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Channels Engineering in Magnetic Recording: From

Theory to Practice
Shayan Srinivasa Garani, Senior Member, IEEE, and Bane VasiÂc, Fellow, IEEE

AbstractÐInformation theory, coding theory and signal pro-
cessing have significantly shaped magnetic read/write channels
engineering through a chronological sequence of innovations and
research advancements, cognizant of the underlying physical
processes. In this magazine article, we provide an overview
of magnetic recording technologies leading to the channels
engineering aspects, central to this article. We survey important
coding and signal processing algorithms along with some design
architectures that have made it to practice within hard disk drives
(HDDs) for magnetic recording channels. The push towards
realizing ultra-high densities (> 4Tb/in2) on magnetic disks
with ultra-high throughput rates (> 10Gb/s) necessitates the
development of native two-dimensional (2D) coding and signal
processing algorithms and architectures within the framework
of two-dimensional magnetic recording (TDMR) along with
read head engineering and changes to the recording physics.
We also provide an overview of novel channels engineering
solutions covering all aspects of TDMR channels driven from
a systems science perspective. The innovations and research
advances described in this article may serve a broad engineering
audience in other areas as well.

Index TermsÐmagnetic recording technologies, read channels
engineering.

I. INTRODUCTION

THE advent of the computer age in the first half of

the 20th century has propelled data storage technolo-

gies to advance in an unparalleled manner, leading to the

birth, sustenance and exponential growth of technologies for

both on-chip and off-chip memories. Examples of on-chip

memories based on magnetics include ferroelectric random-

access memories (FeRAMs), magnetoresistive random-access

memories (MRAMs) etc. Hard disk drives (HDDs) are a

classic example of an off-chip physical memory. The term

data storage system refers to the entire system that interfaces

to this off-chip physical memory, i.e., from the operating

system, through the disk controller to the physical head/media

subsystem.

According to International Data Corporation (IDC), it is

expected that there will be more than 55 billion internet of

things (IoT)-connected devices by 2025 [1]. Further, with

cloud-based systems driven by datacenters and artificial in-

telligence (AI)-driven computing systems, several tens of

billions of devices will be connected through this data-driven

network. The 21st century will be the age of data storage
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technologies, mirroring how central processing unit (CPU)-

based technologies from computer manufacturers propelled in

the early part of the 20th century.

Since it is expected that nearly 175 zetta-bytes (ZB) of

data will be generated every day by 2025 [2], we need state-

of-the-art technologies to cater to this massive need. Along

with memories with higher storage capacities, it is expected

that these devices come with high throughput, shrinking form

factors and low power consumption. Thus, speed, area, power

and capacities ought to be within a ballpark for practical ap-

plicability of these devices. Though solid state devices (SSDs)

are now part of most computer systems within desktops and

enterprise solutions, catering to better read/write access times

and comparable HDD storage capacities etc., one cannot

ignore the role of HDDs in the data storage space since they

have the cost per bit advantage [3]. Hybrid memory systems

for handling cold and hot data will inevitably need HDDs.

Both HDDs and SSDs are part of today’s datastorage systems

within datacenters.

Today, we have a thriving multibillion-dollar magnetic stor-

age industry, which is ubiquitous and pushing itself continu-

ously, advancing towards reaching the physical limits of mag-

netic storage [4]. Sustained research and development in sev-

eral key multidisciplinary areas, such as magnetic materials,

recording physics, tribology, channels, and systems engineer-

ing, to name a few, have enabled magnetic recording systems

to reach capacities beyond 22 TB over multiple platters, using

multiple read heads. HDD technology has moved from a 1D

paradigm based on longitudinal and perpendicular recording to

shingled recording with improvements to head/media design

and recording physics. We are witnessing how with shingled

magnetic recording (SMR) technology, using two readers, one

could achieve storage densities beyond 1Tb/in2 [5]. TDMR

with shingled writing and 2D signal processing and coding

can offer significant gains in areal densities [6] along with

the necessary read head engineering and recording physics to

work with TDMR.

In this magazine article, we will begin with the history

of magnetic storage technologies that dates back to more

than 140 years and describe how several innovations from

coding theory, information theory and signal processing are

continuing to shape its existence to remain competitive within

the storage world.
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A. History of Magnetic Recording: From a Technology Per-

spective

Magnetic recording research has witnessed a sustained

development of more than 144 years from the early works of

a magnetic recording apparatus conceived by Oberlin Smith

in 1878 [7]. In his concept, a coil of wire could magnetize

a medium, such as steel. By inducing a voltage, the same

coil could be used for playback of the recorded pattern on

the medium. This simple idea was demonstrated in practice

by Valdemar Poulsen, and was eventually made commercially

viable in the 1920s by Kurt Stille. Early advancements with

electronic amplification, alternating current (AC)-bias record-

ing, etc. helped in reducing the noise and distortion from the

recorded signals during playback. Way back in 1928, Pfleumer

developed a new recording medium using thin layers of metal

powder. Later, magnetite was developed for coating paper.

These simple ideas and further improvements to the recording

media led to the birth of the magnetic tape that fuelled the

entertainment industry. With subsequent media improvements,

HDDs were conceived to realize random access that ensured a

switch from the conventional sequential batch data processing

paradigm. For a comprehensive historical overview of this

celebrated technology, the reader is referred to [7].

The International Business Machine (IBM) 350 disk drive

was the first commercial HDD with a capacity of 5 MB,

weighing 500 lbs and having 50 24’ disks. The disks were

vertically stacked and rotated at 1200 rpm. A constant gap

separation with fluid bearing of 800 µin was maintained

between the flying read head and the media to sense the

data from the medium. The data format was also very sim-

ple, using non-return-to-zero, inverted (NRZI) codes with

amplitude detection. The timing was ensured by having odd

parities augmented with the NRZI bit stream, ensuring the

synchronization of the open-loop oscillators. There was no

sophisticated signal processing or error control codes within

those systems. Several technical advancements led to the first

removable HDD, the IBM 1311.

Later versions of HDDs had self-clocking codes coupled

with peak detection circuits for sensing the magnetic tran-

sitions for decoding the data. A sequence of further tech-

nological innovations in the head designs, such as ferrite

heads, metal-in-gap (MIG) heads, thin film inductive heads,

etc. propelled an exponential growth in areal densities ∼ 30%,

compounded annually. The introduction of (d, k) runlength-

limited (RLL) codes, such as the (2, 7) RLL code by IBM in

1979 provided improved gains in areal densities (ADs) since

these codes could handle intersymbol-interference (ISI) and

synchronization issues directly via the encoded data stream.

The recording codes for magnetic storage were suited to

peak detection [8]. The most important advancement in head

technology was to switch from inductive heads to magneto-

resistive (MR) heads that provided higher signal strengths

independent of the linear velocity, making it ideal for smaller

disks that had lower linear velocities 1. These MR heads were

1The reader must note that the throughput is directly linked to the linear
velocities. To sustain a constant throughput, the spinning of the disk at the
inner diameter must be higher than at the outer diameter, irrespective of the
constant angular velocity on the solid disk.

commercially made available in 1985 [9]. For more details on

the theory behind magnetic recording, the reader is referred to

[10].

Trying to lower the gap between the head and the recording

medium, and having improved RLL codes within the peak

detection scheme could only saturate the AD gains. To stay

competitive, with the ever increasing demand for higher areal

densities, one required alternative strategies2. The innovative

ideas from Kobayashi and Tang [11] on partial response

signaling conceived as early as 1975 were just ripe to be tested

out for a new generation of channels. Instead of finding ISI

baneful, the PRML scheme allowed controlled ISI that could

be tackled using Viterbi detection, which was already well-

known by then for decoding of convolutional codes. In 1990,

the first partial response maximum likelihood (PRML) detector

was introduced by IBM, replacing the peak detection circuits.

It was advantageous using MR heads, and the partial response

maximum-likelihood (PRML) scheme provided additive gains.

Very large scale integration (VLSI) technology was already

mature by then to build such read channel integrated circuits

(ICs) on a single chip. With low-cost and high-yielding chips

that could be integrated within the disk controller systems, the

PRML channel was a success along with MR heads. The use

of analog and digital equalization techniques, PRML detector,

RLL codes, and error correcting codes (ECCs) had HDDs

geared up towards realizing 1Gb/in
2

areal densities. In fact,

during the early 1990s, only a few IBM drives were PRML-

based. The IBM 0681 drive with PRML technology achieved

a capacity of ∼ 900MB. By early 1990s, the compounded

annual growth rate in the ADs were ∼ 60% significantly

higher than the 30% growth rate seen for the past 3 decades

before 1990s. This further increased with the introduction of

giant magneto-resistive heads (GMRs) [12].

With the PRML in place, there were several notable in-

novations in the channels front, such as the noise-predictive

maximum likelihood (NPML) [13] engine that used whitening

filters to further improve the performance of Viterbi detectors

by overcoming the media noise due to transitions from the

magnetic domains. These ideas coupled with the design of

generalized partial response (GPR) equalization, i.e., a pre-

target selection and adaptive equalization techniques, helped

realize ADs beyond tens of Gb/in
2
. To achieve higher ADs,

one has to reduce the magnetic grain sizes for recording a

bit. Reducing the grain sizes cannot continue unabated since

recorded bits can be erased due to the superparamagnetic

effect [14]. Mindful of these physical constraints, recording

physics, head/media engineering and channels engineering had

to be conceived to advance the state-of-the-art. We will discuss

these technological aspects later in this section. Since a lot

2The reader must note that there has been a constant push for innovations in
the HDD industry towards achieving higher ADs. These are driven by innova-
tions in all the three major subsystems, namely (a) improved head design, (b)
improved media fabrication, and (c) improved channels engineering. Given a
head/media combination, efforts in the channels engineering side are pushed
towards achieving higher AD gain. When gains from innovations in channels
engineering tend to saturate, the head and media are pushed for improved
designs, leading to next-generation channels development suited for those
head/media designs. This constant push for innovations across all the three
major subsystems within the HDD technology has helped constantly improve
AD gains and stay competitive in the market.
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of channels engineering depends on the underlying recording

physics, we will next discuss the physics behind longitudinal

and perpendicular recording schemes.

B. Physics behind Magnetic Recording Channels

Hysteresis is the key physical property for magnetic memo-

ries to hold information. Coercivity of the medium determines

its stability against external magnetic fields and thermal issues.

Put in simple words, when the magnetic grain sizes are

small, they do not hold enough magnetic energy per unit

volume, leading to poor signal quality during readback. From

a physical perspective, an upper bound for the data storage

density is determined by the magnetic quadrilemma [4], which

we shall describe below:

Figure 1. High ADs require smaller grain sizes. Thermal instability leads
to grains switching their magnetization since the magnetic energy per unit
volume is less. Further, write instability issues require high writing fields to
get the desired level of anisotropy. Providing high writing fields over small
grain sizes under high temperatures is not easy to realize. These conflicting
requirements lead to the magnetic quadrilemma that dictates the achievable
AD from a physics perspective. Adapted from [4].

Consider the extreme case of storing a bit over a magnetic

grain, which is the smallest magnetic domain. Figure 1 shows

the various conflicting physical requirements for storing data

on a magnetic grain. To obtain high storage densities, the grain

size must be small. Having smaller grains leads to thermal

instability since the magnetic energy per unit volume is less

and the magnetization of the grain is lost over time, governed

by the Neel relaxation time. Now, there are write instability

issues since the external write field must be very high to induce

the required anisotropy over the grain. Finally, there are write

errors since it is difficult to ensure write heads can provide

this field over small grain sizes and high temperatures. This

leads to the issue of thermal writeability since the magnetic

moment in the medium must be sufficiently large or the writing

temperature is not too high. These conflicting requirements

will lead to optimization of the physical parameters to assess

upper bounds on the achievable density within the classical

regime.

Composite media with exchange coupling using soft and

hard magnetic layers [15] is used to overcome limitations

of writability and thermal stability with conventional write

heads. With materials such as CoCrPt-alloys for hard magnetic

layers and a combination of multilayer media structures, the

medium has high anisotropy, allowing room for smaller grains.

Based on the thermal stability criterion, the areal density

of the medium depends on the grain volume and the areal

packing fraction of the storage islands. Also, from a thermal-

writeability perspective, based on the physical parameters,

such as the writing field, writing temperature, Curie tempera-

ture of the medium, etc. one can estimate the areal densities

in order to sustain the magnetization over a grain without

flipping the state under heat-assisted writing (ref. to equation

(6) in [4]). It is estimated that the achievable AD for magnetic

storage under heat-assisted recording is around 20Tb/in
2

[4].

The reader must note that this assumption is only over one

layer of the medium. By stacking layers of magnetic medium,

with appropriate recording physics, one can achieve higher

ADs.

At this stage, we have not discussed anything related

to the noise modeling or statistical description of the

read/write processes. Mapping the physical constraints to

a communication-theoretic framework will eventually lead

to achievable bounds on data storage densities from an

information-theoretic view point.

Figure 2. (a) Longitudinal magnetic recording, where the magnets are aligned
in the east-west direction. (b) Perpendicular magnetic recording with a soft
under layer. The magnets are aligned in the north-south direction. Figure
source: Courtesy [16].

1) Longitudinal Magnetic Recording (LMR): In

longitudinal magnetic recording (LMR), the magnetic

anisotropy is oriented in the thin film plane i.e., in the

east-west direction. Figure 2(a) shows the alignment of the

magnetic grains. Around 140Gb/in
2

ADs were demonstrated

in laboratory setups.

2) Perpendicular Magnetic Recording (PMR): The pio-

neering work of Iwasaki in 1975 [16] led to perpendicular

magnetic recording (PMR), where the magnetic anisotropy

is perpendicular to the thin film plane i.e., the magnetic

domains are oriented in the north-south direction as shown in

Figure 2(b). Present day HDDs are based on PMR technology,

which provides significantly higher ADs than LMR up to

1Tb/in
2
. In PMR, there is a soft magnetic underlayer (SUL)

which provides a return flux path. Thus, there is a stronger

write field gradient using the same head material as the LMR,

allowing the medium coercivity to be higher. Larger write field

gradient results in smaller transition jitter, thereby improving

the signal-to-noise ratio (SNR).
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The read head design is the same irrespective of the record-

ing scheme.

C. New Technologies for Higher Areal Densities

Though PMR-based HDDs have been highly successful

since 2005, there is a saturation to the AD gains around

1Tb/in
2
. This led towards research in alternative technologies

for furthering AD gains. There have been three major

promising technologies: (a) heat-assisted magnetic recording

(HAMR) [17] [20], which is driven through recording physics,

(b) bit-patterned media (BPM) [21], driven through media

innovations, and (c) two-dimensional magnetic recording

(TDMR) [22] with innovations from 2D signal processing

and coding i.e., from the channels engineering side. Figure 3

shows different magnetic recording technologies, early

versions of some of which are already into production.

In HAMR [20], the recording medium is heated above

the Curie temperature for a nano timescale. This makes the

medium lose its coercivity. Around the same time, the write

head writes on the medium. When the medium cools down,

it regains its coercivity, thereby retaining the bit written

onto it. The key challenge in HAMR drives is nanoscopic

guided heat delivery without burning up the write heads.

This is accomplished using nano-scale plasmonic waveguides

for directing the energy than a direct laser heating of the

medium. Sputtering effects over the neighboring cells must

be avoided. Figure 3(a) shows the schematic of HAMR.

Laboratory HAMR prototypes developed by Seagate have

showed areal densities as high as 2Tb/in
2

[23].

There are also works on other energy-assisted magnetic

recording (EAMR) schemes, such as microwave-assisted

magnetic recording (MAMR) with an eye towards 3D-

magnetic storage. In MAMR, the media is composed of

multiple layers, similar to layered media in optical discs.

Using high-frequency magnetic fields generated by spin

torque oscillators, selective switching of grains at a certain

depth in a layered medium is possible [24] [25] [26]. Data

is recorded in overlapping layers using selective microwave

resonant frequencies attuned to these layers (refer to Figure

3(b)). The success of MAMR depends on the strength of

the magnetic field and the head-media spacing (gap length).

It is envisaged that MAMR can provide ADs to 10Tb/in
2
.

In HAMR, lower layers destroy the information in an upper

layer. This is circumvented in MAMR. However, MAMR is

also prone to similar challenges that HAMR faces.

