2023 12th International Symposium on Topics in Coding (ISTC) | 979-8-3503-2611-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/ISTC57237.2023.10273526

Learning to Decode Trapping Sets in QLDPC Codes

Asit Kumar Pradhan, Nithin Raveendran, Narayanan Rengaswamy, Xin Xiao, and Bane Vasic¢
Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ, 85721 USA
Email: {asitpradhan, nithin , narayananr , 7xinxiao7 } @arizona.edu, vasic@ece.arizona.edu

Abstract—Quantum low-density parity-check (QLDPC) codes
with asymptotically nonzero rates are promising candidates for
fault-tolerant quantum computation. Belief propagation (BP)
based iterative decoding algorithms, a primary choice for classical
LDPC codes, perform poorly for QLDPC codes due to stabilizer-
induced trapping sets, resulting in a high error floor. Several
decoding algorithms, like post-processing decoders, normalized
BP decoders, and neural decoders, have been proposed to
increase the performance in the error-floor region. However, this
improvement comes at the expense of an increase in the execution
time of the decoder. This paper proposes a general framework
for error correction for a class of QLDPC codes called lifted-
product codes using recurrent neural networks (RNNs). The
RNN is employed to learn message-passing rules that can decode
quantum-trapping sets. Then the standard message-passing rules
are used with the learned rules to improve the error floor.
While training the RNN, the quasi-cyclic property of the lifted
product codes is exploited to reduce the size of the training set
and the number of parameters in the network. This reduction
in the number of parameters makes these decoders amenable
to hardware implementation. Simulation results show that the
proposed decoder performs better than the existing decoders in
the literature.

I. INTRODUCTION

Quantum low-density parity-check (QLDPC) codes are a
promising candidate for both quantum computing and com-
munications, with a history of success in classical LDPC
codes in admitting low-complexity decoding and near-capacity
performance. As pointed out by Gottesman [1] and Kovalev
and Pryadko [2], QLDPC codes are the only known class
of quantum error correction (QEC) codes that permit fault-
tolerant error correction with asymptotically nonzero rate.
In [3], Panteleev and Kalachev propose a family of QLDPC
codes with linear minimum distance and constant rate, known
as lifted-product codes. QLDPC codes [4] based on the sta-
bilizer formalism [S] rely on classical decoding algorithms
with the syndrome measurements. In addition to the excellent
distance properties of QLDPC codes, these codes have low-
weight stabilizer generators; hence, their syndrome-extraction
circuits have low depth, making them lucrative for fault-
tolerant quantum computation.

For fault-tolerant computation, in addition to having good
codes, designing low-complexity decoders is paramount. The
low-complexity iterative message-passing algorithms do not
perform well on the QLDPC codes, unlike their classical
counterparts. This is mainly due to two types of trapping
sets. First, since most of the QLDPC codes are constructed
using tensor products, their corresponding Tanner graphs have
inevitable short cycles, resulting in trapping sets (TSs) [6].

Second, QLDPC codes can be thought of as two dual-
containing classical LDPC codes. This dual-containing prop-
erty leads to a special type of trapping sets known as symmetric
stabilizer TSs [6]. Several decoders have been proposed to
address the decoder convergence due to the issues mentioned
above [7]-[11]. Poulin and Chung [7] investigated heuristic
methods to break the symmetric input channel values to
improve decoding performance. In [12], the authors use a post-
processing decoder called an ordered statistics decoder (OSD)
after running a few iterations of the message-passing decoder
to improve the decoding performance. In another work [9], the
authors use the message-passing decoder in parts of the Tanner
graph where TSs are absent and use a post-processing step to
correct errors in the rest of the graph. In both approaches [9],
[12], the respective post-processing step involves inverting
a matrix, which may lead to high decoding complexity in
some cases. In [10], authors show that normalized belief-
propagation decoders with a serial schedule can avoid TSs
when the normalization constant is chosen carefully. In a
recent work, [13], Poulin’s group used a neural network-based
decoder with a different loss function instead of the generally
used binary cross entropy to tackle the TSs. In [11], the authors
use an overcomplete parity-check matrix to avoid decoding
failures due to short cycle-related trapping sets. Both these
neural network-based approaches use different message-update
rules over decoding iterations, hence, are not easily amenable
to hardware implementation. Also, the neural network-based
approaches are unsuitable for decoding moderate-length codes
(around a few thousand) due to the high training time required.

