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Figure 1: Bus playing sounds at a pedestrian, who asks “why that now?”[88] in line with the EMCA next-turn proof-procedure. 

ABSTRACT 
Horns and sirens are important tools for communicating on the 
road, which are still understudied in autonomous vehicles. While 
HRI has explored di�erent ways in which robots could sound, we 
focus on the range of actions that a single sound can accomplish 
in interaction. In a Research through Design study involving au-
tonomous shuttle buses in public transport, we explored sound 
design with the help of voice-overs to video recordings of the buses 
on the road and Wizard-of-Oz tests in live tra�c. The buses are 
slowed down by (unnecessary) braking in response to people get-
ting close. We found that prolonged jingles draw attention to the 
bus and invite interaction, while repeated short beeps and bell 
sounds can instruct the movement of others away from the bus. We 
highlight the importance of designing sound in sequential interac-
tion and describe a new method for embedding video interaction 
analysis in the design process. 
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1 INTRODUCTION 
Sound becomes an important resource for communication when 
opportunities for verbal expression are limited. In tra�c, horns have 
traditionally been used for this purpose: Tram and train drivers 
toot to warn others to get o� the tracks, boat captains use fog 
horns to instruct other ships to get out of the way. Car drivers 
honk to warn about upcoming situations or to complain about 
others’ maneuvers [52]. In all these cases, the choice of di�erent 
sounds is heavily restricted, since usually there is only one horn. Yet, 
with only a single sound, people are able to navigate an astonishing 
array of interactions, including warning others, negotiating di�cult 
tra�c situations, as well as greeting or saying goodbye. This paper 
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explores how this can be applied to robots, looking at the case of 
autonomous shuttle buses in public transport. 

Robot sound has received increased attention over the last decade, 
with researchers exploring a range of di�erent ways in which robots 
could sound [99]. Taking inspiration from movies [51], a variety of 
possible sounds have been explored, including motor hums [68, 95], 
musical soni�cations [26, 82, 86], and beep sequences [25, 79, 101]. 
The majority of these studies focuses on validating the design of 
speci�c sounds, ensuring that users interpret them consistently. 
However, building on the insight that understanding is negotiated 
in interaction [11, 85], an utterance or sound in isolation can only 
ever have meaning potentials [56]. A sound’s speci�c meaning then 
emerges in concrete, situated interactions [74, 91]. Building on this 
work, we are interested in how robot sound gets interpreted in live 
interaction and what actions robots can achieve through the way 
sound is timed in interaction. We present an approach to designing 
sound in concrete interactional sequences rather than in isolation. 

Looking at design research more generally, recent work has prob-
lematized how knowledge is produced in HRI. Lupetti et al. [57] 
point out that typical HRI design processes result in standalone 
design instances that are often di�cult for other designers to build 
on. A lack of intermediate-level knowledge [42] makes translation 
to other contexts di�cult. Zam�rescu-Pereira et al. [100] similarly 
argue that research should engage in design exploration rather 
than in controlled experimentation that validates one speci�c de-
sign. Research through Design approaches that aim to facilitate 
generalization beyond individual designs are only recently gaining 
popularity in HRI [27, 41, 54, 58, 59, 82]. Our work aims to make 
a methodological contribution to this emerging body of work: We 
demonstrate how Ethnomethodology and Conversation Analysis 
[8, 12, 30] (EMCA), an approach to studying interaction, previously 
proposed to be suitable for moving beyond design critique towards 
design practice [7], can be embedded into HRI design processes. 
EMCA has been applied in the evaluation of interaction with robots 
[32, 74, 75], and it has informed robot design through literature 
[71, 75] and concurrent ethnographic studies [48]. However, we 
provide the �rst attempt at systematically integrating EMCA video 
analysis into ongoing design iterations. 

In this paper we designed sound for an autonomous shuttle bus 
based on video-recordings of live tra�c and tested them with a 
Wizard-of-Oz [76] setup during rides on public roads. Taking an 
EMCA approach, we study tra�c as inherently social and focus 
on observable actions (rather than internal states or intentions). 
Concentrating on what can be observed, the approach is particu-
larly relevant for studying tra�c safety: When coordinating on the 
road, people do not typically discuss their impressions and prefer-
ences but mostly act in response to others’ visible and recognizable 
behavior. 

The contribution of this paper is threefold: �rst, we contribute a 
novel design approach that tightly intertwines EMCA video analysis 
with interaction design. Second, we contribute intermediate-level 
knowledge [42, 57] in the form of transcribed video recordings of 
our designs for public transport buses, showing the speci�city of 
the designs while opening possibilities for generalization. Third, 
we share lessons learned from testing robot sound in the wild, on 
public roads. 

2 MOBILITY, COORDINATION AND SOUND 
Moving in spaces where others are present is a highly social en-
deavor. People do not move like a bullet �red towards a destination, 
clashing when their trajectories interfere but instead they carefully 
coordinate their mobility. This section reviews prior work on tra�c 
as social interaction, highlights how autonomous vehicles have 
been designed to communicate on the road, and how sound may 
be used as such a resource in robots. 

