
Learning to Decode Linear Block Codes using

Adaptive Gradient-Descent Bit-Flipping

Jovan MilojkoviÂc

School of Electrical Engineering

University of Belgrade

Belgrade, Serbia

mj205018p@student.etf.bg.ac.rs

Srdan Brkic

School of Electrical Engineering

University of Belgrade

Belgrade, Serbia

srdjan.brkic@etf.rs

Predrag Ivaniš

School of Electrical Engineering

University of Belgrade

Belgrade, Serbia

predrag.ivanis.etf.rs

Bane VasiÂc

Department of ECE

University of Arizona

Tucson, USA

vasic@ece.arizona.edu

AbstractÐIn this paper we propose a generalization of the
recently published adaptive diversity gradient-descent bit flipping
(AD-GDBF) decoder, named generalized AD-GDBF (gAD-GDBF)
decoder. While the original AD-GDBF decoder was designed
for the binary symmetric channel and used mostly to decode
regular low-density parity-check codes, the gAD-GDBF algorithm
incorporates several improvements which makes it eligible for the
additive white Gaussian channel and decoding of arbitrary linear
block code. The gAD-GDBF decoder uses the genetic algorithm
to optimize a set of learnable parameters, for a targeted linear
block code. The effectiveness of the proposed method is verified
on short Bose±Chaudhuri±Hocquenghem (BCH) codes, where it
was shown that for the same number of decoding iterations the
gAD-GDBF decoder outperforms the belief-propagation decoder
in terms of bit error rate and at the same time reduces the
decoding complexity significantly.

Index TermsÐBose±Chaudhuri±Hocquenghem codes, bit-
flipping, genetic algorithm, gradient-descent, diversity decoding,
linear block codes

I. INTRODUCTION

In the fifth-generation standard for broadband cellular

networks (5GNR) ultra-reliable low-latency communication

(URLLC) is recognized as one of the most important service

category. However, the most powerful capacity-approaching

error correction codes, like turbo or low-density parity-check

(LDPC) codes, do not meet the requirements of the URLLC

[1]. Recently, considerable progress was made related to the

design of short precoded polar codes [2]. Nevertheless, it was

shown in [1] that short Bose±Chaudhuri±Hocquenghem (BCH)

codes perform closely to the theoretical bounds for a wide

range of error rates, under the assumption of the maximum

likelihood (ML) decoding.

Given the fact that the ML decoding of BCH codes is con-

sidered to be unacceptably complex, recent research attempts

try to improve decoders traditionally applied on LDPC codes,

like belief propagation (BP) and offset min-sum (OMS), in

This research was supported by the Science Fund of the Republic of
Serbia, under grants No. 7750284 (Hybrid Integrated Satellite and Terrestrial
Access Network - hi-STAR) and No. 6462951 (LIDA). This work was also
supported by the Serbian Ministry of Science, Technological Development and
Innovation. B. VasiÂc acknowledges the support of the NSF under grants CCF-
1855879, CCF-2100013, CIF-2106189, CCSS-2027844, CCSS-2052751. and
NASA-SURP. B. VasiÂc has disclosed an outside interest in Codelucida to the
University of Arizona. Conflicts of interest resulting from this interest are
being managed by The University of Arizona in accordance with its policies.

order to use them on BCH codes. The most promising meth-

ods use machine learning techniques to adjust the BP/OMS

decoders to a certain BCH code. In the pioneering work

[3], Nachmani et al. showed that the BP decoder is only a

special case of a deep neural network (DNN) and created

neural BP (NBP) decoder, by adding learnable weights to

messages passed between nodes of the Tanner graph. Interest-

ingly, Lugosch and Gross in [4] showed that an even bigger

improvement could be achieved with neural OMS (NOMS)

decoder. Their work was refined again by Nachmani et al. in

[5], [6], by using recursive DNNs and optimization of neural

network node activations. Finally, Tian et al. in [7] proposed

an edge-weighted graph neural network decoder, which also

surpasses the BP decoder on short block codes.

