-table for variable-length RLL (2, 7) code.
For more details on modulation codes for recording channels,
the reader is referred to the comprehensive survey papers by
Marcus et al. [121] and Immink et al. [118].

Investigation into the minimum distance error events over
PR channels [122] led to error event characterization for a
variety of PR targets. Modulation codes were designed based
on error event analysis to avoid bad sequences that led to
errors at the output of the Viterbi detector within a PRML
setup. The maximum transition run (MTR) code developed by
Moon and Bricker [123] is one such example of a modulation
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Table III
RATE % VARIABLE-LENGTH ENCODER FOR RLL (2,7 CODE (SHANNON
CAPACITY 1S 0.5172) FROM [8].

Input Output
10 0100
11 1000
000 000100
010 100100
011 001000
0010 | 00100100
0011 | 00001000

code that forbids/limits the length of occurrence of pairs of
consecutive bit transitions. SNR gains were observed using
high-rate MTR codes over PMRL channels. The trellis state
of the PRML detector was equipped to handle both the
modulation constraints as well as channel ISI.

Analysis of the power spectrum of (d, k) modulation codes
was important [124] to quantify the bandwidth compression
arising from written data on the medium post RLL encoding.
Also, the power spectrum analysis was helpful to determine
the amount of interference due to embedded servo and other
timing information within the data signal, as well determine
the crosstalk from adjacent tracks. Further, there were also
notable works in the area of spectral-null codes [125] for
applications in MR channels. Generalizations have been done
for higher-order spectral-null codes in [126]. Techniques for
the spectral analysis of modulation codes attuned to MR
channels is useful for assessing the power allocation across
such coded sequences.

(d, k)-constrained codes came with a code rate penalty,
especially with d > 1. With powerful signal detectors for
mitigating ISI, the d constraint that yielded low coding rates
was no longer relevant for HDDs post peak detection schemes.
Instead, high-rate (0, k)-constrained codes [127] were more
relevant to PMR channels for timing recovery.

In the same spirit as 1D, there has been extensive research
in the area of 2D constrained arrays for 2D data storage
applications. Unlike the 1D case, computing the noiseless
capacity for 2D constrained channels is a notoriously difficult
problem. We do not yet have a generic formula for the exact
analysis of the capacity of 2D constrained channels. Tight
upper and lower analytical bounds are available for a few
cases, such as the hard-square constraint [128], no-isolated-
bit (n.i.b) constraint [129], checkerboard constraints [130].
Analytical bounds were also derived for the capacity of some
2D RLL M-ary constraints [131]. There has also been some
works towards the construction of encoders and decoders for
such 2D constrained arrays [132] [133].

Based on the empirical evidence from error events collected
post signal detection using the Voronoi based channel model,
it is found that the n.i.b. constraint is the dominant error
event [32] [134]. To achieve the same storage density for a
constrained coded system and an uncoded system, the rate
loss due to the input constrained arrays must be compensated
by scaling the bit size of the coded system by a factor of R,
which is the rate of the constrained code. This reduction in
bit size is justifiable if the gain in the performance due to
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2D constrained coding is high enough to compensate for the
effects of increased 2D ISI. Recently, the authors in [135]
have developed high-rate two-dimensional lexicographically
ordered constrained codes (TD-LOCO) for avoiding the square
isolation pattern, useful for TDMR. As discussed earlier,
modulation codes come handy along with powerful 2D signal
detection algorithms when SNR performance and complexity
trade-offs have to be assessed for TDMR system optimization
towards high ADs. The choice of having a 2D constrained
code eventually depends on the TDMR system constraints and
choice of signal detectors.

With this, we now discuss error correction coding relevant
to HDDs.

B. Error Correction Coding Specifications for HDDs

ECCs are critical for the successful working of HDDs.
With powerful signal processing algorithms and optimization
of the parameters attuned to the readback signals, under
nominal SNR conditions, one can hope to achieve bit error
rates ~ 1073 from the output of the signal detector so that
the desired level of code failure rate can be achieved using
ECCs. Unlike wireless channels, where the acknowledgment
signals can be used for retransmission of failed packets, re-
reads from the disk are costly. Also, unlike wireless channels
that require frame error rates ~ 1075, HDDs require sector
failure rates below 10~12. Over the years, sector sizes have
evolved from 512 bytes to 1KB and 4KB. With high coding
rates, one can imagine the stringent requirements on the error
rates to maintain data integrity in HDDs. Typically, PMR
channels operate at coding rates ~ 0.9, while coding rates
~ 0.6 are relevant for TDMR channels. If the ECC decoder
passes the syndrome test leading to a wrong codeword, it
is undesirable. This error metric called the miscorrection
rate must be below 10722, Miscorrection rate analysis often
overlooked in the coding community is very important from a
practical perspective. Furthermore, in the context of iterative
decoders, it is desirable to not see any error floors above
10712,

In addition to all these requirements, ECCs for HDDs must
handle a mixture of both random errors and burst errors
since burst errors can occur due to thermal asperities [136],
media defects [137] etc. The imposition of all these practical
requirements from a code design perspective makes it chal-
lenging to design ECCs from a coding-theoretic perspective.
Along with the coding requirements, one must be mindful
of hardware implementations that imposes further constraints,
such as high throughput, low decoding latencies, power and
area-wise efficient coding architectures if the algorithm has to
be translated to a working piece of Silicon.