2.1 Tra�c is Social 
Ethnomethodologists have studied the “common sense” involved 
in moving in space for decades, showing that people dynamically 
adapt their speed and trajectory to be recognized as walking and 
cycling alone or together [62, 84], and demonstrating that mov-
ing together with others is a skillful accomplishment [36, 63]. Car 
drivers negotiate movement with other road users, for instance 
by o�ering space for others to pass through [37], or letting oth-
ers overtake by moving to the side of a lane and slowing down 
[16]. As Go�man [33] highlighted early on, people act in recogniz-
able ways in public spaces, and deviations from the social order 
require explanations. Opportunities for providing verbal accounts 
are typically limited on the road, and instead drivers communi-
cate through movement [80], indicators [3], headlights [37], and 
horns [52]. While work in HRI has acknowledged the importance 
for robots to move in socially recognizable ways [93], autonomous 
vehicles still struggle to participate in the social coordination in 
tra�c [5, 6, 73, 90, 96]. 

2.2 Interfaces for Autonomous Vehicles 
To help mobile robots and autonomous vehicles navigate public 
spaces, research has explored a range of modalities. While sound has 
been explored typically in combination with visual feedback [49, 61], 
a majority of studies focuses on visual displays such as animated 
lights [13, 17] or using a robot head in the position of the driver 
for anthropomorphic feedback [66]. While such external human-
machine interfaces typically consist in novel additions to vehicles, 
a small body of research has highlighted that autonomous vehicles 
already implicitly communicate their states and intents through 
their movement and explicit signals may only seldomly be necessary 
[19, 69, 80]. Synthetic motor sounds, legally compulsory in the 
European Union since 2019 [23], are one example of such implicit 
interfaces [68]. To date, the majority of studies of interfaces for 
autonomous vehicles are carried out in controlled settings, through 
video prototypes [18], virtual reality [13, 43] or experiments in 
closed-o� parking lots [35, 61]. A small body of work has explored 
autonomous driving in the wild with a hidden human driver in the 
“ghost-driver” paradigm [55, 83]. Following this paradigm, Moore 
et al. [68] demonstrated that synthetic motor sound can augment a 
car’s slowing movement, highlighting that the vehicle will yield. To 
our best knowledge however, our paper is the �rst report on sound 
design iterations on a fully autonomous vehicle in live tra�c. 

2.3 Sound in HRI 
HRI work has demonstrated that even beyond autonomous vehi-
cles, motor sounds and musical soni�cations in�uence how robots 
are perceived [25, 70, 82, 95, 101]. They can communicate intent 
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and support the localization of mobile robots [9, 47, 68]. Sound 
as a broader category (see [99] for an overview) has received in-
creased attention in HRI during the last years. The large majority 
of research has focused on validating how well speci�c sounds can 
communicate speci�c emotions [10, 26, 45, 51, 79, 86]. A small body 
of work has pointed out that validating sounds may only be useful 
to a certain degree, since humans interpret robot sound di�erently 
depending on the speci�c interactional context that they occur in 
[74, 78]. While most papers deal with evaluating speci�cally de-
signed sounds, recent work has started to formulate more general 
principles for sound design based on the work of professional sound 
designers [50, 81]. These works provide guidelines on how robots 
should sound, but the question when sound is actually relevant in in-
teraction remains underexplored. As Beaudouin-Lafon [2, p.21] put 
it for human-computer interaction (HCI): “HCI is not the science of 
user interfaces, just as astronomy is not the science of telescopes. 
HCI needs interfaces to create interaction, and we should focus on 
describing, evaluating and generating interaction, not interfaces.” 
Similarly, we argue that HRI sound design should focus not on de-
signing (standalone) sounds, but instead on describing, evaluating 
and generating interaction through these sounds. 

Building on the insight that tra�c is social, we explore how 
sound can facilitate this interaction. While adjusting sounds to the 
speci�c character of the robot is important, we argue that a crucial 
step should come before this: designing the interaction, focusing 
on what actions sound can and should accomplish. 

3 SETTING 
We present a case study based on a project called Ride the Future1, 
where autonomous shuttle buses are tested as a future public trans-
portation solution in the Swedish city of Linköping. The project 
is driven by the local public transport provider, several research 
institutes, as well as the municipality. The buses serve several stops 
on a university campus and in a close-by neighborhood. Rides are 
for free, and while there is no �xed schedule, passengers can check 
the location of the buses on a live map. We followed the project 
since the �rst bus started rolling in January 2020. 

3.1 Autonomous Shuttle Buses 
Being built for public use, the electric shuttle buses need to be 
a�ordable for local transport providers and are quite di�erent from 
autonomous cars. They resemble a tram on invisible tracks and 
drive on a programmed route, which they cannot divert from. When 
facing an obstacle, the buses reliably slow down, and eventually 
stop but they do not change their trajectory. The shuttles largely 
maneuver without human input but always have a safety driver on 
board who may switch to manual control when the bus gets stuck. 

The project started with an EasyMile EZ10 shuttle (see Figure 
1) and a Navya Autonomous Shuttle DL4, later a second EZ10 was 
added. We initially studied buses from both manufacturers and 
found that they face similar challenges on the road [73]. However, 
since the EZ10 shuttles have fewer built-in sounds, we carried out 
all sound prototyping on them. Our designs are overlaid onto the 
EZ10’s existing soundscape, which includes beeping while open-
ing and closing doors, as well as a bell sound when leaving stops 

1https://ridethefuture.se/in-english/ 

and triggering emergency braking. Through our recordings and 
interviews with the safety drivers we found that this sound is much 
louder on the inside of the shuttle than on the outside. During the 
course of the project, EasyMile added a manually triggered horn 
sound on request of the safety drivers. 

