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AbstractÐWe propose a low latency hardware-friendly decod-
ing framework for Calderbank-Shor-Steane (CSS) quantum low-
density parity-check (QLDPC) codes under the depolarizing noise
model. With a given latency constraint, the proposed decoder,
referred to generally as the Turbo-XZ decoding algorithm utilizes
the correlation of Pauli X and Z errors. In this framework,
we introduce early stopping and switching decoders to meet
latency constraints and improve error correction performance for
different decoders including the bit-flip (BF), fixed BF (proposed
hardware-friendly variant of BF), and normalized min-sum algo-
rithm (nMSA). This decoding framework allows various trade-
offs in terms of latency, complexity, and decoding performance
which are discussed briefly. Simulation results show that the
BF-Turbo-XZ decoder performs close to (and beyond in some
cases) the nMSA version with lower complexity and latency. Our
proposed fixed BF approach reduces complexity with minimal
performance degradation. For example with a generalized bicycle
code, nMSA performs better for higher depolarizing values (p
> 0.02) at a higher cost, while low-complexity BF-Turbo-XZ
decoders are better at low depolarizing values.

I. INTRODUCTION

Real-time decoding plays an essential role in achieving

fault-tolerant quantum computing, as quantum systems are

inherently noisy and susceptible to errors. Quantum error

correction (QEC) codes and decoder implementations must be

designed with low latency such that the measured syndrome is

processed faster than or at the rate it is received. The expected

latency requirements for real-time decoders depend on the

qubit platform of implementation, ranging from the order

of 1 µs for a surface code using superconducting transmon

qubits to the order of 1 ms for silicon spin-qubits and even

beyond 100 ms for ion traps [1]. For instance, Google’s

Quantum AI team’s [2], demonstration needed error correction

cycles of 921 nanoseconds. In another small-scale surface code

experiment, researchers perform error correction in every 1.1
microseconds [3].

The shift from QEC using surface codes to general quantum

low-density parity-check (QLDPC) [4], [5] codes necessitates

long-range qubit connections [6], which can increase noise

through delays and swaps, potentially further limiting the

already restricted latency budget for specialized decoding

hardware implementations. Nevertheless, QLDPC codes have

been studied extensively in recent years mainly due to their

superiority in the code minimum distance and code rate

scaling asymptotically [7], [8]. There has been significant

progress in designing efficient decoding algorithms for such

‘asymptotically good’ codes [9]. For the finite-length regime

with these sparse graphical codes, although iterative decoders

are a natural choice for decoding, they exhibit poor error

correction performance [10], [11]. A syndrome-based belief

propagation (BP) algorithm in its original form has been

observed to perform significantly worse for QLDPC codes

than their classical counterparts. The presence of unavoidable

cycles in their Tanner graph, stabilizer splitting symmetric

errors, and harmful trapping sets [12] typically make BP-

based decoders fail in the waterfall regime (high to moderate

depolarizing probability) and more so in the error floor regime

(low depolarizing probability). Various decoding approaches

have been pursued in attempts to improve the overall log-

ical error rate curves in comparison to BP using heuristics

approaches [11], neural-network trained BP decoders [13]±

[15], exploiting the correlation between X and Z errors [16],

[17] and soft syndrome information [18], refined BP [19], and

numerous post-processing techniques of increasing complexity

such as Bit-Flip (BF) [20], Small Set Flip (SSF) [21], Sta-

bilizer Inactivation (SI) [22], and Ordered Statistics Decoder

(OSD) [23], [24]. Such post-processing (PP) steps can be

deployed after one or multiple rounds of BP decoder failure.

Their main drawback is that the current implementation of

these PP steps significantly adds up both in terms of the

complexity (polynomial complexity in codelength) and the

latency of error correction cycles (not suitable for parallel

hardware implementation).

In this paper, we restrict ourselves to the problem of a

given fixed, but low latency. The goal is to perform error

correction rounds under a given timing budget by reducing the

latency of decoding and hardware implementation complexity.

