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Abstract—In this paper we propose a generalization of the
recently published adaptive diversity gradient-descent bit flipping
(AD-GDBF) decoder, named generalized AD-GDBF (gAD-GDBF)
decoder. While the original AD-GDBF decoder was designed
for the binary symmetric channel and used mostly to decode
regular low-density parity-check codes, the gAD-GDBF algorithm
incorporates several improvements which makes it eligible for the
additive white Gaussian channel and decoding of arbitrary linear
block code. The gAD-GDBF decoder uses the genetic algorithm
to optimize a set of learnable parameters, for a targeted linear
block code. The effectiveness of the proposed method is verified
on short Bose—-Chaudhuri-Hocquenghem (BCH) codes, where it
was shown that for the same number of decoding iterations the
gAD-GDBF decoder outperforms the belief-propagation decoder
in terms of bit error rate and at the same time reduces the
decoding complexity significantly.

Index Terms—Bose—Chaudhuri-Hocquenghem codes, bit-
flipping, genetic algorithm, gradient-descent, diversity decoding,
linear block codes

I. INTRODUCTION

In the fifth-generation standard for broadband cellular
networks (5GNR) ultra-reliable low-latency communication
(URLLC) is recognized as one of the most important service
category. However, the most powerful capacity-approaching
error correction codes, like turbo or low-density parity-check
(LDPC) codes, do not meet the requirements of the URLLC
[1]. Recently, considerable progress was made related to the
design of short precoded polar codes [2]. Nevertheless, it was
shown in [1] that short Bose—Chaudhuri-Hocquenghem (BCH)
codes perform closely to the theoretical bounds for a wide
range of error rates, under the assumption of the maximum
likelihood (ML) decoding.

Given the fact that the ML decoding of BCH codes is con-
sidered to be unacceptably complex, recent research attempts
try to improve decoders traditionally applied on LDPC codes,
like belief propagation (BP) and offset min-sum (OMS), in
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order to use them on BCH codes. The most promising meth-
ods use machine learning techniques to adjust the BP/OMS
decoders to a certain BCH code. In the pioneering work
[3], Nachmani et al. showed that the BP decoder is only a
special case of a deep neural network (DNN) and created
neural BP (NBP) decoder, by adding learnable weights to
messages passed between nodes of the Tanner graph. Interest-
ingly, Lugosch and Gross in [4] showed that an even bigger
improvement could be achieved with neural OMS (NOMS)
decoder. Their work was refined again by Nachmani et al. in
[5], [6], by using recursive DNNs and optimization of neural
network node activations. Finally, Tian et al. in [7] proposed
an edge-weighted graph neural network decoder, which also
surpasses the BP decoder on short block codes.

The majority of the aforementioned approaches use DNNs
to design the decoder, while the number of hidden layers
is proportional to the number of decoding iterations. This
makes the optimization of the decoders for a larger number
of iterations hard, and we argue that the gain of neural
decoders, with respect to the BP decoder, usually reduces, if
the number of iterations increases (this claim is consistent with
numerical results from [7]). Furthermore, training of DNN-
based decoders is conduced by minimizing cross-entropy loss
function, which can produce suboptimal decoders, as the actual
performance metrics are bit or frame error rates.

In this paper we take a different learning approach, which
represents a generalization of our recently proposed adaptive
diversity gradient-descent bit-flipping (AD-GDBF) decoder
[8]. The AD-GDBF decoder is a collection of GDBF de-
coders with momentum (GDBF-w/M), proposed by Savin in
[9], with synergistic behaviour, that is accomplished through
optimization of momentum values and weights associated to
the GDBF energy function. The AD-GDBF decoder from
[8] was designed only for the binary symmetric channel and
primarily regular LDPC codes, while here we propose several
modifications that ensure its competitiveness on additive white
Gaussian noise (AWGN) channels and short block codes, like
BCH codes. The learnable parameters are obtained by the
genetic algorithm and training on a predefined error set, while
the bit error rate is directly minimized during the training.