3.2 Safety Drivers 
The legally required safety drivers are speci�cally trained profes-
sional drivers with an alternating schedule on manual and au-
tonomous public transport vehicles. The six di�erent drivers who 
we worked with all have several years of experience in driving 
buses or trams. We observed and video recorded them during their 
work, asking questions about speci�c events on the road and how 
they would use the horn on a bus or tram. One safety driver volun-
teered to work more closely with us in participatory sound design 
sessions. We presented project insights to all safety drivers. 

3.3 Ethics 
The safety drivers signed informed consent and video usage forms 
before we took rides with them. We did not collect any personal 
data from them since we were only interested in their professional 
roles. We always informed them of planned recordings a day in 
advance and practiced ongoing consent, asking whether they were 
still okay to be recorded on each speci�c recording instance. 

For the other road users, obtaining written consent was not feasi-
ble. As recording in public is legal for research purposes in Sweden, 
we decided to tape large warning signs with camera symbols onto 
the bus whenever we recorded. When videotaping on the road, we 
put on yellow vests that said “research in progress” in large letters. 
Occasionally, people on the road would turn into passengers and 
hop onto the bus. Since they were not the focus of our work we 
informed them about the video recordings as soon as the doors of 
the bus opened, and asked whether it was okay to keep the cameras 
running. If they denied to be recorded we immediately switched o� 
the recording equipment and erased any recordings that they were 
on. If they agreed to be recorded we provided them with more infor-
mation about the study and our contact information, highlighting 
that they may contact us if they wanted their recordings removed. 

4 APPROACH 
In this work we integrate Ethnomethodology and Conversation 
Analysis with a Research through Design [31, 59, 102] approach to 
interaction design, contributing to what has been described as “tech-
nomethodology” [7, 14, 21]. While EMCA so far has hardly been 
intertwined with HRI design, it has been established in other �elds, 
such as computer-supported cooperative work (CSCW) [14, 64, 77], 
and HCI [1, 15, 97], and has particular relevance for conversational 
user interfaces and dialogue systems [24, 72]. 

Ethnomethodology [28, 40] initially developed as a contrary ap-
proach to mainstream sociology, and is concerned with studying 
the methods by which people accomplish socially recognizable 
actions and activities in everyday interaction. Ethnomethodolo-
gists investigate the (often tacit) commonsense knowledge that 
members share about how to interact in speci�c settings and sit-
uations. Conversation Analysis [44, 85, 89] can be considered a 
sub�eld of ethnomethodology that has been further in�uenced 
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Figure 2: Design framework. 

by �elds such as anthropology and language philosophy. It fo-
cuses particularly on how participants accomplish interaction on a 
moment-by-moment basis, usually using video recordings as study 
material. While EMCA was initially concerned with human-human 
interaction, Lucy Suchman [91, 92] pioneered its introduction to 
system design in the 1980s in her studies of Xerox copying ma-
chines. Ethnomethodologists contributed studies of how people use 
technology, often at workplaces [38], and theoretically informed 
participatory design approaches [34], but found it di�cult to move 
from design critique towards actively designing [14]. 

HRI work has taken inspiration from EMCA literature [32, 71, 98] 
and taken a conversation analytic stance in analyzing interaction 
with robots, however without systematically feeding these insights 
back into ongoing design iterations [32, 74]. Krummheuer et al. 
[48] have perhaps come closest to an iterative design cycle in a 
study in which the general design of a robot was supported by 
concurrent ethnomethodologic observations. Our work can be seen 
to build on and integrate previous e�orts by design researchers 
working on system design at Stanford in the 1980s. Collaborating 
with Suchman, they drew on conversation analysis to study design 
processes, video recording each design iteration, analyzing it and 
informing the next iteration by this analysis [65, 94]. At this time, 
HCI researchers also proposed to use video recordings as design 
material for prototpying [39, 60], which has inspired our work. 

Figure 2 represents an overview of our design process. In an iter-
ative cycle, we �rst DESCRIBE interaction on the road and with our 
prototypes through observations, video recordings and transcrip-
tion following EMCA practice [4, 44]. We then INTERVENE, using 
our video recordings as design material in voice-overs and testing 
sound prototypes in live tra�c, again recording these sessions. Fi-
nally, we REFLECT on what actions the tested sounds achieved 
by building collections of similar cases and relating our �ndings 
to previous EMCA literature. Since this is a dynamic process, all 
stages may involve moving back and forth between description 
and intervention, intervention and re�ection, or re�ection and de-
scription. Following the Research through Design paradigm that is 
opportunistic in its nature, we do not want to claim that the events 
that we observe in this study happen statistically more frequently, 
but rather that they are signi�cant moments, which are relevant 
for design. We present transcripts of events that can be seen as ex-
emplary for what typically happens on the road. The next sections 
describe our approach in more detail. 