While dealing with ECCs, we can think of two classes: (a)
algebraic codes and (b) iterative codes. Algebraic codes have
a rich mathematical structure with firm roots based on Galois
theory over finite fields and rings. In general, one can compute
bounds for guaranteed error correction ability for algebraic
codes based on the code parameters. This makes it tractable for
predicting the performance of ECCs for MR channels if we use
algebraic codes. Examples of algebraic codes popularly used
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in data storage devices are Bose Chaudhuri and Hocquenghem
(BCH) codes, Reed Solomon (RS) codes etc. On the other
hand, iterative codes are based on soft-decision decoders.
Iterative codes provide higher SNR gains (> 3 dB) in the
waterfall region. However, they are prone to error floors [138]
that could be mitigated by careful design of codes and control
over the quantization parameters.

In this section, we will discuss ECCs that are an integral
part of HDDs.

C. Algebraic Codes: The Reed Solomon Case

Before the advent of soft-information driven LDPC-based
read channels, RS codes [139] were mainly used in HDDs
since they could correct burst errors more efficiently than
interleaved binary codewords. RS decoders were mainly based
on hard decisions. Soft-decision based RS codes with list-
decoding was tried. However, several practical issues made
it difficult for incorporating these codes within HDDs. First,
identifying the flip list was one of the major problems for
large block lengths. Second, the SNR gain obtained using
soft-decision- based RS codes was just a fraction of dB com-
pared to the huge implementation cost in terms of hardware
complexity. Last, coupling a soft-decision RS decoder with
an LDPC code was catastrophic since the number of errors
from failure of LDPC codes was beyond the ECC ability of
soft-decision RS codes, leading to diminishing SNR returns
from the combined system. Hence, soft-decision-based RS
codes were not feasible for incorporation into HDDs. However,
with carefully designed LDPC codes with excellent ECC
performance (no errors below 107'2), one can design RS
codes as an outer error detecting code to provide guaranteed
miscorrection rates. With this background, we will discuss RS
codes, useful for HDDs.

RS codes are a class of non-binary symbol-error correcting
cyclic codes [139]. An (n, k,t) with code length n, message
length k and error correcting capability ¢ attains the Singleton
bound with equality since the distance is d = n — k + 1.
Grobner basis spans a Reed Solomon code space. The parity
check matrix of a t—error correcting Reed Solomon code is
a (n— k) xn matrix H := [hy] = [@¥] 1 < i < 2¢,
0 <j<n-—1 Over GF(2), n = 2™ — 1. In general,
one could define RS code over GF'(q). However, from a
hardware perspective, the binary field is preferred for obvious
reasons. Unlike binary error correction, where it is sufficient
to determine just the error locations and flip the bits, for the
non-binary case, we need to identify both the error locations
and evaluate the error values at these locations. Though there
are other techniques such as the modified Euclidean algorithm
for finding the error location polynomial, the Berlekamp-
Massey (BM) algorithm is preferred since it is efficient from
an implementation perspective in terms of complexity. The
error evaluation is based on Forney’s algorithm. We will
briefly describe the steps in the error correction procedure
for the sake of completeness and comment on the hardware
implementation.

1) Error correction procedure: We will follow the notations
introduced in [139] and [141] for describing the error cor-
rection procedure. A codeword c¢(z) corrupted by an additive
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Figure 25. Conventional 3-stage RS decoder. Adapted from [140].

error e(x) results in 7(z). Let v denotes the number of errors
in e(x) having the form
v
e(x):ZyiJ;i, 0<i<n-—1, (71)
i=1
where y; is the error magnitude at error location 3.
The syndromes are calculated as

v
Sj:r(aj)ze(aj):ZYin, 1<j<2t, (72)
i=1

where Y; = y; and X; = o'. The aim is to solve the above 2t
equations to get the pairs (X;,Y;). Defining the error locator
polynomial A(x) given by
[T+ Xiw) = Ao+ Mz -+ + Ay 12”7+ Ay (73)
i=1
The X; values are evaluated using inverse roots of the above
equation. Given the values X, the linear system of equations
(72) in Y; can be solved. The error correction process involves
a 4-step procedure outlined as follows:

Table IV
BERLEKAMP’S ITERATIVE PROCEDURE FOR FINDING THE ERROR
LOCATOR POLYNOMIAL A(z) OF A RS CODE [139].

po| AW@) | du | L | gl
-1 1 1 0 -1
0 1 S1 | 0 0
1 1— Six

2t

Step 1: Calculation of syndromes S;:

Syndromes can be evaluated according to equation (72)
from r(x).

Step 2: Calculation of A; from S;: (Berlekamp) [139]

We can compute A(z) iteratively in 2t steps. Let A (x)
denote the error locator polynomial at 4" step of the iteration.
To find A(x) iteratively, we start with the initialized Table
IV shown and proceed to fill the rest of the table entries. Let
l,, be the degree of A (z). Assuming that we have filled
out the x*" row, we find (p + 1) row using the procedure
shown below l

1) If the discrepancy d,, = ZH:SMH_Z»AZ(-“) =

i=0

AW () = AW (2) and 1,41 = 1,,.