In BPM, the medium is tessellated into magnetic islands

in an orderly manner. Each magnetic island is well-separated

with guard bands (shown in Figure 3(d)). Fabrication of such

media requires careful lithography, which could be costly. In

practice, one could have deleted or fused magnetic islands

as part of fabrication defects, requiring significant efforts

from channels engineering to work with such media. Write

synchronization issues and other aspects make this technology

a bit difficult for commercialization.

TDMR is a technology that works with random grains,

borrowing from the PMR media technology, unlike BPMR

with fixed island sizes. However, instead of writing bits on

tracks in the usual 1D manner, tracks are shingled, and data

is encoded in 2D. To ensure a sufficiently large magnetization

field capable of magnetizing materials with high coercivity,

the head is made larger than the track width. However, to

achieve a higher areal bit density, the tracks should be very

narrow. As a result of narrower tracks, each sweep of the

head during writing partially overlaps with the previous track,

i.e., writing is noisy.

Unlike traditional recording, where data is organized in

well-separated tracks (shown in Figure 3(c).a), in TDMR

systems, the data bits are arranged in a 2D array (see Figure

3(c).b). In traditional systems the intersymbol-interference

(ISI) is small and along the downtrack, which can be

controlled by a sequence detector. In a TDMR system, since

the head picks up magnetization from adjacent tracks, there is

severe ISI both along a track and across the tracks (inter-track

interference (ITI) as a wider head reads data larger than the

physical dimensions of a stored bit. Narrow read heads can

be fabricated (minimizing ITI) with a penalty in the noise

during reads.

2D offers many advantages over 1D. First, one can achieve

significantly higher ADs by packing more bits per unit area

by using clever 2D coding and signal processing techniques3.

Next, it is possible to have a relaxed 2D synchronization

since the read head is not confined to a narrow single track

to handle timing artifacts. Timing issues in the down-track

and cross-track directions can be handled as a whole through

multi-channel processing. Last, the throughput is significantly

higher since an entire array of bits can be read and processed.

However, all these advantages towards getting higher ADs

come at the cost of designing the array of read heads and

processing the signals. It is expected that processing these

array of signals requires sophisticated signal processing that

could be power and area intensive when implemented on a

read channel chip. With advancements in low-power VLSI

technologies, both at the device and circuit architectural levels,

it is possible to overcome these challenges in pursuit of

realizing the promise of TDMR gains. We will describe

the channels engineering aspects for TDMR in subsequent

sections. The reader must note that TDMR provides additive

AD gains over both HAMR/MAMR and BPMR technologies.

Thus, it is important to develop native 2D coding and signal

processing solutions for TDMR channels for increasing the

existing AD limits of HDDs.

D. Organization of the article

With this broad technological background in mind, we

describe the organization of this article. In Section II, we

provide an overview of the channel modeling aspects for

various magnetic recording technologies. This will help us

3The reader must recall that, unlike 1D traditional recording, we have 2D
ISI/crosstalk in the down-track and cross-track directions.
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(a) (b)

(c) (d)

Figure 3. (a) Schematic of a HAMR setup with guided LASER beams impinging on the medium. Courtesy: [17]. (b) Schematic of a MAMR setup. Using
spin torque oscillators with microwave resonant frequencies tuned to each layer, selective switching of grains in a layered media is possible (Adapted from
[18]). (c) Schematic of a TDMR writing and reading process. a) In conventional setup writing and reading is on a single track. b) In TDMR, the data is
organized as a 2D array. The 2D readback signal is due to sensing multiple tracks. Severe crosstalk in the readback signal has much of the information
required for decoding the original information. Adapted from [6]. (d) Illustration of a BPMR pattern. The medium is fabricated carefully with equally-spaced
islands, i.e., ordered grains. Courtesy: Source [19].

connect the physics to a communication-theoretic setup, useful

towards building algorithms in practice. In Section III, we

survey information-theoretic tools for assessing the mutual

information rates (MIR) of MR channels. These results are

important to get a feel for achievable ADs under noisy

conditions. In Section IV, we discuss the signal processing

innovations that had to be conceived with every generation

of the read channel. We will provide a summary of vari-

ous signal processing techniques such as analog pre-filtering,

equalization, timing recovery, signal detection, etc. applicable

to 1D and 2D channels. In Section V, we discuss the important

coding techniques that were practically applicable to HDDs.

Specifically, we will highlight the role of algebraic codes

and iterative codes that were implemented in practice, within

HDDs. We will also discuss modulation codes used in early

versions of practical HDDs. We will also highlight the circuit

architectural aspects towards realizing the coding algorithms in

practice by explaining the importance of algorithmic/system-

level tweaks that have had a significant impact in practice. In

Section VI, we conclude the article along with our perspectives

on the channels engineering aspects for next-generation HDDs.

II. MODELING FOR MAGNETIC RECORDING CHANNELS

From now onwards, we will focus on the channels engineer-

ing aspects of HDDs. Figures 4(a) and 4(b) (Adapted from

[27], Chapter 15) show the block diagram schematic of a read

channel architecture. Information bits are encoded through

an error correction coded and then modulated to satisfy the

constraints of the channels. These bits are then written on

to the medium through the write head after converting the

current pulses to flux changes on the medium. After sensing

the readback waveform, the signal is passed through a band-

limited filter and an adaptive finite impulse response (FIR)

equalizer to maintain a partial response (PR) target. Post

sampling, the samples are driven by a timing recovery loop

and signal detection. The detected bits are then decoded by

the modulation code and through the ECC decoder before

retrieving the information bits. The post-processor block in

Figure 4(a) indicates a turbo loop for soft-decision decoding

within the PRML setup. Thus, coding and signal processing

algorithms are part of read channel ICs that interface with

magnetic disk drives.

The act of storing and retrieving information reliably from

a storage device is an instance of a noisy communications

channel. With appropriate channel modeling, one can ab-

stract the physical processes within a communication-theoretic

framework so that tools from information theory, coding

theory and signal processing can be applied towards channels

development. A first step towards this effort is signal modeling.
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(a)

(b)

Figure 4. (a) Schematic of a conventional read channel architecture. The signal from the read head goes through a preamp circuit, followed by a continuous-
time filter to remove any out of band noise and an analog-to-digital converter (ADC). The signal chain includes an analog FIR equalizer based on the least
mean squares (LMS) adaptation engine, adaptive gain and timing loops, and the Viterbi detector with post-processing towards error recovery. (Adapted from
[27], Chapter 15). (b) Various configurations of analog and digital FIR equalizers within a PRML detector setup with noise whitening capability, such as
using data-dependent noise prediction (DDNP) filters.

A. Signal Modeling for LMR and PMR

The playback signal strength depends on the physical pa-

rameters specific to a recording scheme.

By considering the linear superposition of pulse amplitudes

of isolated transition magnetic responses that depend on the

written bits, we can abstract the signal model for the dibit re-

sponse p(t) for longitudinal recording over a pair of transitions

separated by interval T as

y(t) =
∑

k

bk [h(t− kT )− h(t− (k − 1)T )]
︸ ︷︷ ︸

=p(t)

+n(t), (1)

where h(t) is the Lorentzian model response given by

h(t) =

√

4Et

πw

1

1 +
(
2t
w

)2 , (2)

with w being the pulse width at half-maximum. The peak

amplitude of the pulse depends on the properties of the

magnetic medium such as the remanent magnetization, air

gap length, width of the free layer etc. For more details,

the interested reader can refer to [27] (see equation (2.31),

Chapter 2 in [27].). In equation (2) Et =
∫
|h(t)|2dt represents

the normalized energy of the isolated transition response.

The noise term n(t) in (1) represents both the media and

electronics noise sources.

Similarly, the transition response for the PMR channel is

simplified as

h(t, w) = Vp

(

2
√

ln(2)

w
t

)

, (3)

where Vp is the peak value of the isolated transition response.

The pulse width w at half-maximum for PMR depends on the
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Figure 5. LMR and PMR transition responses.

Figure 6. Continuous-time signal model with jitter contributions upto a second
order. Adapted from [28].

air gap length, transition width, GMR free layer thickness, etc.

To normalize the energy under the impulse response to unity,

the peak value Vp is given by

Vp =
1

2

(
π

2w2 ln(2)

) 1
4

. (4)

Figure 5 shows the sketch of the transition response for

both longitudinal and perpendicular recording schemes. Noise

modeling from recorded waveforms is important for deriv-

ing channel models. Media noise, which is usually colored,

arises due to variations in the media magnetization across the

grains. The electronics noise, which is usually white, arises

due to sensing and preamplifier circuits. Media noise is a

consequence of stationary dc remanent noise due to random

in-plane anisotropy dispersion (Chapter 2, [27]), noise due to

transitions and modulation noise due to surface roughness. The

dc remanent noise is absent is perpendicular recording due to

loop squareness and the noise due to transitions is the only

noise since magnetic grains can fall across bit cell boundaries.

A simple way of obtaining the noise model towards sim-

ulations is to have noise perturbations in the position t and

width w parameters within the transition response h(t, w) as

done in [28]. At a position k,

hk(t, w) = h(t− kT + jk, w + wk), (5)

where jk and wk are random variables and assumed to be

Gaussian distributed with zero mean and variances σ2
j and

σ2
w, respectively.

By doing a Taylor series approximation of equation (5)

using equations (2) and (3), we get the equivalent model

described in Figure 6.

With this in place, we are set to define the SNR. The SNR

for recording channels is given by

SNR =
Et

N +M
, (6)

where N is the electronics noise variance and M is the media

noise variance. The media noise variance is given by

M = 2σ2
j Ij + 2σ2

wIw, (7)

where Ij =
∫∞

0

(
∂h
∂t

)2
dt and Iw =

∫∞

0

(
∂h
∂w

)2
dw.

The linear density or channel bit density (cbd) is given by

Ds =
PW50

T
. (8)

Since the data is coded at a rate R, the user bit density

(ubd) is given by

ubd = cbd×R. (9)

In a practical setup, the systems are oversampled with a

factor Os. If the SNR is S dB and the energy in the transition

response is Ei, then, for a given cbd and M
N+M

= f , the

electronic noise variance is given by

σ2
e = (1− f)

Ei × cbd

2
Os10

−0.1S . (10)

Equation (10) is helpful for obtaining the required noise

parameters for generating the waveforms towards simulations.

With these details in place, we are now ready towards a

simulation model for assessing the performance of the signal

chain for LMR and PMR channels. Let us now discuss signal

models for advanced channels.

B. Signal Models for Advanced Channels: A TDMR Case

Study

TDMR achieves high AD gains by reducing the bit size in

both the directions within the bounds dictated by the magnetic

quadrilemma. With bit-sizes to the order of a magnetic grain

size, irregularities in the medium defined by the position

and geometry of the grains will influence the read and write
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processes.

Though there are many simple models for TDMR such as

the binary error and erasure model and the discrete grain

model [29] [30], we will focus specifically on the Voronoi-

based model and discuss the details of this channel model

(media model, read and write procedures, and noise char-

acteristics) in depth since it is the accepted model for read

channel simulations in the industry, and is used in [31] [32].

Figure 7 shows the Voronoi tiling model for TDMR. Each

Down-track direction 

C
ro

s
s
-tra

c
k

 d
ire

c
tio

n
 

BP 

TW 

Figure 7. An example of the Voronoi channel model. The bit cell width along
the track is BP=15 nm. In the cross-track direction, the track width is TW=30
nm. The center-to-center (CTC) spacing is 10 nm. Adapted from [6].

Voronoi region on the magnetic medium represents a grain.

The distribution of Voronoi centers is modeled using a point

process, typically a Poisson random process. The magnetic

domains are formed using the Voronoi regions whose centers

are the grain centers. Physics-based micromagnetic models

simulate the sizes, shapes, and distribution of the grains close

to an actual magnetic recording medium.

The micromagnetic recording model [33]±[35] assumes

a granular thin film medium in which grains are uniformly

magnetized. This model makes no prior assumptions of a

grain shape or location. The magnetostatic and exchange

interactions between nearest neighbors are calculated with

the knowledge of the grain shape, and the magnetostatic

interactions between more distant pairs of grains are computed

hierarchically. The time evolution of the magnetization is

computed by integrating the Landau-Lifshitz-Gilbert (LLG)

equation in spherical polar coordinates using a Krylov

ordinary differential equation (ODE) solver [36]. Head-field

distributions are precomputed for some direct currents (dc),

and the recording sequence is defined by the velocity of

the head over the medium and a head current waveform

represented by the random bit sequence to be recorded.

The field at each point of interest in the medium is then

computed by spatially interpolating the head-field distribution.

TDMR platform simulations were also done in [37] using

the micromagnetic model. Also, the micromagnetic model

has been used to predict AD limits in perpendicular

recording [38]. There are other intermediate models based

on quasi-micromagnetic simulations [39]. However, the high

complexity of micromagnetic model makes it difficult to run

simulations for the performance evaluation of coding and

signal processing algorithms [39], [40].

We shall now discuss more details about the Voronoi model.

1) Recording Media Model: The Voronoi tiles are used to

simulate the irregularities of magnetic grains. The distribution

of grains on the medium can be modeled using a Poisson-disk

process with boundary sampling, as proposed in [41]. Each

new grain is randomly generated such that it touches at least

one of the existing grains to achieve a close random packing

under the CTC constraint. Before a new grain is generated,

the boundary that is at a CTC distance from the existing grain

centers is identified. The position of a new grain is randomly

generated with a uniform probability density on the identified

boundary.

According to the Voronoi model, the storage medium com-

prises tiling of the shifted grain-centers with each region

representing the grains. With a rectangular grid over bit cells,

each cell of size BL×TW represents the size of the bit cell in

the downtrack and crosstrack directions. The bit aspect ratio

(BAR) which is defined as BAR = TW
BL governs the minimum

resolution of magnetization. The act of writing and reading an

information bit from a bit cell, i.e., from a rectangular cell with

a given bit length and bit aspect ratio, constitutes an instance of

a noisy communication process, i.e., a noisy channel. The bit

cell area is equivalent to the channel bandwidth. The channel

bit density is given by 1
TW×BL bits/unit-area.

2) Write Process: During the writing process, the read head

writes the bipolar coded symbol xi,j by changing the magnetic

polarity of all grains whose centers lie within the (i, j)th bit

cell according to the value of bit xi,j . Magnetic domains

are formed by the continuous regions of Voronoi cells with

the same polarity of magnetization. The channel input signal

x(t1, t2) is given by

x(t1, t2) =
∑

i,j

xi,jΠTW (t1 − i× TW )ΠBL(t2 − j ×BL),

(11)

where xi,j ∈ {−1,+1} is the symbol which will be written

on the (i, j)th bit cell and

ΠT (t) =

{

1 if 0 ≤ t < T ,

0 otherwise.
(12)

The indices t1 and t2 refer to the spatial coordinates on the

magnetic disk.

3) Read Process: The readback signal depends on the

grain magnetization and read head geometry [42] along with

crosstalk received from neighboring cells that depends on

the grain distribution. Suppose that the read head picks up

magnetization only from m×n neighboring cells. As a result,

the read head output sample yi,j at the center of the (i, j)th

cell depends only on the polarity of the grains in the m× n
neighborhood around the (i, j)th cell, denoted as Ci,j . We

use the 2D Gaussian pulse model for the read head sensitivity

function. The 2D Gaussian pulse is characterized by the pulse
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widths PW50x and PW50y at half-amplitude in the down-

track and cross-track directions.

h(x, y) =
ln 2

πPW50xPW50y
exp

(

−
(ln 2)x2

PW502x
−

(ln 2)y2

PW502y

)

,

(13)

with
∫∞

−∞

∫∞

−∞
h(x, y)dxdy = 1 for normalization.

The read head sensitivity function is the contribution of each

grain towards the generation of a readback signal. Figure 8

shows the distribution of grains on the medium, magnetization

of the Voronoi regions on the medium and the continuous time

readback signal without electronic noise.

Let hi,j [p, q] be the discrete-time read response of the bit

at position (i, j). The indices p, q are integers representing

samples on the 2D media after sampling. These response

coefficients are random and dependent on the position and

shape of grains within the bit area. We can compute the

average bit-response as

h(p, q) = EI,J [hi,j [p, q]] , (14)

where I and J are random variables indicating the distribution

of the positions of grain centers in the down-track and cross-

track directions, respectively.

