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Abstract—We propose a low latency hardware-friendly decod-
ing framework for Calderbank-Shor-Steane (CSS) quantum low-
density parity-check (QLDPC) codes under the depolarizing noise
model. With a given latency constraint, the proposed decoder,
referred to generally as the Turbo-XZ decoding algorithm utilizes
the correlation of Pauli X and Z errors. In this framework,
we introduce early stopping and switching decoders to meet
latency constraints and improve error correction performance for
different decoders including the bit-flip (BF), fixed BF (proposed
hardware-friendly variant of BF), and normalized min-sum algo-
rithm (nMSA). This decoding framework allows various trade-
offs in terms of latency, complexity, and decoding performance
which are discussed briefly. Simulation results show that the
BF-Turbo-XZ decoder performs close to (and beyond in some
cases) the nMSA version with lower complexity and latency. Our
proposed fixed BF approach reduces complexity with minimal
performance degradation. For example with a generalized bicycle
code, nMSA performs better for higher depolarizing values (p
> 0.02) at a higher cost, while low-complexity BF-Turbo-XZ
decoders are better at low depolarizing values.

I. INTRODUCTION

Real-time decoding plays an essential role in achieving
fault-tolerant quantum computing, as quantum systems are
inherently noisy and susceptible to errors. Quantum error
correction (QEC) codes and decoder implementations must be
designed with low latency such that the measured syndrome is
processed faster than or at the rate it is received. The expected
latency requirements for real-time decoders depend on the
qubit platform of implementation, ranging from the order
of 1 ps for a surface code using superconducting transmon
qubits to the order of 1 ms for silicon spin-qubits and even
beyond 100 ms for ion traps [1]. For instance, Google’s
Quantum Al team’s [2], demonstration needed error correction
cycles of 921 nanoseconds. In another small-scale surface code
experiment, researchers perform error correction in every 1.1
microseconds [3].

The shift from QEC using surface codes to general quantum
low-density parity-check (QLDPC) [4], [5] codes necessitates
long-range qubit connections [6], which can increase noise
through delays and swaps, potentially further limiting the
already restricted latency budget for specialized decoding
hardware implementations. Nevertheless, QLDPC codes have
been studied extensively in recent years mainly due to their

superiority in the code minimum distance and code rate
scaling asymptotically [7], [8]. There has been significant
progress in designing efficient decoding algorithms for such
‘asymptotically good’ codes [9]. For the finite-length regime
with these sparse graphical codes, although iterative decoders
are a natural choice for decoding, they exhibit poor error
correction performance [10], [11]. A syndrome-based belief
propagation (BP) algorithm in its original form has been
observed to perform significantly worse for QLDPC codes
than their classical counterparts. The presence of unavoidable
cycles in their Tanner graph, stabilizer splitting symmetric
errors, and harmful trapping sets [12] typically make BP-
based decoders fail in the waterfall regime (high to moderate
depolarizing probability) and more so in the error floor regime
(low depolarizing probability). Various decoding approaches
have been pursued in attempts to improve the overall log-
ical error rate curves in comparison to BP using heuristics
approaches [11], neural-network trained BP decoders [13]-
[15], exploiting the correlation between X and Z errors [16],
[17] and soft syndrome information [18], refined BP [19], and
numerous post-processing techniques of increasing complexity
such as Bit-Flip (BF) [20], Small Set Flip (SSF) [21], Sta-
bilizer Inactivation (SI) [22], and Ordered Statistics Decoder
(OSD) [23], [24]. Such post-processing (PP) steps can be
deployed after one or multiple rounds of BP decoder failure.
Their main drawback is that the current implementation of
these PP steps significantly adds up both in terms of the
complexity (polynomial complexity in codelength) and the
latency of error correction cycles (not suitable for parallel
hardware implementation).

In this paper, we restrict ourselves to the problem of a
given fixed, but low latency. The goal is to perform error
correction rounds under a given timing budget by reducing the
latency of decoding and hardware implementation complexity.
It is well known that Bit-Flip (BF) algorithms are far less
complex than BP-based algorithms like the normalized min-
sum algorithm (nMSA). Choosing BF decoder for a fixed
number of decoding iterations as the baseline for improving
performance and complexity, we first develop strategies to
exploit the correlation among Pauli X and Z errors considering
the depolarizing channel. Since we operate in a fixed latency
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setting defined by decoding clock cycles, every decoding
iteration and the PP step can be used to exploit the correlation
information. The proposed BF-turbo-XZ decoding framework
operates by switching the decoder graph and the decoded error
vector when successful. We also aim to reduce the hardware
implementation complexity by proposing Fixed BF decoder by
choosing optimized fixed thresholds. Combining all these ap-
proaches in the decoder diversity scheme (combining strengths
of multiple decoders) helps to development of 3 algorithms,
sharing the same number of decoding iterations but with
different trade-off performance complexity.