This paper focuses on designing parallel, TS-aware,
message-passing decoders for QLDPC codes that do not
require post-processing. The TSs corresponding to a standard
message-passing decoder are collected to do so. Then, a se-
quence of decoders specialized in correcting error patterns that
form TS is learned using recurrent neural networks (RNNs).
Since our approach uses the same message-update rules across
iterations, it is amenable to hardware implementation. Also,
using the knowledge of TSs reduces training time, an essential
criterion for learning decoders for code with moderate block-
length, and helps us to achieve better performance without any
post-processing step.

A. Notations

We use bold face capital letters to denote matrices and bold
face small letters to vector variables. We denote cardinality of
set A by |.A|. We will assume that vectors without transposes

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:46:57 UTC from IEEE Xplore. Restrictions apply.

are row vectors unless stated otherwise. We represent the
absolute value of a scalar variable by | - |.

II. PRELIMINARIES
A. Depolarizing Channel

We focus on the widely studied channel model called de-
polarizing channel (memoryless Pauli channel), characterized
by the depolarizing probability p in which the error E on each
qubit is a Pauli operator, and error on a qubit is independent
of the error on other qubits. The set of Pauli operators is given
by P = {I,X,Y,Z}. In particular, Pr(E = X) = Pr(E =
Y)=Pr(E=7Z)=p/3,Pr(E=1) =1—p. A Pauli error
vector on the n qubits can be expressed as a binary error vector
of length 2n by mapping the Pauli operators to binary tuples
as follows: I — (0,0),X — (1,0),Z — (0,1),Y — (1,1).

B. Stabilizer Formalism

Let us denote the n-qubit Pauli group by P, =
L, X,Y,Z}®", 0 < | < 3, where ®n is the n-fold
tensor product, X, Y, and Z are the Pauli matrices, I is
the 2 x 2 identity matrix, and i’ is the phase factor. Let
S =(S4,S9,...,S), —1 ¢ S, be an Abelian subgroup of P,
with generators S;, 1 < i < m. A (n,k) quantum stabilizer
code [14] is a 2*-dimensional subspace C of the Hilbert space
(C?)®" given by the common +1 eigenspace of stabilizer
group S:

C={lv), st Sil)=[¥),Vi}. (1)

Every element of stabilizer group S is mapped to a binary tuple
as follows: I — (0,0), X — (1,0), Z — (0,1), Y — (1,1).
This mapping gives a matrix representation of the stabilizer
generators called parity-check matrix, H, which is given by
H = [HX | Hz] , where Hx and Hy represent binary
matrices for bit flip and phase flip operators, respectively. Note
that H is a m x 2n matrix. Similar to the Pauli representation,
the stabilizers also commute with respect to the symplectic
inner product in binary representation [15].

C. Protograph representation of lifted-product QLDPC codes

Lifted product codes are constructed using two classical
protograph-based LDPC codes. In the next section, we briefly
introduce protograph ensemble of LDPC codes.

1) Protograph LDPC codes: A protograph G = (VUC, E)
is a bipartite graph, where V (C) is the set of variable
(respectively, check) nodes, and E is the set of edges that
connect a variable node in V to a check node in C. The
nodes and edges in the protograph are ordered, and the -
th variable node, check node, and edge in the protograph are
denoted, respectively, by v;, c¢;, and e;. The variable and check
nodes connected by an edge e; are denoted v(e;) and c(e;),
respectively. A protograph can be represented by a base matrix
B of dimension |C| x |V|, whose (i, j)-th element B(%, j) is
the number of edges between c¢; and v;. For example, consider

a base matrix
1 1 0
B [1 ! 1]. @)

Fig. 1. Protograph for base matrix in (2).