The majority of the aforementioned approaches use DNNs

to design the decoder, while the number of hidden layers

is proportional to the number of decoding iterations. This

makes the optimization of the decoders for a larger number

of iterations hard, and we argue that the gain of neural

decoders, with respect to the BP decoder, usually reduces, if

the number of iterations increases (this claim is consistent with

numerical results from [7]). Furthermore, training of DNN-

based decoders is conduced by minimizing cross-entropy loss

function, which can produce suboptimal decoders, as the actual

performance metrics are bit or frame error rates.

In this paper we take a different learning approach, which

represents a generalization of our recently proposed adaptive

diversity gradient-descent bit-flipping (AD-GDBF) decoder

[8]. The AD-GDBF decoder is a collection of GDBF de-

coders with momentum (GDBF-w/M), proposed by Savin in

[9], with synergistic behaviour, that is accomplished through

optimization of momentum values and weights associated to

the GDBF energy function. The AD-GDBF decoder from

[8] was designed only for the binary symmetric channel and

primarily regular LDPC codes, while here we propose several

modifications that ensure its competitiveness on additive white

Gaussian noise (AWGN) channels and short block codes, like

BCH codes. The learnable parameters are obtained by the

genetic algorithm and training on a predefined error set, while

the bit error rate is directly minimized during the training.

Although some significant probabilistic bit-flipping de-

coders were proposed in the past, like noisy GDBF (NGBF)

2
0
2
3
 1

2
th

 I
n
te

rn
at

io
n
al

 S
y
m

p
o
si

u
m

 o
n
 T

o
p
ic

s
in

 C
o
d
in

g
 (

IS
T

C
)

| 9
7
9
-8

-3
5
0
3
-2

6
1
1
-6

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

S
T

C
5
7
2
3
7
.2

0
2
3
.1

0
2
7
3
4
7
0

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:45:44 UTC from IEEE Xplore. Restrictions apply.

[10], [11] and the probabilistic GDBF-w/M [9] decoders, the

bit-flipping decoders are usually considered to be inferior

compared to the BP decoder on AWGN channel, when applied

to LDPC codes. To the best of our knowledge, bit-flipping

algorithms, that approach the BP decoding on block codes

with dense parity matrices, have not been reported. In this

paper we show that our decoding framework can outperform

the BP decoder on short BCH codes, run with the same number

of iterations, while its complexity is significantly lower than

the BP decoding complexity.

II. LEARNABLE DIVERSITY DECODING FRAMEWORK

A. Preliminaries

Consider a binary linear block code (N,K), with code

length N and K information bits per codeword, described

by a parity check matrix H = [hji]M×N . Each column of

the parity matrix is associated to a variable vi, 1 ≤ i ≤ N
and a set indices P(vi) = {j|hji = 1}, where cardinality

|P(vi)| represents a degree of the variable vi. Similarly, the

j-th row of H is coupled with the parity check equation

cj , 1 ≤ j ≤ M , defined by the following set of indices

Q(cj) = {i|hji = 1}. The total number of ones in the

parity matrix we denote by E =
∑

j,i hj,i. Let us define the

bipolar codeword of a code as x = (x1, x2, . . . , xN), where

xi ∈ {±1} satisfies
∏

i∈Q(cj)
xi = 1, for all 1 ≤ j ≤ M .

We consider transmission through the binary-input AWGN

channel, which corrupts sent codeword x and outputs a vector

y = (y1, y2, . . . , yN), y ∈ R
N .

The goal of the gradient-descent bit flipping decoders is to

maximize the objective function f(x) defined as follows [12]

f(x) =

N
∑

i=1

xiyi +

M
∑

j=1

∏

i∈Q(cj)

xi, (1)

where the first term represents the correlation between the

received vector and a potential solution, while the second term

is a penalty factor that ensures that the global solution is a

valid codeword. The non-linearity of the objective function

makes searching for the codeword, that is the most correlated

with the received vector, hard.

Iterative gradient-based algorithms, that are used to solve

the optimization problem (1), associate local energy to each

variable during a decoding iteration and flip the variables

with energy below the threshold, for the predefined maximal

number of iterations, denoted in this paper as Lmax. These

methods have tendencies to oscillate between local optima

and usually perform worse compared to the massage-passing

decoders. In the following subsection, we present a learnable

framework that matches the decoding operations to a certain

code and overcomes the convergence problems of the state-

of-the-art gradient-descent algorithms.