It is well known that Bit-Flip (BF) algorithms are far less

complex than BP-based algorithms like the normalized min-

sum algorithm (nMSA). Choosing BF decoder for a fixed

number of decoding iterations as the baseline for improving

performance and complexity, we first develop strategies to

exploit the correlation among Pauli X and Z errors considering

the depolarizing channel. Since we operate in a fixed latency
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setting defined by decoding clock cycles, every decoding

iteration and the PP step can be used to exploit the correlation

information. The proposed BF-turbo-XZ decoding framework

operates by switching the decoder graph and the decoded error

vector when successful. We also aim to reduce the hardware

implementation complexity by proposing Fixed BF decoder by

choosing optimized fixed thresholds. Combining all these ap-

proaches in the decoder diversity scheme (combining strengths

of multiple decoders) helps to development of 3 algorithms,

sharing the same number of decoding iterations but with

different trade-off performance complexity.

II. PRELIMINARIES

A. Stabilizer Formalism

The n-qubit Pauli group can be denoted as Pn =
jl{I,X,Y,Z}⊗n, with 0 ≤ l ≤ 3, where ⊗n denotes the

n-fold tensor product, and X, Y, and Z are the Pauli matrices.

I is the 2 × 2 identity matrix and j =
√
−1. Let S =

⟨S1, S2, ..., Sm⟩, −I /∈ S, be an Abelian subgroup of Pn with

m generators Si, 1 ≤ i ≤ m. A (n, k) quantum stabilizer code

[25] is defined as a 2k-dimensional subspace C of the Hilbert

space (C2)⊗n that satisfies the condition that Si |ψ⟩ = |ψ⟩ for

all i, for any |ψ⟩ in C. The projective measurement outcomes

of these stabilizer generators correspond to their respective

eigenvalues, which are referred to as the syndrome. The

syndrome is used to determine whether an error has occurred

and to identify its location and type. We focus on the quantum

depolarizing channel (memoryless Pauli channel), which is

characterized by the depolarizing probability p, such that the

error on one qubit is independent of the error on other qubits.

A Pauli error on a qubit i, denoted by Ei, takes values from the

set {I,X,Y,Z} with probability P(Ei = X) = P(Ei = Y) =
P(Ei = Z) = p/3,P(Ei = I) = 1 − p. Pauli error vector on

n qubits can be expressed as a binary error vector of length

2n with the following mapping from Pauli elements to binary

tuples: I → (0, 0),X → (1, 0),Z → (0, 1),Y → (1, 1). Hence,

we have the corresponding binary error vector e = [ex, ez] of

length 2n.

This mapping also gives a pair of binary matrix rep-

resentations of the stabilizer generators referred to as the

parity check matrices. Similar to the Pauli representation, the

stabilizers also commute with respect to the symplectic inner

product in binary representation. Among the stabilizer codes,

Calderbank-Shor-Steane (CSS) codes [11] are generated via

purely X-type ((a,0) in binary form) and purely Z-type ((0,b)
in binary form) operators. This constraint enables CSS code

construction using two compatible classical codes with binary

parity-check matrices Hx and Hz such that HxHz
T = 0

(the all-zeros matrix). The binary syndromes are measured as

sz = Hzex
T (mod 2) and sx = Hxez

T (mod 2). The focus

of our paper is on QLDPC codes from the class of CSS codes.

B. Quantum LDPC Codes

Sparse quantum stabilizer codes Ð quantum low-density

parity-check (QLDPC) codes Ð have both Hx and Hz with

a low density of ones in comparison to zeros. Decoders

utilize the bipartite graphical representation of such sparse

parity check matrices, commonly referred to as Tanner graphs.

The syndrome decoding task of obtaining the error estimate

given the measured syndrome is efficiently performed through

syndrome-based iterative algorithms, such as BP, over the

respective Tanner graphs. The Tanner graph for Hx (or Hz) is

denoted as Gx = (Vx, Cx, Fx) (or Gz = (Vz, Cz, Fz)), where V
and C represent the variable and check nodes, respectively, and

F represents the edges. The subscripts corresponding to the

X and Z graphs are omitted in the following unless necessary.