The 4 different edges in this example are numbered, as
shown in Fig. 1. The parity-check matrix of a quasi-cyclic
LDPC code can be obtained from base graph B by replacing
its entries with [x [- circulants, which can be represented by
the elements of quotient polynomial ring R[x]/(z! — 1). This
procedure is known as lifting. We denote the Tanner graph and
parity-check matrix of the quasi-cyclic LDPC code obtained
by lifting protograph G by G’ and H, respectively. Recall
that the entries of a base (parity-check) matrix represent the
edges in the corresponding protograph (Tanner graph). In the
Tanner graph, the group of edges obtained by replacing the
entry corresponding to edge e; in protograph G with a [x [
circulant is said to be of type e; or, simply, type <.

2) Lifted-product codes: Given two classical base matrices
B; and By, respectively, of size mp, X np, and mp, X np,,
two base matrices are constructed [3] as

By =[B1®L,,, I, ©B;
B,=[L, ®B] B{®lL,|.

These two base matrices By and B, can be lifted as described
in Section II-Cl1 to obtain two parity-check matrices Hy
and H,, respectively. Similar to classical protograph-based
LDPC codes, the edges of H, and H, can be classified into
different types, as described in Section II-C1. Then, H is the
set of stabilizer generators of a lifted-product QLDPC code
constructed from two classical base matrices By and B,. If
the number of columns in H is NV, and the number of parity-
check equations is M, then n = l(nang + mamp) and
m =1Il(mana +mpnpg). Assuming that H, and H, are full
rank, we have a (n,n — m)-QLDPC code. The protograph
corresponding to By is shown in Fig. 2 when B; and B, are
chosen as B given in Eq. (2).

III. MESSAGE-PASSING DECODER

In what follows, we assume that X and Z errors are
independent. We describe only the decoding of Z errors for
ease of exposition. Let us consider the standard message-
passing decoder over a depolarizing channel with depolarizing
probability p run on Tanner graph G- (V' U C’, E’) derived
from a protograph Gy = (V UC, E). Given an error vector X,
the syndrome vector o = (01,02, ...,0|cs|) can be obtained
by o = xH , where x denotes the error pattern. We define
a distinct message-passing rule for each group of edges in
the lifted graph G.. Since the lifted graph G, is lifted from
protograph Gy = (VUC, E), G has |E| edge types, one for
each edge in the protograph Gy = (V UC, E). Therefore, we
have |E| message-passing rules, one for each edge type. Let

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:46:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Protograph for base matrix B, when B; and By are chosen as the base matrix in (2). Since the protograph has 16 edges, the LDPC code lifted

from it will have 16 types of edges.

El, i€ {1,2,...,|E|}, denote the set of type-i edges in the
lifted graph G, (V' U C’, E'). Note that E' = JI| E/.

Let m! _,.(e) be the message from variable node to check
node along edge e for e € El, i € {1,2,...,|E|}, in the
t-th iteration. Similarly, let m!_, (e) be the message from
check node to variable node in the ¢-th iteration. The message-

passing recursion is given by

mzt}v(e) = Oc, H mtu%c(e/)
e’€E.(e)

min |mv%6(€/)|7 3)

CIEEC(E)

mf)—:lc(e) = bi +w

>, miELG)],)

e'€F,(e)

for t > 0, where E.(e) = {¢' : c(e) = c(€'),e # €'} and
E,(e) ={e :v(e) = v(e'), e # €'} are the set of neighboring
edges incident to the same check node and variable node,
respectively, as the edge e, b;, for 1 < i < |E|, is the
bias corresponding to edge type ¢, and w is the normalization
constant. Note that we have a different update rule for each
edge type at the variable node, while the update rule at the
check nodes is the same for all edge types. We can recover the
min-sum decoder by choosing b; = log 1%7” and w = 1. After
a pre-defined number of iterations, t,.x, Of iterative syndrome
decoding, we declare that the decoder failed for a particular
input syndrome or error pattern if the decoder cannot find an
error pattern matching the input syndrome. More precisely, a
decoder failure is said to have occurred if there does not exist
t < t;mae such that (&(t)—i—a') — 0, where 6 is the syndrome
after the ¢-th iteration.

