2023 IEEE International Symposium on Information Theory (ISIT) | 978-1-6654-7554-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/ISIT54713.2023.10206901

2023 IEEE International Symposium on Information Theory (ISIT)

Generalization Bounds for Neural Belief
Propagation Decoders

Sudarshan Adiga, Xin Xiao, Ravi Tandon, Bane Vasi¢, Tamal Bose
Department of Electrical and Computer Engineering
University of Arizona, Tucson, AZ, USA.

E-mail: {adiga, 7xinxiao7, tandonr, vasic, tbose} @arizona.edu

Abstract—Machine learning based approaches are being
increasingly used for designing decoders for next genera-
tion communication systems. One widely used framework is
neural belief propagation (NBP), which unfolds the belief prop-
agation (BP) iterations into a deep neural network and the
parameters are trained in a data-driven manner. NBP decoders
have been shown to improve upon classical decoding algorithms.
In this paper, we investigate the generalization capabilities of
NBP decoders. Specifically, the generalization gap of a decoder is
the difference between empirical and expected bit-error-rate(s).
We present new theoretical results which bound this gap and
show the dependence on the decoder complexity, in terms of
code parameters (blocklength, message length, variable/check
node degrees), decoding iterations, and the training dataset size.
Results are presented for both regular and irregular parity-
check matrices. To the best of our knowledge, this is the first
set of theoretical results on generalization performance of neural
network based decoders. We present experimental results to show
the dependence of generalization gap on the training dataset size,
and decoding iterations for different codes.

Full version of this paper can be found in [1].
I. INTRODUCTION

Deep neural networks have emerged as an important tool
in 5G and beyond for hybrid beamforming [2]-[4], chan-
nel encoding, decoding, and estimation [5]-[20], modulation
classification [21]-[23], and physical layer algorithms [24]-
[26]. Within the context of channel decoding, prior works
have demonstrated that deep neural network based decoders
achieve lower bit/frame error rates than conventional iterative
decoding algorithms such as belief propagation in several
signal-to-noise ratio (SNR) regimes [5], [6], [9], [14]-[16].
In another line of works [27]-[29], deep neural networks have
been used to jointly design both encoder and decoder. Given
the expansive applicability of deep neural networks for channel
encoding and decoding, we note here that determining neural
network architectures that generalize well to large block length
codewords is an active area of research.

Iterative decoding algorithms (such as belief propagation
(BP)) are commonly deployed for decoding linear codes; and
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are known to be equivalent to maximum aposteriori (MAP)
decoding when the Tanner graph does not contain short cycles
[30]. However, if the Tanner graph contains short cycles, then
BP can be sub-optimal i.e., the messages passed between the
variable nodes and parity check nodes cannot correctly recover
the transmitted codeword [5], [31], [32]. One approach to
mitigate the effect of short cycles is by generalizing the BP
algorithm by means of a deep learning based approach [5]-
[13]. It is shown that the weights learnt by optimizing over the
training data ensure that any message repetition between the
variable nodes and parity check nodes do not adversely impact
the performance of BP based decoders [5], [6]. We refer to this
class of belief propagation decoders as Neural Belief Propa-
gation (NBP) decoders. The salient aspect of NBP decoders is
that its structure is determined from the corresponding Tanner
graph, and therefore its architecture is a function of the code
parameters itself. Several variants of NBP decoders have been
a subject of recent study [7]-[13]. Post-training, it is important
that the NBP decoder achieves low bit-error-rate (BER) on
unseen noisy codewords. Prior works on NBP decoders [7]-
[13] are empirical; to the best of our knowledge there are no
theoretical guarantees on the performance of NBP decoders
on unseen data. To this end, given a NBP decoder, our goal is
to understand how its architecture impacts its generalization
gap [33], defined as the difference between empirical and
expected BER(s). Motivated by the above discussion, we ask
the following fundamental question: Given a NBP decoder,
what is the expected performance on unseen noisy codewords?
And how is the generalization gap related to code parameters,
neural decoder architecture and training dataset size?

