
Learning to Decode Trapping Sets in QLDPC Codes

Asit Kumar Pradhan, Nithin Raveendran, Narayanan Rengaswamy, Xin Xiao, and Bane VasiÂc

Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ, 85721 USA

Email: {asitpradhan, nithin , narayananr , 7xinxiao7 }@arizona.edu, vasic@ece.arizona.edu

AbstractÐQuantum low-density parity-check (QLDPC) codes
with asymptotically nonzero rates are promising candidates for
fault-tolerant quantum computation. Belief propagation (BP)
based iterative decoding algorithms, a primary choice for classical
LDPC codes, perform poorly for QLDPC codes due to stabilizer-
induced trapping sets, resulting in a high error floor. Several
decoding algorithms, like post-processing decoders, normalized
BP decoders, and neural decoders, have been proposed to
increase the performance in the error-floor region. However, this
improvement comes at the expense of an increase in the execution
time of the decoder. This paper proposes a general framework
for error correction for a class of QLDPC codes called lifted-
product codes using recurrent neural networks (RNNs). The
RNN is employed to learn message-passing rules that can decode
quantum-trapping sets. Then the standard message-passing rules
are used with the learned rules to improve the error floor.
While training the RNN, the quasi-cyclic property of the lifted
product codes is exploited to reduce the size of the training set
and the number of parameters in the network. This reduction
in the number of parameters makes these decoders amenable
to hardware implementation. Simulation results show that the
proposed decoder performs better than the existing decoders in
the literature.

I. INTRODUCTION

Quantum low-density parity-check (QLDPC) codes are a

promising candidate for both quantum computing and com-

munications, with a history of success in classical LDPC

codes in admitting low-complexity decoding and near-capacity

performance. As pointed out by Gottesman [1] and Kovalev

and Pryadko [2], QLDPC codes are the only known class

of quantum error correction (QEC) codes that permit fault-

tolerant error correction with asymptotically nonzero rate.

In [3], Panteleev and Kalachev propose a family of QLDPC

codes with linear minimum distance and constant rate, known

as lifted-product codes. QLDPC codes [4] based on the sta-

bilizer formalism [5] rely on classical decoding algorithms

with the syndrome measurements. In addition to the excellent

distance properties of QLDPC codes, these codes have low-

weight stabilizer generators; hence, their syndrome-extraction

circuits have low depth, making them lucrative for fault-

tolerant quantum computation.

For fault-tolerant computation, in addition to having good

codes, designing low-complexity decoders is paramount. The

low-complexity iterative message-passing algorithms do not

perform well on the QLDPC codes, unlike their classical

counterparts. This is mainly due to two types of trapping

sets. First, since most of the QLDPC codes are constructed

using tensor products, their corresponding Tanner graphs have

inevitable short cycles, resulting in trapping sets (TSs) [6].

Second, QLDPC codes can be thought of as two dual-

containing classical LDPC codes. This dual-containing prop-

erty leads to a special type of trapping sets known as symmetric

stabilizer TSs [6]. Several decoders have been proposed to

address the decoder convergence due to the issues mentioned

above [7]±[11]. Poulin and Chung [7] investigated heuristic

methods to break the symmetric input channel values to

improve decoding performance. In [12], the authors use a post-

processing decoder called an ordered statistics decoder (OSD)

after running a few iterations of the message-passing decoder

to improve the decoding performance. In another work [9], the

authors use the message-passing decoder in parts of the Tanner

graph where TSs are absent and use a post-processing step to

correct errors in the rest of the graph. In both approaches [9],

[12], the respective post-processing step involves inverting

a matrix, which may lead to high decoding complexity in

some cases. In [10], authors show that normalized belief-

propagation decoders with a serial schedule can avoid TSs

when the normalization constant is chosen carefully. In a

recent work, [13], Poulin’s group used a neural network-based

decoder with a different loss function instead of the generally

used binary cross entropy to tackle the TSs. In [11], the authors

use an overcomplete parity-check matrix to avoid decoding

failures due to short cycle-related trapping sets. Both these

neural network-based approaches use different message-update

rules over decoding iterations, hence, are not easily amenable

to hardware implementation. Also, the neural network-based

approaches are unsuitable for decoding moderate-length codes

(around a few thousand) due to the high training time required.