B. General decoder description

We first explain the operations conducted in each decoding

iteration, then we highlight the introduced improvements and

conditions under which our approach can be reduced to

the state-of-the-art GDBF-w/M decoder [9] and our decoder

previously described in [8].

We associate a decimal value, called the potential to each

variable vi during the ℓ-th decoding iteration, and denote it

by r
(ℓ)
i . It is initialized prior to the first iteration to the value

received from the channel, i.e. r
(0)
i = yi, 1 ≤ i ≤ N . The

potential of vi in the ℓ-th iteration is calculated based on the

local energy, denoted by E
(ℓ)
i , with minimal value E

(ℓ)
min =

min1≤i≤N E
(ℓ)
i . The variable decisions x̂

(ℓ)
i are obtained by

x̂
(ℓ)
i = sign(r

(ℓ)
i), where sign(·) denotes signum function.

Each decoding iteration consists of three parts: i) calculation

of the local energy of variables, ii) updating potential of the

variables, and iii) deciding to restart the decoder or change the

momentum vector.

Energy calculation. Consider now the local energy E
(ℓ)
i

calculated as follows

E
(ℓ)
i = w

(ℓ)
1,iyix̂

(ℓ−1)
i + w

(ℓ)
2,i

∑

j∈P(vi)

s
(ℓ)
j +mli , (2)

where w
(ℓ)
1,i and w

(ℓ)
2,i are learnable weights associated to

the i-th variable during the ℓ-th decoding iteration, s
(ℓ)
j =

∏

n∈Q(cj)
x̂
(ℓ−1)
n , while mli ∈ {0, 1, . . . , I}, I ∈ N

+, is

the momentum correction term, chosen for each variable

separately from a vector m = (m1,m2, . . . ,mL′ , 0), based on

the variable’s past flipping activity. Namely, if the last flip of

the i-th variable occurred during the t-th iteration we calculate

the index term ℓi as

ℓi = min(ℓ− t, L′ + 1), (3)

while ℓi prior to the decoding is initialized to L′+1. We restrict

the influence of the momentum to L′ consecutive iterations,

while variable flips from other iterations are neglected.

Variable potential updates. In each decoding iteration ℓ,
a set of highlighted variables is formed as follows

F (ℓ) = {vi|E
(ℓ)
i ≤ E

(ℓ)
min + δ}, (4)

where δ ≥ 0 is a predefined margin, which enables flipping

multiple bits, if needed. If δ = 0 we flip a single bit during

an iteration. We also define an auxiliary set G(ℓ) as follows

G(ℓ) = {vi|vi /∈ F (ℓ) ∧ ℓi ≤ L′′}, (5)

where L′′ ≤ L′ is an iteration window in which we keep

track of the flipping activity. Afterwards, variable potentials

are updated according to the following

r
(ℓ)
i = r

(ℓ−1)
i − ✶F(ℓ)(vi)x̂

(ℓ−1)
i δ

(ℓ)
1 + ✶G(ℓ)(vi)x̂

(ℓ−1)
i δ

(ℓ)
2 ,

(6)

where δ
(ℓ)
1 > 0 and δ

(ℓ)
2 > 0 are potential increments adapted

across iterations, which steer variables potential towards pos-

itive or negative direction, and ✶A(x) is an indicator function

of a set A defined as follows

✶A(x) =

{

1 if x ∈ A

0 if x /∈ A.
(7)

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:45:44 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 gAD-GDBF decoding framework