The readback signal sample without considering the elec-

tronic noise is given by

yi,j =
∑

p

∑

q

xi−p,j−qhi−p,j−q[p, q], (15)

where xi,j is the symbol written on the (i, j)th bit-cell.

Furthermore, the ideal read head output, si,j , is obtained by

considering the average discrete-time output of the (i, j)th bit

area as

si,j =
∑

p

∑

q

xi−p,j−qh[p, q]. (16)

The mean squared value of the read-back signal is computed

as V 2
p =

∑

p

∑

q |h[p, q]|
2. The media noise comes from the

random perturbations of hi,j [p, q] around the average response

h[p, q]. Therefore, the energy of media noise σ2
m is computed

as

σ2
m = EI,J

[
∑

p

∑

q

|hi,j [p, q]− h[p, q]|2

]

. (17)

For TDMR channels, we have three different SNR notions:

SNR = 10 log10

(

V 2
p

σ2
m + σ2

e

)

, (18)

SNRMedia = 10 log10

(

V 2
p

σ2
m

)

, (19)

SNRElec = 10 log10

(

V 2
p

σ2
e

)

, (20)

SNR refers to the overall SNR, while SNRMedia and

SNRElec are the SNRs corresponding to the media and elec-

tronic noise sources, respectively.

The noise distribution for different input patterns can be

obtained using the Voronoi model to study the impact of how

neighboring bit transitions lead to increased noise. Study of

the noise distribution is helpful in computing the symmetric

information rates and optimization of the TDMR system pa-

rameters under various channel conditions [43] [44]. The most

harmful patterns are those that have consecutive transitions

along the on-track and off-track directions, leading to degraded

performance during signal detection [44] [45].

C. Signal Models for HAMR and BPMR

The read channel model for BPMR can be described by a

2D ISI channel [46]. The contribution of a magnetic island

to the readback signal is determined by the integral of the

head potential function over that island. The 2D ISI channel is

parameterized by two parameters: (a) the down-track crosstalk

parameter that is determined by the distance between the

shields and the MR element, and (b) the cross-track crosstalk

parameter determined by the width of the read head. By

obtaining the 2D ISI channel in the form of a matrix, the

discrete model for readback signal is obtained using the

2D filter and amplitude coded bits within a linear systems

framework [47].

For the write process, since the head size can be more than

the spacing between the magnetic islands, there could be write

errors, with subsequent islands overwritten. The positioning

of the head requires synchronization during writing without

which one can have synchronization mismatch during writing

due to write clock offsets. Further, due to fused islands [21],

one can have insertions or deletions that need to be handled

through special codes. All these contribute to written-in errors,

which must be overcome through proper coding during the

write process [48].

In [49], the authors derived a channel model for HAMR

using the thermal Williams-Comstock model [50]. The authors

in [51], consider modeling the write and read portions using

HAMR over a bit-patterned media. In that model, during

writing a portion of the grains P can be flipped according

to a flip probability [51] along the reversing field that depends

on energy barrier required to flip the magnetization w.r.t the

switching field and the temperature.

dP

dt
= α(1− P ) exp

(

−
∆ϵ

kBT

)

, (21)

where α is a constant. The energy barrier ∆ϵ depends on the

magnetic energy M(T ) per unit volume that in turn depends

on temperature, anisotropy constant K(T ), applied field H
and magnetization as a function of temperature T given by

[51]

∆ϵ = (K(T )−M(T ))V H. (22)

III. CAPACITY ESTIMATION FOR MAGNETIC RECORDING

CHANNELS FROM INFORMATION-THEORETIC TOOLS

The capacity of a data storage system under noisy conditions

is the upper limit on the number of bits per unit area that one

can store on the magnetic medium with an arbitrarily small
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(a) (b) (c)

Figure 8. Write/read model for the Voronoi medium: (a) Desired magnetization of an ideal medium. The grains with magnetization +1/-1 are shaded white
and black in each of the squares. (b) Magnetization of a non-ideal medium as per the Voronoi model. (c) Readback signal (before sampling). We assume the
readback impulse response is a truncated 2D Gaussian pulse of unit energy with half-maximum of 1 bit-period and a span of 3 bit-periods in both dimensions.
Adapted from [6].

probability of decoding error. From Shannon’s channel coding

theorem [52], if we choose a long enough code length n,

one can code the data bits at a rate R < C, where C is the

channel capacity with an arbitrarily small probability of error

p
(n)
e < ϵn and ϵn > 0. The evaluation of the channel capacity

C is difficult. In general, it is not possible to exactly obtain the

capacity for magnetic recording channels since the channel is

non-stationary as the error rates can vary across the tracks and

with device aging. Also, the stationarity/ergodicity conditions

in Shannon’s original theorem do not hold in practice for

magnetic recording channels. Thus, it is important to come up

with reasonable estimates for computing the channel capacity

under certain assumptions.

The capacity estimate of the recording channel can serve

as a performance benchmark for designing error correction

codes and for optimizing the physical parameters of data

storage systems [53]±[55]. The reader must also note that

a practical way of distilling the tightest coding rate for a

practical magnetic recording channel is to increase the coding

rate to such an extent that there are errors beyond a threshold4.

Using bit error rate as the comparison criterion encapsulates

the channel and the signal detector using a simple model,

such as a binary symmetric channel, which provides a loose

lower bound on the information rate. Based on physically

abstracted channel models, one could directly compute the

mutual information rate with different input distributions under

different bit aspect ratios to obtain a lower bound on the

achievable storage density as done in [55].

Chan et al. [56] use the grain-flipping probability model to

optimize the areal density using a signal chain that includes

the partial response equalizer, soft-output Viterbi detector, and

low-density parity check decoder. By varying the physical

parameters, such as the bit length, track pitch and code rate

in the simulations, areal density is evaluated empirically for

4This is one of the practical ways engineers fine-tune the coding param-
eters after an initial estimate of the capacity since the stationary/ergodicity
assumptions do not hold in a practical setup. Also, a wide range of coding
rates are distilled depending on the device aging properties and various stress
tests done in practice.

different head/media configurations. However, the detector is

still 1D, which could be still limiting.

The capacity of discrete channels is defined as the maximum

MIR over all discrete-input distributions. Various bounds on

the capacity of certain 1D discrete input channels with ISI

have been proposed [57]±[60]. The MIR or i.i.d. capacity

can be computed with reasonable accuracy using Monte Carlo

methods.

A. Computing Mutual Information Rates: Trellis-based Ap-

proach

Tne information rate for 1D additive white Gaussian noise

(AWGN) channels with memory can be computed using the

forward recursion of the sum-product (Bahl-Cocke-Jelinek-

Raviv, BCJR) algorithm [61].

1) Capacity Estimate for the 1D Framework: Post partial

response equalization with a pre-target and whitening of the

noise, the equivalent magnetic recording channel is approxi-

mately a linear ISI channel. We shall describe how to estimate

the MIR for an ISI channel. Consider the MIR for n-uses of

the channel, taking inputs x(n) and producing outputs y(n)

given by:

I(X;Y ) = lim
n→∞

1

n
I
(

x(n);y(n)
)

. (23)

Now, equation (23) can be computed as

I(X;Y ) = h(Y )− h(Y |X)
︸ ︷︷ ︸

=h(Z)

, (24)

where h(Y ) = limn→∞
1
n
h
(
y(n)

)
and h(Z) =

limn→∞
1
n
h
(
z(n)

)
.

After whitening through NPML [13], the noise statistics are

approximately Gaussian distributed N (0, σ2
x); hence, h(Z) =

1
2 log2(2πeσ

2
z). We are now left with the computation of h(Y ).

This is where the ideas behind the BCJR algorithm [62]

help us. For this, we need to bring in some parameters related

to the trellis formalism. Suppose the ISI memory is N and the

input alphabet size is |X |. There are |X |N states in the trellis.
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The forward probability of ending in a state j at time k can

be computed as

αk(j) = P (yk, Sk = j). (25)

The term αk(j) in can be obtained through the recursion

αk(j) =
∑

i

αk−1(j)γk(i, j), (26)

where γk(i, j) = P (Sk = j, yk|Sk−1 = i) is the branch

probability i.e., transitioning from state i at time instant k− 1
to state j at time instant k.

The overall probability P
(
y(k)

)
can be obtained as

P
(

y(k)
)

=
∑

j

αk(j). (27)

By initializing α0(j) for all states j with the stationary dis-

tribution 5 of the inputs, one can efficiently compute P
(
y(k)

)

for a certain noise realization. By averaging the computation

p
(
y(n)

)
over several runs, we can obtain

h(Y ) = − lim
n→∞

1

n
E
[

log2

(

p
(

y(n)
))]

. (28)

From equations (24)-(28), one can estimate the MIR for

ISI channels post noise whitening. The reader must note that

when the noise is not fully whitened, one must account for

correlations in the noise while computing h(Z). Further, in

the case of data-dependent noise prediction (DDNP) [63] that

comprises a bank of noise whitening filters that depend on each

input pattern, the overall entropy rate conditioned to each input

pattern can be evaluated based on the local noise statistics from

DDNP filters using the MIR estimation ideas we discussed in

this subsection.

2) Capacity Estimate for the 2D Framework: Similar to

the 1D case, the overall 2D channel for TDMR systems can

be approximated to a 2D finite-state ISI channel with AWGN

after noise whitening, described by

yi,j =

M∑

k=1

N∑

l=1

hk,lxi−k,j−l + ni,j , (29)

where xi,j ∈ {−1,+1} indicates the magnetization of (i, j)th

channel’s bit cell, yi,j is the (i, j)th read-back sample, and

ni,j is the realization of noise under Gaussian statistics, i.e.,

N (0,Σ). The MIR of the TDMR channel with the proba-

bility distribution function P (y|x) is defined as the mutual

information between channel’s input x = [xi,j ] and the output

y = [yi,j ]. We now compute MIR as follows:

MIR =
1

NM
I(X;Y) =

1

NM
H(Y)−

1

NM
H(Y|X), (30)

where H(·), H(·|·), and I(·; ·) in equation (30) are the

entropy, conditional entropy, and mutual information terms,

respectively. Knowing the channel P (y|x), H(Y|X) can be

computed. The problem of obtaining the MIR reduces to

5The reader must note that when input sequences are constrained (see
for example, RLL constraints) and represented through finite state transition
diagrams or equivalently constrained graphs, the stationary distribution of the
source can be used as the initial condition.

computing the entropy rate of the channel’s output H(Y).
From Shannon-McMillan-Breimann theorem [64], assuming

stationarity and ergodicity, the entropy rate is computed as

−
1

n
log p(y) → H(Y ), (31)

as n → ∞ with probability 1. By adopting the trellis-based

strategy over multiple rows over the 2D array of inputs and

outputs, similar to how we outlined the procedure for the 1D

case, one could calculate the marginal output distribution p(y)
for large n for 2D arrays as well. For more details, the reader

is referred to [6].

In general, for 2D channels with memory, it is not known

whether a stationary ergodic random field will achieve the

capacity [65]. Recently, for a special class of 2D channels,

Li and Siegel [66] showed that the operational capacity and

information capacity (Shannon capacity) are equal and can

be achieved by a stationary ergodic random field with input

constraints.

B. GBP based Capacity Estimation Method

Probabilistic graphical models are important in a wide

variety of applications from solving combinatorial problems in

statistical physics to inference problems in signal processing

[67]. These problems can be reformulated equivalently as the

computation of marginal probabilities on factor graphs [68] us-

ing message passing algorithms, such as the belief propagation

(BP) algorithm used in coding theory [69] for decoding low-

density parity check (LDPC) codes and in artificial intelligence

[70]. Computing marginals of functions on a graphical model

has its roots in the broad class of Bayesian inference problems

[71].

It is well-known that the BP algorithm gives exact inference

only on acyclic graphs, i.e., trees. Further, it is also well-

known that BP works poorly on graphs containing a large

number of short cycles (subgraphs with girth=4). The problem

of TDMR channel capacity estimation can considered as one

of the problems corresponding to a factor graph with many

short cycles. There are many cycles in a TDMR channel factor

graph, referring to Figure 9, which invalidates the tree-like

assumption used in BP, leading to poor performance of the

BP algorithm. A new class of message passing algorithms

called generalized belief propagation (GBP) was introduced by

Yedidia, Freeman and Weiss [72] to solve this problem6. The

GBP estimates are approximately close to the true estimate.

Since GBP benefits from region-to-region message passing

instead of the node-to-node message passing algorithm of

BP, GBP algorithm can often dramatically outperform the BP

algorithm in either accuracy or convergence properties. The

output probabilities from a 2D channel actually correspond

to a Boltzmann distribution of an Ising Hamiltonian, with

pairwise interactions and external random fields [73] [74].

The difficulty in estimating a posteriori probabilities lies in

estimating the partition function of factor graphs, or similarly,

the free energy in statistical physics. For the case of capacity

6The reader must note that the estimate obtained through the GBP algorithm
is not exact in general.
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Figure 9. Every 3×3 square within the lattice of 4×4 comprising variables
vi,j is controlled by a local function ci,j . The bi-indices (i, j) indicate the
coordinates of the variable node on the lattice. Adapted from [6].

estimation of TDMR channels, the GBP algorithm can be

utilized to estimate the marginal distribution from the channel

outputs and consequently the channel capacity. GBP algorithm

can be used to estimate the MIR for TDMR channels [44].

The GBP algorithm as a message passing algorithm can

operate on the region graph of the TDMR channel to compute

the marginal probabilities. The belief of each region as an out-

put of the GBP algorithm is an approximation of the marginal

probability. As the GBP is a message passing algorithm, we

first introduce the graphical representation for the procedure.

The factor graph is a bipartite graph representing the factor-

ization of a function, comprising a set of random variables V

and a set of local functions (local constraints) F. In the factor

graph, random variables Vi ∈ V are represented by circles

(variable node) and local functions fj ∈ F are illustrated by

squares (factor node). A variable node Vi is connected to a

factor node fj if and only if Vi is an argument of fj . Figure 9

depicts the factor graph corresponding to a 4 × 4 grid where

each 3 × 3 square region is locally constrained by a factor

node.

For a given graphical model, the region graph is generated

according to the cluster variation method [72] [75]±[77]. A

parent region R is specified by a set of variable nodes and

factor nodes such that if fj ∈ R, then all the variable nodes

connected to fj must be in R. Figure 10 shows the region

graph for the factor graph of 2D ISI constraint shown in

Figure 9. In this example, we choose each factor node to be

in a separate parent region for simplicity. The variable nodes

connected to the factor node also reside in that region. The

child regions of a region graph are then constructed by taking

the intersection of the parent regions, the intersections of the

intersections, and so on through the tree.

In the case of capacity estimation setup, the factor function

f(xCi,j
) = p(yi,j |xCi,j

), and the local constraint is the same

for all the parent regions. The partition function Z and the

Figure 10. Region graph representation of the factor graph in Figure 9.
Adapted from [6].

Helmholtz free energy FH are related as FH = − lnZ. For

the purpose of estimating the information rate, we define the

partition function as

Z(y) =
∑

x

∏

i,j

p(yi,j |xCi,j
) =

∑

x

p(y|x), (32)

where f(xCi,j
) is the factor function explained above.

As previously discussed, the main problem of estimating the

MIR reduces to estimating the entropy of the channel output

y. For this purpose, we use empirical averaging

H(Y) = −Ey log p(y) ≈ −
1

L

L∑

l=1

log p(y(l)), (33)

where L is the number of samples y drawn according to p(y).
Applying Bayes’ law and using the channel model distribution,

p(y) can be written as

p(y(l)) =
∑

x

p(x)p(y(l)|x), (34)

where
∑

x corresponds to a sum over all possible x ∈ X .