This paper focuses on designing parallel, TS-aware,

message-passing decoders for QLDPC codes that do not

require post-processing. The TSs corresponding to a standard

message-passing decoder are collected to do so. Then, a se-

quence of decoders specialized in correcting error patterns that

form TS is learned using recurrent neural networks (RNNs).

Since our approach uses the same message-update rules across

iterations, it is amenable to hardware implementation. Also,

using the knowledge of TSs reduces training time, an essential

criterion for learning decoders for code with moderate block-

length, and helps us to achieve better performance without any

post-processing step.

A. Notations

We use bold face capital letters to denote matrices and bold

face small letters to vector variables. We denote cardinality of

set A by |A|. We will assume that vectors without transposes

2
0
2
3
 1

2
th

 I
n
te

rn
at

io
n
al

 S
y
m

p
o
si

u
m

 o
n
 T

o
p
ic

s
in

 C
o
d
in

g
 (

IS
T

C
)

| 9
7
9
-8

-3
5
0
3
-2

6
1
1
-6

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

S
T

C
5
7
2
3
7
.2

0
2
3
.1

0
2
7
3
5
2
6

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:46:57 UTC from IEEE Xplore. Restrictions apply.

are row vectors unless stated otherwise. We represent the

absolute value of a scalar variable by | · |.

II. PRELIMINARIES

A. Depolarizing Channel

We focus on the widely studied channel model called de-

polarizing channel (memoryless Pauli channel), characterized

by the depolarizing probability p in which the error E on each

qubit is a Pauli operator, and error on a qubit is independent

of the error on other qubits. The set of Pauli operators is given

by P = {I,X,Y,Z}. In particular, Pr(E = X) = Pr(E =
Y) = Pr(E = Z) = p/3,Pr(E = I) = 1 − p. A Pauli error

vector on the n qubits can be expressed as a binary error vector

of length 2n by mapping the Pauli operators to binary tuples

as follows: I → (0, 0),X → (1, 0),Z → (0, 1),Y → (1, 1).

B. Stabilizer Formalism

Let us denote the n-qubit Pauli group by Pn =
il{I,X,Y,Z}⊗n, 0 ≤ l ≤ 3, where ⊗n is the n-fold

tensor product, X, Y, and Z are the Pauli matrices, I is

the 2 × 2 identity matrix, and il is the phase factor. Let

S = ⟨S1,S2, ...,Sm⟩, −1 /∈ S, be an Abelian subgroup of Pn

with generators Si, 1 ≤ i ≤ m. A (n, k) quantum stabilizer

code [14] is a 2k-dimensional subspace C of the Hilbert space

(C2)⊗n given by the common +1 eigenspace of stabilizer

group S:

C = {|ψ⟩ , s.t. Si |ψ⟩ = |ψ⟩ , ∀i}. (1)

Every element of stabilizer group S is mapped to a binary tuple

as follows: I → (0, 0), X → (1, 0), Z → (0, 1), Y → (1, 1).
This mapping gives a matrix representation of the stabilizer

generators called parity-check matrix, H, which is given by

H =
[

HX | HZ

]

, where HX and HZ represent binary

matrices for bit flip and phase flip operators, respectively. Note

that H is a m×2n matrix. Similar to the Pauli representation,

the stabilizers also commute with respect to the symplectic

inner product in binary representation [15].

C. Protograph representation of lifted-product QLDPC codes

Lifted product codes are constructed using two classical

protograph-based LDPC codes. In the next section, we briefly

introduce protograph ensemble of LDPC codes.

1) Protograph LDPC codes: A protograph G = (V ∪C,E)
is a bipartite graph, where V (C) is the set of variable

(respectively, check) nodes, and E is the set of edges that

connect a variable node in V to a check node in C. The

nodes and edges in the protograph are ordered, and the i-
th variable node, check node, and edge in the protograph are

denoted, respectively, by vi, ci, and ei. The variable and check

nodes connected by an edge ei are denoted v(ei) and c(ei),
respectively. A protograph can be represented by a base matrix

B of dimension |C| × |V |, whose (i, j)-th element B(i, j) is

the number of edges between ci and vj . For example, consider

a base matrix

B =

[

1 1 0
1 0 1

]

. (2)

v1 v2 v3

c1

1 2

c2

3

4

Fig. 1. Protograph for base matrix in (2).