Input: y = (yi, y2, . . . , yN) ∈ R
N

Output: x = (xi, x2, . . . , xN) ∈ {±1}N

Initialization: ℓ = 1, ri = yi, ℓi = L′+1, ∀i = 1, . . . , N

while ℓ ≤ Lmax do

xi = sign(ri), ∀i = 1, . . . , N
sj =

∏

i∈Q(cj)
xi, ∀j = 1, . . . ,M

if sj = 1, ∀j = 1, . . . ,M then

ℓ = Lmax

else

if ℓ ∈ M then

Update m

end if

if ℓ ∈ S then

ri = yi, ∀i = 1, . . . , N
end if

Emin = +∞
for i = 1, . . . , N do

ℓi = min(ℓi, L
′) + 1

Ei = w
(ℓ)
1,iyixi + w

(ℓ)
2,i

∑

j∈P(vi)
sj +mli

Emin = min{Emin, Ei}
end for

F = {vi|Ei ≤ Emin + δ}
G = {vi|vi /∈ F ∧ ℓi ≤ L′′}
for i = 1, . . . , N do

ri = ri − ✶F (vi)xiδ
(ℓ)
1 + ✶G(vi)xiδ

(ℓ)
2

if xi ̸= sign(ri) then

ℓi = 0
end if

end for

ℓ = ℓ+ 1
end if

end while

Note that the sets F (ℓ) and G(ℓ) are disjoint and at most one

increment (δ
(ℓ)
1 or δ

(ℓ)
2) is associated to a single variable.

Momentum updates. We allow momentum vector changes

(updates) in predefined iterations. Prior to the decoding a

set of indices M ⊂ {1, 2, . . . , Lmax} is defined, while the

momentum vector is changed in all iterations ℓ ∈ M.

Decoding restarts. Prior to the decoding, a set of indices

S ⊂ {1, 2, . . . , Lmax} is formed, and

if ℓ ∈ S ⇒ r
(ℓ)
i = yi, ∀i = 1, . . . , N. (8)

For convenience, we chose S ⊆ M, which means that every

decoder restart is followed by the momentum update, while

the momentum update may not lead to the decoder restart.

The proposed decoding framework we call the generalized

AD-GDBF (gAD-GDBF) decoder and formally express it in

Algorithm 1, where, for the reason of clarity, we abandon the

dependency on the decoding iteration for all the parameters,

which values will be re-written in the subsequent iteration.

The proposed scheme reduces to the GDBF-w/M decoder,

described in [9], if the following condition are fulfilled

• The sets of restart indices and momentum updates are

empty, i.e., S = M = ∅;

• The momentum values are organized in non-increasing

order, i.e., m1 ≥ m2 ≥ . . . ≥ mL′ ≥ 0;

• The variable potentials are initialized to r
(0)
i = sign(yi)

and δ
(ℓ)
1 = 2 and δ

(ℓ)
1 = 0, for all 1 ≤ i ≤ N , and

1 ≤ ℓ ≤ L;

• The weights w
(ℓ)
1,i = w, w > 0 and w

(ℓ)
2,i = 1, for all

1 ≤ i ≤ N , and 1 ≤ ℓ ≤ L.

Our published AD-GDBF decoder, described in [8], is

mostly used for regular LDPC codes and on binary symmetric

channels, and does not allow different weights to be associated

to different variable bits, nor does it use varying potential

increments (it automatically flips bits from the set F). Next

we will explain the key features of the proposed algorithm.

We allow weights w
(ℓ)
1,i and w

(ℓ)
2,i to be chosen independently

for each variable bit (or groups of bits) in order to adjust

the decoder to a specific code structure, i.e., to compensate

irregularity of a code. If all variables were scaled with the

same values (for example w1 and w2), erroneous variables

with the lower degrees will be harder to correct. For example,

consider two isolated erroneous variables vi and vj , with

degrees |P(vi)| = 3 and |P(vj)| = 7, respectively. If both

variables have all unsatisfied checks, the variable vi will have

the energy Ei = w1yi − 3w2, if no previous flips occurred,

while under the same condition, the energy of the variable vj
is Ej = w1yj − 7w2 and with high probability vj will be

flipped before the variable vi. By adding learnable weights,

we can change the behaviour of the decoder and force it to

flip variables with lower degrees more frequently.

On the other hand, the momentum mℓ is an additive term

with the purpose to reduce consecutive flipping of the same

variable bits, as described in [9]. We also allow changes of

momentum vector m after the predefined number of iterations,

in order to prevent oscillatory behavior, commonly attributed

to trapping sets. The frequent momentum updates can be seen

as a pseudo-random perturbation of the energy function -

behavior usually achieved only in probabilistic decoders.