The output entropy term reduces to

H(Y ) = −
1

L

L∑

l=1

log

(
1

| X |
Z(y(l))

)

= log(| X |)−
1

L

L∑

l=1

log(Z(y(l))),

(35)

with uniform input distribution i.e., p(x) = 1
|X | . Therefore, the

problem of estimating the mutual information rate of a TDMR

channel reduces to the problem of estimating
∑

x p(y
(l)|x) =

Z(y(l)) as in (32). The indicator function can be written as

the product of local kernels, each having some subset of x as

an argument i.e., f(x) =
∏

a fa(xa), where the indices a of

the local kernels correspond, for example, to the set of all the

three adjacent bits in the horizontal and vertical directions.
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Computing Z can be done by the finding the region-

based free energy estimate. More precisely, the Helmholtz free

energy FH can be estimated using the region-based free energy

approximation technique, giving the partition function Z. If the

GBP is used to compute the beliefs of each region bR(xR),
using the estimated beliefs, an estimate of the free energy F̂H

can be computed using

F̂H =
∑

R∈R

cR
∑

xR

bR(xR)

(

ln bR(xR)− ln
∏

a∈AR

fa(xa)

)

,

(36)

where R is the set of all regions, cR is the counting number,

xR is the set of variables in R and AR is the set of local

kernels in region R. We use parent-to-child messaging with

one kind of message passed between regions. The belief of

any region is the product of all the local factors in the region,

multiplied by the messages coming into that region and to its

descendants from outside. Each region R has a belief bR(xR)
given by [72]

bR(xR) =
∏

a∈AR

fa(xa)




∏

P∈P(R)

mP→R(xR)





=




∏

D∈D(R)

∏

P ′∈P(D)\E(R)

mP ′→D(xD)



 , (37)

where AR is the set of elements in region R and the fa(xa) are

the local factors of region R. P(R) and D(R) are, respectively,

the parent and descendant regions of R. E(R) = R ∪ D(R)
and P(D)\E(R) is the set of all regions that are parents of

region D except for R and descendants of R.

With the terms, TP\R =
∏

a∈FP\R
fa(xa) and TN(P,R) =

∏

(I,J)∈N(P,R) mI→J(xJ), the message-update rule in the

parent-to-child algorithm is

mP→R(xR) =

∑

xP\R
TP\RTN(P,R)

∏

(I,J)∈D(P,R) mI→J(xJ)
,

where the set N(P,R) indicates all connected pairs of regions

(I, J) such that J ∈ E(P )\E(R), while I /∈ E(P ). D(P,R)
is the set of all connected pairs of regions (I, J) such that

J ∈ E(R), while I ∈ E(P )\E(R). FP\R is a set of factor

nodes in the region P\R.

Example 1: We estimate the MIR by using the GBP algo-

rithm for an M ×N array over the Voronoi channel model.

We obtain lower and upper bounds on the GBP-based MIR

estimation for a Voronoi channel. The lower and upper bounds

merge to the actual value for the MIR estimation of the

Voronoi channel with increasing dimensions of the 2D array.

Obtaining the lower bound: In order to compute the beliefs

of the boundary regions, we assume that all the states of the

boundary regions are equiprobable. Under this assumption and

using the GBP algorithm as described before, we establish a

lower bound on the MIR of a TDMR system.

Obtaining the upper bound: The boundary information of

the medium is known to the MIR estimator. For boundary

Table I
ALL THE PARAMETERS IN THE TABLE ARE IN NANOMETERS. WE DENOTE

n1 :n2 :n3={n1, n1 + n2, n1 + 2n2, . . . , n3}. CTC=10NM

TW BL PW50x PW50y

TDMR1 10:1:20 7 20 14
TDMR2 10:1:20 5:0.5:10 20 10

regions, the values of the boundary variable nodes are given

and treated as deterministic in the GBP algorithm. For this

case, we compute an upper bound on the MIR of the Voronoi

channel.

Figure 11. Lower and upper bounds on the MIR for the TDMR1 system.
Increased track width reduces media noise. Adapted from [6].

Figure 11 shows the empirically computed lower and upper

bounds for the MIR estimation of the Voronoi channel with

random 20× 20 and 40 × 40 bit arrays generated according

to the uniform distribution. The parameters of the TDMR1

system simulated are given in Table I. It is worth noting

that the upper bound converges much faster than the lower

bound and both the bounds converge for larger array sizes. In

other words, for a large array size, the boundary bits can be

considered to be known.

IV. SIGNAL PROCESSING FOR RECORDING CHANNELS

The read channel is an interfacing circuit between the read

head and the HDD controller. Encoded data from the computer

or a network is converted to a bipolar current that passes

through electromagnet coils and written as flux changes over

the storage medium through the write head. Now, when a

read head senses the signal from the disk, the readback signal

comprising several artifacts due to timing offsets, ISI, thermal

asperities, noise etc. must be processed before the data is

decoded back.

Variations in the head-media spacing, variations in the mag-

netic, electrical and mechanical properties during the sensing

process all contribute to gains and offsets in the readback

signal, affecting the SNR from the read side. The readback

signal is first compensated w.r.t gains and offsets via analog

control loops. Also, when the read head hits dust particles on

the medium, the readback signal appears to be in the shadow of
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a low-frequency signal of higher energy. This is called thermal

asperity, which can be detected and compensated (refer to

Figure 4).

High-frequency noise is removed using a continuous-time

(CT) filter, typically a Butterworth or an equiripple linear-

phase filter so that the readback signal without aliasing of the

high-frequency noise spectrum can be sampled and processed

further. The CT filter has programmable cutoff frequencies.

Also, to process servo information towards handling timing,

the CT filter would have to be switched to allow low cutoff

frequencies. All these aspects are part of the analog front end.

Post-sampling, the readback signal is passed through a

timing recovery circuit. Post GPR equalization, the data is

processed through a sequence detector. In modern read chan-

nels, the sequence detector and the error correction decoder

are coupled via a turbo loop within the framework of iterative

detection and decoding [78]. We shall now discuss all the

details of the signal processing chain, covering both 1D and

2D techniques.

A. Channel Equalization

Early version of HDDs used analog equalization. With

the introduction of PRML channels, equalization is done

digitally. The sampled readback signal is first equalized

using a linear equalizer before the signal is detected using

a maximum-likelihood (ML) detector. The linear equalizer

reduces the extent of ISI and achieves a desired overall

response called the partial response that controls both the

complexity and performance of the ML sequence detector.

Additional regularization constraints can be forced on the

equalizer so that the pre-target is matched to the channel

spectrum.

Figure 12. GPR equalization in 1D. The combined effects of the recording
channel and the equalizer are equivalent to a PR channel.

PMR channels have used pre-targets [79] based on polyno-

mials of the form (1 − D)m(1 + D)n. Since the parameters

m and n influence the choice of the polynomial7 in terms

of performance as well as the complexity of the sequence

detector, one could balance the extent of partial response ISI

7Historically, (1 +D) is referred to as PR1, (1−D)(1 +D) is referred
to as PR4, (1−D)(1 +D)2 is referred to as EPR4 etc. in the data storage
community.

and the overall system performance. One could also adapt the

FIR equalizer and the target as shown in Figure 12.

B. Timing Recovery for 1D channels

It is important to synchronize the discrete readback samples

so that signal detection can be accomplished post PR equal-

ization. The timing recovery module accomplishes this goal

by providing the samples at the desired time instants. Timing

errors in HDDs are due to accumulated phase errors, frequency

errors and jitter. Timing jitters can be modeled as a discrete

random process using random walks [80].

Timing recovery algorithms are of two classes: (a) PLL-

based [81] and (b) interpolative timing recovery (ITR)-based

[82] (Chapter 27 from [27]). We will first review both these

techniques for the 1D case before getting to the shingled case

and 2D.

Figure 13. A conventional VCO-based timing recovery. This is part of the
loop-Viterbi engine. The timing error estimates from the timing error detector
(TED) are passed through the loop filter and a VCO to feed the timing
estimates for resampling.

1) PLL-based Timing Error Detector: The noisy equalized

sample y(k) is fed to a PLL unit having a phase detector,

typically a second order loop filter and a voltage-controlled

oscillator (VCO) as shown in Figure 13. The other signal

inputs to the phase detector are the ideal/desired values ŷ(k)
obtained by filtering known data d(k) through the PR target.

The phase detector obtains the misalignment between the ideal

samples and the actual samples from the sampler output. Using

the Mueller and Muller estimate [83], the timing gradient is

computed as

ϵ̂(k) = y(k)ŷ(k − 1)− y(k − 1)ŷ(k). (38)

The estimated timing error ϵ̂(k) is now filtered through a

second order loop filter with additional delays z−L to handle

any timing loop latencies. The sampling offsets are updated

according to the following equations:

θ̂k = θ̂k−1 + βϵ̂k, (39)

τ̂k+1 = τ̂k + αϵ̂k + θ̂k, (40)

where α and β are the PLL parameters for gain adjustment

and for controlling the loop bandwidth and convergence rate,

θ̂k corresponds to the frequency error and τ̂k is the adjusted
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timing offset. The reader must note that a preamble is used

for training the PLL in the acquisition mode.

2) Interpolative Timing Recovery: The VCO unit of the

PLL-based timing recovery can be made digital using the ITR

scheme. In this method, received samples are resampled at a

higher rate ∼ 2−5% of the baud rate and interpolated using a

digital filter for obtaining the correct timing sample. The digi-

tal filter is obtained using the MMSE criterion that minimizes

the MSE between ideal and the interpolated samples.

Figure 14. The interpolative timing recovery unit comprises an interpolation
filter which adjusts the timing instants in the oversampled domain based on
the sampling phase offsets.

Figure 14 shows the ITR architecture. The sampling time

instant tk = kT + τ̂k = (mk + µk)Ts. The integer mk is a

multiple of Ts and µk is a fraction of the oversampled time

period. With 5% oversampling, the oversampling rate fs =
1
Ts

is typically related as E(T ) = 1.05Ts since T is non-ideal and

is a random variable due to clock jitters.

Without any timing error, binary sequence ak ∈ {−1, 1} is

filtered through the PR equalizer with PR target p(t) to yield

the samples y(kT ) given by

ŷ(kT ) =

∞∑

m=−∞

amp(kT −mT ). (41)

Using the interpolating filter fµk
for the phase µk over a

span n1 + n2 + 1 samples, we have

y(kT ) =

n1∑

l=−n2

fµk
(l)yip((mk − l)Ts), (42)

where the interpolated signal yip(kT − µkTs − lTs) is given

by

yip(kT − µkTs − lTs) =

∞∑

i=−∞

aip (kT − µkTs − lTs − iT )

+ n (kT − µkTs − iTs) . (43)

The optimal filter fµk
for the sampling phase µk is solved

using

µ∗
k = min

µk

E
[

(ŷ(kT )− y(kT ))
2
]

. (44)

The estimation of the initial sampling phase can be done

using a preamble and this process is called the digital zero

phase start. Further, the reader must note that the solution

of equation (44) can be obtained using adaptive algorithms

such as the LMS algorithm by estimating the coefficients of

the adaptive filter when the channel conditions change. In

practice, one could you simple interpolative methods, such as

a linear interpolator at the cost of performance degradation.

Since solving for optimal filters is not practical for high speed

circuits, one can design a bank of such filters under quantized

phase offsets and use an appropriate filter based on the timing

phase estimation.

C. Signal Detection for MR channels

Early versions of PRML channels used hard decision Viterbi

detectors [84] [85]. With the advent of turbo codes [86] and

turbo equalization [78], almost all HDDs use the soft-decision

Viterbi algorithm (SOVA) [87] [88] for signal detection. Post

equalization and timing, the Viterbi algorithm obtains the ML-

optimal sequence b of length N from the noisy version of the

sequence y by finding

bML = argmax
(b)

P (y|b). (45)

Since the signal detection is over a PR target, using the

memory of the equivalent ISI channel i.e., corresponding to the

PR target, a trellis structure amenable to a desired level of the

computational complexity can be chosen. If I is the memory

of the channel ISI, we define the states Sk := bk−1
k−I and

Sk−1 := bkk−I+1 corresponding to the memory of the Markov

process. Over the trellis stages, the conditional probability of

the received sequence given the input bit sequence is given by

P (y|b) =
N−1∏

k=0

P (yk|Sk, Sk−1). (46)

The quantity P (yk|Sk, Sk−1) = P (nk) is the probability of

the noise sample at time instant k. Assuming that the noise

statistics are Gaussian N (0, σ2), given the received value yk
and the ideal value ok, one could easily compute nk = yk−ok
by plugging it in equation (46). For numerical stability, the

computations can be done in the logarithmic domain.

logP (y|b) ∝ −
N−1∑

k=0

(yk − ok)
2
. (47)

The state metric SM
(i)
k for a trellis state i at time k is related

by the recursion

SM
(i)
k = SM

(i)
k−1 + BMk, (48)

where BM is the least among the branch metrics that connects

state i at time k from any other state j at time k − 1. This is

commonly referred to as the add-compare-select (ACS) logic.

By doing the recursion over the entire length of the trellis

after picking up the state metric that is the least among all the

states, one could back trace the path, reading the labels of the

bits in the reverse order corresponding to the path with the

least state metric at time N . This is the essence of the Viterbi

sequence detection.

The SOVA provides soft information by computing the

probability of a wrong/complementary decision through the
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Figure 15. Using a M1 step traceback, through the Viterbi algorithm ML path is determined. Using a M2 step traceback, the second best path is found using
the SOVA.

survivor paths on the trellis. Specifically, at any time instant k,

following a M1-step traceback from the hard decision Viterbi

algorithm, the state metric of the survivor is obtained as SM
(s)
k .

Now, with a M2-step traceback further from the time instant

k, the loser path or the second best ML path yielding a

complementary decision has a state metric SM
(l)
k < SM

(s)
k .

From the SOVA algorithm, the probability of choosing the

second best path over the ML path is Perr = 1
1+e∆k

, where

∆k = SMs
k − SMl

k, corresponding to the log-likelihood ratio

or odds for the survivor decision to be correct. The soft

decisions that SOVA allows helps in the turbo-equalization

process while dealing with an iterative ECC decoder. At this

stage, we note that one could obtain the MAP decisions for

signal detection based on the elegant BCJR algorithm [61].

However, latencies on the order of the sequence length and

area/power complexities limit use of the BCJR in hardware.

For the aforementioned reasons, though the SOVA is sub-

optimal in performance, it is the state-of-the-art algorithm [89]

implemented in read channel ICs. Recently, the authors in [90]

have proposed an asynchronous version of the SOVA with an

eye towards low-power design.

Figure 16. Post equalization and timing, noisy samples obtained as as
difference from the ideal samples and the equalized samples are whitened
using the NPML/DDNP. The noise statistics extracted is fed to the soft-
decision detector within a turbo detector/decoder setup.

To further improve channel reliabilities, subsequent versions

of soft-decision-based signal detectors used NPML detection

[13]. Figure 16 shows the noise path after adaptive equalization

and timing recovery. Colored noise must be whitened and the

noise statistics are fed to the detector for branch metric com-

putation. With experimental evidence into pattern-dependent

noise arising due to magnetic transitions, the DDNP-detection

algorithm was conceived [63]. This is now the standard

algorithm residing in HDDs that we shall describe as follows:

For each data pattern b of length L, the noise observed at the

output of the detector can be modeled using an autoregressive

(AR) process. In other words, we group the noise samples

from the input data sequence specific to each data pattern b

and predict this using a linear predictor.

n̂
(b)
k =

L∑

l=1

aln
(b)
k−l + e

(b)
k . (49)

The filter coefficients a
(b)
l for 1 ≤ l ≤ L are solved using

the MMSE criterion:

a∗
(b) = min

a(b)
E
[

(n
(b)
k − n̂

(b)
k )2

]

. (50)

The noise variance for each pattern b is its corresponding

prediction error E(e2k). The noise is now whitened using this

data-dependent prediction filter referred to as DDNP while

computing the branch metric within the SOVA algorithm. The

reader must note that in practice, one can account for bipolar

symmetry in the data patterns to reduce the filterbank size by

half, amenable for hardware. For example, for a 4-bit pattern,

0101 and 1010 are bipolarly similar. These patterns can share

the same DDNP filter. DDNP filters can also be adapted

[91] using the LMS algorithm towards ease of hardware

implementation.

With this background, we are now set to discuss the signal

processing algorithms and architectures for shingled record-

ing and native 2-D signal processing algorithms for TDMR

channels.
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D. Signal processing for shingled systems

As described earlier, shingled systems work with overlapped

writes. With multiple read heads positioned over two or

more tracks, one can embrace handling crosstalk along and

across the tracks as well as synchronization issues in 2D

by processing the tracks jointly. These techniques are part

of shingled systems. We will discuss some signal processing

architectures for single-track as well as the multi-track cases.