0, then
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2) If d, # 0, then we search another row p prior to the
pt row where d, # 0 and the number p — [, in the last
column of Table I having the largest value. A+ ()

and [, are updated as

(74)
(75)

A () = AW () — dﬂdljlx“_p/\p(x),
lysr = max(l,,l, + p— pl.

Step 3: Calculation of X; from A;: (Chien’s search) [139]
If a~% is a root of A(z), the error is present at location 1.

Step 4: Calculation of Y;: (Forney’s formula) [139]

To evaluate the error magnitudes, we use Forney’s formula

-1
Y= 7Q(X71_1)7 (76)
AN(X;7)
where Q(x) = S1 + (S2 +A1S1)x+ (S3+ Ay S2+ AgSp)x? +
v (Sy + A1Sy_1 + -+ Ay_1S1)2V L e(x) obtained
from X; and Y; is added to 7(z) to get the decoded codeword
polynomial ¢(z).

The implementation of RS decoding algorithm is equally
important. To achieve higher throughput, one needs to
carefully pipeline the architecture. The popular three-stage
pipelined RS decoder [142] is shown in Figure 25. Since
the overall throughput is decided by the slowest pipelined
stage, to increase the throughput with efficient area utilization,
each pipelined stage should complete its computations in
about the same amount of time. Further, parallelism can be
employed to adjust the number of clock cycles required for
the syndrome computation (SC) and the Chien search, error
magnitude computation (CSEMC) stages. The size of the delay
buffer used for buffering received symbols depends on the
latency of the decoder.

Figures 26(a) and 26(b) show the detailed architectures for
the SC and key equation solver (KES) stage, and the error
evaluation unit is shown in Figure 27. Use of parallelism
ensures that the SC unit takes exactly 2¢ cycles, which is same
as the KES stage in order to maximize the throughput. With
this parallelism, one can merge the SC and KES stages into a
single stage without affecting the throughput.

The two-stage pipelined RS decoder shown in Figure 28
has significantly less pipeline registers and delay buffers.
To maximize the throughput and minimize the latency, one
can make use of the efficient architecture for error locator
and magnitude computation [142] coupled with the .J-parallel
Chien search architecture [143] to find the error locations and
the corresponding error magnitudes simultaneously. This can
be accomplished in ¢ + % cycles. All these ideas are important
details for building a practical RS decoder.

With the two-stage pipelined approach, the KES stage needs
to wait for only two extra cycles with respect to the SC stage
to initialize the BM iterative procedure. Hence, the throughput
achieved by the architecture in Figure 28 is almost the same as
the three-stage pipelined decoder with significant improvement
in latency. The latencies with the two-stage pipelined design
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Figure 26. (a) Parallel architecture for syndrome computation (SC) that

computes 2¢ syndromes in exactly 2¢ cycles. (b) Low complexity key equation
solver (KES) architecture to compute the error locator polynomial A (z) based
on Berlekamp’s iterative procedure in exactly 2¢ cycles. Adapted from [140].

is 2t cycles less compared to the three-stage design and
is efficient compared to the design in [144]. For the RS
(255,239) decoder over GF (2%), with J = 30, we could
get a throughput of 24 Gbps. There is a trade-off between
area and throughput. For example, one can save the Silicon
area by choosing J = 10 at the expense of throughput that
reduces to 12 Gbps. For more technical details, the reader is
referred to [140].

We now discuss the design of LDPC codes and decoder
architectures for HDDs.

D. Iterative Codes: 1D LDPC Codes

Initial efforts in trying to use turbo codes based on con-
stituent convolution codes for HDD read channels during the
mid 1990s met with limited success since error floors were
observed, despite impressive SNR gains in the waterfall region.
HDD channels required the design of efficient linear block
codes for large block lengths along with scalable decoding
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Figure 28. 2-stage pipelined RS decoder. The syndrome computing engine
and the KES are merged into a single stage. Adapted from [140].

algorithms with an inherently parallel structure amenable to
hardware implementation. With pioneering research efforts on
LDPC codes by Tanner [145], Mackay [146], Urbanke and
Richardson [147], [148] and many others, LDPC codes orig-
inally conceived by Gallager [149] in his seminal PhD work
in 1960 were resurrected almost 3 decades later. However,
significant additional efforts were required for deploying these
codes in HDDs. We shall briefly describe LDPC codes.

)
I
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O M
_ = O

@

Channel information

(b)

Figure 29. Example of a sparse parity check matrix and its equivalent Tanner
graph.
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The parity check matrix of an LDPC code can be bijectively
mapped to a Tanner graph, which is a bipartite graph consisting
of a set of variable nodes and check nodes representing the
columns and rows of a parity check matrix respectively. A
‘1’ in a parity check matrix implies a connection between
the corresponding check node and variable node as illustrated
in Figure 29. This representation helps with message passing
from the variable nodes to check nodes towards improving the
quality of soft decisions during the decoding process.