Variable potential updates are another way to mimic behav-

ior of probabilistic decoders (like [13]). Instead of flipping

all variables from the set F (ℓ) automatically, we only push

the variable potentials towards flipping, where only a portion

of variables from F (ℓ) will change the sign. In a sense,

the absolute potential of variables with the lowest energy is

reduced, while the variables that were flipped in previous

L′′ iterations were ºrewardedº and their absolute potential

is increased. Although the momentum term in the energy

function has the same responsibility, our numerical results

have shown that the two approaches complement one another.

In our decoding framework, the momentum term is restricted

to L′ iterations ± two flips of the same variable separated

for more than L′ iterations are not prevented. On the other

hand, a variable potential is accumulated from the start of the

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:45:44 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Complexity of various decoders per decoding iteration on (63,45) / (127,106) / (255,215) BCH codes.

Decoder # of learnable params. # of multiplications # of tanh of tanh−1 # of additions # of comparisons # of XORs

BP - / - / - 846 / 1995 / 8920 432 / 1008 / 4480 864 / 2016 / 8960 - / - / - - / - / -
NBP 495 / 1135 / 4735 1341 / 3130 / 13655 432 / 1008 / 4480 864 / 2016 / 8960 - / - / - - / - / -

NOMS 495 / 1135 / 4735 495 / 1135 / 4735 - / - / - 1296 / 3024 / 13440 1242 / 2961 / 13320 846 / 1995 / 8920
gAD-GDBF 180 / 204 / 360 126 / 254 / 510 - / - / - 126 / 254 / 510 125 / 253 / 509 477 / 1114 / 4695

decoding (or from the previous decoder restart) and even after

the momentum effect is lost, previously flipped variables will

less likely to be flipped again.

Decoding restarts prevent the decoding process to converge

to a wrong codeword and the detailed explanation of the

technique can be found in [8], [11].

Due to space limitations, we do not show the gain achieved

by each improvement we introduced separately; however, the

numerical examples from Section III indicate that the exclu-

sion of any modification will result in inferior performance.

C. Learning method

We can divide all the parameters of the algorithm, described

in the previous subsection into two categories:

• heuristics - maximal number of iterations Lmax, momen-

tum length and values, L′ and I , respectively, increment

window length L′′, energy margin δ, the set M;

• learnable parameters - energy wights w
(ℓ)
1,i and w

(ℓ)
2,i , (1 ≤

i ≤ N , 1 ≤ ℓ ≤ Lmax), variable potential increments

δ
(ℓ)
1 and δ

(ℓ)
2 , (1 ≤ ℓ ≤ Lmax), |M| different momentum

vectors m, and the set of restarts S , (|S| ≤ |M|).

Values of the heuristics are chosen empirically and known

in advance, i.e., prior to the optimization of the learnable

parameters. Values of the learnable parameters are obtained

through machine learning-type optimization. Note that in the

general description of the decoder we allow different weights

to be assigned to each variable during each decoding iteration,

which can make the optimization complex. To reduce the num-

ber of learnable parameters we put the following restrictions:

• all the variables with the same degree have the same

weight and

• the weights and the potential increments are constant

between two momentum updates, i.e.,

w
(ℓ)
1,i = w

(k)
1,|P(vi)|

, w
(ℓ)
2,i = w

(k)
2,|P(vi)|

,

δ
(ℓ)
1 = δ

(k)
1 , δ

(ℓ)
2 = δ

(k)
2 , ∀i = 1, . . . , N ∧ m < ℓ ≤ k, (9)

where {m, k} ⊂ M ∪ {0}, m < k, is such that there does

not exist n ∈ M, for which m < n < k. In other words, m
and k are the two closest elements in M ∪ {0}. Recall that

S ⊆ M, and S can be constructed by optimizing |M| binary

indicators ✶S(x), x ∈ M. Thus, the total number of revised

learnable parameters depends on the cardinality of M and the

number of distinct variable degrees in a code (called D) i.e.,

it is equal to |M|(2D + L′ + 3).
To further reduce the complexity of the optimization, we

quantize the learnable parameters and allow them to take

values only from finite discrete sets. Then we represent all the

learnable parameters in binary form, append one after another,

and use a genetic algorithm to optimize all the parameters

jointly. The advantage of using genetic algorithm is that we

can directly use error rate (bit or frame) as a criterion function

and directly steer the learnable parameters toward minimizing

error rate on predefined training sets. The detailed description

of the optimization process can be found in our previous work

[8], and we omit it here because of the space limitations.