Main contributions: In this paper, we first upper bound
the generalization gap of a generic deep learning decoder as
a function of the Rademacher complexity of the individual
bits of the decoder output (which we denote as the bit-wise
Rademacher complexity). We next consider NBP decoders
which belong to the class of belief propagation decoders
whose architecture is a function of the code parameters.
We upper bound the bit-wise Rademacher complexity as a
function of the covering number of the NBP decoder, which
is the cardinality of the set of all decoders that can closely
approximate the NBP decoder. The covering number analysis
provides an upper bound with a linear dependence of the
generalization gap on spectral norm of the weight matrices
and polynomial dependence on the decoding iterations. The
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Fig. 1: (a) End-to-End block diagram for communication using neural belief propagation (NBP) decoders for linear block
codes; (b) Architecture of the NBP decoder for 7' decoding iterations where each decoding iteration corresponds to 2 hidden

layers: (1) variable node layer, (2) parity check node layer.

bound we obtain is tighter than the other approaches such as
VC-dimension and PAC-Bayes approaches in which the upper
bound exponentially depends on the decoding iterations. From
our results, we show that the generalization gap scales with
the inverse of the square root of the dataset size, linearly with
the variable node degree and the decoding iterations, and the
square-root of the blocklength. To the best of our knowledge,
this is the first result that determines upper bounds on the
generalization gap as a function of the code-parameters. We
also present experimental results to show the dependence of
the generalization gap of the NBP decoders on the training
dataset size, and the decoding iterations for different codes.

II. PRELIMINARIES AND PROBLEM STATEMENT

In Fig. 1, we consider a linear block code denoted by C of
blocklength n and message length k. Let the code C be charac-
terized by a regular parity check matrix H € {0, 1}(»—F)xn
and we denote the Tanner graph as G = (V, P, £); where V =
{v1, -+ ,vn} is the set of variable nodes, P = {p1, -+ , pn—& }
is the set of parity check nodes, and £ = {e1, - ,end,}
is the set of edges. Here, d, represents the variable node
degree, i.e., the number of parity checks a variable node
participates in. Let {v;,p;} denote the edge in the Tanner
graph G connecting variable node v; to parity check node
pj. V(v;) = {p:|H]i, j] = 1} denote the set of parity check
nodes adjacent to the variable node v; in the Tanner graph G.
Similarly, P(p;) = {v;|H[i, j] = 1} denote the set of variable
nodes adjacent to the parity check node p; in G.

Let Y C R™ be the space of n dimensional channel outputs,
X C {0,1}" be the space of n dimensional codewords, U C
{0,1}* be the space of k dimensional messages, and Z C R"
be the space of n dimensional channel noise. The message
u = [ufl],---,u[k]]T € U is encoded to the codeword
x = [x[1],-+,x[n]]T € X. The channel is assumed to be
memoryless, described by Pr(y|x) = [T\, Pr(y[i]|x[i]). The
receiver receives the channel output y = [y[1],--- ,y[n]]" €
Y; which is the codeword x modulated, and corrupted with
additive noise z = [z[l],---,z[n]]T € Z. The goal of the
decoder is to recover the message u from the channel output
y. The input to the decoder is the log-likelihood ratio (LLR) of
the posterior probabilities denoted by A € R™*! and is given
as A[i] = log w for 1 < i < n. Denote the output
of the NBP decoder with T" decoding iterations as X = f(\),
where f(-) denotes the decoding function.

Authorized licensed use limited to: The University of Arizona. Downloaded o

The architecture of the NBP decoder is derived from the trellis
representation of G and illustrated in Fig. 1(b). Each decoding
iteration ¢ (where, 1 < ¢t < T') corresponds to two hidden
layers each of width |£| = nd,, namely: (1) variable layer
Vi, (2) parity check layer pi. The hidden nodes in layers vy
and p¢ correspond to the messages passed along the edges
of the Tanner graph G. For instance, the output of the node
v¢[{l,m}] in the NBP decoder corresponds to the message
passed from variable node v; to parity check node p,, in the
t-th iteration, and is given as,

vel{l,m}] = tanh<; (Wt m}, A+

ST WL mY AL m Npe—a [{Lm'}] | ], (D)