1) Single-track case: In single-track detection, the read

heads are positioned over a single track of interest [92] [93]

to extract the timing information and to detect and recover the

bits.

In the signal processing architecture for single track de-

tection with multiple readers, each readback waveform is

separately equalized before being added together. The archi-

tecture is equivalent to a multiple-input single-output (MISO)

equalizer [6] within the GPR equalization framework [94]

with monic constraints that we discussed earlier. The equalizer

handles any crosstalk from the neighboring tracks during the

reads. Using 1D strategies, such as the interpolated timing

recovery (ITR), the timing offsets can be handled prior to

detection. The rest of the signal chain proceeds with a 1D

detector with DDNP capability post equalization and timing

recovery using the ideas that we discussed earlier. In this

architecture since the crosstalk is suppressed asynchronously

prior to synchronization, a 1D timing loop is sufficient post

equalizer, prior to detection.

2) Multi-track case: Additional SNR gains can be obtained

by doing multi-track detection [95] [96]. In [97], [98], the

authors proposed a detector that uses a different trellis struc-

ture whose output labels are independent of the inter track

interference (ITI) level, with ITI-dependence appearing only in

a scale factor for weighing the computed path metrics towards

retaining ML optimality. The detector formulation can track

the time-varying ITI and provide ITI estimates to adaptively

adjust the weights in the path metric evaluation. However,

these techniques assume that the tracks are synchronous.

Multiple tracks can be jointly processed for doing equaliza-

tion using the multiple-input multiple-output (MIMO) frame-

work8 since 2D ISI contains significant energy that must

be processed to provide improved reliability. In the signal

processing architecture for multiple readers and multitrack

detection, the monic constraint for the single-track case is

extended to a 2 × 2 target with certain constraints [80]. By

minimizing the norm of the error vector, the equalizer and

the target filters are solved using the GPR framework. In

[99] [100], the authors proposed a remix strategy to handle

synchronization. In their approach, the cascade of the MIMO

channel and the equalizer is forced equivalent to a pair of

MISO equalizers i.e., in diagonal form, termed as ‘unmixing’

stage. Post the unmixing, the equalized streams are separately

processed using a timing recovery module, such as the ITR

algorithm. After this, a MIMO filter is used to ‘remix’ the

signals to restore the non-diagonal nature of the original

MIMO channel using a whitening filter. The remixed signal is

used subsequently for detection.

8The MIMO framework is suitable when the number of readers is small.

For jointly detecting asynchronous multiple tracks, the

rotating-target (ROTAR) algorithm in which a time-varying

target based on the per-survivor processing timing recovery

algorithm can jointly handle timing recovery and detection

[101]. This work is also recently extended towards a MIMO-

based PR equalization and multi-track detection, where de-

tected data is written asynchronously [102].

Except for equalization and pre-target selection, the modules

for rest of the signal chain are still 1D. Perfect equalization and

timing may not possible. There can be residual 2D crosstalk

which must be removed by the detector for improved deci-

sions. This necessitates the design of native 2D algorithms for

TDMR channels. Within a 2D framework, we could generalize

1D signal processing techniques to work with crosstalk and

timing errors in 2D.

E. Signal processing for 2D channels

With large rectangular array sizes, TDMR channels are

entirely 2D, requiring native 2D signal processing techniques.

We first discuss the GPR equalization strategy that can work

for both separable and non-separable 2D filters. This approach

does not impose any specific constraint on the PR target to be

in lower-triangular form as discussed in the shingled case [6].

This work generalizes the GPR equalization strategy done for

the 1D case directly to 2D.

Figure 17. Schematic of the 2D GPR equalization. The 2D GPR target could
be separable or non-separable, influencing the performance and complexity
of signal detection later in the signal chain.

1) GPR Equalization: Figure 17 shows the PR equalization

scheme for the 2D channel. The schematic for the 1D case

follows similarly. Let ai,j ∈ {−1, 1} be an array of 2D bits.

Let yi,j ∈ R be the discrete readback samples. Let F := [fi,j ]
and G := [gi,j ] be the coefficients of the PR equalizer and

the target. Using a vector notation, we can raster F and G
as f = vec(F) and g = vec(G). The samples at the output

of the equalizer corresponding to the local span of the input

samples are given by

zi,j = fTy(i,j). (51)

Similarly, following the signal path in Figure 17, the output

of the pre-target is given by

ẑi,j = gTa(i,j). (52)

With the error ei,j = zi,j − ẑi,j , we setup the MMSE

criterion as follows:

E = E
(
e2i,j
)
. (53)
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Using equations (51) and (52) and expanding equation (53),

we have

E = fTRyyf + gTRaag − 2gTRayf , (54)

where

Raa = E

(

a(i,j)
(

a(i,j)
)T
)

,

Ryy = E

(

y(i,j)
(

y(i,j)
)T
)

,

Ray = E

(

a(i,j)
(

y(i,j)
)T
)

.

Rewriting equation (54), we have the quadratic form:

E =
(
f −R−1

yy Rayg
)T

Ryy

(
f −R−1

yy Rayg
)

+ gT
(
Raa −RayR

−1
yy R

T
ay

)
g. (55)

The equalizer f = R−1
yy Rayg is the solution for a chosen

pre-target. One can however enforce certain regulatory con-

straints to solve for the target as well.

We have the following two cases:

1) Unit energy constraint: With gTg = 1, we can solve

g∗ to the eigenvector corresponding to the smallest

eigenvalue of Raa −RayR
−1
yy R

T
ay .

2) Monic constraint: With the constraint uTg = 1,

g∗ =
Raa−RayR

−1
yy RT

ayu

uTRaa−RayR
−1
yy RT

ayu
.

For 2D targets, one can also consider separable 1D filters.

For more details, the reader is referred to [103]. It is important

to note that under time-varying channel conditions, we could

adapt the targets and equalizers as well. This can be easily

handled within this GPR framework through adaptation based

on the LMS algorithm.

2) 2D Timing Recovery Techniques: Timing recovery for

2D is done using the (a) 2D PLLs, (b) 2D ITR recovery

schemes and (c) 2D joint timing detection schemes.

The servo mechanisms while reading are far from ideal

conditions due to mechanical vibrations and shocks on the read

heads. These are nanoscale events9. 2D timing recovery has

advantages since asynchronicity across multiple tracks can be

taken to our advantage to obtain synchronous tracks by jointly

processing these tracks using suitable algorithms as discussed

earlier. Within a linear approximation setup, readback signal is

modeled as filtering the written data dk through the 2D head

response h(t) along with timing offsets τ as [104]:

r(t) =
∑

k∈Z2

dkh(t− k
T
T − τ (k)) + n(t), (56)

where t = [x, y]T , k = [m,n]T , T = diag(Tx, Ty), τ =
[τx, τy]

T , all in 2D. The terms Tx and Ty represent the spatial

bit periods along the x and y directions. Similarly, τx and τy
represent the timing errors along the x and y directions. NRZ

9It is often remarked by practitioners in the industry that a flying read head
over a medium at nanoscales is equivalent to Boeing 747 flying several meters
above the ground. Alignment of the head on the right track is equivalent to a
flight landing carefully on a narrow air strip.

Figure 18. Schematic architecture of the 2D PLL scheme. The timing
estimates from the PLL are used to adjust the sampling instants. Adapted
from [6].

coded binary data stored on the media is represented by dk,

where k ∈ Z
2. The term n(t) represents the electronic noise

associated with the readback process and can be assumed to

be normally distributed in two-dimensions. Whitening filters

can remove any noise coloration due to filtering or jitter.

Timing errors in TDMR can be a combination of both phase

and frequency errors on a 2D surface. Figure 18 shows the

2D PLL architecture for correcting these timing errors. Let

the phase errors along the x and y directions be ϕx and

ϕy respectively. Similarly, let δT
(x)
x and δT

(y)
y be the period

offsets along the x and y directions. The overall timing error

for separable frequency offsets due to a direction dependent

timing error can be modeled as

τ (k) = Φ+m
T
B + n(k), (57)

where Φ = [ϕx, ϕy]
T , B = diag(δT

(x)
x , δT

(y)
y ).

Frequency drifts in 2D can result in non-separable timing

offsets that could be modeled by modifying B to allow

projections of the timing errors in the x and y directions as

B =

[

δT
(x)
x δT

(x)
y

δT
(y)
x δT

(y)
y

]

, (58)

where δT
(y)
x and δT

(x)
y represent the projections on the y and

x directions due to period offsets. Non-separable errors can

occur due to both direction and position dependent physical

errors in the servo system. We discuss several 2D timing

recovery schemes relevant to TDMR systems.

Upon sampling the readback signal with timing errors, using

the matrix T , we obtain

r(iTT ) = dih(−τ (i)) +
∑

k ̸=i∈Z2

dkh(i
T
T − k

T
T − τ (k))

+ n(iTT ), (59)

where i = [m,n]T represents the 2D coordinates of the

samples. The first term in (59) represents the encoded bits

written on the medium, evidently distorted by the presence

of timing errors. The second term represents the 2D ISI that

needs to be mitigated by the equalizer. The third term is the

electronic noise component with Gaussian statistics.
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In a PLL driven timing recovery architecture, the timing

errors are corrected by changing the sampling instants iTT to

i
T
T+τ̂ (i), where, τ̂ (i) are the estimated timing errors. These

timing estimates are generated prior to the sampling instant

i
T
T based on the past samples available from previously

sampled data of the readback signal. The corrected sampling

process is given by

r(iTT + τ̂ (i)) = dih(τ̂ (i)− τ (i))+
∑

k ̸=i∈Z2

dkh(i
T
T − k

T
T + τ̂ (k)− τ (k)) + n(iTT + τ̂ (i)).

(60)

The PLL-based timing architecture shown in Figure 18

is a decision directed scheme. A loop Viterbi detector is

included to provide decision estimates on the individual bits.

The reader must note that this loop Viterbi is a data-aided

detector, and different from the signal detector before the

ECC decoder in typical turbo-equalization setup. The PLL

operates in two modes: a) the acquisition mode using

data from the preamble, and b) the tracking mode which

uses estimated decision information from the detector. The

estimated error components, êx and êy are filtered using a

loop filter. The sampling at the i
th instant is done using the

estimated timing offsets along x and y directions i.e., using

the components of τ̂ (i). This timing module is entirely digital.

Timing Error Detector (TED):

Based on the current and past sampled values, rm,n, rm−1,n

and rm,n−1 and the corresponding decisions on these samples,

the TED can generate the phase error estimates. For this, we

bring in a bit of signal geometry into the update equations,

extending the ideas of [83] naturally to a 2D setting. Consider

a vector of received samples R⃗i = rm,n⃗i+rm−1,nj⃗+rm,n−1k⃗,

where, i⃗, j⃗ and k⃗ are unit orthonormal vectors in a 3D

space. Similarly, a corresponding decision vector/ideal vector

D⃗i = d̂m,n⃗i+ d̂m−1,nj⃗ + d̂m,n−1k⃗ is formulated. To achieve

synchronization on a two dimensional grid, the angle between

the two vectors, R⃗ and D⃗ must be minimized. The angle

between the two vectors at the i
th instant, θi is given by

sin(θi) =
R⃗i × D⃗i

|R⃗i||D⃗i|
n⃗. (61)

For small angles, sin(θi) ≈ θi. This assumption is valid

since the timing drifts are a small fraction of the sampling

times. Ignoring the denominator term in (61), we can minimize

the square of the numerator. The angle θi can be written as

θ2
i
≈(rm,nd̂m−1,n − rm−1,nd̂m,n)

2+

(rm,nd̂m,n−1 − rm,n−1d̂m,n)
2+

(rm−1,nd̂m,n−1 − rm,n−1d̂m−1,n)
2. (62)

The minimization of θ would involve minimizing each

individual term in (62). We now define the terms êx(i), êy(i)

Figure 19. Schematic architecture of the 2D ITR scheme. A 2D interpolating
filter provides the timing estimates in the oversampled domain.

and êxy(i) as

êx(i) = rm,nd̂m−1,n − rm−1,nd̂m,n, (63)

êy(i) = rm,nd̂m,n−1 − rm,n−1d̂m,n, (64)

êxy(i) = rm−1,nd̂m,n−1 − rm,n−1d̂m−1,n. (65)

The term êxy(i) can be expressed as a linear combination

of êx(i) and êy(i), simplifying the minimization of θ2, since

it is now sufficient to minimize êx and êy .

PLL Update Equations:

We consider a second order 2D PLL for tracking. The

update equations are given by

τ̂x(m+ 1, n+ 1) = τ̂x(m,n) +K(p)
x êx(m,n)

+K(ix)
x

m−1∑

l=−∞

êx(l, n) +K(ix)
y

n−1∑

l=−∞

êx(m, l), (66)

and

τ̂y(m+ 1, n+ 1) = τ̂y(m,n) +K(p)
y êy(m,n)

+K(iy)
x

m−1∑

l=−∞

êy(l, n) +K(iy)
y

n−1∑

l=−∞

êy(m, l). (67)

Here, K
(p)
x ,K

(p)
y are the proportional constants used to

scale the error estimates êx and êy respectively. K
(ix)
x and

K
(ix)
y are the integral scaling factors associated with êx along

the x and y directions respectively. Similarly, K
(iy)
x and K

(iy)
y

are the integral scaling factors associated with êy along the x
and y directions respectively. Real-time control of oscillators

in the timing loop is difficult to realize in practice. To

overcome these issues, a fully digital 2D interpolative timing

recovery architecture (ref. to Figure 19) is proposed in [105].

The 2D readback signal is oversampled by a small amount

along both the directions. The oversampling requirement in 1D

magnetic storage systems is ∼ 5− 10%. The specifications in

2D are similar. The interpolative timing recovery architecture

[104], [105], shown in Figure 19 is applicable for TDMR

systems. These ideas generalize the timing recovery techniques

going beyond those for shingled systems.

The interpolation scheme provides more refined estimates of

the desired sampling point instead of requiring an ADC or a
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Figure 20. Viterbi detector extended in 2D for soft-decision detection. The decisions are based on the scanning order of the 2D array confined to a local
region M.

Figure 21. 2D pattern-dependent noise prediction and whitening filters are
used within the signal detector to improve the quality of soft-decisions.

servo to latch on to a sampling point [6]. The derivation of an

optimal interpolation filter towards timing recovery based on

the MMSE criterion is given in [105]. Adaptation algorithms

such as LMS can also be done to overcome the limitations of

the direct solution obtained through the MMSE criterion while

dealing with hardware.

The 2D ITR approach proposed in [104] shown in Figure

19 is demonstrated to provide superior gains in both timing

estimates and implementation complexity for a fixed filter or-

der compared to the sinc-based interpolation approach, paving

the way for possible circuit realizations of this architecture.

Now, we are set to discuss 2D signal detection techniques.

Though this topic is a detailed magazine article in itself,

we try to provide a gist of the ideas behind the signal

detection techniques. The detailed mathematical derivations

can be referred to in the cited papers.

3) 2D Signal Detection and Joint Signal Processing

Engines: The 2D SOVA algorithm is a generalization of the

1D SOVA detector developed in [31]. Among all possible 2D

arrays, the one that maximizes the likelihood probability is

to be chosen. Since computing the likelihood over an entire

array is computationally infeasible 10, we can restrict the

search to a local region to make decisions for the individual

bits. Unlike the 1D case, decisions depend on the scanning

order of the 2D array when confined to a local search. Over

a local region M of the 2D array with the received samples

10ML detection for 2D is NP-hard

y
(i,j)
M ,

P
(

y(i,j)
M

|a
)

∝
1

2σ2
||y(i,j)

M
− ŷ(i,j)

M
||2

︸ ︷︷ ︸

=Γ

,

where ŷ(i,j)
M

denotes the ideal samples ŷ(i,j) = gTa
(i,j)
G

obtained by filtering the 2D data through the pre-target.

By minimizing the ML metric Γ, one can obtain the hard

decisions. These decisions are made by decomposing the

neighborhood around the point (i, j) of interest into 3 parts,

comprising (a) regions where decisions are already made

P(i,j), (b) the point (i, j) and (c) the region where decisions

are to be made S(i,j). The decision at point (i, j) is made by

minimizing the ML metric over all possible choices of bits

in the region S(i,j) as illustrated in the Figure 20. Compactly

put,

âi,j = argmin
ai,j

[

min
a(S(i,j))

Γ
(

â
(

P(i,j)
)

, ai,j , a
(

S(i,j)
))
]

︸ ︷︷ ︸

ML1(i,j)

,

(68)

where ML1(i, j) the ML metric corresponding to the 2D

Viterbi hard decisions i.e., the least among all the Γ metrics.