D. Complexity analysis

To compute the energy function of a variable, given in eq.

(2), we need two floating point multiplications and additions,

while the parity equation s
(ℓ)
j , is performed with |Q(cj)| − 1

binary XOR operations. Thus, the total number of multiplica-

tions/additions per iteration is equal to 2N , and we also need

E+N−M binary XOR operations. To calculate the minimum

energy value we need N − 1 comparators, and additional N
comparators to form the set F (ℓ). Note that we neglect the

summation Si =
∑

j s
(ℓ)
j as the majority of variables will have

the maximal value of the summation Si = |P (vi)| (all satisfied

parity checks), and we can initialize Si to |P (vi)| and subtract

twice the number of unsatisfied checks for a small percentage

of variables that have unsatisfied checks. Similar reasoning

holds for the potential updates (eq. (6)), which are performed

even less frequently. It follows that the density of the parity

check matrix has a weaker influence on the complexity of the

gAD-GDBF decoder, compared to the BP-based decoders.

In table I we present the number of operations required

to perform a single iteration of the gAD-GDBF decoder for

several BCH codes, assuming |M| = 6. We also compare

the complexity of the gAD-GDBF decoder with the BP and

NBP decoders, based on the analysis from [14] and the NOMS

algorithm, which complexity we estimate as in [8]. It can

be observed that, compared to the BP decoder, the gAD-

GDBF algorithm used on (63,45) BCH code requires more

than 6 times less multipliers and adders, and for the BCH

code (127,106) we observed more than 8 times complexity

reduction.

III. NUMERICAL RESULTS

The performance of the gAD-GDBF decoder is expressed in

a form of the bit error rate (BER) dependency on the Eb/N0

(energy per information bit to noise power spectral density

ratio) are presented in Fig. 1 for several BCH codes. The

optimized parameters of designed decoders and used parity

check matrices are publicly available in [15].

We first verified the significance of the introduced improve-

ments in the gAD-GDBF decoder, by showing its superiority

compared to the GDBF-w/M decoder on (63,45) code. Ad-

ditionally, we observed that the gAD-GDBF decoders, if run

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:45:44 UTC from IEEE Xplore. Restrictions apply.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(a) BCH (63,45) code

3 4 5 6 7 8 9
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(b) BCH (127,106) code

3 4 5 6 7 8 9 10
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(c) BCH (255,215) code

Fig. 1: Performance of the gAD-GDBF decoder on various BCH codes.

for Lmax = 300 iterations on (63,45) and (127,106) codes

provide gain close to 1.0 dB, compared to the BP decoder,

run for Lmax = 50 iterations. Interestingly, our decoders even

outperform the BP decoder run for Lmax = 300. It should be

emphasized that increasing the number of iterations for the

BP decoder beyond 300, does not improve the decoding, and

the performance loss compared to the gAD-GDBF decoder

cannot be reduced. Furthermore, we can see that the proposed

decoder, run for 300 iterations, outperforms the NBP and

NOMS decoders. These decoders are designed only for Lmax =
5 iterations and it is unknown whether the loss, compared

to the gAD-GDBF decoder, can be compensated by adding

more iterations. Furthermore, we can see that the gAD-GDBF

decoder, run for 25 iterations on (127,106) code, matches

the performance of the NOMS decoder for Eb/N0 ≈ 8
dB, while the slopes of the BER curves indicate that the

gAD-GDBF decoder will outperfom the NOMS decoder, for

larger Eb/N0 values. Finally, we can see that the gAD-

GDBF decoder, run for Lmax = 800 iterations on (255,215)

code, for higher Eb/N0, outperforms the BP decoder, run for

Lmax = 50 iterations and performs closely as the BP decoder

with Lmax = 300 iterations.