m/eV(l)\m

where, py_1[{l, m'}] corresponds to the message passed from
the parity check node p,, to the variable node v; in the (t—1)-
th iteration. For ¢ = 1, we have pg = [0, - - ,O]T. Wgt) €
Rrdoxnand W € Rndoxnds are sparse weight matrices
trained using backpropagation in the ¢-th decoding iteration.
Wgt) is strictly a lower triangular matrix with exactly d,, non-
zero entries in every column, and one non-zero entry in every
row. Wg’) has exactly d,, —1 non-zero entries in every row, and
d,—1 non-zero entries in every column. We consider that the ¢-
th decoding iteration is characterized by weight matrices Wgt) ,
and Wg), where t can take integer values ¢t € {1,--- ,T}. The
output of the parity check hidden layer in the ¢-th decoding
iteration for the NBP decoder is,

pe[{l,m}] = H sign(ve[{l',m}])

min l|vt[{l m}]|.
l'eP(m)\l ™\

I'eP(

The estimated codeword after 7' decoding iterations in the
NBP decoder is given as,

&[] =s(WLP LI + YW AL m Yprl{lm'}]) 3)
m/eV(l)

where, W3 ¢ , Wy € R™" and s(-) is the

sigmoid activation. W3 is strictly an upper triangular matrix

with exactly d, non-zero entries in every row, while W is

a diagonal matrix. The NBP decoder (denoted by f(-)) is

characterized by the following four sparse weight matrices: (a)

R™X ndy
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Wgt), wheret =1,---,T, (b) Wét), wheret =1,---,T, (c)
W3, and (d) Wy. The weight matrices are learnt by training
the NBP decoder to minimize the bit error rate (BER) loss
that is defined as,

SS (O] # %)
Iger (f(A),x) = du(f(A),x) _ j=1 “

n n

Here, dy (-, -) denotes the Hamming distance, and 1(+) denotes
the indicator function. In practice, we train the NBP decoder
to minimize the BER loss over the dataset S = {(A;,x;)}7,
comprising of pairs of log-likelihood ratio and its correspond-
ing codeword. Then we define the empirical risk of f as

ﬁBER( ) Z lBER( ( ) Xj). The true risk of f is

deﬁned as RBER(f) EA,x[lBER(f()\)v X)]
Problem Statement. The generalization gap is defined as
the difference Rper(f) — QBER( f). The main goal of this
paper is to understand the behavior of the generalization gap
(specifically upper bounds) as a function of a) training dataset
size, m, b) the complexity of the NBP decoder, in terms of the
number of decoding iterations 7" and c) code parameters, such
as message length k, blocklength n, variable node degree d,,
parity check node degree d..
ITI. MAIN RESULTS

In this section, we present our main results on the general-
ization gap for NBP decoders. Let S = {(A;,x;)}]L; be
the training dataset, and Fr be a class of NBP decoders
with 7' decoding iterations. For the scope of this paper, we
focus on the family of NBP decoders whose non-zero weight
entries are bounded by a constant w. Specifically, we assume
that for every (i,j) and 1 < ¢t < T, |W§t [i,7]] < w,
(W3 li )l < w. [Wali,jl] < w and [Wali,j]| < w ie.,
the maximum absolute value of the (i,j) coordinates for all
the weight matrices are bounded by a non-negative constant

. In addition, we also assume that input log-likelihood ratio
|)\[]| < by forall i =1,.

We define the hypothe51s class Fr.1, derived from the class
JFr of NBP decoders as follows:

Frr ={(Ax) = lger(f(X),x) : f € Fr}. &)

Intuitively, for each f € Fr, the output of the corresponding
function in Fp ¢ is the BER loss of the decoder f. We next
define the empirical Rademacher complexity of Fy, 7.

Definition 1. (Rademacher complexity of F1, r) The empirical
Rademacher complexity of Fr, 7 is defined as

m

sup — Z oilper(f x;)|, (6)

serp M i—=1

Ron(Frr) =
where o;’s are i.id. Rademacher random variables, i.e.,
Pr(o; =1) =Pr(o; = -1) = 3.