A. Quantum-trapping sets

In this section, we introduce the notion of TSs and describe
how their knowledge can be used to design better decoders.
During the iterative decoding, check node c is satisfied if there
exists a positive integer I; such that for all ¢ > Ij, &](.t) = 0j.
We say that variable node v; has converged if there exists a
positive integer I; such that for all ¢ > I, igt) = :i"gt_l). Note

that the xgt) is not necessarily the correct estimate of error
on the 7 — th variable node. With these definitions, we define

quantum TS (QTS) as follows:

Definition 1. A trapping set 7 for a syndrome-based iterative
decoder D, is a non-empty set of variable nodes in a Tanner
graph G’ which have not converged or are neighbors of the
check nodes that are not satisfied.

If the sub-graph G(T) induced by such a set of variable
nodes has a variable nodes and b unsatisfied check nodes, then
Ts is classified as an (a,b) trapping set.

The QTSs, which are similar to the TSs in classical LDPC
codes, are called classical-type trapping sets [6]. The second
class of trapping sets is the harmful degenerate errors observed
in the support of the stabilizers, called symmetric stabilizer
trapping sets or stabilizer splitting errors. In such trapping sets,
even though the variable nodes eventually converge to some
error pattern, there exist check nodes that are not satisfied.
Next, we briefly describe such trapping sets. To appreciate
the behavior of symmetric stabilizer trapping sets, we first
describe the subtle difference in decoding classical codes and
quantum codes. In the classical case, the estimate of error
pattern X must be equal to the actual error pattern x, whereas
in quantum error-correction, the modulo-2 sum of the actual
and estimated error pattern, x ¢ X, must be a stabilizer- the
space spanned by the rows of the parity-check matrix. This is
because the error patterns that only differ by a stabilizer have
the same effect on the codespace. Therefore, while decoding
H,, the decoder needs to identify any recovery operator such
that x @ x € rowspace(H,). In decoding of quantum codes,
we say error vectors x and y are degenerate if x &y is a
stabilizer; hence, for successful decoding, it is sufficient to
output any one of the degenerate errors as the candidate error
pattern. However, some degenerate errors can be detrimental
to the iterative decoding of QLDPC codes, especially when
the minimum distance of the code is higher than its stabilizer
weight. For example, if the stabilizer-induced sub-graph con-
tains degenerate error patterns x and y of equal weight and
has a symmetric topology, then the iterative decoder oscillates
between x and y, thus not matching the input syndrome. This
failure can be attributed to the symmetry in the stabilizer
and message-passing rules. Hence, such errors are referred
to as symmetric degenerate errors, and corresponding sets of
variable nodes as symmetric stabilizer trapping sets or in short,
symmetric stabilizers. Although degenerate errors are typically
classified as harmless while decoding quantum codes, from
the above discussion, it follows that some (not all) degenerate
error patterns in a symmetric stabilizer are harmful to iterative
decoders.

B. Decoder Diversity

We follow the decoder diversity from [16]. Consider a set
of decoders D = {D* : k = 1,2,...,Np} to decode a
QLDPC code defined by the Tanner graph G'(V' U C', E)

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:46:57 UTC from IEEE Xplore. Restrictions apply.

with |E| types of edges. Since the decoders in D are designed
to decode a QLDPC code with |E| types of edges, each
D* € D is parameterized by b* = {by,bs,...,b g}, where
b;s, 1 < i < |E]|, are biases corresponding to different edge
types, as defined in Eq. (4). Given the number of decoders
Np, the objective is to design a set of decoders, D, that
minimizes the logical error rate. These decoders can be used
in a parallel or sequential fashion, depending on the memory
and throughput constraints. In the next section, we employ
RNNs to learn asymmetries in the message-passing rules to
decode symmetric stabilizer trapping sets.