Although some significant probabilistic bit-flipping de-
coders were proposed in the past, like noisy GDBF (NGBF)
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[10], [11] and the probabilistic GDBF-w/M [9] decoders, the
bit-flipping decoders are usually considered to be inferior
compared to the BP decoder on AWGN channel, when applied
to LDPC codes. To the best of our knowledge, bit-flipping
algorithms, that approach the BP decoding on block codes
with dense parity matrices, have not been reported. In this
paper we show that our decoding framework can outperform
the BP decoder on short BCH codes, run with the same number
of iterations, while its complexity is significantly lower than
the BP decoding complexity.

II. LEARNABLE DIVERSITY DECODING FRAMEWORK
A. Preliminaries

Consider a binary linear block code (N, K), with code
length N and K information bits per codeword, described
by a parity check matrix H = [h;;]arxn. Each column of
the parity matrix is associated to a variable v;, 1 < ¢ < N
and a set indices P(v;) = {j|h;; = 1}, where cardinality
|P(v;)| represents a degree of the variable v;. Similarly, the
j-th row of H is coupled with the parity check equation
cj, 1 < j < M, defined by the following set of indices
Q(c;) = {ilhj; = 1}. The total number of ones in the
parity matrix we denote by E = > i hj,i. Let us define the
bipolar codeword of a code as x = (z1,xo,...,zy), Where
x; € {1} satisfies Hieg(cj)xi =1,forall 1 < j < M.
We consider transmission through the binary-input AWGN
channel, which corrupts sent codeword x and outputs a vector
y =1 y2,--,yn), y € RN,

The goal of the gradient-descent bit flipping decoders is to
maximize the objective function f(x) defined as follows [12]

N M
FE)=>zyi+ > [ (1)
=1

J=1i€9(cy)

where the first term represents the correlation between the
received vector and a potential solution, while the second term
is a penalty factor that ensures that the global solution is a
valid codeword. The non-linearity of the objective function
makes searching for the codeword, that is the most correlated
with the received vector, hard.

ITterative gradient-based algorithms, that are used to solve
the optimization problem (1), associate local energy to each
variable during a decoding iteration and flip the variables
with energy below the threshold, for the predefined maximal
number of iterations, denoted in this paper as Lm.x. These
methods have tendencies to oscillate between local optima
and usually perform worse compared to the massage-passing
decoders. In the following subsection, we present a learnable
framework that matches the decoding operations to a certain
code and overcomes the convergence problems of the state-
of-the-art gradient-descent algorithms.

B. General decoder description

We first explain the operations conducted in each decoding
iteration, then we highlight the introduced improvements and
conditions under which our approach can be reduced to

the state-of-the-art GDBF-w/M decoder [9] and our decoder
previously described in [8].

We associate a decimal value, called the potential to each
variable v; during the /-th decoding iteration, and denote it
by ry). It is initialized prior to the first iteration to the value
received from the channel, i.e. 7”50) =y, 1 < i < N. The
potential of v; in the ¢-th iteration is calculated based on the
local energy, denoted by EZ-(E), with minimal value El(fi)n =
mini<;<n E,@ ,(;Z) are obtained by
:%EZ) = sign(rfe)), where sign(-) denotes signum function.

Each decoding iteration consists of three parts: i) calculation
of the local energy of variables, ii) updating potential of the
variables, and iii) deciding to restart the decoder or change the
momentum vector.

Energy calculation. Consider now the local energy Ei(e)
calculated as follows

B = wiyalV +ul] > s +my, @
jE’P(?),,)

. The variable decisions &

(0

¢
where w,; (“)

and wy; are learnable weights associated to

the ¢-th variable during the ¢-th decoding iteration, s =

J
Mocow,) @4, while my, € {0,1,...,1}, I € N*, is
the momentum correction term, chosen for each variable
separately from a vector m = (mq,ma,...,mzs,0), based on
the variable’s past flipping activity. Namely, if the last flip of
the ¢-th variable occurred during the ¢-th iteration we calculate

the index term ¢; as
l; =min(l —t, L' + 1), 3)

while ¢; prior to the decoding is initialized to L’+1. We restrict
the influence of the momentum to L’ consecutive iterations,
while variable flips from other iterations are neglected.