The 4 different edges in this example are numbered, as

shown in Fig. 1. The parity-check matrix of a quasi-cyclic

LDPC code can be obtained from base graph B by replacing

its entries with l × l- circulants, which can be represented by

the elements of quotient polynomial ring R[x]/(xl − 1). This

procedure is known as lifting. We denote the Tanner graph and

parity-check matrix of the quasi-cyclic LDPC code obtained

by lifting protograph G by G′ and H, respectively. Recall

that the entries of a base (parity-check) matrix represent the

edges in the corresponding protograph (Tanner graph). In the

Tanner graph, the group of edges obtained by replacing the

entry corresponding to edge ei in protograph G with a l × l
circulant is said to be of type ei or, simply, type i.

2) Lifted-product codes: Given two classical base matrices

B1 and B2, respectively, of size mB1
×nB1

and mB2
×nB2

,

two base matrices are constructed [3] as

Bx =
[

B1 ⊗ ImB2
ImB1

⊗B2

]

Bz =
[

InB1
⊗BT

2 BT

1 ⊗ InB2

]

.

These two base matrices Bx and Bz can be lifted as described

in Section II-C1 to obtain two parity-check matrices Hx

and Hz, respectively. Similar to classical protograph-based

LDPC codes, the edges of Hx and Hz can be classified into

different types, as described in Section II-C1. Then, H is the

set of stabilizer generators of a lifted-product QLDPC code

constructed from two classical base matrices B1 and B2. If

the number of columns in H is N , and the number of parity-

check equations is M , then n = l(nAnB + mAmB) and

m = l(mAnA +mBnB). Assuming that Hx and Hz are full

rank, we have a (n, n − m)-QLDPC code. The protograph

corresponding to Bx is shown in Fig. 2 when B1 and B2 are

chosen as B given in Eq. (2).

III. MESSAGE-PASSING DECODER

In what follows, we assume that X and Z errors are

independent. We describe only the decoding of Z errors for

ease of exposition. Let us consider the standard message-

passing decoder over a depolarizing channel with depolarizing

probability p run on Tanner graph G′
x(V

′ ∪ C ′, E′) derived

from a protograph Gx = (V ∪C,E). Given an error vector x,

the syndrome vector σ = (σ1, σ2, ..., σ|C′|) can be obtained

by σ = xHT

x , where x denotes the error pattern. We define

a distinct message-passing rule for each group of edges in

the lifted graph G′
x. Since the lifted graph G′

x is lifted from

protograph Gx = (V ∪C,E), G′
x has |E| edge types, one for

each edge in the protograph Gx = (V ∪C,E). Therefore, we

have |E| message-passing rules, one for each edge type. Let

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:46:57 UTC from IEEE Xplore. Restrictions apply.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

c1

1

2

3

4
c2

5

6 7

8
c3

9 10 11
12

c4
13

14
15 16

Fig. 2. Protograph for base matrix Bx when B1 and B2 are chosen as the base matrix in (2). Since the protograph has 16 edges, the LDPC code lifted
from it will have 16 types of edges.

E′
i, i ∈ {1, 2, . . . , |E|}, denote the set of type-i edges in the

lifted graph G′
x(V

′ ∪ C ′, E′). Note that E′ =
⋃|E|

i=1E
′
i.