In 2D, it is non-trivial to identify the competing surfaces

that merge at a state given by (i, j) and a
(
S(i,j)

)
. For each

decision, we consider a single competing surface correspond-

ing to a wrong decision at the current position (i, j). The

corresponding ML metric for this second best path is given

by:

ML2(i, j) = min
ai,j ̸=âi,j

[

min
a(S(i,j))

Γ
(

â
(

P(i,j)
)

, ai,j , a
(

S(i,j)
))
]

.

(69)

Using equations (68) and (69), we can obtain the soft

decisions as

LLRi,j = (ML2(i, j)−ML1(i, j)) âi,j . (70)

Figure 21 shows the signal chain for the bank of 2D DDNP

filters along with the 2D signal detector. For a choice of

the current state specific to each data pattern, ideal samples

are computed, the noise is predicted and whitened using
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(a)

(b)

(c)

Figure 22. (a) Schematic of the multi-row/multi-column detector configured
in a turbo setup. The detectors are based on the 1D BCJR extension. (b)
Schematic of a 2D self-iterating soft-equalizer. (c) Schematic of the overall
joint 2D self-iterating equalizer and the 2D detector coupled in a turbo setup.

the 2D prediction and whitening filters. The whitened noise

along with its error variance forms the branch metric to be

used with the 2D detector, mirroring the 1D DDNP-detection

engine. However, the reader must note that the 2D engine uses

feedback along a neighborhood of 2D samples since handling

the entire array for inference on a bit is computationally

prohibitive. For more details on the TDMR models and signal

processing algorithms, the reader is referred to [106].

In [107], the authors developed an iterative multi-row/multi-

column detector. The multi-row detector acts row-wise, while

the multi-column detector acts column-wise. Both these detec-

tors are trellis-based and use feedback information from neigh-

boring pixels for making decisions, as shown in Figure 22(a).

These coupled detectors exchange soft-information within a

turbo setup towards obtaining near-MAP performance.

Further, in the same work, the authors developed a 2D self-

iterating equalizer, whose schematic is shown in Figure 22(b).

The 2D self-iterating soft equalizer brings in additional SNR

gains. This engine is further coupled to the 2D row/column

detector in a turbo setup in a fully iterative equalizer-detection

setup. The architecture of the JTED engine is illustrated in

Figure 22(c). The combined engine provided ∼ 8dB signifi-

cant coded SNR gain compared to the uncoded 2D equalizer-

detector system over 64× 64 coded LDPC arrays. The reader

must note that the ideas behind JTED can be explored for

other combinations, such as using a 2D SOVA detector etc.

The GBP detector that we discussed for estimating MIR

has also been used for 2D detection [108]. Though the GBP

algorithm provides near ML performance, it is computationally

intensive and is not scalable for handling large arrays that

are practically relevant to 2D data storage. Recently, deep

neural networks based architectures are being explored for

the equalizers and detectors [109] [110] towards TDMR.

Complexity and performance trade-offs can be realized using

various JTED detector/equalizer configurations [107]. Further,

the JTED engine is scalable for large arrays and could be

used in practice. The turbo setup has also been used to obtain

Grid with descretized timing-offsets δB̄x, δB̄y

Closest discretized-timing estimates

Ideal sampling instances

(a)

(0,+δB̄y) (+δB̄x,+δB̄y)

(+δB̄x,+0)

(+δB̄x,−δB̄y)(+0,−δB̄y)(-δB̄x,−δB̄y)

(-δB̄x, 0)

(-δB̄x,+δB̄y)

Random walk with unit step size

(b)

Figure 23. (a) Timing offsets are discretized according to a desired level of
timing error resolution. (b) The discrete set of timing offsets can be modeled
as a 2D random walk process to be folded within the joint state space of the
timing-recovery and detector algorithm..
additional SNR gains when the 2D detector is coupled with

a timing recovery algorithm. In the joint 2D timing recovery

and signal detection scheme, [111], the timing errors are first
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discretized as shown in Figure 23, and the frequency offsets

are estimated using a preamble. For each possible timing error,

the ideal sample is obtained using an interpolation filter. The

timing offsets are included within the definition of a trellis

that operates over the joint state space of timing errors and the

2D channel ISI. This approach has the advantage to naturally

handle correlated timing errors along with signal detection

since it is within a Markov framework. The likelihood prob-

ability is computed over a local span of readback samples.

The timing errors are estimated along with the bit decisions

by maximizing the likelihood probability as derived in [111].

Due to the rastering, the timing error estimates of future

samples may not available to estimate the timing error at a

desired location for the first pass. However, these estimates

are available and get refined over the subsequent iterations

during the turbo iterative process.

It was reported that nearly 10% areal density gains can

be realized using the iterative joint timing detector engine

around the 1 Tb/in2 regime with grain sizes ∼ 10 nm and

bit sizes of 25x25 nm using the 2D SOVA compared to a

standalone timing loop coupled to a 2D detector in an open-

loop configuration for TDMR systems [111] comprising a 2D

generalized partial response (GPR) equalization along the 2D

SOVA with DDNP capability over the Voronoi media model.

FPGA implementations of a high-throughput 2D separable

iterative soft-output Viterbi detector are also done in [112]

by building over the algorithm proposed in [113]. These

efforts are a step towards hardware realizations of the signal

processing algorithms. During TMRC conferences, TDMR

has been often dubbed as ‘terribly difficult magnetic record-

ing’ due to several challenges in building advanced signal

processing and coding techniques. By innovating native 2D

algorithms meeting the challenges for handling equalization,

timing recovery and signal detection along with ECCs, ADs

in TDMR systems can be more than doubled.

We will now discuss coding techniques relevant to HDDs.

V. CODING TECHNIQUES FOR RECORDING CHANNELS

A. Modulation Coding for HDDs

Figure 24. Constrained graph of RLL (2, 7) code used in early version of
HDDs with peak detection circuits for signal detection.

HDDs using peak detection circuits for signal detection

used binary (d, k) constrained codes. In early developments

of channels efforts for HDDs, these codes played a critical

role in dealing with channel ISI and timing issues. In the con-

ventional setup, post error correction encoding and modulation

encoding, such constrained codes were written on the magnetic

medium. With the introduction of reverse order coding (ROC)

by Bliss [114], the data is first modulation encoded and then

error correction encoded using a systematic error correction

code before being written onto the disk. This scheme avoids

channel errors propagating through the modulation decoder in

the conventional setup, particularly while dealing with high-

rate codes with long block lengths. Since systematic encoders

are used in practice, parity portion of the data payload may

weakly satisfy the modulation constraints. This may not be

much of a concern dealing with high-rate large block length

codes typically used in magnetic recording. Binary (d, k)
constrained codes have a minimum of d zeros and a maximum

of k zeros between any two ones. These constrained sequences

can be represented as digraphs. The combinatorial entropy or

equivalently the noiseless capacity of a channel admitting such

constrained sequences is given by C = log2 (λmax), where

λmax is the largest eigenvalue of the adjacency matrix of

the graph representing the (d, k) constraints. For a thorough

treatment on constrained coding, the reader is referred to

the book by Lind and Marcus [115]. For a comprehensive

discussion on code construction methods, the reader is referred

to the online lecture notes by Marcus, Roth and Siegel [116].

Figure 24 shows the example of a (2, 7) constrained code

used in IBM drives that we discussed in the Introduction. A

lot of research effort was done in the construction of efficient

encoders and decoders for such (d, k) constrained codes. The

state splitting algorithm, also called the ACH algorithm named

after its inventors Adler, Coppersmith and Hassner [117] was

one of the key techniques used for constructing these codes.

The state splitting algorithm yields fixed-length encoders.

Table II shows the encoder states for the fixed-length RLL

(1, 7) code. There are totally 5 states in the state machine.

Each state takes in 2 input bits of information and outputs 3

coded bits. The output bits and the corresponding outgoing

states are described in each entry corresponding to each set of

input bits and the input state.

Table II
RATE

2
3

FIXED-LENGTH CODES FOR RLL (1, 7) [118] (SHANNON

CAPACITY IS 0.6793.).

Input\State 1 2 3 4 5

00 101/4 100/4 001/4 010/4 000/4

01 101/3 100/3 001/3 010/3 000/3

10 101/5 100/2 001/5 010/2 000/2

11 100/5 100/1 010/5 010/1 000/1

There has also been work on variable-length encoders using

ideas such as bit-stuffing etc. [119] [120]. Table III shows

the encoding lookup-table for variable-length RLL (2, 7) code.

For more details on modulation codes for recording channels,

the reader is referred to the comprehensive survey papers by

Marcus et al. [121] and Immink et al. [118].

Investigation into the minimum distance error events over

PR channels [122] led to error event characterization for a

variety of PR targets. Modulation codes were designed based

on error event analysis to avoid bad sequences that led to

errors at the output of the Viterbi detector within a PRML

setup. The maximum transition run (MTR) code developed by

Moon and Bricker [123] is one such example of a modulation
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Table III
RATE

1
2

VARIABLE-LENGTH ENCODER FOR RLL (2, 7 CODE (SHANNON

CAPACITY IS 0.5172) FROM [8].

Input Output

10 0100

11 1000

000 000100

010 100100

011 001000

0010 00100100

0011 00001000

code that forbids/limits the length of occurrence of pairs of

consecutive bit transitions. SNR gains were observed using

high-rate MTR codes over PMRL channels. The trellis state

of the PRML detector was equipped to handle both the

modulation constraints as well as channel ISI.

Analysis of the power spectrum of (d, k) modulation codes

was important [124] to quantify the bandwidth compression

arising from written data on the medium post RLL encoding.

Also, the power spectrum analysis was helpful to determine

the amount of interference due to embedded servo and other

timing information within the data signal, as well determine

the crosstalk from adjacent tracks. Further, there were also

notable works in the area of spectral-null codes [125] for

applications in MR channels. Generalizations have been done

for higher-order spectral-null codes in [126]. Techniques for

the spectral analysis of modulation codes attuned to MR

channels is useful for assessing the power allocation across

such coded sequences.

(d, k)-constrained codes came with a code rate penalty,

especially with d ≥ 1. With powerful signal detectors for

mitigating ISI, the d constraint that yielded low coding rates

was no longer relevant for HDDs post peak detection schemes.

Instead, high-rate (0, k)-constrained codes [127] were more

relevant to PMR channels for timing recovery.

In the same spirit as 1D, there has been extensive research

in the area of 2D constrained arrays for 2D data storage

applications. Unlike the 1D case, computing the noiseless

capacity for 2D constrained channels is a notoriously difficult

problem. We do not yet have a generic formula for the exact

analysis of the capacity of 2D constrained channels. Tight

upper and lower analytical bounds are available for a few

cases, such as the hard-square constraint [128], no-isolated-

bit (n.i.b) constraint [129], checkerboard constraints [130].

Analytical bounds were also derived for the capacity of some

2D RLL M-ary constraints [131]. There has also been some

works towards the construction of encoders and decoders for

such 2D constrained arrays [132] [133].

Based on the empirical evidence from error events collected

post signal detection using the Voronoi based channel model,

it is found that the n.i.b. constraint is the dominant error

event [32] [134]. To achieve the same storage density for a

constrained coded system and an uncoded system, the rate

loss due to the input constrained arrays must be compensated

by scaling the bit size of the coded system by a factor of Rc,

which is the rate of the constrained code. This reduction in

bit size is justifiable if the gain in the performance due to

2D constrained coding is high enough to compensate for the

effects of increased 2D ISI. Recently, the authors in [135]

have developed high-rate two-dimensional lexicographically

ordered constrained codes (TD-LOCO) for avoiding the square

isolation pattern, useful for TDMR. As discussed earlier,

modulation codes come handy along with powerful 2D signal

detection algorithms when SNR performance and complexity

trade-offs have to be assessed for TDMR system optimization

towards high ADs. The choice of having a 2D constrained

code eventually depends on the TDMR system constraints and

choice of signal detectors.

With this, we now discuss error correction coding relevant

to HDDs.

B. Error Correction Coding Specifications for HDDs

ECCs are critical for the successful working of HDDs.

With powerful signal processing algorithms and optimization

of the parameters attuned to the readback signals, under

nominal SNR conditions, one can hope to achieve bit error

rates ∼ 10−3 from the output of the signal detector so that

the desired level of code failure rate can be achieved using

ECCs. Unlike wireless channels, where the acknowledgment

signals can be used for retransmission of failed packets, re-

reads from the disk are costly. Also, unlike wireless channels

that require frame error rates ∼ 10−6, HDDs require sector

failure rates below 10−12. Over the years, sector sizes have

evolved from 512 bytes to 1KB and 4KB. With high coding

rates, one can imagine the stringent requirements on the error

rates to maintain data integrity in HDDs. Typically, PMR

channels operate at coding rates ∼ 0.9, while coding rates

∼ 0.6 are relevant for TDMR channels. If the ECC decoder

passes the syndrome test leading to a wrong codeword, it

is undesirable. This error metric called the miscorrection

rate must be below 10−22. Miscorrection rate analysis often

overlooked in the coding community is very important from a

practical perspective. Furthermore, in the context of iterative

decoders, it is desirable to not see any error floors above

10−12.

In addition to all these requirements, ECCs for HDDs must

handle a mixture of both random errors and burst errors

since burst errors can occur due to thermal asperities [136],

media defects [137] etc. The imposition of all these practical

requirements from a code design perspective makes it chal-

lenging to design ECCs from a coding-theoretic perspective.

Along with the coding requirements, one must be mindful

of hardware implementations that imposes further constraints,

such as high throughput, low decoding latencies, power and

area-wise efficient coding architectures if the algorithm has to

be translated to a working piece of Silicon.

While dealing with ECCs, we can think of two classes: (a)

algebraic codes and (b) iterative codes. Algebraic codes have

a rich mathematical structure with firm roots based on Galois

theory over finite fields and rings. In general, one can compute

bounds for guaranteed error correction ability for algebraic

codes based on the code parameters. This makes it tractable for

predicting the performance of ECCs for MR channels if we use

algebraic codes. Examples of algebraic codes popularly used
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in data storage devices are Bose Chaudhuri and Hocquenghem

(BCH) codes, Reed Solomon (RS) codes etc. On the other

hand, iterative codes are based on soft-decision decoders.

Iterative codes provide higher SNR gains (> 3 dB) in the

waterfall region. However, they are prone to error floors [138]

that could be mitigated by careful design of codes and control

over the quantization parameters.

In this section, we will discuss ECCs that are an integral

part of HDDs.

C. Algebraic Codes: The Reed Solomon Case

Before the advent of soft-information driven LDPC-based

read channels, RS codes [139] were mainly used in HDDs

since they could correct burst errors more efficiently than

interleaved binary codewords. RS decoders were mainly based

on hard decisions. Soft-decision based RS codes with list-

decoding was tried. However, several practical issues made

it difficult for incorporating these codes within HDDs. First,

identifying the flip list was one of the major problems for

large block lengths. Second, the SNR gain obtained using

soft-decision- based RS codes was just a fraction of dB com-

pared to the huge implementation cost in terms of hardware

complexity. Last, coupling a soft-decision RS decoder with

an LDPC code was catastrophic since the number of errors

from failure of LDPC codes was beyond the ECC ability of

soft-decision RS codes, leading to diminishing SNR returns

from the combined system. Hence, soft-decision-based RS

codes were not feasible for incorporation into HDDs. However,

with carefully designed LDPC codes with excellent ECC

performance (no errors below 10−12), one can design RS

codes as an outer error detecting code to provide guaranteed

miscorrection rates. With this background, we will discuss RS

codes, useful for HDDs.

RS codes are a class of non-binary symbol-error correcting

cyclic codes [139]. An (n, k, t) with code length n, message

length k and error correcting capability t attains the Singleton

bound with equality since the distance is d = n − k + 1.