We note that the loss function Iggr takes the values between
[0,1]; and consequently using a standard result from PAC
learning literature (Theorem 3.3 in [33]), one can bound the
generalization gap in terms of R,,, (FL r). Specifically, for any

0 € (0,1), with probability atleast 1 — 9, the generalization gap
for any f € Fr is bounded as follows:
R log(1/6
Reer(f) — Reer(f) < 2Rm(Fr,7) + 7g2(m/ ) (7

To proceed further, we introduce bit-wise Rademacher
complexity of Fr; which is a new notion and captures the
correlation between j-th channel output of the NBP decoder
and a random decision (Rademacher random variable).

Definition 2. (Bit-wise Rademacher complexity of Fr) For a
NBP decoder class Fr, the empirical bit-wise Rademacher
complexity corresponding to its j-th output bit is defined as:

sup — Z oi - F) G- 3

fE‘FT =1

Ry (Frlj]) £

We next present Proposition 1 in which we upper bound the
generalization gap as a function of the empirical bit-wise
Rademacher complexity R, (Fr[j]).

Proposition 1. For any 6 € (0,1), with probability at least
1 — 0, the generalization gap for any NBP decoder f € Fr
can be upper bounded as follows,

B0t

where R,,(Fr[j]) denotes the bit-wise Rademacher complex-
ity for the jth output bit.

log(1/6)

— Raer(f o (Frlj = )
m

3\'—‘

Rper(f)

The proof of Proposition 1 is presented in Appendix A in
[1]. We now present Theorem 1 which is the main result of
this paper. The main technical challenge is to bound the bit-
wise Rademacher complexity R,,(Fr[j]) as a function of the
number of decoding iterations 7, training dataset size m and
code parameters (blocklength n and variable node degree d,,).

Theorem 1. For any 6 € (0, 1), with probability at least 1— 0,
the generalization gap for any NBP decoder f € Fr can be
upper bounded as follows,

4 flog(1/8)

Rasr(f) — Roer(f) < e 2m

12\/(nd%T+ni)(T+1) log (8y/mnwd,by), (10)

where n denotes the blocklength, d, is the variable node
degree, T is the number of decoding iterations (number of
layers in NBP), m is the training dataset size; w and by are
upper bounds on the weights in the NBP decoder and input
log-likelihood ratio, respectively.

Proof-sketch of Theorem 1: The detailed proof of Theorem
1 is presented in Appendix in [1] and here we briefly describe
the main ideas. We first upper bound the bit-wise Rademacher
complexity in terms of Dudley entropy integral (specifically,
leveraging Massart’s Lemma in [34] and adapting it to our
problem). The resulting bound is expressed in terms of the
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covering number of the NBP decoder class, i.e., the smallest
cardinality of the set of functions in Fr that can closely
approximate the NBP decoding function f. To further bound
the covering number, we first show that the NBP decoder is
Lipschitz in its weight matrices which is proved in Lemma 1
(see Appendix B in [1]). In other words, for a given input,
the output of the NBP decoder remains invariant to small
perturbations in its weight matrices. Using this fact, we obtain
a bound on the covering number of the NBP decoder class in
terms of a product of covering numbers (each corresponding to
a weight matrix). We then observe that the weight matrices for
the NBP decoder are sparse, where the structure and number
of non-zero entries is determined by the parity check matrix
and the code parameters (such as blocklength n, variable node
degree d, etc.). We then use the fact that the covering number
of a sparse weight matrix is always smaller than that of a non-
sparse vector (of the same size as the total non-zero entries in
the original sparse matrix). Using our result in Lemma 3, we
can finally upper bound the bit-wise Rademacher complexity
as a function of the code parameters to deduce the result in
Theorem 1.

Remark 1 (Representation in Terms of Code-rate and
Parity Check Node Degree). The result in Theorem I can
also be expressed as follows:

4 log(1/6)+

RBER(f) - ﬁBER(f) < —+
m 2m
12\/(ndg(1 — ,.;)2”1; +1)(T+1) log(8v/mnwd,by). (1)

We use the fact that the blocklength, message length, variable
node degree, and parity check node degree are related as
nd, = (n — k)d.. Using this relation in Theorem 1 we obtain
(11). From the result in (11) we note that the generalization
gap reduces for codes with a high code-rate k.