IV. CONCLUSION

Although deterministic, our decoder incorporates a key

feature of probabilistic decoders ± the ability to constantly

improve the performance by using more decoding iterations.

Furthermore, it represents a low-complexity solution and we

can see that adding more iterations does not necessarily

create insurmountable obstacles when it comes to the practical

realizations. For example, on (255,215) BCH code, a single

iteration of the gAD-GDBF decoder requires more than 17

times less multipliers, compared to the BP iteration, and even

if we neglect other complex BP operations (like tanh), we

still achieve higher coding gains than the BP decoder, with

significantly lower complexity. For shorter codes, our design

methods gave even better results and we were able to surpass

the BP decoder with the same number of iterations.

REFERENCES

[1] M. Shirvanimoghaddam, M. Mohammadi, R. Abbas, A. Minja, C. Yue,
B. Matuz, G. Han, Z. Lin, W. Liu, Y. Li, S. Johnson, and B. Vucetic,
ªShort block-length codes for ultra-reliable low latency communica-
tions,º IEEE Comm. Mag., vol. 57, no. 2, pp. 130±137, Feb. 2019.

[2] V. Miloslavskaya and B. Vucetic, ªDesign of short polar codes for SCL
decoding,º IEEE Trans. Commun., vol. 68, no. 11, pp. 6657±6668, Nov.
2020.

[3] E. Nachmani, Y. Be’ery, and D. Burshtein, ªLearning to decode linear
codes using deep learning,º in Proc. 54th Annu. Allerton Conf. Commun.,

Control, Comput. (Allerton), Sep. 2016.
[4] L. Lugosch and W. J. Gross, ªNeural offset min-sum decoding,º in Proc.

IEEE Int. Symp. Inf. Theory (ISIT), June 2017.
[5] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and

Y. Be’ery, ªDeep learning methods for improved decoding of linear
codes,º IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 119±131,
Jan. 2018.

[6] E. Nachmani and Y. Be’ery, ªNeural decoding with optimization of node
activations,º IEEE Commun. Letters, vol. 26, no. 11, pp. 2527±2531,
Nov. 2022.

[7] K. Tian, C. Yue, C. She, Y. Li, and B. Vucetic, ªA scalable graph neural
network decoder for short block codes,º 2022, [Online]. Available:
https://arxiv.org/abs/2211.06962.

[8] S. Brkic, P. Ivanis, and B. VasiÂc, ªAdaptive gradient descent bit-flipping
diversity decoding,º IEEE Commun. Letters, vol. 26, no. 10, pp. 2257±
2261, Oct. 2022.

[9] V. Savin, ªGradient descent bit-flipping decoding with momentum,º in
Proc. 2021 11th Inter. Symp. on Topics in Coding (ISTC), Aug. 2021.

[10] G. Sundararajan and E. Winstead, C.and Boutillon, ªNoisy gradient
descent bit-flip decoding for LDPC codes,º IEEE Trans. Commun.,
vol. 62, no. 10, pp. 3385±3400, Oct. 2014.

[11] T. Tithi, C. Winstead, and G. Sundararajan, ªDecoding LDPC codes
via noisy gradient descent bit-flipping with redecoding,º 2015, [Online].
Available: http://arxiv.org/abs/1503.08913.

[12] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi, ªGradient descent bit flipping algorithms for decoding LDPC
codes,º IEEE Trans. Commun., vol. 58, no. 6, pp. 1610±1614, June 2010.

[13] O. A. Rasheed, P. Ivanis, and B. VasiÂc, ªFault-tolerant probabilistic
gradient-descent bit flipping decoder,º IEEE Commun. Letters, vol. 18,
no. 9, pp. 1487±1490, Sep. 2014.

[14] G. Li, X. Yu, Y. Luo, and G. Wei, ªA bottom-up design methodology
of neural min-sum decoders for LDPC codes,º IET Communications,
vol. 17, no. 3, pp. 377±386, Mar. 2023.

[15] Generalized AD-GDBF decoder database. [Online]. Available:
https://github.com/milojko94/gAD-GDBF

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:45:44 UTC from IEEE Xplore. Restrictions apply.