Variable potential updates. In each decoding iteration £,
a set of highlighted variables is formed as follows

FO = {ulE" < B, + 6}, )

where § > 0 is a predefined margin, which enables flipping
multiple bits, if needed. If 6 = 0 we flip a single bit during
an iteration. We also define an auxiliary set G (©) as follows

GO = {wi|vi ¢ FONE; < LY, (5)

where L” < L’ is an iteration window in which we keep
track of the flipping activity. Afterwards, variable potentials
are updated according to the following

r = ) (0) 2 V8 150 (0)2 V60,
(6)

where (5%6) > 0 and 6§Z) > 0 are potential increments adapted
across iterations, which steer variables potential towards pos-
itive or negative direction, and 1 4(x) is an indicator function
of a set A defined as follows

ifreAd

|
EM@:{OEx¢A @
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Algorithm 1 gAD-GDBF decoding framework

7yN) ERN
wa) S {:l:].}N

Input: y = (yi,y2,. ..
Output: x = (z;, 22, ..

Initialization: ¢ =1, r, =y;, ¢{;,=L'+1,Vi=1,...,N

while ¢ < L, do
x; =sign(r;), Vi=1,...,N
S5 = HiGQ(Cj) i,y V] = 1, cee ,M
if s; =1,Vj=1,..., M then
= Lmax
else
if / € M then
Update m
end if
if / € S then
Ty = Yis V’L:L,N
end if
Enin = +00
fori=1,...,N do
éi = min(&, L/) +1
by = wgz)ylxl + wéﬁ) Zjep(w) 55 +my;
Enin = min{Emina E;
end for
F = {vi|E; < Enyin + 0}
g= {vi\vi ¢ FANL < L”}
fori=1,...,N do
TP =1; — ]l]:(vi)miéy) + ]lg(vi)miéée)
if x; # sign(r;) then
l; =0
end if
end for
{=0+1
end if
end while

Note that the sets F© and G are disjoint and at most one
increment (6;6) or 554)) is associated to a single variable.

Momentum updates. We allow momentum vector changes
(updates) in predefined iterations. Prior to the decoding a
set of indices M C {1,2,..., Ly} is defined, while the
momentum vector is changed in all iterations £ € M.

Decoding restarts. Prior to the decoding, a set of indices
S C{1,2,..., Ly} is formed, and

iftesS = v =y, vi=1.. N (8)

For convenience, we chose S C M, which means that every
decoder restart is followed by the momentum update, while
the momentum update may not lead to the decoder restart.
The proposed decoding framework we call the generalized
AD-GDBF (gAD-GDBF) decoder and formally express it in
Algorithm 1, where, for the reason of clarity, we abandon the
dependency on the decoding iteration for all the parameters,
which values will be re-written in the subsequent iteration.

The proposed scheme reduces to the GDBF-w/M decoder,
described in [9], if the following condition are fulfilled

o The sets of restart indices and momentum updates are
empty, i.e., S = M = {);
e The momentum values are organized in non-increasing

order, i.e., mi > mo > ... > myp > 0; ©
0

o The variable potentials are initialized to r; * = sign(y;)
and 6" = 2 and 6\) = 0, forall 1 < i < N, and
1<¢<L;

o The weights wgpz) = w, w > 0 and wgz =1, for all

1<i<N,and 1 </¢< L.

Our published AD-GDBF decoder, described in [8], is
mostly used for regular LDPC codes and on binary symmetric
channels, and does not allow different weights to be associated
to different variable bits, nor does it use varying potential
increments (it automatically flips bits from the set F). Next
we will explain the key features of the proposed algorithm.

We allow weights wﬁ? and wégz) to be chosen independently
for each variable bit (or groups of bits) in order to adjust
the decoder to a specific code structure, i.e., to compensate
irregularity of a code. If all variables were scaled with the
same values (for example w; and ws), erroneous variables
with the lower degrees will be harder to correct. For example,
consider two isolated erroneous variables v; and v;, with
degrees |P(v;)| = 3 and |[P(v;)| = 7, respectively. If both
variables have all unsatisfied checks, the variable v; will have
the energy F; = wyy; — 3we, if no previous flips occurred,
while under the same condition, the energy of the variable v;
is B; = wyy; — Twe and with high probability v; will be
flipped before the variable v;. By adding learnable weights,
we can change the behaviour of the decoder and force it to
flip variables with lower degrees more frequently.