Let mt
v→c(e) be the message from variable node to check

node along edge e for e ∈ E′
i, i ∈ {1, 2, . . . , |E|}, in the

t-th iteration. Similarly, let mt
c→v(e) be the message from

check node to variable node in the t-th iteration. The message-

passing recursion is given by

mt+1
c→v(e) = σce

∏

e′∈Ec(e)

mt
v→c(e

′) min
e′∈Ec(e)

|mv→c(e
′)|, (3)

mt+1
v→c(e) = bi + w





∑

e′∈Ev(e)

mt+1
c→v(j)



 , (4)

for t ≥ 0, where Ec(e) = {e′ : c(e) = c(e′), e ̸= e′} and

Ev(e) = {e′ : v(e) = v(e′), e ̸= e′} are the set of neighboring

edges incident to the same check node and variable node,

respectively, as the edge e, bi, for 1 ≤ i ≤ |E|, is the

bias corresponding to edge type i, and w is the normalization

constant. Note that we have a different update rule for each

edge type at the variable node, while the update rule at the

check nodes is the same for all edge types. We can recover the

min-sum decoder by choosing bi = log 1−p
p

and w = 1. After

a pre-defined number of iterations, tmax, of iterative syndrome

decoding, we declare that the decoder failed for a particular

input syndrome or error pattern if the decoder cannot find an

error pattern matching the input syndrome. More precisely, a

decoder failure is said to have occurred if there does not exist

t ≤ tmax such that (σ̂(t)+σ) = 0, where σ̂
(t)

is the syndrome

after the t-th iteration.

A. Quantum-trapping sets

In this section, we introduce the notion of TSs and describe

how their knowledge can be used to design better decoders.

During the iterative decoding, check node c is satisfied if there

exists a positive integer Ij such that for all t ≥ Ij, σ̂
(t)
j = σj .

We say that variable node vi has converged if there exists a

positive integer Ii such that for all t ≥ Ii, x̂
(t)
i = x̂

(t−1)
i . Note

that the x̂
(t)
i is not necessarily the correct estimate of error

on the i− th variable node. With these definitions, we define

quantum TS (QTS) as follows:

Definition 1. A trapping set Ts for a syndrome-based iterative

decoder Ds is a non-empty set of variable nodes in a Tanner

graph G′ which have not converged or are neighbors of the

check nodes that are not satisfied.

If the sub-graph G(T s) induced by such a set of variable

nodes has a variable nodes and b unsatisfied check nodes, then

Ts is classified as an (a, b) trapping set.

The QTSs, which are similar to the TSs in classical LDPC

codes, are called classical-type trapping sets [6]. The second

class of trapping sets is the harmful degenerate errors observed

in the support of the stabilizers, called symmetric stabilizer

trapping sets or stabilizer splitting errors. In such trapping sets,

even though the variable nodes eventually converge to some

error pattern, there exist check nodes that are not satisfied.

Next, we briefly describe such trapping sets. To appreciate

the behavior of symmetric stabilizer trapping sets, we first

describe the subtle difference in decoding classical codes and

quantum codes. In the classical case, the estimate of error

pattern x̂ must be equal to the actual error pattern x, whereas

in quantum error-correction, the modulo-2 sum of the actual

and estimated error pattern, x ⊕ x̂, must be a stabilizer- the

space spanned by the rows of the parity-check matrix. This is

because the error patterns that only differ by a stabilizer have

the same effect on the codespace. Therefore, while decoding

Hx, the decoder needs to identify any recovery operator such

that x̂ ⊕ x ∈ rowspace(Hz). In decoding of quantum codes,

we say error vectors x and y are degenerate if x ⊕ y is a

stabilizer; hence, for successful decoding, it is sufficient to

output any one of the degenerate errors as the candidate error

pattern. However, some degenerate errors can be detrimental

to the iterative decoding of QLDPC codes, especially when

the minimum distance of the code is higher than its stabilizer

weight. For example, if the stabilizer-induced sub-graph con-

tains degenerate error patterns x and y of equal weight and

has a symmetric topology, then the iterative decoder oscillates

between x and y, thus not matching the input syndrome. This

failure can be attributed to the symmetry in the stabilizer

and message-passing rules. Hence, such errors are referred

to as symmetric degenerate errors, and corresponding sets of

variable nodes as symmetric stabilizer trapping sets or in short,

symmetric stabilizers. Although degenerate errors are typically

classified as harmless while decoding quantum codes, from

the above discussion, it follows that some (not all) degenerate

error patterns in a symmetric stabilizer are harmful to iterative

decoders.