Since our focus is not only on performance improvement but

also on maintaining latency requirements, we want to identify

and improve decoders with low complexity - such as the BF

decoder which is known for its low complexity on the iterative

decoder hierarchy.

III. BIT-FLIPPING SYNDROME DECODERS

Given a parity check matrix H and measured syndrome

s, a syndrome BF decoder iteratively flips the error bits to

find an error pattern f with syndrome ŝ = Hf
T (mod 2) that

matches with s. The syndrome BF algorithm is outlined in

Algorithm 1. In the BF decoder, the error pattern estimate is

initialized to f(0) = 0, with the subscript denoting iteration

ℓ = 0. Over iterations, the goal is to reduce the number of

unsatisfied ( ̸= s measured syndrome values) parity checks.

The number of unsatisfied neighboring checks is often referred

to as the ‘energy’ of the corresponding variable node as in the

classical gradient descent bit-flipping algorithms [26]. At each

iteration, we flip the error bit value(s) at the variable node(s)

that meets a threshold Θ defined as in Eq. (2). For the BF

decoder, the threshold Θ is the maximum value of the energy

function E , i.e., Θ = max (E). The BF decoder requires the

computation of the maximum value of E , a vector of length n
varying for every iteration. The decoding process is declared

a failure if the syndrome matching condition is not met after

a maximum number of iterations, ℓmax. When the decoder is

successful with output f , we declare that a logical frame error

occurred if f + e(mod 2) /∈ RowSpace(H).

A. Iteration Dependent Thresholds

In the proposed hardware-friendly variant - Fixed BF de-

coder, the threshold Θ is a predefined sequence that depends

only on the iteration number ℓ. An error bit f(i) is flipped in

the ℓth iteration if

E(i) ≥ θ(ℓ), (3)

where 0 ≤ θ(ℓ) ≤ max(dv), where dv is the variable node

degree. The computation of the energy function E remains

the same. This approach is adaptable to the specific use of a

sequence of threshold values chosen to gradually correct the

dominant errors stemming from trapping sets as shown in [27].

Furthermore, the fixed BF approach is more hardware friendly

than the BF decoder since there is no more the necessity

to determine the maximum energy among n variables, an

operation that increases both the critical path and the hardware

complexity.
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Algorithm 1 Syndrome-based Bit-Flipping Algorithm

1: Input: Measured syndrome s, parity check matrix H.

2: Output: Estimated error vector f

3: Initialization: f(0) = 0, ŝ = 0, ℓ = 0.

4: Algorithm:

5: while ℓ ≤ ℓmax and ŝ ̸= s do

6: ℓ = ℓ+ 1;

7: Unsatisfied checks: δs = s+ ŝ(mod 2);

Energy E = H
Tδs; (1)

Threshold: Θ =

{

max(E), for BF,

θ(ℓ) for Fixed BF.
(2)

8: for i = 1 to n do

9: if E(i) ≥ Θ then

10: fℓ(i) = 1− fℓ(i);
11: end if

12: end for

13: ŝ = Hfℓ
T(mod 2);

14: end while

15: return f = fℓ

B. Turbo-XZ Decoder Framework

The conventional approach of decoding ex and ez error

patterns separately is sub-optimal in the depolarizing channel

model we considered. When there is a Y error, knowledge of

ex (or ez) helps in decoding the other. This correlation between

ex and ez is lost when we decode them separately using

Hz and Hx parity check matrices, respectively. In [16], [17],

XZ correlation is exploited by adjusting the initial likelihood

vector used in the BP decoder which failed for the event when

the other BP decoder succeeds. Based on the corrected error

pattern, conditional log-likelihood ratios (LLRs) are calculated

to adjust the initialization step. Alternatively, one can decode

using the quaternary Tanner graph with either a quaternary BP

[17] or refined BP [19] to exploit these correlations.