Through density evolution techniques [147], the degree
distribution of LDPC codes can be optimized, mindful of the
hardware constraints and performance specifications required
for HDDs. Regular LDPC codes, i.e., with the same row
weight and column weight, are preferred from hardware per-
spective since irregular codes require additional control logic,
leading to lower latencies.

With an estimate on the MIR for MR channels, we require
the construction of LDPC codes with excellent performance in
the waterfall region and without noticeable error floors, meet-
ing the code design specifications. Since error exponents scale
with large lengths and MR channels require data payloads with
larger lengths that are scalable over a range of coding rates,
we need a family of LDPC codes that work well in practice.
The quasi-cyclic family of LDPC codes [150] [151] naturally
fits this requirement. QC LDPC codes, which are special cases
of proto-graph-based LDPC codes [152] can be constructed by
tiling permutation matrices p X p. For a regular LDPC code
of block length n and rate R, the column weight and row
weights are respectively 20=5) and 2. Good upper bounds on
the minimum distance of these codes can be obtained through
semi-analytical means [153].

QC LDPC codes are most suitable for HDD channels [154]
[155] due to the following reasons: (a) QC codes provide
flexibility in terms of adjustable code lengths and code rates
suitable for a wide range of data payloads and format sizes
under various channel conditions without requiring to store
several parity check matrices within on-chip memory. (b)
Since QC codes are based on tiling permutation matrices, it
provides the needed parallelism while decoding blocks of rows
and columns. (c) Efficient encoding structures are possible
since the generator matrices obtained from QC codes can also
be realized as a tiling of circulant matrices [156]. Points (a)-
(c) are very important from a hardware perspective due to
storage requirements. (d) It is possible to construct QC codes
devoid of short cycles and harmful structures such as trapping
sets [157]-[160] meeting the error floor specifications. (e) The
code geometry is flexible for optimizing the degree distribution
in the design of the parity check matrix.

Though the original sum product algorithm (SPA) for de-
coding LDPC codoes is not hardware efficient. The min-sum
algorithm [161] is the accepted standard for hardware since it
avoids the use of bulky lookup tables for handling complex
arithmetic. As in any hardware design, there exists design
architectural trade-offs, compromising a slight degradation
in SNR performance if other criteria such as speed, area,
throughput and latencies must be optimized for hardware.
Since area is one of the important considerations, the layered
min-sum algorithm [162] is the preferred choice for hardware
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implementation [163]. Unlike the parallel update in the non-
layered case, the layered engine processes block rows serially,
thus achieving a low area. Also, the layered MSA provides
better signal to noise ratio (SNR) performance than its non-
layered counterpart since more recent updates over a prior
block of processed data are made available to the next block
row for decoding. This inherent non-linearity brings additional
gains. Some of these ideas are what it takes to bring LDPC
decoders to practice.

Layer 1
Layer 2 —I

Channel LLR's

clock C28-25 to signed mag;
$2C - Signed magnitude to 2's complement converter
R New - R messages generated in the present iteration

R Old - R messages from the previous iteration

Figure 30. Architecture of the layered decoder. Adapted from [140].

Figure 30 shows the schematic of a layered architecture.
The architecture consists of check node units (CNU) driven
by barrel shifters'! towards realizing the intended parallelism.
There are adders, subtractors, and block random access mem-
ories (BRAM) for storing the intermediate overall reliability
information P, check node messages () and variable node
messages 2. The CNU array comprises p parallel CNU units
that compute the partial state for each row producing the R
messages in block serial form. The MUX is required to supply
new LLRs to the decoder when the decoder has corrected the
previous frame or the maximum iteration limit is reached. Nor-
mally, signed to 2’s complement and 2’s complement to signed
converters are required before and after the CNU in case
of uniform quantization. One could work with non-uniform
quantizers based on channel conditions [140] to realize area-
efficient designs. The initialization for decoding a sector of
data is handled by a MUX in front of the cyclic shifter. In the
beginning, the output of the R select unit is set to a zero vector.
The P messages are computed by adding the delayed version
of the () messages stored in a BRAM to the R messages.
The R messages are then stored in a R message BRAM,
which would be used in subsequent iterations. The next block
row is now ready to be processed as the P messages are
directed by the MUX to the subtractor. Subsequent next rows
are processed as explained before. Syndromes are computed
efficiently in hardware. The process goes on till the sector has
been corrected, or a maximum iteration limit has been reached
12

The check node unit [163] in Figure 31 emulates the
operations at the check node on a Tanner graph. It sends back
the minimum of the values received from a certain variable

" The barrel shifters are specific to QC code implementations.
2The maximum number of iterations is decided based on the hardware
constraints and decoding performance
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node, without accounting for the variable node. The check
node unit consists of a minimum value N; and a second
minimum value N- finder, a partial state that stores N7 and N»
temporarily and updates them on each clock cycle, a final state
which stores the final V; and N> value, and a sign processing
unit which takes care of the sign of the LLR to be sent.
Incoming variable messages are compared to two up-to-date
least minimum numbers to generate new partial state. In this
state, we have [V (first minimum value), /N> (second minimum
value) and the index of N;. The final state is achieved after all
the messages have been received. The R selector then assigns
one of these 2 values (/N7 and N5) based on the index of N;
and sign of all the R messages generated by the XOR logic.