II. PRELIMINARIES
A. Stabilizer Formalism

The n-qubit Pauli group can be denoted as P, =
JHLX,Y,Z}®", with 0 < | < 3, where ®n denotes the
n-fold tensor product, and X, Y, and Z are the Pauli matrices.
I is the 2 x 2 identity matrix and j = /—1. Let S =
(S1,S52,....,8m), —1 ¢ S, be an Abelian subgroup of P,, with
m generators S;, 1 <4 < m. A (n, k) quantum stabilizer code
[25] is defined as a 2*-dimensional subspace C of the Hilbert
space (C?)®" that satisfies the condition that S; |¢)) = [¢) for
all ¢, for any |¢) in C. The projective measurement outcomes
of these stabilizer generators correspond to their respective
eigenvalues, which are referred to as the syndrome. The
syndrome is used to determine whether an error has occurred
and to identify its location and type. We focus on the quantum
depolarizing channel (memoryless Pauli channel), which is
characterized by the depolarizing probability p, such that the
error on one qubit is independent of the error on other qubits.
A Pauli error on a qubit ¢, denoted by E;, takes values from the
set {I,X,Y,Z} with probability P(E; = X) =P(E; =Y) =
P(E;, = Z) = p/3,P(E; =I) = 1 — p. Pauli error vector on
n qubits can be expressed as a binary error vector of length
2n with the following mapping from Pauli elements to binary
tuples: I — (0,0),X — (1,0),Z — (0,1),Y — (1,1). Hence,
we have the corresponding binary error vector e = [ey, €,] of
length 2n.

This mapping also gives a pair of binary matrix rep-
resentations of the stabilizer generators referred to as the
parity check matrices. Similar to the Pauli representation, the
stabilizers also commute with respect to the symplectic inner
product in binary representation. Among the stabilizer codes,
Calderbank-Shor-Steane (CSS) codes [11] are generated via
purely X-type ((a, 0) in binary form) and purely Z-type ((0, b)
in binary form) operators. This constraint enables CSS code
construction using two compatible classical codes with binary
parity-check matrices Hy and H, such that HXHZT =0
(the all-zeros matrix). The binary syndromes are measured as
s, = H,e, " (mod 2) and s, = Hye," (mod 2). The focus
of our paper is on QLDPC codes from the class of CSS codes.

B. Quantum LDPC Codes

Sparse quantum stabilizer codes — quantum low-density
parity-check (QLDPC) codes — have both H, and H, with
a low density of ones in comparison to zeros. Decoders

utilize the bipartite graphical representation of such sparse
parity check matrices, commonly referred to as Tanner graphs.
The syndrome decoding task of obtaining the error estimate
given the measured syndrome is efficiently performed through
syndrome-based iterative algorithms, such as BP, over the
respective Tanner graphs. The Tanner graph for Hy (or H,) is
denoted as G, = (V4, Cx, Fy) (or G, = (V,,C,, F,)), where V
and C represent the variable and check nodes, respectively, and
F represents the edges. The subscripts corresponding to the
X and Z graphs are omitted in the following unless necessary.

Since our focus is not only on performance improvement but
also on maintaining latency requirements, we want to identify
and improve decoders with low complexity - such as the BF
decoder which is known for its low complexity on the iterative
decoder hierarchy.

III. BIT-FLIPPING SYNDROME DECODERS

Given a parity check matrix H and measured syndrome
s, a syndrome BF decoder iteratively flips the error bits to
find an error pattern f with syndrome § = Hf T (mod 2) that
matches with s. The syndrome BF algorithm is outlined in
Algorithm 1. In the BF decoder, the error pattern estimate is
initialized to f) = 0, with the subscript denoting iteration
¢ = 0. Over iterations, the goal is to reduce the number of
unsatisfied (# s measured syndrome values) parity checks.
The number of unsatisfied neighboring checks is often referred
to as the ‘energy’ of the corresponding variable node as in the
classical gradient descent bit-flipping algorithms [26]. At each
iteration, we flip the error bit value(s) at the variable node(s)
that meets a threshold ® defined as in Eq. (2). For the BF
decoder, the threshold ® is the maximum value of the energy
function &, i.e., ® = max (£). The BF decoder requires the
computation of the maximum value of &, a vector of length n
varying for every iteration. The decoding process is declared
a failure if the syndrome matching condition is not met after
a maximum number of iterations, /p.x. When the decoder is
successful with output f, we declare that a logical frame error
occurred if f + e(mod 2) ¢ RowSpace(H).