4.1 Observations and Video Analysis 
This �st stage is informed by an ethnomethodologic interest in 
accountability. This concept highlights that people are account-
able for making their actions recognizable, for instance by doing 
something that can be recognized as doing walking rather than 
loitering, or doing driving rather than moving uncontrollably. If 
people fail to act in recognizable ways, others may request expla-
nations (accounts) for why they did not act in the expected way. 
From this perspective we derived several guiding questions: Is the 
bus moving in recognizable ways? Are there moments when the 
bus moves contrary to human expectations? Are there moments in 
which the bus fails to explain its movement? 

To answer these questions, the �rst author started observing 
and video recording, both on the road and as a passenger on the 
buses. We discovered early on that the buses brake repeatedly, 
hindering their progression from one stop to the next and ulti-
mately delaying travel for the passengers. These stops typically 
occur when people get close to the bus, at moments when human 
drivers would not brake, at least not as much. (Auto)ethnographic 
notes and interviews with the safety drivers further revealed that 
these unnecessary brakes could potentially be dangerous, and the 
buses were modi�ed in several ways to mitigate the impact of the 
braking on safety drivers and passengers. We went on to study 
these brakes in detail, by cropping videos snippets from our corpus 
that depicted the moments before a bus came to slow down or brake, 
and transcribing these videos (see section 4.7 and [73]). 

4.2 Video Voice-Over 
Taking inspiration from video prototyping [39, 60] and combining 
it with a sound design technique called vocal sketching [22], we 
turned the previously analyzed videos into our design material. We 
were interested in how the bus could provide situated explanations, 
then and there, of how to behave around it. Sound as a dynamically 
adjustable resource appeared particularly interesting, since a static 
visual display on the bus reading “I can brake hard” in Swedish 
clearly was not enough to prevent braking. 

Playing our previously cropped videos (typically about 30 sec-
onds) on loop and improvising with di�erent sounds as a “voice-
over” to the running videos enabled us to ground our design ideas 
in concrete cases from the beginning. We �rst used our voice and 
later pre-recorded sound snippets to explore when and how the 
bus could sound. These improvisation sessions allowed exploration 
of a broad range of sounds with immediate feedback on how they 
would sound in interaction and in the general soundscape of the 
road. The videos were especially important in working with tim-
ing of the sounds, as they highlighted how fast other tra�c users 
move and how a sound may be relevant in one moment but become 
incomprehensible or mean something di�erent in the next moment. 

4.3 In-the-Wild Sound Testing 
Following our focus on concrete interaction, we tested sounds in 
live tra�c early on. Standing on the road, we played sounds from a 
phone, checking how they would sound and to what volume they 
needed to be set. This turned out to be very important, teaching 
us that while sounds may appear as too loud and intrusive in a lab 
or o�ce setting, they may be barely noticeable on a busy road. For 
tests in live tra�c we taped a waterproof Bluetooth speaker to the 
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Sound type Sound description Iteration 

humming sound low pitch hum 
high pitch hum 
motor sound 

1 
2 
3 

jingle wheels on the bus 
reverse wheels on the bus 

2,3 
2 

human-like “ahem” 2 
horns high-pitch horn 

rising pitch sax roll 
beep button 

1,3 
3 
4 

bells high-pitch bell 
repeated bell ring 

hand bell 

2,3 
3 
4 

Table 1: Overview of the sounds tested during each iteration. 

front of the shuttle. While it may be bene�cial to place speakers all 
around the bus, including the back, we wanted to keep the setup 
as simple as possible and followed the design of synthetic motor 
sound systems, which are usually placed in the front of cars. During 
the rides, we played sounds from a phone paired with the speaker. 

4.4 Wizard-of-Oz Prototyping 
We tested sounds during several Wizard-of-Oz [76] sessions, in 
which either the �rst author or a safety driver would act as wizard, 
triggering sounds. From outside the bus it was possible to recognize 
a passenger on the bus, but people could not immediately see that 
this was the wizard. The wizard would play sounds in moments 
when they felt relevant or necessary. Through joint discussion it 
emerged early on that sounds should only be played when someone 
was clearly in the same lane or otherwise close to the bus. The 
goal was to explore a broad range of sounds repeatedly during the 
rides. When the researcher acted as wizard, they would discuss 
and take into account what the safety driver said. When the safety 
driver acted as wizard, the researcher would watch and sometimes 
verbalize observations in a similar style as the safety driver had 
previously done (e.g. I can see that the cyclist is smiling). The 
researcher also sometimes asked the safety driver why they had 
played a sound at a speci�c moment and encouraged to re�ect upon 
the design process in a think-aloud manner. 

4.5 Sound Design 
We explored a range of di�erent sound types. Table 1 gives an 
overview of the 12 sounds tested on the road. Initially, the idea 
was to keep people away from the bus through humming sounds 
that would get louder as people got closer. We discovered that 
low pitch hums were di�cult to hear on the road and high pitch 
hums were disliked by the safety driver. As an alternative, we 
explored jingles, the refrain of “the wheels on the bus go round 
and round” and its reversed melody. Following a di�erent idea, we 
tested a range of short horn and bell sounds, which were easily 
repeatable. We also tested a human vocalization in the form of 
an “ahem” sound, inspired by the sound people may make when 
trying to pass on a blocked escalator, but did not �nd it particularly 
e�ective. In the fourth iteration, we switched from static sound �les 

to sounds that could be dynamically controlled in the form of a beep 
button and a hand bell app. Some of the sounds are downloaded 
from the Soundsnap2 database, others are modi�cations of these 
sounds created in Audacity3. The jingles are digital tunes created in 
Audacity. Please see supplementary material for details, including 
video recordings of all sounds on the road. 