It has been more than a decade and half where such LDPC
decoders based on layered architectures achieving high bit
throughput rates in excess of 4Gbps and consuming ~ 1W of
power over 512—byte format sizes were part of read channel
chips in HDDs. Today’s format sizes are on the order of 4KB
and almost near-capacity. However, the QC LDPC framework
is still valid for such large format sizes. The reader might
wonder how such low error rates are simulated. It must be
noted that computer simulations can only reach around 10~".
If error rates beyond this have to be reached, we need high
speed FPGA circuits to process the sectors before getting them
to ASICs. Using arrays of FPGAs, it is possible to ascertain if
the codes provide error rates below 10~'2. The lack of theory,
rather the theoretical difficulty to predict the exact performance
of individual codes is circumvented through simulations using
FPGAs in practical systems.

The reader might ponder about using non-binary codes
for HDDs, motivated by RS constructions that can correct
burst errors. There has been an extensive study of non-binary
LDPC codes and decoding algorithms [164]-[168]. Also, there
are some VLSI implementations of such non-binary LDPC
codes [169]-[171]. There is also the layered min-sum version
for non-binary LDPC codes [172]. In general, decoders for
non-binary codes are computationally far more intensive than
the binary case. One can always realize equivalent binary
decoders using multistage decoding, re-using the hardware for
binary decoders. Also, one will need soft-decision detectors
that are compatible with such non-binary decoders in the
turbo-equalization setup. These practical difficulties make non-
binary LDPCs less attractive for HDD read channels from a
hardware perspective.

The concept of spatially-coupled (SC) codes is based on
periodic time-varying LDPC convolutional codes, originally
proposed by Felstrom and Zigangirov [173]. These codes pro-
vide resilience to burst errors while having less overhead than
individual block codes with interleavers since different copies
of the base code are partitioned into component matrices
and connected together. In some sense, interleaving happens
naturally within the code construction. Windowed decoding for
SC-LDPC codes [174] brings improved latencies, useful for
streaming applications. Multidimensional-SC LDPCs based
on quasicyclic designs were proposed in [175] by coupling
1D SC-LDPC codes through rewiring the connections across
the SC blocks without adding any extra variable nodes/check
nodes. By optimizing the number of small cycles BER im-
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Figure 31. Architecture of the CNU. Q and R represent the incoming and outgoing messages respectively. Adapted from [140].

provements are seen with the modified code designs [176]
[175]. These codes were also shown to have better resilience
to burst errors than their 1D counterparts. More recently, the
authors in [177] have proposed a probabilistic framework for
designing near-optimal SC codes with large memory, useful to
practice. In [178], the authors considered interleaved SC codes
to provide resilience to SNR variations in the MR channel.

Having interleavers and deinterleavers within a conven-
tional turbo-equalization setup can incur significant laten-
cies. The reader must note that carefully constructed inter-
leavers can be embedded within such LDPC codes [179],
amenable to the layered decoding architecture with some
modifications. These designs add zero latencies i.e., without
interleavers/deinterleavers in the turbo loop, which can be
significant when block lengths are large. We remark that along
with the core algorithms, several system-level innovations are
an integral part of engineering practice towards a working
prototype/product. This subsection summarizes 1D LDPCs for
HDDs.

We now discuss the design of 2D codes suitable for TDMR
systems.

E. Native 2D Codes for TDMR

Iterative error correction codes like the 2D LDPC [180]
provide ability to correct large 2D cluster errors, circumvent-
ing the need for 1D LDPC with interleavers for handling
2D arrays. This motivates the design of codes and circuit
architectures for decoding native 2D LDPC codes applicable
to TDMR channels.

Though Cassuto and Shokrollahi [181] proved existential
results of 2D LDPC codes, they did not explicitly provide

the construction for correcting 2D burst erasures. Matcha et
al. [180] proposed constructions of native 2D LDPC codes
capable of correcting large 2D burst erasures. Their construc-
tion involved stacking ¢ x h X w permutation tensors of size
p X p X p along the i, j, k axes. These permutation tensors were
constructed by applying a combination of shifts along 7 and
k axes on an identity tensor. The shifts were chosen in such
a way that the code had a burst erasure correction capability
of at least p x p. A variant of the code used in [180] was
further developed by Kamabe and Lu [182] with improved
burst erasure correction capability. Recently, 2D LDPC codes
were designed using a particular choice of the shifts within the
tensors leading to graphs devoid of short cycles i.e., of length
4 for carefully chosen code parameters, bringing significant
coding gains [183] over [180]. Similar to the code in [183],
the proposed code construction has provably burst erasure
correction capability of at least p x p. Hardware architectures
for a 2D LDPC decoder based on the non-layered min-sum
algorithm (NL-MSA) were also been proposed in [183].