B. Decoder Diversity

We follow the decoder diversity from [16]. Consider a set

of decoders D = {Dk : k = 1, 2, . . . , ND} to decode a

QLDPC code defined by the Tanner graph G′(V ′ ∪ C ′, E)

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:46:57 UTC from IEEE Xplore. Restrictions apply.

with |E| types of edges. Since the decoders in D are designed

to decode a QLDPC code with |E| types of edges, each

Dk ∈ D is parameterized by bk = {b1, b2, . . . , b|E|}, where

bis, 1 ≤ i ≤ |E|, are biases corresponding to different edge

types, as defined in Eq. (4). Given the number of decoders

ND, the objective is to design a set of decoders, D, that

minimizes the logical error rate. These decoders can be used

in a parallel or sequential fashion, depending on the memory

and throughput constraints. In the next section, we employ

RNNs to learn asymmetries in the message-passing rules to

decode symmetric stabilizer trapping sets.

IV. DECODER DIVERSITY BY RNNS

A. A sequential framework

In this section, we describe a framework to choose a decoder

set D that minimizes the logical-error rate when the decoders

in D are used sequentially. We start by choosing D0 as the

min-sum decoder. Let us denote the set of error patterns,

with weight equal to or less than w, on which the min-sum

decoder fails by Pw. These error patterns can be obtained

efficiently by employing the expansion-contraction method in

[17], without fully simulating the min-sum decoder. To learn

biases, b1, corresponding to decoder D1, the error patterns

in set Pw are used as the training set, with the objective

of correcting as many error patterns as possible from Pw.

Let us denote by Pk the set of error patterns from Pw on

which decoders D1,D2, . . . ,Dk−1 fail. Let PDk denote the

set of error patterns from Pw that decoder Dk can correct.

Define Pk+1 = Pk \ PDk . Then, Pk+1 is used as the

training set for decoder Dk+1. This process continues for

k = 1, 2, . . . , ND − 1.

Because of the sequential training strategy, the decoders

in D are used in the same order as they are determined.

Specifically, assume that the predefined maximum number

of iterations corresponding to decoder Dk is Ik. To decode

the error pattern corresponding to syndrome σ, D0 with I0
iterations is first applied. If D0 decodes successfully, the

decoding process terminates, otherwise the syndrome is re-

initialized to σ and the process switches to decoder D1.

This process continues until a decoder Dk ∈ D converges.

Otherwise, all the decoders in D fail, and a decoding failure

is declared.

B. Training RNNs

We use recurrent-neural networks with three hidden lay-

ers and depth Ik to learn decoder Dk in D, where Ik is

the pre-defined number of iterations for decoder Dk. The

activation function of three hidden layers represents the

message-updating rules at variable nodes, check nodes, and

bit-likelihood estimators, respectively. The Tanner graph of the

code determines the connections between the hidden layers. To

imitate the update rules of the min-sum decoder, the activation

functions at variable nodes and check nodes are chosen to be of

the same form as in Eq. (3)-(4). Note that the message-passing

rules at check nodes are not parameterized; hence, they are

fixed for all the edges and iterations. While training, the bias

vector bk, which defines the update rules at the variable nodes,

is optimized to increase error-correction capability. For a fixed

edge, the re-usage of message-updating rules over iteration

leads to the recurrent structure of the neural network. This

is different from most of the existing NN-based decoders,

wherein the update rules vary across iterations.

While training, we exploit the quasi-cyclic nature of the

lifted-product codes to reduce the size of the training set and

the number of parameters in the RNN-based decoder. Consider

the Tanner graph G′(V ′ ∪ C ′, E′) corresponding to a lifted-

product code lifted from protograph G using l×l-circulants. If

a weight-w error pattern on variable nodes in {vi1 , vi2 , . . . viw}
can be estimated by decoder Dk in Ik iterations, then it can

also decode the error pattern {vi1+1, vi2+1, . . . viw+1} in the

same number of iterations, where the additions in the subscript

are in modulo-l. To see the above statement, consider the

depth-Ik computation graphs Cik and Cik+1 with vik and

vik+1, for k ∈ {1, 2, . . . w} , respectively, as their root nodes.