IV. DECODER DIVERSITY BY RNNS
A. A sequential framework

In this section, we describe a framework to choose a decoder
set D that minimizes the logical-error rate when the decoders
in D are used sequentially. We start by choosing D° as the
min-sum decoder. Let us denote the set of error patterns,
with weight equal to or less than w, on which the min-sum
decoder fails by P,. These error patterns can be obtained
efficiently by employing the expansion-contraction method in
[17], without fully simulating the min-sum decoder. To learn
biases, b?, corresponding to decoder DL, the error patterns
in set P, are used as the training set, with the objective
of correcting as many error patterns as possible from P,,.
Let us denote by P* the set of error patterns from P, on
which decoders D', D? ..., D! fail. Let Pp+ denote the
set of error patterns from 7, that decoder D* can correct.
Define Pkl PE \ Ppr. Then, P+l is used as the
training set for decoder D¥*!. This process continues for
k=1,2,...,Np — 1.

Because of the sequential training strategy, the decoders
in D are used in the same order as they are determined.
Specifically, assume that the predefined maximum number
of iterations corresponding to decoder DF is Ij. To decode
the error pattern corresponding to syndrome o, D° with I
iterations is first applied. If D° decodes successfully, the
decoding process terminates, otherwise the syndrome is re-
initialized to o and the process switches to decoder D'.
This process continues until a decoder D* € D converges.
Otherwise, all the decoders in D fail, and a decoding failure
is declared.

B. Training RNNs

We use recurrent-neural networks with three hidden lay-
ers and depth I to learn decoder Dy in D, where Ij is
the pre-defined number of iterations for decoder Dj. The
activation function of three hidden layers represents the
message-updating rules at variable nodes, check nodes, and
bit-likelihood estimators, respectively. The Tanner graph of the
code determines the connections between the hidden layers. To
imitate the update rules of the min-sum decoder, the activation
functions at variable nodes and check nodes are chosen to be of
the same form as in Eq. (3)-(4). Note that the message-passing
rules at check nodes are not parameterized; hence, they are
fixed for all the edges and iterations. While training, the bias

vector b¥, which defines the update rules at the variable nodes,
is optimized to increase error-correction capability. For a fixed
edge, the re-usage of message-updating rules over iteration
leads to the recurrent structure of the neural network. This
is different from most of the existing NN-based decoders,
wherein the update rules vary across iterations.

While training, we exploit the quasi-cyclic nature of the
lifted-product codes to reduce the size of the training set and
the number of parameters in the RNN-based decoder. Consider
the Tanner graph G'(V’' U C’, E’) corresponding to a lifted-
product code lifted from protograph G using [x [-circulants. If
a weight-w error pattern on variable nodes in {v;,, v;,,...v;,}
can be estimated by decoder DF in I} iterations, then it can
also decode the error pattern {v;, 1,viy41,... Vi, +1} in the
same number of iterations, where the additions in the subscript
are in modulo-l. To see the above statement, consider the
depth-I); computation graphs C;, and C;, 41 with v;, and
v, +1, for k € {1,2,...w} , respectively, as their root nodes.
Due to the quasi-cyclic nature of lifted-product codes, it can
be concluded that C;, and C;, 4 are isomorphic. Also, observe
that message-passing rules at the nodes in computation graph
C;, and its isomorphic copy C;, 41 are the same. Therefore,
the above statement is true. As a consequence, the training
set of each decoder can be reduced by a factor [without
compromising their error correction capability. Also, note that
the training methodology reduces the number of parameters
to be learnt by a factor of [, i.e., instead of learning |E’|
parameters, now, it is required to learn the parameter vector
b* with |E| = Ib;—/l elements. Since the channel is output-
symmetric, and the RNN’s activations preserve symmetry
conditions, the all-zero codeword is assumed to be transmitted
while training. The syndrome o corresponding to error pattern
x is fed into the RNN as input. All the biases are initialized
to 1.