Grobner basis spans a Reed Solomon code space. The parity

check matrix of a t−error correcting Reed Solomon code is

a (n − k) × n matrix H := [hij ] = [αij ] 1 ≤ i ≤ 2t,
0 ≤ j ≤ n − 1. Over GF (2), n = 2m − 1. In general,

one could define RS code over GF (q). However, from a

hardware perspective, the binary field is preferred for obvious

reasons. Unlike binary error correction, where it is sufficient

to determine just the error locations and flip the bits, for the

non-binary case, we need to identify both the error locations

and evaluate the error values at these locations. Though there

are other techniques such as the modified Euclidean algorithm

for finding the error location polynomial, the Berlekamp-

Massey (BM) algorithm is preferred since it is efficient from

an implementation perspective in terms of complexity. The

error evaluation is based on Forney’s algorithm. We will

briefly describe the steps in the error correction procedure

for the sake of completeness and comment on the hardware

implementation.

1) Error correction procedure: We will follow the notations

introduced in [139] and [141] for describing the error cor-

rection procedure. A codeword c(x) corrupted by an additive

Figure 25. Conventional 3-stage RS decoder. Adapted from [140].

error e(x) results in r(x). Let υ denotes the number of errors

in e(x) having the form

e(x) =

υ∑

i=1

yix
i, 0 ≤ i ≤ n− 1, (71)

where yi is the error magnitude at error location i.
The syndromes are calculated as

Sj = r(αj) = e(αj) =

υ∑

i=1

YiX
j
i , 1 ≤ j ≤ 2t, (72)

where Yi = yi and Xi = αi. The aim is to solve the above 2t
equations to get the pairs (Xi,Yi). Defining the error locator

polynomial Λ(x) given by

υ∏

i=1

(1 +Xix) = Λ0 +Λ1x+ · · ·+Λυ−1x
υ−1 +Λυx

υ. (73)

The Xi values are evaluated using inverse roots of the above

equation. Given the values Xi, the linear system of equations

(72) in Yi can be solved. The error correction process involves

a 4-step procedure outlined as follows:

Table IV
BERLEKAMP’S ITERATIVE PROCEDURE FOR FINDING THE ERROR

LOCATOR POLYNOMIAL Λ(x) OF A RS CODE [139].

µ Λ(µ)(x) dµ lµ µ− lµ

-1 1 1 0 -1

0 1 S1 0 0

1 1− S1x

.

.

.

2t

Step 1: Calculation of syndromes Sj:

Syndromes can be evaluated according to equation (72)

from r(x).

Step 2: Calculation of Λi from Sj: (Berlekamp) [139]

We can compute Λ(x) iteratively in 2t steps. Let Λ(µ)(x)
denote the error locator polynomial at µth step of the iteration.

To find Λ(x) iteratively, we start with the initialized Table

IV shown and proceed to fill the rest of the table entries. Let

lµ be the degree of Λ(µ)(x). Assuming that we have filled

out the µth row, we find (µ + 1)st row using the procedure

shown below

1) If the discrepancy dµ =
lµ∑

i=0

Sµ+1−iΛ
(µ)
i = 0, then

Λ(µ+1)(x) = Λ(µ)(x) and lµ+1 = lµ.
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2) If dµ ̸= 0, then we search another row ρ prior to the

µth row where dρ ̸= 0 and the number ρ− lρ in the last

column of Table I having the largest value. Λ(µ+1)(x)
and lµ+1 are updated as

Λ(µ+1)(x) = Λ(µ)(x)− dµd
−1
ρ xµ−ρΛρ(x), (74)

lµ+1 = max[lµ, lρ + µ− ρ]. (75)

Step 3: Calculation of Xi from Λi: (Chien’s search) [139]

If α−i is a root of Λ(x), the error is present at location i.

Step 4: Calculation of Yi: (Forney’s formula) [139]

To evaluate the error magnitudes, we use Forney’s formula

Yi = −
Ω(Xi

−1)

Λ′(Xi
−1)

, (76)

where Ω(x) = S1+(S2+Λ1S1)x+(S3+Λ1S2+Λ2S1)x
2+

· · · + (Sυ + Λ1Sυ−1 + · · · + Λυ−1S1)x
υ−1. e(x) obtained

from Xi and Yi is added to r(x) to get the decoded codeword

polynomial c(x).
The implementation of RS decoding algorithm is equally

important. To achieve higher throughput, one needs to

carefully pipeline the architecture. The popular three-stage

pipelined RS decoder [142] is shown in Figure 25. Since

the overall throughput is decided by the slowest pipelined

stage, to increase the throughput with efficient area utilization,

each pipelined stage should complete its computations in

about the same amount of time. Further, parallelism can be

employed to adjust the number of clock cycles required for

the syndrome computation (SC) and the Chien search, error

magnitude computation (CSEMC) stages. The size of the delay

buffer used for buffering received symbols depends on the

latency of the decoder.

Figures 26(a) and 26(b) show the detailed architectures for

the SC and key equation solver (KES) stage, and the error

evaluation unit is shown in Figure 27. Use of parallelism

ensures that the SC unit takes exactly 2t cycles, which is same

as the KES stage in order to maximize the throughput. With

this parallelism, one can merge the SC and KES stages into a

single stage without affecting the throughput.

The two-stage pipelined RS decoder shown in Figure 28

has significantly less pipeline registers and delay buffers.

To maximize the throughput and minimize the latency, one

can make use of the efficient architecture for error locator

and magnitude computation [142] coupled with the J-parallel

Chien search architecture [143] to find the error locations and

the corresponding error magnitudes simultaneously. This can

be accomplished in t+ n
J

cycles. All these ideas are important

details for building a practical RS decoder.

With the two-stage pipelined approach, the KES stage needs

to wait for only two extra cycles with respect to the SC stage

to initialize the BM iterative procedure. Hence, the throughput

achieved by the architecture in Figure 28 is almost the same as

the three-stage pipelined decoder with significant improvement

in latency. The latencies with the two-stage pipelined design

(a)

(b)

Figure 26. (a) Parallel architecture for syndrome computation (SC) that
computes 2t syndromes in exactly 2t cycles. (b) Low complexity key equation
solver (KES) architecture to compute the error locator polynomial Λ(x) based
on Berlekamp’s iterative procedure in exactly 2t cycles. Adapted from [140]..

is 2t cycles less compared to the three-stage design and

is efficient compared to the design in [144]. For the RS

(255, 239) decoder over GF
(
28
)
, with J = 30, we could

get a throughput of 24 Gbps. There is a trade-off between

area and throughput. For example, one can save the Silicon

area by choosing J = 10 at the expense of throughput that

reduces to 12 Gbps. For more technical details, the reader is

referred to [140].

We now discuss the design of LDPC codes and decoder

architectures for HDDs.

D. Iterative Codes: 1D LDPC Codes

Initial efforts in trying to use turbo codes based on con-

stituent convolution codes for HDD read channels during the

mid 1990s met with limited success since error floors were

observed, despite impressive SNR gains in the waterfall region.

HDD channels required the design of efficient linear block

codes for large block lengths along with scalable decoding
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Figure 27. Error evaluator architecture to compute Ω(x) in exactly t cycles.
Adapted from [140].

Figure 28. 2-stage pipelined RS decoder. The syndrome computing engine
and the KES are merged into a single stage. Adapted from [140].

algorithms with an inherently parallel structure amenable to

hardware implementation. With pioneering research efforts on

LDPC codes by Tanner [145], Mackay [146], Urbanke and

Richardson [147], [148] and many others, LDPC codes orig-

inally conceived by Gallager [149] in his seminal PhD work

in 1960 were resurrected almost 3 decades later. However,

significant additional efforts were required for deploying these

codes in HDDs. We shall briefly describe LDPC codes.

Figure 29. Example of a sparse parity check matrix and its equivalent Tanner
graph.

The parity check matrix of an LDPC code can be bijectively

mapped to a Tanner graph, which is a bipartite graph consisting

of a set of variable nodes and check nodes representing the

columns and rows of a parity check matrix respectively. A

‘1’ in a parity check matrix implies a connection between

the corresponding check node and variable node as illustrated

in Figure 29. This representation helps with message passing

from the variable nodes to check nodes towards improving the

quality of soft decisions during the decoding process.

Through density evolution techniques [147], the degree

distribution of LDPC codes can be optimized, mindful of the

hardware constraints and performance specifications required

for HDDs. Regular LDPC codes, i.e., with the same row

weight and column weight, are preferred from hardware per-

spective since irregular codes require additional control logic,

leading to lower latencies.

With an estimate on the MIR for MR channels, we require

the construction of LDPC codes with excellent performance in

the waterfall region and without noticeable error floors, meet-

ing the code design specifications. Since error exponents scale

with large lengths and MR channels require data payloads with

larger lengths that are scalable over a range of coding rates,

we need a family of LDPC codes that work well in practice.

The quasi-cyclic family of LDPC codes [150] [151] naturally

fits this requirement. QC LDPC codes, which are special cases

of proto-graph-based LDPC codes [152] can be constructed by

tiling permutation matrices p × p. For a regular LDPC code

of block length n and rate R, the column weight and row

weights are respectively
n(1−R)

p
and n

p
. Good upper bounds on

the minimum distance of these codes can be obtained through

semi-analytical means [153].

QC LDPC codes are most suitable for HDD channels [154]

[155] due to the following reasons: (a) QC codes provide

flexibility in terms of adjustable code lengths and code rates

suitable for a wide range of data payloads and format sizes

under various channel conditions without requiring to store

several parity check matrices within on-chip memory. (b)

Since QC codes are based on tiling permutation matrices, it

provides the needed parallelism while decoding blocks of rows

and columns. (c) Efficient encoding structures are possible

since the generator matrices obtained from QC codes can also

be realized as a tiling of circulant matrices [156]. Points (a)-

(c) are very important from a hardware perspective due to

storage requirements. (d) It is possible to construct QC codes

devoid of short cycles and harmful structures such as trapping

sets [157]±[160] meeting the error floor specifications. (e) The

code geometry is flexible for optimizing the degree distribution

in the design of the parity check matrix.

Though the original sum product algorithm (SPA) for de-

coding LDPC codoes is not hardware efficient. The min-sum

algorithm [161] is the accepted standard for hardware since it

avoids the use of bulky lookup tables for handling complex

arithmetic. As in any hardware design, there exists design

architectural trade-offs, compromising a slight degradation

in SNR performance if other criteria such as speed, area,

throughput and latencies must be optimized for hardware.

Since area is one of the important considerations, the layered

min-sum algorithm [162] is the preferred choice for hardware
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implementation [163]. Unlike the parallel update in the non-

layered case, the layered engine processes block rows serially,

thus achieving a low area. Also, the layered MSA provides

better signal to noise ratio (SNR) performance than its non-

layered counterpart since more recent updates over a prior

block of processed data are made available to the next block

row for decoding. This inherent non-linearity brings additional

gains. Some of these ideas are what it takes to bring LDPC

decoders to practice.

Figure 30. Architecture of the layered decoder. Adapted from [140].

Figure 30 shows the schematic of a layered architecture.

The architecture consists of check node units (CNU) driven

by barrel shifters11 towards realizing the intended parallelism.

There are adders, subtractors, and block random access mem-

ories (BRAM) for storing the intermediate overall reliability

information P , check node messages Q and variable node

messages R. The CNU array comprises p parallel CNU units

that compute the partial state for each row producing the R
messages in block serial form. The MUX is required to supply

new LLRs to the decoder when the decoder has corrected the

previous frame or the maximum iteration limit is reached. Nor-

mally, signed to 2’s complement and 2’s complement to signed

converters are required before and after the CNU in case

of uniform quantization. One could work with non-uniform

quantizers based on channel conditions [140] to realize area-

efficient designs. The initialization for decoding a sector of

data is handled by a MUX in front of the cyclic shifter. In the

beginning, the output of the R select unit is set to a zero vector.

The P messages are computed by adding the delayed version

of the Q messages stored in a BRAM to the R messages.

The R messages are then stored in a R message BRAM,

which would be used in subsequent iterations. The next block

row is now ready to be processed as the P messages are

directed by the MUX to the subtractor. Subsequent next rows

are processed as explained before. Syndromes are computed

efficiently in hardware. The process goes on till the sector has

been corrected, or a maximum iteration limit has been reached
12.

The check node unit [163] in Figure 31 emulates the

operations at the check node on a Tanner graph. It sends back

the minimum of the values received from a certain variable

11The barrel shifters are specific to QC code implementations.
12The maximum number of iterations is decided based on the hardware

constraints and decoding performance

node, without accounting for the variable node. The check

node unit consists of a minimum value N1 and a second

minimum value N2 finder, a partial state that stores N1 and N2

temporarily and updates them on each clock cycle, a final state

which stores the final N1 and N2 value, and a sign processing

unit which takes care of the sign of the LLR to be sent.

Incoming variable messages are compared to two up-to-date

least minimum numbers to generate new partial state. In this

state, we have N1 (first minimum value), N2 (second minimum

value) and the index of N1. The final state is achieved after all

the messages have been received. The R selector then assigns

one of these 2 values (N1 and N2) based on the index of N1

and sign of all the R messages generated by the XOR logic.

It has been more than a decade and half where such LDPC

decoders based on layered architectures achieving high bit

throughput rates in excess of 4Gbps and consuming ∼ 1W of

power over 512−byte format sizes were part of read channel

chips in HDDs. Today’s format sizes are on the order of 4KB
and almost near-capacity. However, the QC LDPC framework

is still valid for such large format sizes. The reader might

wonder how such low error rates are simulated. It must be

noted that computer simulations can only reach around 10−7.

If error rates beyond this have to be reached, we need high

speed FPGA circuits to process the sectors before getting them

to ASICs. Using arrays of FPGAs, it is possible to ascertain if

the codes provide error rates below 10−12. The lack of theory,

rather the theoretical difficulty to predict the exact performance

of individual codes is circumvented through simulations using

FPGAs in practical systems.

The reader might ponder about using non-binary codes

for HDDs, motivated by RS constructions that can correct

burst errors. There has been an extensive study of non-binary

LDPC codes and decoding algorithms [164]±[168]. Also, there

are some VLSI implementations of such non-binary LDPC

codes [169]±[171]. There is also the layered min-sum version

for non-binary LDPC codes [172]. In general, decoders for

non-binary codes are computationally far more intensive than

the binary case. One can always realize equivalent binary

decoders using multistage decoding, re-using the hardware for

binary decoders. Also, one will need soft-decision detectors

that are compatible with such non-binary decoders in the

turbo-equalization setup. These practical difficulties make non-

binary LDPCs less attractive for HDD read channels from a

hardware perspective.

The concept of spatially-coupled (SC) codes is based on

periodic time-varying LDPC convolutional codes, originally

proposed by Felstrom and Zigangirov [173]. These codes pro-

vide resilience to burst errors while having less overhead than

individual block codes with interleavers since different copies

of the base code are partitioned into component matrices

and connected together. In some sense, interleaving happens

naturally within the code construction. Windowed decoding for

SC-LDPC codes [174] brings improved latencies, useful for

streaming applications. Multidimensional-SC LDPCs based

on quasicyclic designs were proposed in [175] by coupling

1D SC-LDPC codes through rewiring the connections across

the SC blocks without adding any extra variable nodes/check

nodes. By optimizing the number of small cycles BER im-
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Figure 31. Architecture of the CNU. Q and R represent the incoming and outgoing messages respectively. Adapted from [140].

provements are seen with the modified code designs [176]

[175]. These codes were also shown to have better resilience

to burst errors than their 1D counterparts. More recently, the

authors in [177] have proposed a probabilistic framework for

designing near-optimal SC codes with large memory, useful to

practice. In [178], the authors considered interleaved SC codes

to provide resilience to SNR variations in the MR channel.

Having interleavers and deinterleavers within a conven-

tional turbo-equalization setup can incur significant laten-

cies. The reader must note that carefully constructed inter-

leavers can be embedded within such LDPC codes [179],

amenable to the layered decoding architecture with some

modifications. These designs add zero latencies i.e., without

interleavers/deinterleavers in the turbo loop, which can be

significant when block lengths are large. We remark that along

with the core algorithms, several system-level innovations are

an integral part of engineering practice towards a working

prototype/product. This subsection summarizes 1D LDPCs for

HDDs.

We now discuss the design of 2D codes suitable for TDMR

systems.