On the other hand, the momentum m, is an additive term
with the purpose to reduce consecutive flipping of the same
variable bits, as described in [9]. We also allow changes of
momentum vector m after the predefined number of iterations,
in order to prevent oscillatory behavior, commonly attributed
to trapping sets. The frequent momentum updates can be seen
as a pseudo-random perturbation of the energy function -
behavior usually achieved only in probabilistic decoders.

Variable potential updates are another way to mimic behav-
ior of probabilistic decoders (like [13]). Instead of flipping
all variables from the set F) automatically, we only push
the variable potentials towards flipping, where only a portion
of variables from F() will change the sign. In a sense,
the absolute potential of variables with the lowest energy is
reduced, while the variables that were flipped in previous
L" iterations were “rewarded” and their absolute potential
is increased. Although the momentum term in the energy
function has the same responsibility, our numerical results
have shown that the two approaches complement one another.
In our decoding framework, the momentum term is restricted
to L' iterations — two flips of the same variable separated
for more than L’ iterations are not prevented. On the other
hand, a variable potential is accumulated from the start of the
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TABLE I: Complexity of various decoders per decoding iteration on (63,45) / (127,106) / (255,215) BCH codes.

Decoder # of learnable params. | # of multiplications | # of tanh of tanh™ T # of additions # of comparisons # of XORs
BP -/-1- 846 / 1995 / 8920 432/ 1008 / 4480 864 /2016 / 8960 -/-1- -/-1-
NBP 495 / 1135 /1 4735 1341 / 3130 / 13655 432/ 1008 / 4480 864 /2016 / 8960 -/-1- -/-1-
NOMS 495 / 1135 / 4735 495 / 1135 / 4735 -/-/- 1296 / 3024 / 13440 | 1242 /2961 / 13320 | 846/ 1995 / 8920
gAD-GDBF 180 /204 / 360 126 /254 / 510 -/-1 - 126 /254 / 510 125 /253 / 509 477/ 1114 1 4695

decoding (or from the previous decoder restart) and even after
the momentum effect is lost, previously flipped variables will
less likely to be flipped again.

Decoding restarts prevent the decoding process to converge
to a wrong codeword and the detailed explanation of the
technique can be found in [8], [11].

Due to space limitations, we do not show the gain achieved
by each improvement we introduced separately; however, the
numerical examples from Section III indicate that the exclu-
sion of any modification will result in inferior performance.

C. Learning method

We can divide all the parameters of the algorithm, described
in the previous subsection into two categories:

e heuristics - maximal number of iterations L., momen-
tum length and values, L’ and I, respectively, increment
window length L”, energy margin 4, the set M;

o learnable parameters - energy wights wﬁ) and w§‘2 , (1<
1 < N, 1 < £ < Luay), variable potential increments
59 and 5(6), (1 < ¢ < L), | M| different momentum
vectors m, and the set of restarts S, (|S| < |M|).

Values of the heuristics are chosen empirically and known

in advance, i.e., prior to the optimization of the learnable
parameters. Values of the learnable parameters are obtained
through machine learning-type optimization. Note that in the
general description of the decoder we allow different weights
to be assigned to each variable during each decoding iteration,
which can make the optimization complex. To reduce the num-
ber of learnable parameters we put the following restrictions:

o all the variables with the same degree have the same
weight and

o the weights and the potential increments are constant
between two momentum updates, i.e.,

) _ , (k) ) _ , (k)
W1 =Wy 1pwyp W2,i = W |pwy))

5 =6 50 =6 i=1,... NA m<t<k (9

where {m,k} C M U {0}, m < k, is such that there does
not exist n € M, for which m < n < k. In other words, m
and k are the two closest elements in M U {0}. Recall that
S C M, and S can be constructed by optimizing | M| binary
indicators 1s(x),x € M. Thus, the total number of revised
learnable parameters depends on the cardinality of M and the
number of distinct variable degrees in a code (called D) i.e.,
it is equal to |[M|(2D + L' + 3).

To further reduce the complexity of the optimization, we
quantize the learnable parameters and allow them to take
values only from finite discrete sets. Then we represent all the
learnable parameters in binary form, append one after another,

and use a genetic algorithm to optimize all the parameters
jointly. The advantage of using genetic algorithm is that we
can directly use error rate (bit or frame) as a criterion function
and directly steer the learnable parameters toward minimizing
error rate on predefined training sets. The detailed description
of the optimization process can be found in our previous work
[8], and we omit it here because of the space limitations.