A. Iteration Dependent Thresholds

In the proposed hardware-friendly variant - Fixed BF de-
coder, the threshold ® is a predefined sequence that depends
only on the iteration number ¢. An error bit f(¢) is flipped in
the /™ iteration if

E(i) = 0(0), 3)

where 0 < 6(¢) < max(d,), where d, is the variable node
degree. The computation of the energy function £ remains
the same. This approach is adaptable to the specific use of a
sequence of threshold values chosen to gradually correct the
dominant errors stemming from trapping sets as shown in [27].
Furthermore, the fixed BF approach is more hardware friendly
than the BF decoder since there is no more the necessity
to determine the maximum energy among n variables, an
operation that increases both the critical path and the hardware
complexity.
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Algorithm 1 Syndrome-based Bit-Flipping Algorithm

: Input: Measured syndrome s, parity check matrix H.
: Output: Estimated error vector f

. Initialization: f,) = 0,8 =0, £ = 0.

. Algorithm:

: while / < /,,,x and S # s do

{=/0+1;

Unsatisfied checks: ds = s + §(mod 2);

N

Energy £ = H' §s; (1)

max (&),
0(¢)

for BF,

. 2
for Fixed BF.

Threshold: ® = {
8: fori=1ton do
9: if £(i) > © then
10: fe(@) =1 = fo(i);
11: end if
12: end for
13: § = Hf,"(mod 2);
14: end while
15: return f = f,

B. Turbo-XZ Decoder Framework

The conventional approach of decoding e, and e, error
patterns separately is sub-optimal in the depolarizing channel
model we considered. When there is a Y error, knowledge of
ey (or e,) helps in decoding the other. This correlation between
ex and e, is lost when we decode them separately using
H, and H, parity check matrices, respectively. In [16], [17],
XZ correlation is exploited by adjusting the initial likelihood
vector used in the BP decoder which failed for the event when
the other BP decoder succeeds. Based on the corrected error
pattern, conditional log-likelihood ratios (LLRs) are calculated
to adjust the initialization step. Alternatively, one can decode
using the quaternary Tanner graph with either a quaternary BP
[17] or refined BP [19] to exploit these correlations.

In this paper, we propose a novel approach that exploits the
hard decision output from one of the BF decoders to synthesize
a new error pattern. In the following, the proposed algorithm
is illustrated by Fig. 1. In this figure, the syndromes are
represented by diamonds that behave like classical variables,
except that their value remains constant during the iterative
decoding process. A satisfied check node is represented by
a white square (dark square for unsatisfied check node). A
white/black circle denotes a zero/one error bit. Let us partition
e into the set of X only errors exy and Y only errors ey, i.e.,
ey = exy+ey. Similarly, e, can be expressed as e, = e,3+e,.
Thus, one can note that the modulo-2 sum of vectors e, and
ey gives e, +ey, = e,y ey, i.e., a new synthetic error vector
€y 4x.

Let us assume, without loss of generality, that the decoding
of e, was unsuccessful (see Fig. 1.a) but e, was correctly de-
coded (Fig. 1.b and .c). It is possible to compute the syndrome
given by the error vector e, using Hy as s,y = s, +erf

(see Fig: 1.d). From this syndrome and Hy as the parity
check matrix, a decoding process can then retrieve the error
vector e, (see Fig. 1.e, (initial conditions) and Fig. 1.f (final
decoding result)). Then, the missing error vector e, is inferred
as e, = e,y 1 €y, thus completing the decoding process (see
1.g). Note that, in this figure, the steps e) and f) are exposed
to explain the rationale of the algorithm. In practice, step g)
can be obtained directly from the initial condition of step d).

The proposed mechanism can be efficiently exploited in a
latency constraint application, as shown in Fig. 1.h. The idea
is to consider two decoders in parallel, each decoder being
able to process both H, and H, matrices. In the beginning,
as shown in Fig. 1.h the first decoder tries to decode e, from
H, and s, (see 1.a) while the second tries to decode e, from
H, and s, (see 1.b)). As soon as one decoder succeeds (second
decoder in Fig. 1.c), the decoder is reconfigured to process the
other matrix and uses its remaining time to try to decode e, .
Once one of the two decoders succeeds, both decoders stop and
output the result. In this way, the time latency is guaranteed,
and the decoders can take profit from the diversity added by
the e, decoding attempt.

This method is very general and can be applied with any
decoding algorithm.