C. Loss function

We use the loss function from [13]. Define
&% = (x+%)HT,

where H | is the orthogonal complement of H, x is the actual
error pattern, and X is the estimated error pattern. With these
notations, the loss function is given by

L(6") = sin(0.5767). (5)
K3

Observe that the loss function gives zero when the actual and
estimated error pattern sums to a stabilizer. Hence, unlike other
popular loss functions like binary-cross entropy, the above loss
function accounts for degenerate errors. Also note that the
reduction in Hamming weight of the estimated syndrome, an
indicator of decoder convergence, leads to decrease in loss.
The loss function is averaged over a minibatch, denoted by
M, as follows

1
»Cav = Txar ‘C(a—x)v (6)
T2,
where M is obtained by uniformly sampling the training set.

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:46:57 UTC from IEEE Xplore. Restrictions apply.

Decoder | Number of uncorrectable errors
weight-5 weight-6

Do 136811 80354
D1 10300 14327
Do 1125 8561

Ds 46 4856
Dy 6 3904

TABLE I

THE NUMBER OF UNCORRECTABLE ERROR PATTERNS WHEN EACH
DECODER IS RUN FOR MAXIMUM 20 ITERATIONS.

10° E T T E
1071 E =
e 10-2L J
5 1077 ¢
= E &
;6 []
E 107° | E
o F &
S 101} |
an E =
3 [i
1075 ? é
10—6 ; =@ Proposed NN Decoder ;
E =@ Normalized minsum ||
F i : &

0 0.02 0.04 0.06

Depolarizing probability
Fig. 3. This figure plots the performance of the proposed decoder and

normalized min-sum decoder for 100 iterations. In the sequential approach,
a decoder is used when the previous decoders fail.

V. NUMERICAL RESULTS

In this section, we consider the [[1054,124,20]] lifted-
product code constructed from the classical (155,62) Tanner
code to demonstrate the superior performance of the proposed
diversity-based decoder compared to the normalized min-
sum decoder. We use the sub-graph expansion-contraction
algorithm in [17] to find out 136811 weight five and 80321
weight six error patterns that the min-sum decoder fails to
decode. We follow the sequential framework described in
Section III-B to design four RNN decoders that can decode
as many error patterns as possible from this list. Since the
circulant size for the considered code is 31, each error pattern
has 31 isomorphic copies. In the training process, we use only
the non-isomorphic copies of the error patterns, which reduces
the training set’s size and the training duration. While training,
the learning rate is set to 0.05, and the size of each minibatch
is set to 200. The number of uncorrectable error patterns
corresponding to the trained RNN-based decoders is given
in Table I. Note that all the decoders can be run in parallel
even though they are trained in a sequential fashion. When
multiple decoders converge, we choose the error estimate with
the lowest Hamming weight.

In 3, the logical error of the proposed decoder is compared
to that of the normalized min-sum decoder when both decoders
are run for 100 iterations. It can be observed that the RNN-

based proposed decoder outperforms the normalized min-sum
decoder and hence shows the efficacy of the proposed trapping
set aware training procedure.

ACKNOWLEDGMENT

B. Vasi¢ acknowledges the support of the NSF under grants
CCF-1855879, CCF-2100013, CIF-2106189, CCSS-2027844,
and CCSS-2052751. This work was also funded in part by
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration and funded through JPL’s Strategic University
Research Partnerships (SURP) program. B. Vasic¢ has disclosed
an outside interest in Codelucida to the University of Arizona.
Conflicts of interest resulting from this interest are being
managed by The University of Arizona in accordance with
its policies. The work of Xin Xiao was done while she was at
the University of Arizona.