4.6 Data Collection 
Over the course of 2.5 years, the �rst author collected 18 hours of 
video material from up to four camera perspectives. This includes 
campus tra�c without (20 minutes) and with buses, recorded both 
from the road (40 minutes) and during rides with GoPros mounted 
to the bus (9 hours, 7 di�erent occasions). During the latter, both 
road and inside of the bus were captured, documenting how people 
move around the shuttles and studying how safety drivers react to 
events on the road. The �rst author also video-recorded 4 iterations 
of in-the-wild sound tests (8 hours, during 26 rounds). In addition, 
she collected ethnographic notes on 18 occasions after walks on 
the road and attendance of the buses’ inauguration events. Our 
work was complemented through several interviews: unstructured 
interviews with safety drivers during the rides, as well as semi-
structured interviews with a sales director at EasyMile, a safety 
driver, and the project coordinator at the local transport provider. 
Ongoing work was presented at three workshops organized by the 
Ride the Future project, giving all stakeholders the opportunity to 
comment on and take inspiration from our work. 

4.7 Transcription and Data Analysis 
Following the conversation analytic approach, we treat video record-
ings as data and extracted video snippets from our corpus in which 
the bus came close to other road users, inductively building up 
collections of similar events. The �rst author transcribed clips that 
appeared interesting, to facilitate discussion and deeper analysis 
of how people respond to the bus on a moment-by-moment basis. 
This requires detailed transcription of verbal [46] and embodied 
[67] conduct, following EMCA transcription conventions. 

Moving towards in-depth analysis, we focused on how people 
on the road display their understanding of the buses’ sounds. From 
a conversation analytic perspective, the meaning of a current turn 
[85] in interaction can never be �xed in advance but others display 
their interpretation, what action they recognize it to be, in their 
next turn. This means, that by looking at how humans respond to a 
robot sound, we can access their understanding of it. This principle 
of looking at what happens next is summarized in the next-turn 
proof procedure [44, 85], which is often summarized in the analytic 
question “why that now?” [88] (see Figure 1). 

5 FINDINGS 
Taking an action-based approach, we organize our observations by 
how humans visibly interpret the sound in interaction. The focus is 
not on what the bus communicates about its inner status or intent 
but rather how humans react and adjust their actions in response. 

2https://www.soundsnap.com 
3https://www.audacityteam.org 
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5.1 Anticipation and Reaction 
During our observations we noticed that the unplanned halts in 
between designated stops were typically caused by cyclists who 
were coming too close, entering the shuttle’s safety bubble and 
thereby triggering braking or even harsh emergency stops. The 
video recordings revealed that safety drivers prepare for these stops 
well in advance. 

01 DRI  ((gazes out of front window)) 
02 DRI  ska vi se hur han reagerar på de här 
        let’s see how he reacts to these here 
03      (.) 
04 DRI  om [han]  
        whether he    
05 RES     [m  ] m 
06 DRI  flyttar på sig 

     moves 
07 DRI  k(h)ehehe .h 
08      (2.9) 
09      +(0.2)                   

dri  +moves left foot, puts weight on it, stretches right knee--> 
10 DRI    h+är kommer bromsen 
          here comes the brake  

dri  -->+ 
11      (1.5) ((decelerating sound from bus engine)) 
12      ((cyclists passing left side of bus, looking inside bus)) 
13 CYC  (oh* my god really xxxx)  
   bus     *halted--> 
14 DRI                °(han slår dit/det)° 
                        he hits there/it 
15      (0.2) 
16 DRI  (h)m (h)m ((smiles)) 
17      (1.3)* 
   bus    -->*continues on its route again-->> 
18       (4.6) ((accelerating sound from bus engine)) 
19 DRI  det vart ingen tvärnit °i alla fall° ((smiles)) 
        it was no slamming of the brakes at least 
20      (0.2) 
21 RES  mhm 

 
 
 
 
 
 
 
 

Figure 3: EM-2020-04-22-round3. Anticipating a stop. DRI= 
safety driver, RES= researcher, BUS= EZ10 shuttle, CYC= cy-
clist. See supplementary material for transcription symbols, 
image, and video clip. 

The extract in Figure 3 illustrates how a safety driver (DRI) an-
ticipates such an upcoming stop: He gazes out of the front window 
and announces that there is an interesting situation ahead (lines 
01-02), a typical moment when the wizard would have triggered 
a sound. In this extract, there are just the EZ10’s original sounds. 
The safety driver adds that he and the researcher (RES) will soon 
see whether the bus will (continue to) move (l. 04-06) and the bus 
�rst keeps moving forward with the same speed. A moment later, 
the safety driver slightly changes his position (l. 09), shifting his 
weight on his back leg. He then announces that the brake is kicking 
in (l. 10), which can also be heard by the decelerating motor sound 
(l. 11). As the bus comes to a halt, the cyclists (CYC) pass on its 
side (l. 12-13). The bus starts accelerating again after they have 
moved away (l. 18) and the safety driver evaluates the stop as “no 
slamming of the brakes at least” (l. 19). 