Due to the quasi-cyclic nature of lifted-product codes, it can

be concluded that Cik and Cik+1 are isomorphic. Also, observe

that message-passing rules at the nodes in computation graph

Cik and its isomorphic copy Cik+1 are the same. Therefore,

the above statement is true. As a consequence, the training

set of each decoder can be reduced by a factor l without

compromising their error correction capability. Also, note that

the training methodology reduces the number of parameters

to be learnt by a factor of l, i.e., instead of learning |E′|
parameters, now, it is required to learn the parameter vector

bk with |E| = |E′|
l

elements. Since the channel is output-

symmetric, and the RNN’s activations preserve symmetry

conditions, the all-zero codeword is assumed to be transmitted

while training. The syndrome σ corresponding to error pattern

x is fed into the RNN as input. All the biases are initialized

to 1.

C. Loss function

We use the loss function from [13]. Define

σ̂
x = (x+ x̂)HT

⊥,

where H⊥ is the orthogonal complement of H, x is the actual

error pattern, and x̂ is the estimated error pattern. With these

notations, the loss function is given by

L(σ̂x) =
∑

i

sin (0.5πσ̂x
i). (5)

Observe that the loss function gives zero when the actual and

estimated error pattern sums to a stabilizer. Hence, unlike other

popular loss functions like binary-cross entropy, the above loss

function accounts for degenerate errors. Also note that the

reduction in Hamming weight of the estimated syndrome, an

indicator of decoder convergence, leads to decrease in loss.

The loss function is averaged over a minibatch, denoted by

M, as follows

Lavg =
1

|M|

∑

x∈M

L(σ̂x), (6)

where M is obtained by uniformly sampling the training set.

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:46:57 UTC from IEEE Xplore. Restrictions apply.

Decoder Number of uncorrectable errors
weight-5 weight-6

D0 136811 80354

D1 10300 14327

D2 1125 8561

D3 46 4856

D4 6 3904

TABLE I
THE NUMBER OF UNCORRECTABLE ERROR PATTERNS WHEN EACH

DECODER IS RUN FOR MAXIMUM 20 ITERATIONS.

0 0.02 0.04 0.06

10−6

10−5

10−4

10−3

10−2

10−1

100

Depolarizing probability

L
o

g
ic

al
er

ro
r

ra
te

Proposed NN Decoder
Normalized minsum

Fig. 3. This figure plots the performance of the proposed decoder and
normalized min-sum decoder for 100 iterations. In the sequential approach,
a decoder is used when the previous decoders fail.

V. NUMERICAL RESULTS

In this section, we consider the [[1054, 124, 20]] lifted-

product code constructed from the classical (155, 62) Tanner

code to demonstrate the superior performance of the proposed

diversity-based decoder compared to the normalized min-

sum decoder. We use the sub-graph expansion-contraction

algorithm in [17] to find out 136811 weight five and 80321
weight six error patterns that the min-sum decoder fails to

decode. We follow the sequential framework described in

Section III-B to design four RNN decoders that can decode

as many error patterns as possible from this list. Since the

circulant size for the considered code is 31, each error pattern

has 31 isomorphic copies. In the training process, we use only

the non-isomorphic copies of the error patterns, which reduces

the training set’s size and the training duration. While training,

the learning rate is set to 0.05, and the size of each minibatch

is set to 200. The number of uncorrectable error patterns

corresponding to the trained RNN-based decoders is given

in Table I. Note that all the decoders can be run in parallel

even though they are trained in a sequential fashion. When

multiple decoders converge, we choose the error estimate with

the lowest Hamming weight.

In 3, the logical error of the proposed decoder is compared

to that of the normalized min-sum decoder when both decoders

are run for 100 iterations. It can be observed that the RNN-

based proposed decoder outperforms the normalized min-sum

decoder and hence shows the efficacy of the proposed trapping

set aware training procedure.