E. Native 2D Codes for TDMR

Iterative error correction codes like the 2D LDPC [180]

provide ability to correct large 2D cluster errors, circumvent-

ing the need for 1D LDPC with interleavers for handling

2D arrays. This motivates the design of codes and circuit

architectures for decoding native 2D LDPC codes applicable

to TDMR channels.

Though Cassuto and Shokrollahi [181] proved existential

results of 2D LDPC codes, they did not explicitly provide

the construction for correcting 2D burst erasures. Matcha et

al. [180] proposed constructions of native 2D LDPC codes

capable of correcting large 2D burst erasures. Their construc-

tion involved stacking c × h × w permutation tensors of size

p×p×p along the i, j, k axes. These permutation tensors were

constructed by applying a combination of shifts along j and

k axes on an identity tensor. The shifts were chosen in such

a way that the code had a burst erasure correction capability

of at least p × p. A variant of the code used in [180] was

further developed by Kamabe and Lu [182] with improved

burst erasure correction capability. Recently, 2D LDPC codes

were designed using a particular choice of the shifts within the

tensors leading to graphs devoid of short cycles i.e., of length

4 for carefully chosen code parameters, bringing significant

coding gains [183] over [180]. Similar to the code in [183],

the proposed code construction has provably burst erasure

correction capability of at least p× p. Hardware architectures

for a 2D LDPC decoder based on the non-layered min-sum

algorithm (NL-MSA) were also been proposed in [183].

Each codeword in a 2D LDPC code is a 2D array of bits

and the parity check tensor for a 2D LDPC code has 2D

arrays stacked on top of each other, maintaining orthogonality

with the code space. Each horizontal layer in the parity check

tensor represents a single parity-check equation, analogous to

the parity check matrix for a 1D LDPC code. Parity check

tensors can be obtained by stacking 3D permutation tensors

in a 3D fashion [180]. The position (i, j, k) represents the bit

(j, k) in the ith horizontal layer of the parity-check tensor.

I3-D is chosen to be a identity tensor of size p × p × p, as
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(a) (b)

Figure 32. (a) Identity tensor I3-D and its various shifts. (b) Stacking of c × h × w permutation tensors along i, j, k directions to form the parity check
tensor H2-D . Each small cube represents a permutation tensor obtained from cyclic shifts I-shift and J-shift on identity tensor I3-D . Adapted from [183].

shown below:

I3-D = [Ii,j,k]
p
i,j,k=1, Ii,j,k =

{

1

0

i = j = k

otherwise.
(77)

The tensor I3-D can be permuted in three directions of

the co-ordinate axes i, j, k. Let P : {1, 2, · · · , p} →
{1, 2, · · · , p}, Q : {1, 2, · · · , p} → {1, 2, · · · , p} and R :
{1, 2, · · · , p} → {1, 2, · · · , p} be the three permutation oper-

ations defined on a tensor T = [Ti,j,k]
p
i,j,k=1 as shown below:

P (T ) = [Ti,P (j),k]
p
i,j,k=1 (78a)

Q(T ) = [TQ(i),j,k]
p
i,j,k=1 (78b)

R(T ) = [Ti,j,R(k)]
p
i,j,k=1. (78c)

Similar to the permutation matrices in 1D, we can choose

P, Q and R to be circular shifts given by

P (i) = Q(i) = R(i) =

{

p

i− 1

i = 1

otherwise.
(79)

We denote the circular shifts P, Q and R as J-shift, I-shift

and K-shift respectively. These shifts have been illustrated for

an identity tensor I3-D of size 4× 4× 4 in Figure 32(a).

H2D can be obtained by stacking c× h×w cubes, each of

size p×p×p along i, j and k directions respectively as shown

in Figure 32(b). A possible way to choose the (i, j, k)th cube

is to allow shifts of the form P a(i,j,k) ◦ Qb(i,j,k)(I3-D) with

a(i, j, k) and b(i, j, k) chosen as follows:

a(i, j, k) = mod

(

(i− 1) +

⌊
i− 1

p

⌋

((j − 1)w + k) , p

)

b(i, j, k) = mod

(⌊
i− 1

p

⌋

(j − 1), p

)

. (80)

The code size is hp × wp with a parity check tensor

H2D of dimensions cp × hp × wp. The rate of the code

is (hwp − c)/hwp. If c is a multiple of p, the choice of

shifts in equation (80) produces a parity check tensor having

uniform column weight c/p. Each permutation tensor in H2D

contributes to a row weight wr of exactly 1. Thus the row

weight of the constructed code is hw. The above construction

has the following properties [183]:

1) If p is sufficiently large, the girth of the code is greater

than 4. For (h−1)(c/p−1) < p and (w−1)(c/p−1) <

p, the girth of the code is greater than 4. For example,

for p = 16 and c = 64, h = 3, w = 3, we obtain a

girth greater than 4. Due to the absence of short cycles

of length 4 in the constructed code, we observe good

error correction performance.

2) The construction is able to correct 2D burst erasures of

size at least p× p.

Under the standard AWGN channel13, the performance of

2D codes vs. 1D codes should not matter. However, when

bursts and erasures are introduced, the performance of native

2D is superior to 1D codes since 1D codes are tailored for

it. Further, as we discussed earlier, 1D codes with interleavers

are not a preferred choice due to decoding latencies etc. With

this in mind, we now discuss the performance of 2D LDPC

codes.

Figure 33. Performance of 2D and 1D LDPC codes over random errors and
burst erasures. Adapted from [184].

Figure 33 shows the performance of 2D LDPC codes

constructed with parameters p = 45, c = 315, h = 4, and

13The performance evaluation over AWGN is reasonable since post equal-
ization and DDNP detection, the equivalent channel is close to the AWGN
case.

This article has been accepted for publication in IEEE BITS the Information Theory Magazine. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MBITS.2023.3336213

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:41:51 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. Y, MONTH 2023 30

w = 4 over arrays of size 180×180 ∼ 4KB. The parity check

tensor with dimensions 14175×180×180 had a column weight

wc = 7, and row weight wr = 16, and code rate = 0.5625.

With maximum iteration limit set to 5, SNR performance of

the 2D LDPC code is ∼ 0.7 dB better than its counterpart

1D array-type LDPC code at a code failure rate (CFR) of

10−3. The reader must note that the drop per dB in the

waterfall region for the 2D LDPC code is also significantly

steeper. However, a 1D QC-LDPC code with random shifts

for permutation matrices performs ∼ 0.25 dB better than the

proposed 2D LDPC code since it was difficult to incorporate

random shifts through the sampling and rejection process for

the 2D case. From Fig. 33, we also observe that a 2D LDPC

code constructed using random I-shifts devoid of short cycles

has almost the same performance as the 1D QC-LDPC code

with random shifts.

With a 45×45 burst erasure at a random position along with

Gaussian distributed random errors, the 1D LDPC is ∼ 1 dB

inferior in SNR performance compared to the 2D case, seen at

a CFR of 10−3. The drop per dB in the waterfall region is also

significantly worse in presence of the 45 × 45 burst erasure.

This is because the 1D LDPC code is not suitable for handling

a 2D burst erasure, since the 2D burst erasure on the rastered

1D LDPC codes is equivalent to numerous non-contiguous

smaller 1D burst erasures, which the 1D array-type LDPC

code construction is not built to handle. In the presence of a

37× 37 burst erasure, there was a ∼1 dB SNR performance

degradation at a CFR of 10−3. These discussions clearly point

out the importance of constructing native 2D codes for TDMR

channels. These designs can be further improved.

One can also build decoders for 2D LDPCs. The interested

reader is referred to the recent paper [183].

Before we end this subsection, we would like to comment

on 2D algebraic codes for TDMR, similar to the RS codes

that we discussed earlier. Algebraic code constructions are

helpful for guaranteed ECC ability for 2D burst errors of

small, pre-defined error shapes [185] [186]. However, the SNR

gains are expected to be inferior compared to soft-decision 2D

LDPC codes. In the same spirit of 1D hard-decision RS codes,

such 2D algebraic codes could be used for correcting cluster

errors with guaranteed error correction over pre-defined errors

shapes based on error events collected from 2D detectors, or

as an outer error detecting code post 2D LDPC decoding.

Correction of arbitrary t × t bursts using n × n 2D BCH

code were studied by Madhusudhana and Siddiqi [187] using

improved Blahut’s algorithm (IBA-I) [188]. Recently, modified

IBA-I decoding algorithms were proposed towards efficient

hardware architectures for 2D BCH codes in [189]. For more

details on the hardware architectures for 2D codes, the reader

is referred to [184]. In general, construction of algebraic

codes for handling multiple cluster errors over 2D arrays is

a difficult problem. For comprehensive details on the tools

for constructing codes over curves and planes, the reader is

referred to the book by Blahut [190].

F. Handling Media Defects and Other Channel Architecture

Considerations

The design of ECCs for storage channels must include the

ability to resolve burst erasures due to media defects [136]

that could be deep or shallow. Usually, deep defects are spread

over a smaller number of bits, while shallow defects are more

wide spread [137]. The signal energy over defective regions

can be one of the cues to identify erasure locations. Thus, the

amount of ECC power required for handling burst erasures is

specific to head/media combinations. In earlier versions of the

track-based magnetic recording, burst erasures were overcome

by using RS codes in conjunction with inner iterative codes.

Initial works on post-ECC modeling techniques to decide the

t-level error correction power for an RS code was based on the

block multinomial model [191]. Since the block multinomial

model cannot handle correlated errors that fall outside the code

boundaries, subsequent modeling improvements were based on

hidden Markov models (HMMs) [192] [193] for deciding the

amount of ECC required for HDDs. Using data collected from

critically failing drives, the t-level error correction power for

an RS code was decided for the given media conditions [193].

Structured LPDC codes like the QC codes that exhibit

excellent performance in the waterfall and error floor regions

can also provide good erasure correction ability since erasures

over two consecutive tiles of permutation matrices can resolve

the burst. Carefully designed interleavers can also enhance the

burst erasure capability of the LDPC code. Fossorier [194]

provided construction of a (n, k) LDPC code that can correct

bursts up to a length of n−k−1, achieving the Roger bound.

Construction of LDPC codes for iteratively correcting burst

erasures using the belief propagation algorithm by identifying

trapping sets has also been investigated in [195], [196].

The identification of burst erasures is an important step

towards error correction. In fact, this is one of the specifi-

cations while designing read channels for HDDs. Traditional

approaches for defect identification include using RLL codes,

or a full response reequalization [197] for defect identification.

There are many signal processing cues one could garner

by observing defective regions from empirical data towards

flagging the erasure locations. These include (a) onset of low

signal energy over a defective region, (b) low LLR values

observed at the output of a signal detector, and (c) signature

analysis from frequently occurring state transitions within the

trellis states over the defective region [198].

In the context of TDMR, Figure 34(a) shows how cluster

errors appear as 2D media defects. Defect detection for TDMR

channels poses significant challenges since defective regions

having arbitrary shapes and sizes must be identified accurately,

unlike the 1D case. By identifying 3 × 3 squares that are

defective and growing these squares over the defective region

to accommodate all edge connected bit cells, the authors in

[32] were able to map most of the defective cells to form

a largest edge connected region as shown in Figure 34(b).

Those cells that were not mapped as part of the region growing

procedure were treated as random errors. The reader can now

appreciate the role of modeling to provide ECC specifications

for both random and burst error protection.
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(a) 2D defective regions

(b) Identified rectangular bursts

Figure 34. 2D defective regions on a medium are identified within a largest
edge connected region. These are later flagged as erasures and corrected using
an LDPC code and a channel detector. Adapted from [32].

Figure 35 shows the schematic of a defect detector archi-

tecture. The LLR values within the detector are fixed to zero

for defective cells to mark erasures. For other bits, the LLR

values are populated using the extrinsic information from the

decoder. Using the defect detection algorithm [32], the authors

were able to correct 38 × 38 burst erasures, yielding more

than 2 dB gain in electrical SNR. By using inter- and intra-

codeword interleaving schemes, up to 76 × 76 burst erasures

were corrected [32]. The design of good interleavers [199] is

also important for enhancing the burst erasure capability of

the channel.

Kurkoski et al. [200] considered the idea of fusing the

partial response channel with parity check constraints to form

joint factor graphs and obtained message passing decoders that

showed better performance than individually optimized detec-

tors and decoders over the perpendicular magnetic recording

channel. Matcha et al. [180] developed a 2D joint detection

decoding engine based on the GBP algorithm for TDMR chan-

nels. In the same spirit, one could explore joint architectures by

fusing 2D LDPC decoders [183] with suitable 2D ISI detectors

we discussed in this article if hardware constraints permit these

architectures in practice.

VI. PERSPECTIVES AND CONCLUSIONS

The push for higher areal densities and the need to stay

competitive in the market has steadily advanced magnetic

storage from longitudinal recording to perpendicular recording

moving towards novel technologies like HAMR, MAMR,

BPMR and TDMR technologies. During this journey of tech-

nology development, every aspect of the recording subsystem

from heads and media to tribology and channels engineering

is pushed towards achieving the objectives. With combinations

from HAMR or MAMR and TDMR, one can expect combined

higher areal densities. Today we already have 3 TB platters,

and there is a drive to achieve significantly higher areal

densities beyond 5Tb/in
2

in the coming years.

The development of read channels for HDDs is a research

odyssey. From analog equalizers and (d, k) constrained codes

tailored for peak detection in early versions of HDDs, the

development of PRML-based LDPC-coded channels made a

significant milestone in the history of read channels evolution.

The need for path-breaking solutions has steadily pushed

advanced channels development. For example, though LDPC

codes and message passing techniques were well-known by

early 1990s, it took significant efforts to tailor LDPC codes

with no noticeable floors at code failure rates around 10−10

over 4KB sectors, develop improved decoding strategies for

better SNR gains, and yet be amenable for hardware. In

addition, practical constraints such as low-latencies, high

throughputs, area and power-efficient designs have pushed

innovations into all aspects of the read channels architecture.

With 2 readers and joint equalization, SMR systems have

shown ∼ 10% AD gains over the PMR case. There is still

more room to get additional gains by going to native 2D sector

formats.

The role of information theory, signal processing algorithms

and coding techniques is central towards building such high-

performance circuits and systems in practice. As long as

there is enough SNR in the magnetic channel to resolve the

bits, shifting to 2D from a 1D paradigm will only bring

additional gains. Tools from decades of research in the field

of information theory, coding theory and signal processing

have taught us many valuable techniques to solve complicated

problems.

Along this thread of thought, even though TDMR poses

several challenges from a technology perspective, such as

the need for multiple heads/multiple readers etc., one can

expect significant SNR gains by embracing native 2D coding

and signal processing solutions that deal with crosstalk and

noise along and across the tracks. A paradigm change in

dealing with 2D coded sectors instead of 1D sectors will

bring in significant changes in the design of hardware, re-

quiring carefully engineered parallel and distributed circuits

and system architectures to reduce latencies during detection

and decoding. We hope that with low-power VLSI technology

nodes, some of these sophisticated algorithms will make it into

practice.

The future of magnetic recording rests on how recording

physics, media, and channels engineering will converge to-

wards realizing the ultimate aim of storing 1 bit/grain reliably

over layered media. With such an extreme push for ADs,

one has to overcome noise and crosstalk, possibly in 3D over

layered media. Having an array of low-cost and efficient nano

read heads to sense the signals from these grains and process

them in a parallel/distributed way is the key towards getting

significantly higher throughputs. All these requirements come
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Figure 35. Schematic of a defect detector and erasure decoder architecture for TDMR. The LLR values for bits identified as defects are set to zero in the
channel detector. The LDPC decoder provides extrinsic information for these erasures. The detector and the decoder are iteratively configured to resolve the
burst erasures. Adapted from [32].

at the price of area and power needed for realizing practical

VLSI circuits for read channels, calling for innovations in the

process and device technologies to work at extreme scales and

speeds and still be cost-effective.

We would like to also point out that, the solutions to 2D

channels relevant to HDDs we presented in this article are

applicable to physical layer wireless channels as well. The

2D coding techniques we presented are also applicable to

3D NAND flash memories and multimedia imaging systems.

Last, the authors hope that, with further advancements in

the physics and media of holographic recording, this archival

storage technology could be resurrected, and many useful

solutions developed for TDMR channels could be adapted for

holographic channels.
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