This extract demonstrates that while the safety driver anticipates 
a potentially problematic moment (and could prevent it on a manu-
ally operated bus), the autonomous bus is approaching the cyclists 
without announcing any potential trouble, leaving no opportunity 
for cyclists and passengers to prepare for the brake. Even though 
the buses emit sound through the rustling of the plastic parts and 
a synthetic motor sound system, problems with unnecessary or 
unexpected braking persisted throughout the project. The manu-
facturers slightly adjusted the braking behavior and safety belts 

were added to prevent harm to passengers, but this did not seem to 
change the problem: when surrounded by many people or when 
passing narrow passages, the shuttles will stop. 

Initially, we explored synthetic humming and motor sounds as 
a way to prevent cyclists and pedestrians from coming closer to 
the bus. However, it was di�cult to �nd suitable sounds with our 
voice-over approach. When testing some designs, the safety driver 
argued that they were confusing and hard to hear on the noisy 
road, where buildings and other vehicles also contribute low-pitch 
humming sounds. A high-pitched sound inspired by mosquitoes 
was strongly opposed by the safety driver who was worried that 
it would scare away passengers. Interestingly, from an autoethno-
graphic perspective, while these sounds appeared suitable in an 
o�ce, they took more courage to play live on the road. 

5.2 Explaining Presence through Jingles 
Learning that subtle humming was not suitable, we took inspiration 
from local ice cream trucks, which announce their arrival with 
a recognizable tune. Testing electronic jingles, we made rather 
unexpected observations.  
 
 
01      +(0.6)# 
   dri  +gazes at road--> 
   img        #img1 
 

02 WIZ  $$(0.1)+(0.3)+da d|e da da de+# de d|a da de+# da da do|  
   wiz  $$((button pressed)) 
   dri      -->+.....+gazes at RES---+gazes at cyc--+gazes at road-->l.05 
   cyc                    |steers away------|passes bus--------| 
   img                                #img2          #img3b 
 

03      da de da da de de da da de *da da do# 
   cycL                            *moves to sidewalk--> 
   img                                      #img3a 
 

04      (1.4)* 
   cycL   -->* 
 

05 WIZ  $$(0.4)da de da+ da de de da %da# &+%de# da&+ da [do     ] 
06 CYC                                                   [gulligt] 
                                                          cute 
   wiz  $$((button pressed)) 
   dri              -->+follows cyclist group with gaze-->> 
   cycM                              %waves-% ((while driving onto sidewalk)) 
   cycR                                   &waves---& 
   dri                                     +waves---+ 
   img                                  #img4  #img5ab 
 

07      da de da [da# de de d   ]a da de da da do 
08 DRI           [gulligt sa hon] 
                  cute, she said 
   img              #img6             
 
 
 
 
 
 
 
 

Figure 4: EM-2020-05-29. Wheels on the bus jingle. DRI= 
safety driver, WIZ= researcher acting as Wizard-of-Oz, CYC= 
cyclists. See supplementary material for transcription sym-
bols, images, and video clip. 

The extract in Figure 4 shows how cyclists move away from 
the bus well in time while the refrain of the song “the wheels on 
the bus” is played: A cyclist (cyc) emerges in the “tracks” of the 
bus and the researcher who acts as the wizard WIZ in this case 
soon triggers the jingle (l. 02), which plays for 12 seconds. Soon 
after the jingle starts playing, the cyclist starts turning away from 
the bus and subsequently passes it without any problems (l. 02). 
The safety driver, who had been following the cyclist with his 
gaze is now looking back on the road ahead (l. 02), where a group 
of three cyclists is approaching. The jingle is still playing, as the 
bus continues to move forward. While still at several bike-lengths 
distance, the leftmost cyclist (cycL) starts to move towards an area 
designated as a sidewalk, away from the bus (l. 03). The jingle 
terminates but is soon triggered again by the researcher (l. 04-05). 
As the jingle goes on, the group moves closer to the bus. The middle 
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cyclist (cycM) now also moves towards the sidewalk area, waving at 
the bus (l. 05). Shortly after, the rightmost cyclist (cycR) also starts 
waving (l. 05). The safety driver (DRI) smiles and raises his hand, 
responding to their greeting (l. 05). As the cyclists are passing the 
bus, one of them says gulligt, “cute” in Swedish (l. 06), which the 
safety driver repeats to the researcher, saying “she said cute” (l. 08). 

While the extract may appear as unusual, it is exemplary of 
the responses to the jingle that we observed in several ways: First, 
we saw people move away from the bus in response to the jingle, 
before any potential brakes became relevant. Cyclists approaching 
the bus in narrow passages did not seem to get in the way as much, 
acknowledging and reacting to the bus well in advance. Second, 
since the jingle continues for several seconds, it can be responded 
to by several di�erent groups that the bus passes during this time. 
This makes it particularly suitable in dense environments, where 
addressing individuals is not practically feasible. Third, the “happy” 
tune seems to evoke positive associations with the bus. We observed 
people gazing towards the bus, smiling as they passed. We captured 
a range of greeting/welcoming actions towards the bus, such as 
a child getting o� their bike and dancing on the sidewalk, and a 
mother with child stopping the bus, curiously asking where it was 
going, which according to the safety driver never happened before. 
By announcing its presence loudly, the bus may evoke associations 
with vehicles that are known to be moving slowly, allowing cyclists 
and pedestrians to adjust to its limited coordination abilities. At the 
same time, the friendly jingle seems to invite interaction, possibly 
attracting potential passengers. 