IV. ANALYSIS OF DECODER PERFORMANCE

We chose the family of generalized bicycle (GB) codes that
were proposed in [23] with the two parity check matrices as
H, = [A B] and H, = [BT A"] where A and B are square
circulant matrices. For the GB Al code [23] of codelength
n = 254, variable and check degree, (d,,d.) = (5,10),
the logical/frame error rate (FER) versus depolarizing channel
noise probability (p) for different BF decoding strategies are
plotted in Fig. 2. The turbo-XZ decoder switching approaches
consistently deliver performance enhancements exceeding a
tenfold improvement at low error rates for their respective
decoder. The nMSA, with the best normalization value = 0.6,
operates with full-precision messages and hence is far more
complex both in terms of hardware and decoding clock cycles
than the simple BF decoders given in Algorithm 1. We discuss
in Section V some of these aspects pertaining to the hardware
implementation and latency. Note that we plotted all the
curves with the low latency (limited to /y,,x = 14 iterations)
constraint. Fig. 3 demonstrates the FER improvement over
iterations within the allowed number of iterations ¢,,., = 14.
FER improvement is shown for BF, Fixed BF, and nMSA
curves. Specifically for the floating point nMSA, allowing
more decoding iterations/latency can further improve the FER
curves with the turbo-decoder switch approach. Note that the
slope of the blue dashed line (nMSA + turbo decoder switch)
is non-zero and steeper compared to BF decoders and nMSA,
respectively.

Also, the fixed BF with iteration-dependent thresholds [27]
when combined with the turbo-XZ decoder approach makes
an excellent choice of a decoder in terms of reduced hard-
ware complexity and latency. The threshold © for the fixed
BF decoder is a sequence of length 14 defined as ® =
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Fig. 2: Decoding using BF decoders with and without the
turbo-XZ decoder for generalized bicycle-QLDPC code - Al
code [23]. This improvement is also illustrated with the
floating-point normalized min-sum algorithm. Observe that
fixed BF decoders achieve similar decoding performance as
the BF strategy with lower hardware complexity at the same
latency constraints.

(4,3,3,2,3,2,2,3,3,3,4,4,2,2). This sequence of thresholds
has been obtained by an exhaustive search of the first 7 terms
that give the best performance with 7 decoding iterations.
The last 7 threshold values are obtained in a similar way -
with 14 decoding iterations fixing the first 7 best-obtained
thresholds. We also propose such specific decoders as a PP
approach for tackling trapping set errors and in preliminary
experiments, deploying threshold-optimized fixed BF decoders
after a normalized min-sum decoder allows us to decrease the
log,,(FER) by a factor of 0.79 at a depolarizing p = 0.02
(Extended analysis is omitted due to lack of space).

In Fig. 4, we compare simulation results using a longer code
of length n = 1054 from a different code family, the Lifted
Product (LP) QLDPC code constructed using a classical quasi-
cyclic LDPC code [18], [28]. At low error rates (for p = 0.01),
the BF with turbo-XZ decoding shows lower FER than even
a floating point nMSA with turbo-XZ.
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V. HARDWARE IMPLEMENTATION

BF decoders are known to be far less complex than classical
BP-based algorithms like the nMSA. In fact, in the latter
case, a check node of degree d. (variable node of degree
d,) sends d. (d,) distinct soft messages to its variables
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(checks) neighbors. In a BF algorithm, each node broadcast
only a single bit to all its neighbors. Furthermore, in terms
of hardware, it allows the implementation of one decoding
iteration in a single clock cycle. Moreover, the use of a
predefined sequence of threshold 6(¢) suppresses the need for
maximum finder among the energies of the variable node to get
the value of max(&), thus further reducing the critical path of
the design. Assuming a classical VLSI circuit design, the clock
frequency can be set to 1 GHz, giving an overall decoding
latency of only 14 ns. Assuming a required time latency of 1.4
us, the factor 100 in time latency can be exploited to reduce
by one or two orders of magnitude the power dissipation
of the chip by using non-conventional hardware processing
like adiabatic computation [29] or sub-threshold computation
[30]. This reduction of power dissipation can help to place
the decoder closer to the core of the quantum computer, thus
reducing the interactions, and thus, perturbations, with the
external world.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work, we presented a turbo-XZ decoding framework
as a promising solution that leverages the correlation informa-
tion from decoding Pauli X and Z errors appropriately for fixed
and low latency decoding of QLDPC codes. The proposed
decoder shows orders of magnitude improvement for different
codes we simulated at the same latency as without the turbo-
XZ approach. By choosing the thresholds appropriately for
handling trapping sets, we will extend the fixed BF approach
as a low-latency post-processing approach to lower the error
floors of QLDPC codes and explore general noise models. The
need for efficient and low-latency quantum error correction al-
gorithms will only grow as quantum computing platforms and
technologies continue to advance. As such, the development
of hardware-friendly error correction solutions like these for
QLDPC codes will be crucial for future implementations.
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