Each codeword in a 2D LDPC code is a 2D array of bits
and the parity check tensor for a 2D LDPC code has 2D
arrays stacked on top of each other, maintaining orthogonality
with the code space. Each horizontal layer in the parity check
tensor represents a single parity-check equation, analogous to
the parity check matrix for a 1D LDPC code. Parity check
tensors can be obtained by stacking 3D permutation tensors
in a 3D fashion [180]. The position (i, j, k) represents the bit
(4,k) in the 7*" horizontal layer of the parity-check tensor.
I5.p is chosen to be a identity tensor of size p X p X p, as
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Figure 32. (a) Identity tensor I3.p and its various shifts. (b) Stacking of ¢ X A X w permutation tensors along %, j, k directions to form the parity check
tensor Ho_p. Each small cube represents a permutation tensor obtained from cyclic shifts I-shift and J-shift on identity tensor I3.p. Adapted from [183].

shown below:
1 i=j=k

. a7
0 otherwise.

Isp = [Ii,ﬁk]f,j,k:lv Lij . =
The tensor Is.p can be permuted in three directions of
the co-ordinate axes ¢, j, k. Let P {1,2,---,p} —
{1,2,---,p}, @ : {1,2,---,p} — {1,2,---,p} and R :
{1,2,---,p} = {1,2,--- ,p} be the three permutation oper-
ations defined on a tensor T = [Ti,j,k]f,j7k=1 as shown below:

P(T) = [Ti,P(j),k]:ZLkzl (78a)
Q(T) = [Tqu).jnlf jret (78b)
R(T) = [ﬂ,j,R(k)]ZLkzy (78¢)

Similar to the permutation matrices in 1D, we can choose
P, @ and R to be circular shifts given by

P 1=1
i—1

We denote the circular shifts P, () and R as J-shift, [-shift
and K -shift respectively. These shifts have been illustrated for
an identity tensor I5.p of size 4 x 4 x 4 in Figure 32(a).

H>p can be obtained by stacking ¢ x h X w cubes, each of
size p X p X p along ¢, j and k directions respectively as shown
in Figure 32(b). A possible way to choose the (4,7, k)™ cube
is to allow shifts of the form P(:3:F) o Q3K (I3 1) with
a(i, j,k) and b(i, j, k) chosen as follows:

a(i, j, k) = mod <(i — 1)+ {%J (G — Dw+ k) ,p)

i = (|22 6 11.5).

The code size is hp x wp with a parity check tensor
Hsp of dimensions cp x hp x wp. The rate of the code
is (hwp — ¢)/hwp. If ¢ is a multiple of p, the choice of
shifts in equation (80) produces a parity check tensor having
uniform column weight ¢/p. Each permutation tensor in Hap
contributes to a row weight w, of exactly 1. Thus the row
weight of the constructed code is hw. The above construction
has the following properties [183]:

1) If p is sufficiently large, the girth of the code is greater

than 4. For (h—1)(¢/p—1) <pand (w—1)(¢/p—1) <

(79

otherwise.

(80)

p, the girth of the code is greater than 4. For example,
for p = 16 and ¢ = 64, h = 3, w = 3, we obtain a
girth greater than 4. Due to the absence of short cycles
of length 4 in the constructed code, we observe good
error correction performance.

2) The construction is able to correct 2D burst erasures of
size at least p x p.

Under the standard AWGN channel'?, the performance of
2D codes vs. 1D codes should not matter. However, when
bursts and erasures are introduced, the performance of native
2D is superior to 1D codes since 1D codes are tailored for
it. Further, as we discussed earlier, 1D codes with interleavers
are not a preferred choice due to decoding latencies etc. With
this in mind, we now discuss the performance of 2D LDPC
codes.

CFR vs. SNR in dB for 2-D LDPC code of size 180x180, 2-D LDPC code of size 180x180 with
random |-shifts, 1-D array-type LDPC code of length 32768, and 1-D QC-LDPC of length 32768
with random shifts. Gaussian distributed random errors were introduced by the channel for
all the experiments. Burst erasures were introduced at a random position for the 2-D LDPC

4 " code and the rastered 1-D array-type LDPC code.
10 e BEmS I " [~=2-D LDPC without burst]
A ~#-1-D LDPC without burst|
X 2.D LDPC (random
\\ ™" L.shifts) without burst
10-1 L , 1-D LDPC (random
\ shifts) without burst
B R ~4—2:D LDPC, 45x45 burst
“\. |~A—1-DLDPC, 45xd5 burst
“_|=v=1-D LDPC, 37x37 burst
102 \ - -
N\
'3 \ B
™ , X
3 \\\ \\
100k N \\ 4
\ ~
\V
104 J
10.5 Il 1 Il Il | 1 1
35 4 45 5 5.5 6 6.5 7 7.5

SNRin dB

Figure 33. Performance of 2D and 1D LDPC codes over random errors and
burst erasures. Adapted from [184].

Figure 33 shows the performance of 2D LDPC codes
constructed with parameters p = 45, ¢ = 315, h = 4, and

13The performance evaluation over AWGN is reasonable since post equal-
ization and DDNP detection, the equivalent channel is close to the AWGN
case.
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w = 4 over arrays of size 180 x 180 ~ 4KB. The parity check
tensor with dimensions 14175x 180 180 had a column weight
w. = 7, and row weight w, = 16, and code rate = 0.5625.
With maximum iteration limit set to 5, SNR performance of
the 2D LDPC code is ~ 0.7 dB better than its counterpart
1D array-type LDPC code at a code failure rate (CFR) of
1073, The reader must note that the drop per dB in the
waterfall region for the 2D LDPC code is also significantly
steeper. However, a 1D QC-LDPC code with random shifts
for permutation matrices performs ~ 0.25 dB better than the
proposed 2D LDPC code since it was difficult to incorporate
random shifts through the sampling and rejection process for
the 2D case. From Fig. 33, we also observe that a 2D LDPC
code constructed using random I-shifts devoid of short cycles
has almost the same performance as the 1D QC-LDPC code
with random shifts.