D. Complexity analysis

To compute the energy function of a variable, given in eq.
(2), we need two floating point multiplications and additions,
while the parity equation s, is performed with [Q(c;)| — 1
binary XOR operations. Thus, the total number of multiplica-
tions/additions per iteration is equal to 2N, and we also need
E+ N — M binary XOR operations. To calculate the minimum
energy value we need N — 1 comparators, and additional [NV
comparators to form the set (). Note that we neglect the
summation S; = y Sg_z) as the majority of variables will have
the maximal value of the summation S; = |P(v;)| (all satisfied
parity checks), and we can initialize S; to | P(v;)| and subtract
twice the number of unsatisfied checks for a small percentage
of variables that have unsatisfied checks. Similar reasoning
holds for the potential updates (eq. (6)), which are performed
even less frequently. It follows that the density of the parity
check matrix has a weaker influence on the complexity of the
gAD-GDBF decoder, compared to the BP-based decoders.

In table I we present the number of operations required
to perform a single iteration of the gAD-GDBF decoder for
several BCH codes, assuming |[M| = 6. We also compare
the complexity of the gAD-GDBF decoder with the BP and
NBP decoders, based on the analysis from [14] and the NOMS
algorithm, which complexity we estimate as in [8]. It can
be observed that, compared to the BP decoder, the gAD-
GDBF algorithm used on (63,45) BCH code requires more
than 6 times less multipliers and adders, and for the BCH
code (127,106) we observed more than 8 times complexity
reduction.

III. NUMERICAL RESULTS

The performance of the gAD-GDBF decoder is expressed in
a form of the bit error rate (BER) dependency on the Ej /Ny
(energy per information bit to noise power spectral density
ratio) are presented in Fig. 1 for several BCH codes. The
optimized parameters of designed decoders and used parity
check matrices are publicly available in [15].

We first verified the significance of the introduced improve-
ments in the gAD-GDBF decoder, by showing its superiority
compared to the GDBF-w/M decoder on (63,45) code. Ad-
ditionally, we observed that the gAD-GDBF decoders, if run
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Fig. 1: Performance of the gAD-GDBF decoder on various BCH codes.

for L. = 300 iterations on (63,45) and (127,106) codes
provide gain close to 1.0 dB, compared to the BP decoder,
run for L.« = 50 iterations. Interestingly, our decoders even
outperform the BP decoder run for L,x = 300. It should be
emphasized that increasing the number of iterations for the
BP decoder beyond 300, does not improve the decoding, and
the performance loss compared to the gAD-GDBF decoder
cannot be reduced. Furthermore, we can see that the proposed
decoder, run for 300 iterations, outperforms the NBP and
NOMS decoders. These decoders are designed only for Ly,.x =
5 iterations and it is unknown whether the loss, compared
to the gAD-GDBF decoder, can be compensated by adding
more iterations. Furthermore, we can see that the gAD-GDBF
decoder, run for 25 iterations on (127,106) code, matches
the performance of the NOMS decoder for E,/Ny ~ 8
dB, while the slopes of the BER curves indicate that the
gAD-GDBF decoder will outperfom the NOMS decoder, for
larger E,/Ny values. Finally, we can see that the gAD-
GDBF decoder, run for L.,z = 800 iterations on (255,215)
code, for higher Ej,/Ny, outperforms the BP decoder, run for
Lyax = 50 iterations and performs closely as the BP decoder
with L.x = 300 iterations.

IV. CONCLUSION

Although deterministic, our decoder incorporates a key
feature of probabilistic decoders — the ability to constantly
improve the performance by using more decoding iterations.
Furthermore, it represents a low-complexity solution and we
can see that adding more iterations does not necessarily
create insurmountable obstacles when it comes to the practical
realizations. For example, on (255,215) BCH code, a single
iteration of the gAD-GDBF decoder requires more than 17
times less multipliers, compared to the BP iteration, and even
if we neglect other complex BP operations (like tanh), we
still achieve higher coding gains than the BP decoder, with
significantly lower complexity. For shorter codes, our design

methods gave even better results and we were able to surpass
the BP decoder with the same number of iterations.
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