In this paper, we propose a novel approach that exploits the

hard decision output from one of the BF decoders to synthesize

a new error pattern. In the following, the proposed algorithm

is illustrated by Fig. 1. In this figure, the syndromes are

represented by diamonds that behave like classical variables,

except that their value remains constant during the iterative

decoding process. A satisfied check node is represented by

a white square (dark square for unsatisfied check node). A

white/black circle denotes a zero/one error bit. Let us partition

ex into the set of X only errors exȳ and Y only errors ey, i.e.,

ex = exȳ+ey. Similarly, ez can be expressed as ez = ezȳ+ey.

Thus, one can note that the modulo-2 sum of vectors ez and

ex gives ez+ex = ezȳ+exȳ, i.e., a new synthetic error vector

ez+x.

Let us assume, without loss of generality, that the decoding

of ez was unsuccessful (see Fig. 1.a) but ex was correctly de-

coded (Fig. 1.b and .c). It is possible to compute the syndrome

given by the error vector ez+x using Hx as sz+x = sz+Hxe
T

x

(see Fig: 1.d). From this syndrome and Hx as the parity

check matrix, a decoding process can then retrieve the error

vector ez+x (see Fig. 1.e, (initial conditions) and Fig. 1.f (final

decoding result)). Then, the missing error vector ez is inferred

as ez = ez+x+ex, thus completing the decoding process (see

1.g). Note that, in this figure, the steps e) and f) are exposed

to explain the rationale of the algorithm. In practice, step g)

can be obtained directly from the initial condition of step d).

The proposed mechanism can be efficiently exploited in a

latency constraint application, as shown in Fig. 1.h. The idea

is to consider two decoders in parallel, each decoder being

able to process both Hx and Hz matrices. In the beginning,

as shown in Fig. 1.h the first decoder tries to decode ez from

Hx and sx (see 1.a) while the second tries to decode ex from

Hz and sx (see 1.b)). As soon as one decoder succeeds (second

decoder in Fig. 1.c), the decoder is reconfigured to process the

other matrix and uses its remaining time to try to decode ez+x.

Once one of the two decoders succeeds, both decoders stop and

output the result. In this way, the time latency is guaranteed,

and the decoders can take profit from the diversity added by

the ez+x decoding attempt.

This method is very general and can be applied with any

decoding algorithm.

IV. ANALYSIS OF DECODER PERFORMANCE

We chose the family of generalized bicycle (GB) codes that

were proposed in [23] with the two parity check matrices as

Hx = [A B] and Hz = [BT
A

T] where A and B are square

circulant matrices. For the GB A1 code [23] of codelength

n = 254, variable and check degree, (dv, dc) = (5, 10),
the logical/frame error rate (FER) versus depolarizing channel

noise probability (p) for different BF decoding strategies are

plotted in Fig. 2. The turbo-XZ decoder switching approaches

consistently deliver performance enhancements exceeding a

tenfold improvement at low error rates for their respective

decoder. The nMSA, with the best normalization value = 0.6,

operates with full-precision messages and hence is far more

complex both in terms of hardware and decoding clock cycles

than the simple BF decoders given in Algorithm 1. We discuss

in Section V some of these aspects pertaining to the hardware

implementation and latency. Note that we plotted all the

curves with the low latency (limited to ℓmax = 14 iterations)

constraint. Fig. 3 demonstrates the FER improvement over

iterations within the allowed number of iterations ℓmax = 14.

FER improvement is shown for BF, Fixed BF, and nMSA

curves. Specifically for the floating point nMSA, allowing

more decoding iterations/latency can further improve the FER

curves with the turbo-decoder switch approach. Note that the

slope of the blue dashed line (nMSA + turbo decoder switch)

is non-zero and steeper compared to BF decoders and nMSA,

respectively.