With a 45 x 45 burst erasure at a random position along with
Gaussian distributed random errors, the 1D LDPC is ~1 dB
inferior in SNR performance compared to the 2D case, seen at
a CFR of 10~2. The drop per dB in the waterfall region is also
significantly worse in presence of the 45 x 45 burst erasure.
This is because the 1D LDPC code is not suitable for handling
a 2D burst erasure, since the 2D burst erasure on the rastered
1D LDPC codes is equivalent to numerous non-contiguous
smaller 1D burst erasures, which the 1D array-type LDPC
code construction is not built to handle. In the presence of a
37 x 37 burst erasure, there was a ~1 dB SNR performance
degradation at a CFR of 1072, These discussions clearly point
out the importance of constructing native 2D codes for TDMR
channels. These designs can be further improved.

One can also build decoders for 2D LDPCs. The interested
reader is referred to the recent paper [183].

Before we end this subsection, we would like to comment
on 2D algebraic codes for TDMR, similar to the RS codes
that we discussed earlier. Algebraic code constructions are
helpful for guaranteed ECC ability for 2D burst errors of
small, pre-defined error shapes [185] [186]. However, the SNR
gains are expected to be inferior compared to soft-decision 2D
LDPC codes. In the same spirit of 1D hard-decision RS codes,
such 2D algebraic codes could be used for correcting cluster
errors with guaranteed error correction over pre-defined errors
shapes based on error events collected from 2D detectors, or
as an outer error detecting code post 2D LDPC decoding.
Correction of arbitrary ¢ x ¢ bursts using n x n 2D BCH
code were studied by Madhusudhana and Siddiqi [187] using
improved Blahut’s algorithm (IBA-I) [188]. Recently, modified
IBA-I decoding algorithms were proposed towards efficient
hardware architectures for 2D BCH codes in [189]. For more
details on the hardware architectures for 2D codes, the reader
is referred to [184]. In general, construction of algebraic
codes for handling multiple cluster errors over 2D arrays is
a difficult problem. For comprehensive details on the tools
for constructing codes over curves and planes, the reader is
referred to the book by Blahut [190].
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F. Handling Media Defects and Other Channel Architecture
Considerations

The design of ECCs for storage channels must include the
ability to resolve burst erasures due to media defects [136]
that could be deep or shallow. Usually, deep defects are spread
over a smaller number of bits, while shallow defects are more
wide spread [137]. The signal energy over defective regions
can be one of the cues to identify erasure locations. Thus, the
amount of ECC power required for handling burst erasures is
specific to head/media combinations. In earlier versions of the
track-based magnetic recording, burst erasures were overcome
by using RS codes in conjunction with inner iterative codes.
Initial works on post-ECC modeling techniques to decide the
t-level error correction power for an RS code was based on the
block multinomial model [191]. Since the block multinomial
model cannot handle correlated errors that fall outside the code
boundaries, subsequent modeling improvements were based on
hidden Markov models (HMMs) [192] [193] for deciding the
amount of ECC required for HDDs. Using data collected from
critically failing drives, the t¢-level error correction power for
an RS code was decided for the given media conditions [193].

Structured LPDC codes like the QC codes that exhibit
excellent performance in the waterfall and error floor regions
can also provide good erasure correction ability since erasures
over two consecutive tiles of permutation matrices can resolve
the burst. Carefully designed interleavers can also enhance the
burst erasure capability of the LDPC code. Fossorier [194]
provided construction of a (n, k) LDPC code that can correct
bursts up to a length of n — k — 1, achieving the Roger bound.
Construction of LDPC codes for iteratively correcting burst
erasures using the belief propagation algorithm by identifying
trapping sets has also been investigated in [195], [196].

The identification of burst erasures is an important step
towards error correction. In fact, this is one of the specifi-
cations while designing read channels for HDDs. Traditional
approaches for defect identification include using RLL codes,
or a full response reequalization [197] for defect identification.
There are many signal processing cues one could garner
by observing defective regions from empirical data towards
flagging the erasure locations. These include (a) onset of low
signal energy over a defective region, (b) low LLR values
observed at the output of a signal detector, and (c) signature
analysis from frequently occurring state transitions within the
trellis states over the defective region [198].

In the context of TDMR, Figure 34(a) shows how cluster
errors appear as 2D media defects. Defect detection for TDMR
channels poses significant challenges since defective regions
having arbitrary shapes and sizes must be identified accurately,
unlike the 1D case. By identifying 3 x 3 squares that are
defective and growing these squares over the defective region
to accommodate all edge connected bit cells, the authors in
[32] were able to map most of the defective cells to form
a largest edge connected region as shown in Figure 34(b).
Those cells that were not mapped as part of the region growing
procedure were treated as random errors. The reader can now
appreciate the role of modeling to provide ECC specifications
for both random and burst error protection.
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(a) 2D defective regions

(b) Identified rectangular bursts

Figure 34. 2D defective regions on a medium are identified within a largest
edge connected region. These are later flagged as erasures and corrected using
an LDPC code and a channel detector. Adapted from [32].