REFERENCES

[1] D. Gottesman, ‘“Fault-tolerant quantum computation with constant over-
head,” Quantum Information and Computation, vol. 14, no. 15-16, pp.
1338-1372, Nov. 2014.

[2] A. A. Kovalev and L. P. Pryadko, “Fault tolerance of quantum low-
density parity check codes with sublinear distance scaling,” Phys. Rev.
A, vol. 87, p. 020304, Feb. 2013.

[3] P.Panteleev and G. Kalachev, “Quantum LDPC codes with almost linear
minimum distance,” IEEE Transactions on Information Theory, vol. 68,
no. 1, pp. 213-229, 2022.

[4] D. MacKay, G. Mitchison, and P. McFadden, “Sparse-graph codes for
quantum error correction,” IEEE Transactions on Information Theory,
vol. 50, no. 10, pp. 2315-2330, Oct. 2004.

[5] D. Gottesman, “Stabilizer codes and quantum error correction,” Ph.D.
dissertation, California Institute of Technology, 1997.

[6] N. Raveendran and B. Vasi¢, “Trapping sets of quantum LDPC codes,”
Quantum, vol. 5, p. 562, Oct. 2021.

[7] D. Poulin and Y. Chung, “On the iterative decoding of sparse quantum
codes,” Quantum Information and Computation, vol. 8, no. 10, pp. 987—
1000, Nov. 2008.

[8] N. Raveendran, P. J. Nadkarni, S. S. Garani, and B. Vasi¢, “Stochastic
resonance decoding for quantum LDPC codes,” in 2017 IEEE Intl. Conf.
on Commun. (ICC), May 2017, pp. 1-6.

[9] J. D. Crest, M. Mhalla, and V. Savin, “Stabilizer inactivation for
message-passing decoding of quantum LDPC codes,” in 2022 [EEE
Information Theory Workshop (ITW), 2022, pp. 488-493.

[10] K.-Y. Kuo and C.-Y. Lai, “Refined belief propagation decoding of
sparse-graph quantum codes,” IEEE Journal on Selected Areas in
Information Theory, vol. 1, no. 2, pp. 487-498, 2020.

[11] S. Miao, A. Schnerring, H. Li, and L. Schmalen, “Neural belief
propagation decoding of quantum ldpc codes using overcomplete check
matrices,” 2023.

[12] J. Roffe, D. R. White, S. Burton, and E. Campbell, “Decoding across
the quantum low-density parity-check code landscape,” Phys. Rev. Res.,
vol. 2, Dec 2020.

[13] Y-H. Liu and D. Poulin, “Neural belief-propagation decoders for
quantum error-correcting codes,” Phys. Rev. Lett., vol. 122, p. 200501,
May 2019.

[14] D. Gottesman, “Class of quantum error-correcting codes saturating the
quantum Hamming bound,” Phys. Rev. A, vol. 54, no. 3, pp. 1862—1868,
Sept. 1996.

[15] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition, 10th ed. New York, NY, USA:
Cambridge University Press, 2011.

[16] D. Declercq, B. Vasic, S. K. Planjery, and E. Li, “Finite alphabet iterative
decoders—part ii: Towards guaranteed error correction of ldpc codes
via iterative decoder diversity,” IEEE Transactions on Communications,
vol. 61, no. 10, pp. 4046-4057, 2013.

[17] N. Raveendran, D. Declercq, and B. Vasi¢, “A sub-graph expansion-
contraction method for error floor computation,” IEEE Transactions on
Communications, vol. 68, no. 7, pp. 3984-3995, 2020.

Authorized licensed use limited to: The University of Arizona. Downloaded on February 14,2024 at 19:46:57 UTC from IEEE Xplore. Restrictions apply.