Also, the fixed BF with iteration-dependent thresholds [27]

when combined with the turbo-XZ decoder approach makes

an excellent choice of a decoder in terms of reduced hard-

ware complexity and latency. The threshold Θ for the fixed

BF decoder is a sequence of length 14 defined as Θ =
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Fig. 1: Illustration of turbo-XZ decoder scheduling: from a) to g), an example of turbo-XZ decoding process, h) Fixed latency

scheduling of the turbo-XZ process with two decoders. Red/green color indicates failure/success of the respective decoder.
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Fig. 2: Decoding using BF decoders with and without the

turbo-XZ decoder for generalized bicycle-QLDPC code - A1

code [23]. This improvement is also illustrated with the

floating-point normalized min-sum algorithm. Observe that

fixed BF decoders achieve similar decoding performance as

the BF strategy with lower hardware complexity at the same

latency constraints.

(4, 3, 3, 2, 3, 2, 2, 3, 3, 3, 4, 4, 2, 2). This sequence of thresholds

has been obtained by an exhaustive search of the first 7 terms

that give the best performance with 7 decoding iterations.

The last 7 threshold values are obtained in a similar way -

with 14 decoding iterations fixing the first 7 best-obtained

thresholds. We also propose such specific decoders as a PP

approach for tackling trapping set errors and in preliminary

experiments, deploying threshold-optimized fixed BF decoders

after a normalized min-sum decoder allows us to decrease the

log10(FER) by a factor of 0.79 at a depolarizing p = 0.02
(Extended analysis is omitted due to lack of space).

In Fig. 4, we compare simulation results using a longer code

of length n = 1054 from a different code family, the Lifted

Product (LP) QLDPC code constructed using a classical quasi-

cyclic LDPC code [18], [28]. At low error rates (for p = 0.01),

the BF with turbo-XZ decoding shows lower FER than even

a floating point nMSA with turbo-XZ.
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Fig. 3: Comparing FER vs. iteration for various BF decoders

with and without the turbo-XZ schemes for QLDPC code GB

- A1 code in [23] for a depolarizing probability p = 0.02.
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Fig. 4: FER vs. iteration for BF and nMSA decoder with and

without the turbo-XZ decoding for the LP Tanner code.

V. HARDWARE IMPLEMENTATION

BF decoders are known to be far less complex than classical

BP-based algorithms like the nMSA. In fact, in the latter

case, a check node of degree dc (variable node of degree

dv) sends dc (dv) distinct soft messages to its variables
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(checks) neighbors. In a BF algorithm, each node broadcast

only a single bit to all its neighbors. Furthermore, in terms

of hardware, it allows the implementation of one decoding

iteration in a single clock cycle. Moreover, the use of a

predefined sequence of threshold θ(ℓ) suppresses the need for

maximum finder among the energies of the variable node to get

the value of max(E), thus further reducing the critical path of

the design. Assuming a classical VLSI circuit design, the clock

frequency can be set to 1 GHz, giving an overall decoding

latency of only 14 ns. Assuming a required time latency of 1.4

µs, the factor 100 in time latency can be exploited to reduce

by one or two orders of magnitude the power dissipation

of the chip by using non-conventional hardware processing

like adiabatic computation [29] or sub-threshold computation

[30]. This reduction of power dissipation can help to place

the decoder closer to the core of the quantum computer, thus

reducing the interactions, and thus, perturbations, with the

external world.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work, we presented a turbo-XZ decoding framework

as a promising solution that leverages the correlation informa-

tion from decoding Pauli X and Z errors appropriately for fixed

and low latency decoding of QLDPC codes. The proposed

decoder shows orders of magnitude improvement for different

codes we simulated at the same latency as without the turbo-

XZ approach. By choosing the thresholds appropriately for

handling trapping sets, we will extend the fixed BF approach

as a low-latency post-processing approach to lower the error

floors of QLDPC codes and explore general noise models. The

need for efficient and low-latency quantum error correction al-

gorithms will only grow as quantum computing platforms and

technologies continue to advance. As such, the development

of hardware-friendly error correction solutions like these for

QLDPC codes will be crucial for future implementations.
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