Remark 2 (Impact of the Code-parameters). We plot the
generalization gap bound obtained in Theorem 1 in Fig. 2
for blocklength n = 100, variable node degree d, = 10,
decoding iterations T = 10, and dataset size m = 105, To
understand the dependence of the generalization gap on a
parameter, we vary that parameter while keeping the values of
the remaining parameters fixed. Smaller training dataset size
results in overfitting, and therefore corresponds to a larger
generalization gap. We observe this in Fig. 2(a), wherein the
generalization gap decays as O(%) While more decoding
iterations (i.e., more hidden layers) are expected to improve
decoding performance, it can also overfit the training data.
Therefore, we expect the generalization gap to increase with
the number of decoding iterations. As seen from Fig. 2(b), we
note that the generalization gap of the NBP decoder scales
linearly as O(T). Our theoretical result in Theorem 1 tells
us that the generalization gap scales with the blocklength as
O(y/n) as shown in Fig. 2(c). However, the generalization
gap scales linearly with the variable node degree as O(d,)
as shown in Fig. 2(d).

=S NAS

bx
0

Generalization gap
I
Generalization gap

Dataset size (m) Decoding iterations (T')

(a) (b)

3

Generalization gap
g &
[ T T
Generalization gap

by
[

10 20 3 40 5 60 70 8 9 100
Codeword length (n)

Variable node degree (d,)

(0) (d)

Fig. 2: (a) RHS in Theorem 1 vs Dataset size (m), (b) RHS in
Theorem 1 vs Decoding iterations (77), (c) RHS in Theorem 1
vs Blocklength (n), (d) RHS in Theorem 1 vs Variable node
degree (d,).

Remark 3 (Other Approaches for Bounding the General-
ization Gap). Vapnik-Chervonenkis (VC) dimension bounds
[35], [36], PAC-Bayes analysis [37], [38] are other techniques
to upper bound the generalization gap. While VC-dimension
approach yields a bound independent of the data distribution,
it is found that these bounds are vacuous [37], [39] and
scales exponentially with the number of parameters of the
neural network. To obtain tighter and non vacuous general-
ization bounds, prior works [37], [40], [41] have proposed
the use of PAC-Bayes analysis. For any 6 € (0,1), with
probability at least 1 — 6, the generalization gap using PAC-
Bayes analysis is upper bounded as, Rper(f) — ﬁBER( f) <

KL(CHF)HOg’W\LFHOg@/é) The PAC-Bayes prior on the space
of neural network decoders ( is chosen independent of the
training data [40], [42]. The KL divergence term between the
PAC-Bayes prior  and posterior U is typically the dominant
term in the bound for the generalization gap. While the
posterior T achieves minimal empirical risk, and is data-
dependent; the KL divergence term can be large as the data-
independent priors are chosen arbitrarily causing the bound to
be vacuous [42]. Furthermore, it is difficult to obtain explicit
dependence of the generalization gap on the code parameters
(such as codelength, and variable node degree) using the
PAC-Bayes analysis. PAC-Learning approach used in this
paper leads to a cleaner analysis (inspired by recent results
on generalization bounds for graph neural networks and
recurrent neural networks [43], [44]), and the bound obtained
has a closed-form expression with explicit dependence on code
parameters, decoding iterations, and the training dataset size.

We next show that Theorem 1 can be readily generalized
to irregular parity check matrices. Speciﬁcally, consider an
irregular parity check matrix H € {0,1}("=%)*" where d,,
is the variable node degree of the i-th bit in the codeword,
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and d.; is the parity check node degree of the j-th parity
check equation. The NBP decoder corresponding to such this
irregular parity check matrix is characterized by the weight
matrices {Wlt)|1 <t < T}, {W;t)|1 <t < T}, Wg,
W,. Here, for every 1 < t < T, and 0 = Y. | d,,, we
have that W € ROxn W) € ROX0 W, € R"*¢, and
W, € R*"*™, For any value of ¢, the weight matrix Wgt) has
one non-zero entry in every row, and d,, non-zero entries in
the ¢-th column. In the weight matrix Wg), the i-th bit in the
codeword with variable node degree d,, corresponds to d,,
rows and d,, columns, and these rows and columns each have
exactly d,, — 1 non-zero entries. Using similar steps to prove
Theorem 1, we derive a bound on the generalization gap for a
NBP decoder corresponding to irregular parity check matrix.