ACKNOWLEDGMENT

B. VasiÂc acknowledges the support of the NSF under grants

CCF-1855879, CCF-2100013, CIF-2106189, CCSS-2027844,

and CCSS-2052751. This work was also funded in part by

Jet Propulsion Laboratory, California Institute of Technology,

under a contract with the National Aeronautics and Space

Administration and funded through JPL’s Strategic University

Research Partnerships (SURP) program. B. VasiÂc has disclosed

an outside interest in Codelucida to the University of Arizona.

Conflicts of interest resulting from this interest are being

managed by The University of Arizona in accordance with

its policies. The work of Xin Xiao was done while she was at

the University of Arizona.

REFERENCES

[1] D. Gottesman, ªFault-tolerant quantum computation with constant over-
head,º Quantum Information and Computation, vol. 14, no. 15±16, pp.
1338±1372, Nov. 2014.

[2] A. A. Kovalev and L. P. Pryadko, ªFault tolerance of quantum low-
density parity check codes with sublinear distance scaling,º Phys. Rev.

A, vol. 87, p. 020304, Feb. 2013.
[3] P. Panteleev and G. Kalachev, ªQuantum LDPC codes with almost linear

minimum distance,º IEEE Transactions on Information Theory, vol. 68,
no. 1, pp. 213±229, 2022.

[4] D. MacKay, G. Mitchison, and P. McFadden, ªSparse-graph codes for
quantum error correction,º IEEE Transactions on Information Theory,
vol. 50, no. 10, pp. 2315±2330, Oct. 2004.

[5] D. Gottesman, ªStabilizer codes and quantum error correction,º Ph.D.
dissertation, California Institute of Technology, 1997.

[6] N. Raveendran and B. VasiÂc, ªTrapping sets of quantum LDPC codes,º
Quantum, vol. 5, p. 562, Oct. 2021.

[7] D. Poulin and Y. Chung, ªOn the iterative decoding of sparse quantum
codes,º Quantum Information and Computation, vol. 8, no. 10, pp. 987±
1000, Nov. 2008.

[8] N. Raveendran, P. J. Nadkarni, S. S. Garani, and B. VasiÂc, ªStochastic
resonance decoding for quantum LDPC codes,º in 2017 IEEE Intl. Conf.

on Commun. (ICC), May 2017, pp. 1±6.
[9] J. D. Crest, M. Mhalla, and V. Savin, ªStabilizer inactivation for

message-passing decoding of quantum LDPC codes,º in 2022 IEEE

Information Theory Workshop (ITW), 2022, pp. 488±493.
[10] K.-Y. Kuo and C.-Y. Lai, ªRefined belief propagation decoding of

sparse-graph quantum codes,º IEEE Journal on Selected Areas in

Information Theory, vol. 1, no. 2, pp. 487±498, 2020.
[11] S. Miao, A. Schnerring, H. Li, and L. Schmalen, ªNeural belief

propagation decoding of quantum ldpc codes using overcomplete check
matrices,º 2023.

[12] J. Roffe, D. R. White, S. Burton, and E. Campbell, ªDecoding across
the quantum low-density parity-check code landscape,º Phys. Rev. Res.,
vol. 2, Dec 2020.

[13] Y.-H. Liu and D. Poulin, ªNeural belief-propagation decoders for
quantum error-correcting codes,º Phys. Rev. Lett., vol. 122, p. 200501,
May 2019.

[14] D. Gottesman, ªClass of quantum error-correcting codes saturating the
quantum Hamming bound,º Phys. Rev. A, vol. 54, no. 3, pp. 1862±1868,
Sept. 1996.

[15] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information: 10th Anniversary Edition, 10th ed. New York, NY, USA:
Cambridge University Press, 2011.

[16] D. Declercq, B. Vasic, S. K. Planjery, and E. Li, ªFinite alphabet iterative
decodersÐpart ii: Towards guaranteed error correction of ldpc codes
via iterative decoder diversity,º IEEE Transactions on Communications,
vol. 61, no. 10, pp. 4046±4057, 2013.

[17] N. Raveendran, D. Declercq, and B. VasiÂc, ªA sub-graph expansion-
contraction method for error floor computation,º IEEE Transactions on

Communications, vol. 68, no. 7, pp. 3984±3995, 2020.

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:46:57 UTC from IEEE Xplore. Restrictions apply.