5.3 Instructing Movement with Bells and Horns 
In contrast to the jingles, we explored a variety of horn and bell 
sounds. A major bene�t of such “beep” and “ding” sounds is that 
they are short and can be �exibly repeated. 

01 WIZ  dingling [dingling::        ding::] 
02 RES           [det är kanske för snällt] ((ending previous discussion)) 
                  maybe it is too friendly 
 

03 DRI  [#nu plingar vi] 
         now we are plinging 
04 WIZ  [#ding:  dingli]ng::  %ding +dingling:::*:  
   mip                        %...............walks away with phone--> l.08 
   lip                              +..........takes step--> 
   rip                                          *...--> 
   img   #img1 
 

05 WIZ  #di*ngling ling:*:+::      
   rip  -->*turns to bus*shifts weight--> 
   lip                 -->+step--> 
   img  #img2 
 

06 WIZ ding*::::::*+ 
   rip  -->*step--* 
   lip          -->+ 
 

07 WIZ   #*+ding ding*: dingling di#ng+ di*ng  
   rip    *step------*step----------------* 
   lip  -->+step----------------------+step--> 
   img   #img3                     #img4 
 

08 WIZ  dingling: dingling+%: dingling*:::::::*+%   
   lip                 -->+step----------------+ 
   mip                  -->%turns towards bus---% 
   rip           ((2 invisible steps))*step---* 
 

09 WIZ  *+dingding:%*: #di+ng dingling:*:%: lingding: dingling:: di%ngling::+             
   rip  *step-------*small step--------* ((then remains still)) 
   lip   +step------------+((2 invisible steps))----------------------------+ 
   mip             %step-----------------%step---------------------% 
   img                 #img5                      

Figure 5: EM-2022-09-09. Repeated bell sounds. DRI= safety 
driver, WIZ= safety driver acting as Wizard-of-Oz, lip= left 
pedestrian, mip= middle pedestrian, rip= right pedestrian. 
See supplementary material for transcription symbols, im-
ages, and video clip. 

The extract in Figure 5 shows how the safety driver acts as wizard 
(WIZ), using a bell sound to instruct a group of three pedestrians 
to move out of the way: He starts playing “dingling” sounds as the 
bus begins to speed towards the group (l. 01), and simultaneously 
announces “now we are plinging (l. 03), thereby e�ectively ending 
a previous conversation with the researcher and marking the start 
of another trial. As the wizard repeats “ding dingling” (l. 04), a �rst 
reaction can be observed. The left pedestrian (lip), who is facing 
the bus, starts taking a small step. The right pedestrian (rip) whose 
back is facing the bus, starts turning. The middle pedestrian (mip) 
is walking away, possibly taking a phone call. The safety driver 
adds a “dingling ling” (l. 05), during which the right pedestrian fully 
turns towards the bus. As the sound lingers, the left pedestrian 
takes another, larger step, and the right pedestrian shifts his weight, 
taking a further step during another “ding” (l. 06) from the safety 
driver. The group has acknowledged the bus, but they need to move 
further for the bus to be able to pass. The safety driver initiates 
more sounds, this time in a fast, rhythmical sequence “ding ding 
dingling ding ding dingling dingling dingling” (l. 07-08), which can 
be heard as an upgraded version of the earlier bell sounds. The left 
and right pedestrian now take several steps, moving away from the 
bus. Towards the end of the sequence, even the middle pedestrian 
turns towards the bus again (l. 08). Both left and middle pedestrian 
are now right in front of the bus, and the safety driver initiates an-
other upgraded round of “dingding ding dingling lingding dingling 
dingling” (l. 09), resulting in all three pedestrians taking further 
steps, until they have e�ectively moved out of the way. 

The extract highlights how pedestrians react to repeated bell 
sounds in a �nely coordinated manner, responding to the �rst “din-
gling” sequence by looking at the bus, then taking �rst moves as 
the sounds are repeated, and �nally stepping away as the sounds 
are played with increased urgency. The sounds in this extract are 
generated with an app that mimics a hand bell by translating shak-
ing movements of the phone into sound. It was most intuitive to use 
and preferred by the safety driver, as it gave immediate feedback 
without requiring gaze at the phone. This is example demonstrates 
the �ne level of detail at which the safety driver tunes the sounds 
to the movement to the pedestrians, and how they in turn react to 
each bell ring as an indicator that they still have not done enough, 
incrementally moving as the sounds are repeated and intensi�ed. 

While some horns or bells certainly suit the “character” of the 
bus better than others, we observed that whether we used a high-
pitch bell or horn, a rising saxophone ri� or a hand bell, reactions 
were similar: Repeated when people were still visibly in the way of 
the bus, such sounds were responded to as instructions to further 
adjust one’s trajectory. By repeating the sounds, we successfully 
instructed a moving pedestrian to wait at a crossing, cyclists to 
swerve, and stationary pedestrians to move out of the way. 