Figure 35 shows the schematic of a defect detector archi-
tecture. The LLR values within the detector are fixed to zero
for defective cells to mark erasures. For other bits, the LLR
values are populated using the extrinsic information from the
decoder. Using the defect detection algorithm [32], the authors
were able to correct 38 x 38 burst erasures, yielding more
than 2 dB gain in electrical SNR. By using inter- and intra-
codeword interleaving schemes, up to 76 x 76 burst erasures
were corrected [32]. The design of good interleavers [199] is
also important for enhancing the burst erasure capability of
the channel.

Kurkoski et al. [200] considered the idea of fusing the
partial response channel with parity check constraints to form
joint factor graphs and obtained message passing decoders that
showed better performance than individually optimized detec-
tors and decoders over the perpendicular magnetic recording
channel. Matcha et al. [180] developed a 2D joint detection
decoding engine based on the GBP algorithm for TDMR chan-
nels. In the same spirit, one could explore joint architectures by
fusing 2D LDPC decoders [183] with suitable 2D ISI detectors
we discussed in this article if hardware constraints permit these
architectures in practice.

VI. PERSPECTIVES AND CONCLUSIONS

The push for higher areal densities and the need to stay
competitive in the market has steadily advanced magnetic
storage from longitudinal recording to perpendicular recording
moving towards novel technologies like HAMR, MAMR,

31

BPMR and TDMR technologies. During this journey of tech-
nology development, every aspect of the recording subsystem
from heads and media to tribology and channels engineering
is pushed towards achieving the objectives. With combinations
from HAMR or MAMR and TDMR, one can expect combined
higher areal densities. Today we already have 3 TB platters,
and there is a drive to achieve significantly higher areal
densities beyond 5Tb/ in” in the coming years.

The development of read channels for HDDs is a research
odyssey. From analog equalizers and (d, k) constrained codes
tailored for peak detection in early versions of HDDs, the
development of PRML-based LDPC-coded channels made a
significant milestone in the history of read channels evolution.
The need for path-breaking solutions has steadily pushed
advanced channels development. For example, though LDPC
codes and message passing techniques were well-known by
early 1990s, it took significant efforts to tailor LDPC codes
with no noticeable floors at code failure rates around 10719
over 4KB sectors, develop improved decoding strategies for
better SNR gains, and yet be amenable for hardware. In
addition, practical constraints such as low-latencies, high
throughputs, area and power-efficient designs have pushed
innovations into all aspects of the read channels architecture.
With 2 readers and joint equalization, SMR systems have
shown ~ 10% AD gains over the PMR case. There is still
more room to get additional gains by going to native 2D sector
formats.

The role of information theory, signal processing algorithms
and coding techniques is central towards building such high-
performance circuits and systems in practice. As long as
there is enough SNR in the magnetic channel to resolve the
bits, shifting to 2D from a 1D paradigm will only bring
additional gains. Tools from decades of research in the field
of information theory, coding theory and signal processing
have taught us many valuable techniques to solve complicated
problems.

Along this thread of thought, even though TDMR poses
several challenges from a technology perspective, such as
the need for multiple heads/multiple readers etc., one can
expect significant SNR gains by embracing native 2D coding
and signal processing solutions that deal with crosstalk and
noise along and across the tracks. A paradigm change in
dealing with 2D coded sectors instead of 1D sectors will
bring in significant changes in the design of hardware, re-
quiring carefully engineered parallel and distributed circuits
and system architectures to reduce latencies during detection
and decoding. We hope that with low-power VLSI technology
nodes, some of these sophisticated algorithms will make it into
practice.

The future of magnetic recording rests on how recording
physics, media, and channels engineering will converge to-
wards realizing the ultimate aim of storing 1 bit/grain reliably
over layered media. With such an extreme push for ADs,
one has to overcome noise and crosstalk, possibly in 3D over
layered media. Having an array of low-cost and efficient nano
read heads to sense the signals from these grains and process
them in a parallel/distributed way is the key towards getting
significantly higher throughputs. All these requirements come
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Figure 35. Schematic of a defect detector and erasure decoder architecture for TDMR. The LLR values for bits identified as defects are set to zero in the
channel detector. The LDPC decoder provides extrinsic information for these erasures. The detector and the decoder are iteratively configured to resolve the

burst erasures. Adapted from [32].

at the price of area and power needed for realizing practical
VLSI circuits for read channels, calling for innovations in the
process and device technologies to work at extreme scales and
speeds and still be cost-effective.

We would like to also point out that, the solutions to 2D
channels relevant to HDDs we presented in this article are
applicable to physical layer wireless channels as well. The
2D coding techniques we presented are also applicable to
3D NAND flash memories and multimedia imaging systems.
Last, the authors hope that, with further advancements in
the physics and media of holographic recording, this archival
storage technology could be resurrected, and many useful
solutions developed for TDMR channels could be adapted for
holographic channels.
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