Corollary 1. For any § € (0,1), with probability at least
1 — 0, the generalization gap for any NBP decoder f € Fr
corresponding to irregular parity check matrix can be upper
bounded as follows,

L [los1/8)

Raer(f) — Raer(f) < % o

n

@, (T +1)?
1

124/ 2 log (8\/mnw max dwa). (12)

IV. EXPERIMENTAL RESULTS

In this section, we present some numerical results to com-
plement our theoretical bounds. We consider binary phase
shift keying (BPSK) modulation and AWGN channel, and
the received channel output for 1 < ¢ < n is given as
y[i] = (=1)*l) + z[i]. We focus on Tanner codes with: (i)
n =155, k = 64, d, = 3, d. = 5; (ii)) n = 310, k = 128,
d, = 3, d. = 5 and study the empirical generalization perfor-
mance of NBP decoders whose architecture was proposed in
[5], and also described in Section II of this paper. We adopt the
software provided with the papers [6], [7] for our experiments.
We train the weights of the NBP decoder until convergence
by minimizing the cross-entropy loss between the true and
the predicted codeword. We use ADAM optimizer for training
with a learning rate of 0.01. We evaluate the NBP decoder by
measuring the generalization gap (difference between average
BER attained on the test and training datasets). We perform
each experiment for 10 trials, and the distribution of the
generalization gap over these 10 randomized runs are plotted
on a boxplot. We next discuss the impact of the dataset size
(m), and the decoding iterations (7") on the generalization gap.
a. Impact of training dataset size (im): We consider the NBP
decoder with T" = 3 decoding iterations (equivalently, 6 layers)
trained for channel SNR of 2 dB; we vary the training data
set size from m = 103 to m = 10 in steps of 1000. From the
results in Fig. 3(a), (b), we observe that the generalization gap
is the largest for m = 1000, and generally decays with m. For
a smaller dataset size, the overfitting on the training samples
is severe. Therefore, the NBP decoder fails to generalize on
unseen samples in the test data. We also repeated the above
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Fig. 3: Generalization gap as a function of the dataset size m
at channel SNR = 2 dB for (a) Tanner code with n = 155,
and k£ = 93, (b) Tanner code with n = 310, and k£ = 186.
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Fig. 4: Generalization gap as a function of the decoding
iterations 7' (o< number of layers) at channel SNR = 2 dB
for (a) Tanner code with n = 155, and k£ = 93, (b) Tanner
code with n = 310, and k£ = 186.

experiment for various values of 71" as well as by changing
SNR. We found the inverse monotonic dependence on m to
be consistent across different values of 7" and SNR.

b. Impact of decoding iterations (7): In this experiment, we
study the impact of decoding iterations (which is proportional
to the number of hidden layers) in the NBP decoder on the
generalization gap. Here, we fixed channel SNR of 2 dB, train-
ing dataset size m = 10* and varied T from {2,3,...,10}.
As seen in Fig. 4 the generalization gap grows linearly with 7',
which is consistent with Theorem 1 (which behaves as O(T')).
Increasing the number of parameters will cause overfitting of
the NBP decoder resulting in a larger generalization gap. We
note that this observation (i.e., linear dependence on 7T') was
consistent for different dataset sizes, and channel SNR values.

V. CONCLUSIONS

In this work, we presented results on the generalization gap of
NBP decoders as a function of training dataset size, decoding
iterations and code parameters (such as blocklength, message
length, variable node degree, and parity check node degree).
To the best of our knowledge, our work is the first to provide
theoretical guarantees for NBP decoders. Our bounds exhibit
mild polynomial dependence on the blocklength n and the
decoding iterations (layers), 7T'. There are several interesting
directions for future work, including a) comprehensive exper-
imental verification of the behavior of generalization gap on
code parameters (such as n,d,); b) obtaining generalization
bounds for ML based decoders with practical constraints (such
as quantized weights); ¢) extending the ideas for other type
of ML based codes/decoders (i.e., beyond BP type decoder
architectures).
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