6 DESIGN IMPLICATIONS 
Our study can teach three main lessons about the design of sound 
for autonomous buses, and robots more generally. First, we high-
light that sound should be designed in and for sequential contexts. 
Second, we discuss the type of insights that can be gained from 
designing such sound-in-interaction, and �nally we discuss our 
approach of intertwining EMCA and interaction design. 
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6.1 Designing Sound in Sequential Contexts 
Contributing to research on sound in HRI, our work demonstrates 
an approach to designing sound in concrete interactions. While 
current work focuses on validating sounds in isolation [10, 79, 82], 
we have demonstrated that it may be equally important to design 
for when a sound should be used in interaction and what meaning it 
gains in speci�c sequential contexts. Focusing on people’s reactions 
in live tra�c, we found that sounds of di�erent pitch and timbre 
could accomplish the same action, e�ectively instructing others to 
adjust their movement to the bus. Similarly, depending on context, 
the same sound may accomplish di�erent things, instructing one 
person to stop, and another one to move. Building on the conversa-
tion analytic concept of sequence [87], we would like to highlight 
that context does not only include the situation on the road, such 
as whether the sound is played at an intersection or when leaving a 
stop. Rather, the sequential context is de�ned by the movement of 
the bus and people on the road and therefore keeps changing, as peo-
ple are moving or stopping. To design interaction rather than robot 
interfaces [2], we need to focus on designing sound-in-interaction, 
looking at the role of sound in concrete sequences. 

6.2 Sound-In-Interaction 
In section 5, we provided examples of how sound is interpreted on 
the road. Below we re�ect on what these concrete examples can 
teach us about sound design more generally. 

6.2.1 The Ambiguity of Humming Sounds. While synthetic mo-
tor sounds may make autonomous cars safer by announcing their 
presence [68], we found that they are not su�cient for instructing 
others to keep a distance from the shuttle buses. As we illustrated in 
the extract in Figure 3, unnecessary brakes are anticipated by safety 
drivers, who recognize that coordination becomes relevant. The 
braking of the bus can then be regarded as failure to act in recogniz-
able ways [33], which would allow others to adjust their movement 
[16, 37]. The autonomous shuttle buses are more restricted in their 
movement than regular cars, and may require di�erent means for 
asking for other tra�c participants’ support. 

6.2.2 Jingles as Accounts. Playing upbeat jingles from the bus as 
in the extract in Figure 4 drew people’s gaze towards the bus, and 
typically they also adjusted their trajectories. From the EMCA per-
spective, the jingles may be seen as accounts, or situated expla-
nations [20, 29] for what the bus is doing: In the Swedish context 
they evoke associations with the ice cream trucks that drive around 
many neighborhoods. Reminding of another slow moving vehicle, 
the jingles may thereby serve as instruction for how to treat the 
relatively novel vehicle on the road. A di�erent example for this 
would be ambulances and police cars, which use their continuous 
horn sounds to instruct everyone else to give way. Rather than dis-
tinguishing implicit from explicit interfaces [19, 69], one may ask 
what recognizable actions they can perform to instruct interaction 
with the new vehicle on the road. 

6.2.3 Repetition Initiates Repair. Bell and horn sounds can turn 
into powerful instructions, as we demonstrated in the extract in 
Figure 5. Depending on the situated context, repetitions may �exibly 
instruct both moving out of the way or stopping and waiting until 
the bus has passed. In conversation analysis, repetition is known 

as a common strategy for repair. This term describes how people 
deal with problems in mutual understanding, also in interaction 
with machines [91]. By repeating a sound, the bus provides a new 
opportunity for the people around it to respond in a di�erent way -
until mutual understanding is reached. The repetition of a sound 
can thus be heard as highlighting that the current response is not 
su�cient and further adjustment is necessary. 

6.3 Intertwining EMCA and HRI Design 
We also make a methodological contribution by introducing earlier 
work in HCI and CSCW [7, 60, 65, 91, 94] to HRI. Our approach 
tightly integrates ethnomethodology and multimodal conversation 
analysis into the the HRI interaction design process (see Figure 2). 
We have developed novel design techniques that put focus on what 
actions sound can accomplish, by using video recordings of actual 
interaction with the robot as prototyping material. This has been 
crucial for us to explore what types of sound would be appropriate 
in the setting, and to test their timing and duration before deploying 
them on the road. Testing sounds in live tra�c, with professional 
drivers, has taught us important practical lessons about the salience 
of sound in noisy settings, and di�erences in how they sound inside 
and outside the bus. While our transcripts describe speci�c situa-
tions, engaging in EMCA transcription enables designers to re�ect 
on their designs. This opens opportunities for generalization, by 
putting focus on the types of actions that the sounds can accomplish 
in interaction. Our video recordings and transcripts can be seen 
as a contribution to intermediate-level knowledge [42, 57], in be-
tween concrete cases and theoretical abstractions. While grounded 
in speci�c interactions [53] they allow to describe general practices 
of how sound is used and interpreted on the road. 

7 CONCLUSION 
We reported on a two-year Research through Design study in which 
we explored how public transport autonomous shuttle buses could 
use sound to communicate with other road users. Focusing on 
what actions sound can accomplish during tests in live tra�c, we 
demonstrated �rst that (motor) hums are not always su�cient 
for instructing movement around the bus. We then showed how 
jingles invite interaction by providing situated explanations of the 
buses’ presence and how repeated short honks or beeps can instruct 
others’ movement. The paper presents a novel method for the design 
of robot sound, which tightly intertwines ethnomethodology and 
conversation analysis with interaction design and highlights the 
importance of designing sound in interactional sequences. 
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